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Abstract: Li(sec-Bu)3BH-mediated reductive cyclization of  optically pure 8-((S)-p-tolylsulfinyl)-
(2E,7Z)-octadienoate 9 and 7-(p-tolylsulfinyl)-2,6-heptadienoate 16  afforded trans-2-((p-tolylsulfinyl)-
methyl)cyclohexane-1-carboxylate and trans-2-((p-tolylsulfinyl)methyl)cyclopentane-1-carboxylate, re-
spectively, as a single isomer.

The asymmetric and stereospecific construction of functionalized six- and five-membered carbocycles
continues to attract the attention of organic chemists. We have reported a new strategy for stereoselective syn-
thesis of functionalized cyclohexane derivatives that uses intramolecular Michael reaction of ester enolate 2,
which is derived by lithium tri-sec-butylborohydride (L-Selectride®) reduction of bis enoate 1.1 The observed
higher trans selectivity in the reaction of 2-methyl derivative 1b in comparison to 1a has been explained by
steric repulsion between the methyl group and H-5 in the transition state 5 leading to 4b.  These results led us
to consider the use of (Z)-vinyl sulfoxide2 as a Michael acceptor3,4 that would permit not only trans selective
but also enantioselective construction of cyclohexane derivatives owing to its ready availability in geometrically
and optically pure form in addition to the developing steric repulsion between the sterically demanding
arylsulfinyl group and H-5 in the transition state 6 leading to the cis derivative.5
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The cyclization precursor 8-((S)-p-tolylsulfinyl)-(2E,7Z)-octadienoate 9 was prepared by a five-step se-
quence starting with 5-hexyn-1-ol, which relied on the stereoselective formation of (Z)-α,β-unsaturated sul-
foxide by hydrogenation of the triple bond with the Wilkinson catalyst (7 → 8).6
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When 9 was treated with L-Selectride® (1.1 equiv) in THF (0.01 M) at -30 °C for 1h and then 10 °C for
2 h, the intramolecular Michael addition proceeded with complete π-facial diastereoselectivity to afford trans-
cyclohexanecarboxylate 10 as a single isomer in 50% yield, with the absolute structure determined by X-ray
analysis7.  Departing from this protocol led to a decrease in yield.  The major side reactions were attributable to
an intermolecular reductive dimerization and the formation of uncyclized 1,4-reduction compounds.  The
reaction in THF-HMPA (20:1) was much less stereoselective, affording both the trans and cis isomers in a
ratio 39: 61 in 31% yield.8
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On the other hand, the same reaction using E-derivative 13, prepared in a manner similar to 9 except that
DIBAL was used for the hydrogenation step (7 → 12),6 showed expectedly poor stereoselectivity, providing an
inseparable mixture of cyclohexane derivatives whose 1H NMR revealed the presence of three cy-
clohexanecarboxylates except 10, and 15 (Scheme 4).
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Similar results were obtained with 7-(tolylsulfinyl)-2,6-heptadienoate 16, derived from 4-pentyn-1-ol in a
fashion similar to 9, affording optically pure cyclopentane derivative 179 in 60% yield.  The relative stereo-
chemistry was deduced from the combination of 1H NMR and NOESY experiments and the absolute stereo-
chemistry assigned by analogy with 10.  Use of THF-HMPA resulted in the decrease in the selectivity again,
affording 17 and its isomer of undetermined stereochemistry in a ratio of 53:47 in 40% yield.
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Initially, the observed trans selectivity in the reaction of 9 was attributed to the nonbonded repulsion
between the sulfinyl group and the H-5 on the basis of the result with 1a,b.  The exclusive formation of the
trans derivative 17 in the reaction of 16, however, cannot be explained only by the interaction because of the
absence of such repulsion in the transition state leading to the cis derivative in the case of 16.  Consequently,
the origin of the trans selectivity is unknown at present but could be due to the eclipsing interaction of both the
double bonds in 19 leading to the cis isomer relative to the transition state 18 leading to the trans one.  
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The facial selectivity can be accounted by preferential attack of the enolate from the less hindered side in
the chelated structure involving the lithium atom, and the sulfinyl and the enolate oxygen atoms as shown in
Scheme 6.  This is supported by the results that the selectivity was significantly lowered upon addition of
HMPA that can disrupt the chelated structure by solvating the lithium cation.
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In summary, we have developed a new strategy for the asymmetric construction of the functionalized
cyclohexane and cyclopentane derivatives using intramolecular Michael addition of ester enolate to vinyl sul-
foxide.  To the best of our knowledge, this is the first example of intramolecular Michael addition in which
vinyl sulfoxide without any activation by electron-withdrawing groups can serve as a Michael acceptor.  We are
currently defining the scope and limitations of this methodology.
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