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Emission source functions are extracted from correlation functions constructed from charged pions
produced at midrapidity in Au + Au collisions at ,/syy = 200 GeV. The source parameters extracted
from these functions at low k; give first indications of a long tail for the pion emission source. The source
extension cannot be explained solely by simple kinematic considerations. The possible role of a halo of
secondary pions from resonance emissions is explored.
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Collisions between ultrarelativistic heavy ions can lead
to extremely high energy-density nuclear matter [1]. The
decay dynamics of this matter is strongly influenced by the
nuclear equation of state (EOS) and possibly by a decon-
fined phase [2]. An emitting system which undergoes a
strong first order phase transition is expected to show a
much larger space-time extent than would be expected if
the system remained in the hadronic phase throughout the
collision process [3]. Indeed, several hydrodynamical cal-
culations show such an increase for particle emission
sources [3,4], provided hadronization does not occur via
a supercooled state [5]. It has also been suggested that the
shape of the emission source function can provide signals
for a second order phase transition and whether or not
particle emission occurs near to the critical end point in
the QCD phase diagram [6].

Interferometry studies provide important information on
the emission source function for particles produced in
nuclear reactions ranging from elementary -collisions
[e*e™ and (p)pp] to those involving very heavy ions [7—
9]. Recent studies span the beam energies ./syy ~
2-200 GeV [10-13]. A common theme for these papers
is the extraction of the widths of emission source functions
which are assumed to be Gaussian. Also, Coulomb effects
on the correlation function are usually assumed to be
separable [14]. Such an approach was followed earlier in
an analysis which used the Bowler-Sinyukov 3D Hanbury
Brown and Twiss (HBT) method to probe for a possible
long-lived source [15]. The rms widths so obtained for
each dimension of the source Rjg, Rgige, and R,y gave
no evidence for such emissions, suggesting that the sound
speed is not zero during an extended hadronization period.

In this Letter we exploit the model-independent imaging
technique of Brown and Danielewicz [16,17] to make a
more detailed study of both the shape and the space-time
characteristics of the pion emission source function. The
method uses a numerical calculation of the two particle
wave function, which includes final-state interactions
(FSI), to produce an inversion matrix that operates on the
correlation function to produce the corresponding source
function. The technique has been used to address only a
few data sets [18,19] at relativistic beam energies.

Measurements were made with the PHENIX detector
[20] at the Relativistic Heavy Ion Collider (RHIC).
Charged pions were detected in the two central arms
(Im| = 0.35). Track reconstruction was accomplished via
pattern recognition using the drift chamber (DC) followed
by two layers of multiwire proportional chambers with pad
readout located at radii of 2, 2.5, and 5 m [20]. Particle
momenta were measured with the resolution 8p/p =
0.7% ® 1.0%p (GeV/c). Very good pion identification
(PID) was achieved with a 20 cut about the pion peak in
the squared-mass distribution for p; < 2.0 GeV/c and
pr = 1 GeV/c in the time of flight (TOF) and the electro-
magnetic calorimeter (EMC), respectively. The event cen-

trality was determined using the PHENIX beam-beam
counter and the zero degree calorimeter [21].
Approximately 22 X 10° Au + Au events were analyzed
to study several centrality and p; selections.

Two-pion interferometry correlations were obtained via
the correlation function C(g) = Nor(q)/Nmix(q), where
the numerator is the relative momentum distribution of
particle pairs from the same event (foreground pairs) and
the denominator is the relative momentum distribution of
particle pairs obtained from mixed events (background

pairs). Here, ¢ = 1y/—(p; — p»)* is half of the relative

momentum between the two particles in the pair c.m.
frame (PCMS). p, and p, are the momentum 4-vectors
of each particle in the pair and C(g) = 1 for large g values
where final-state interactions are negligible. Track-pair
cuts similar to those of Ref. [12] were applied to fore-
ground and background pairs, respectively. That is, pairs
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FIG. 1 (color online). [(upper, (a)] (@) Correlation function,
C(q), for w7t and 7w~ 7~ pairs; ((J) restored correlation from
imaging technique; (dotted line) direct correlation fitting; (A)
1D angle-averaged correlation of 3D correlation function.
(lower) 1D source function (b) S(r) and (c) 4#r2S(r): (O)
imaging; (@) spheroid fit to correlation function; (A) angle-
averaging of 3D-Gaussian source function. Systematic errors are
less than size of data points.
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within 5 cm in the beam direction (AZpc) and 0.02 radians
in azimuthal angle (A ¢pc) in the DC were eliminated from
the pair sample to remove ghost tracks, and pairs within
0.0 << A¢pc <0.1 radians for AZp->5 cm were re-
moved to avoid an inefficient region. The latter set of
cuts were supplemented with the removal of pairs having
a separation AR = 14 cm and = 16 cm in the TOF and
EMC, respectively. Systematic variations of all of these
cuts were explored to determine systematic error estimates;
very little influence on the extracted correlation functions
was found. Careful studies of the influence of momentum
resolution on the correlation function were also made, as in
[22]. The maximum effect was found to be ~0.4% change
in the correlation function at low ¢ values, so it was
neglected.

