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The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4 < py <
4.0 GeV/c) of single electrons as a function of centrality in Au + Au collisions at ,/syy = 200 GeV.
Contributions from photon conversions and Dalitz decays of light neutral mesons are measured by
introducing a thin (1.7% X)) converter into the PHENIX acceptance and are statistically removed. The
subtracted nonphotonic electron spectra are primarily due to the semileptonic decays of hadrons
containing heavy quarks, mainly charm at lower p;. For all centralities, the charm production cross
section is found to scale with the nuclear overlap function, 74,. For minimum-bias collisions the charm
cross section per binary collision is Nz/T,4 = 622 = 57(stat) = 160(syst) wb.
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In