The filled circles in Fig. 1(a) show the one-dimensional
(1D) correlation function C(q), for a centrality of 0% —20%
and for 0.20 <k =3 (pr; + pra) <0.36 GeV/c. The
characteristic enhancement for g < 25 MeV/c reflects a
combination of Bose-Einstein statistics and the FSI be-
tween pion pairs. The correlation function is not
Coulomb corrected because the FSI (including Coulomb
but no strong interaction) is included in the imaging and
fitting procedure as described below.

The 1D correlation function and source function S(r)
(the probability of emitting a pair of particles at a separa-
tion r in the PCMS frame) are related via the 1D Koonin-
Pratt equation [23]:

Clg)—1= 47derr2K0(q, r)S(r). (1)

The angle-averaged kernel K, (g, r) encodes the FSI and is
given in terms of the final-state wave function ®(r), as
Kolg, r) =% [d[cos(0 )| Pg(r)|* — 1], where 6, is
the angle between q and r [17]. The procedure for the
inversion of Eq. (1) to obtain S(r) is also given in Ref. [17].

The open squares in Fig. 1(b) show the source function
obtained from the correlation function presented in
Fig. 1(a). As a cross-check of the imaging procedure, a
restored correlation function was generated via Eq. (1)
with the extracted source function as input. The open
squares and filled circles in Fig. 1(a) indicate excellent
consistency between the measured and restored correlation
functions. The 1D source function, cf. Fig. 1(b), points to a
Gaussian-like pattern at small r and a previously unre-
solved “tail” at large r. The robustness of this tail was
established via an extensive array of tests including its
dependence on pair and PID cuts, and on momentum
resolution; no variation outside of the stated error bars
was found.

This new observation of a tail is made more transparent
via a comparison with the source function constructed
from the parameters (Rjongs Rgige> Rou» and A), obtained
in an earlier 3D HBT analysis [15]. The procedures out-
lined in Ref. [17] were employed to construct this source

function (see Fig. 1). The measured and 3D angle-averaged
correlation functions differ for g < 15 MeV/c as do the
respective source functions for » = 17 fm. The imaged
source function exhibits a more prominent tail than the
angle-averaged 3D HBT source function. This difference
could stem from the Gaussian shape assumption employed
in the 3D HBT analysis. The 3D Gaussian fitting procedure
by construction is sensitive only to the main component of
S(r), and thus would not be capable of resolving fine
structure at small-g/large-r. Given the fact that the volume
element increases quadratically with pair separation, this
difference is considerable as shown in Fig. 1(c), where the
radial probabilities [4772S(r)] are compared. The open
triangles in Fig. 1(a) clearly indicate that the differences
in the source functions reflect an important disparity in the
corresponding correlation functions for ¢ < 10-15 MeV.

Parameters of the source function for different assumed
shapes were extracted via direct fits to the correlation
function. Filled circles in Figs. 1(b) and 1(c) show the
source function obtained from such a fit for a spheroidal
shape [17],

AR X e~ /4R Derfi ()
(8RR, )

S(r) = , for RO > RT, (2)

where R.; = 1/4/(1/R2 — 1/R3), Ry is the radius of the
spheroid in two perpendicular spatial dimensions and R, =
a X Ry is the radius in the third spatial dimension; a is a
scale factor. The long axis of the spheroid is assumed to be
oriented in the out direction of the Bertsch-Pratt coordinate
system. The fraction of pion pairs which contribute to the
source A is given by the integral of the normalized source
function over the full range of r.

The procedure for making a direct fit to the correlation
function involves the determination of a set of values for
the spheroid parameters of Eq. (2), which reproduce the
observed correlation function when the resulting source
function is inserted into Eq. (1). The minimization package
MINUIT was used to minimize the y? between the observed
and calculated correlation function. The y?/ndf value so
obtained was ~1. The dotted curve in Fig. 1(a) shows the
fit to the data. The resulting source function shown in
Figs. 1(b) and 1(c) indicates very good agreement with
that obtained via the imaging technique. This shape pa-
rametrization is not unique; an essentially indistinguish-
able source was also obtained for a fit performed with a
Gaussian plus modified exponential [24] shape. The sim-
pler spheroid parametrization was chosen for the discus-
sion below.

The spheroidal source function [Eq. (2)] can be approxi-
mated by a short-range Gaussian source Sg.(r);

Su(r) ~ Ae 7 IA/ORD+HA/2R)) /(8 7r [ RER),  (3)

for small r, and a long-range source S).(r) for

132301-4
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r > 2R;Ry/+/R} — R3 given by

Si(r) ~ ARge™ "5 [4mm(RS — R})P) ()
Thus, the emission source shown in Figs. 1(b) and 1(c) can

be interpreted to reflect a short-range Gaussian source of

radius Ry = 3R}RZ/ (2R3 + R3) = Ryy3a%/(2a% + 1)
and a long-range tail of extended space-time extent R}, =
Ry. The fraction of pairs associated with these sources
Ay = Aa?[3/(2a* + 1)P/? and A, = (A — A) are ob-
tained from Eq. (3) and the conservation of pairs,
respectively.

Source functions were extracted via imaging and spher-
oid fits for several k7 and centrality selections, in order to
map the regions in k and centrality where the long-range
tail is prominent. Representative results are shown in Fig. 2
for the indicated cuts. The experimental and restored cor-
relation functions, compared in Figs. 2(a) and 2(b), indi-
cate good agreement within the statistics, as do the
corresponding source functions shown in Figs. 2(c) and
2(d).

Figure 3 gives a more complete summary of the ex-
tracted source parameters. Systematic errors obtained via
variations of pair cuts in the analysis are 0.12 fm, 1.0 fm,
0.35, and 0.03 for Ry, Ry, a, and A, respectively. The
centrality and k; dependence of the rms radius of the
short-range source R is similar (within 10%) to that
obtained for Rjo,, and Ry, in an earlier analysis [15],
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FIG. 2 (color online). (upper) Correlation functions, C(g), for
7t 7t and w7~ pairs and (lower) corresponding source func-
tions, S(r) for (a), (c) high k7 most central collisions; (b), (d) low
ky peripheral collisions. Error bars indicate statistical errors with
symbols as in Fig. 1.

cf. Figs. 3(a) and 3(d). The long-range source shows an
effective radius R, = a X Ry, which is ~2-3.5 times R,.
The ratio R,/ R, is also maximal for low k; and the most
central collisions. The fraction of pairs exhibiting these
characteristics is given by the A values shown in Figs. 3(c)
and 3(f); for central collisions, maximum prominence is
shown for low k; pairs.

A central question is the origin of the long-range con-
tribution to the emitting source. Instantaneous freeze-out
of a source with R, /R4 ~ 1 in the longitudinal comov-
ing system (LCMS) would give a maximum kinematic
boost so that R, = R, = v X Ry in the PCMS. Thus,
the values for a and 7y, shown in Fig. 3(b), can be directly
compared. At low k7, y is seen to be significantly less than
a. Thus, a simple kinematic transformation from the
LCMS to PCMS cannot account for the observed source
parameters at this k;.

Could a composite particle emission source comprised
of a central core and a halo of long-lived resonances
account for the observations? For such emissions, the
pairing between pions from the core and secondary pions
from the halo is expected to dominate the long-range
emissions [25]. If it is assumed that this halo includes
only w decay (¢t~ 24 fm), one may compare the w
yield with a simple estimate of the fraction of pion pairs
associated with the short- and long-range sources. Using

the a and vy wvalues in Fig. 3(b), Ay ~ 0.22-0.32,
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FIG. 3 (color online). (left) k; dependence of extracted sphe-
roidal source parameters for pion source functions (a) R, R,
(b) a, and (c¢) A for (filled symbols) most central collisions; (open
symbols) peripheral collisions. (right) Centrality dependence of
same parameters for (%) low k; (0.2-0.4 GeV/c); (3) high kr
(0.5-1.0 GeV/c).
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Ay ~ 0.23-0.13, and A,/ A ~ 0.4-1.0 for the lowest kp.
The preliminary values for w/7~ = 0.1 from Ref. [26]
give an estimate for A, /A, ~ 2 X 0.1/4/A, ~ 0.35-0.43
which lies at the lower end of the estimates obtained from
the source parameters. (A significant change in the value
for w/7~ would alter this conclusion.) Therefore, it is
plausible that a maximal kinematic boost combined with
a halo of ws could account for A,/ A,.. However, the steep
centrality dependence of the radius of the long-range
source inferred from Figs. 3(d) and 3(e) is not compatible
with an essentially flat dependence expected for significant
 resonance contribution.

In summary, we have made the first extraction of the full
1D emission source function for pions in Au + Au colli-
sions at RHIC (,/syy = 200 GeV). This source function
points to separate but prominent contributions from short-
range emissions and a long-range tail of larger space-time
extent than has been previously observed. This tail cannot
be explained solely by simple kinematic considerations
associated with a frame transformation from the LCMS
to the PCMS. Further studies are required to determine the
origin of this tail and whether or not it is related to a phase
transition.
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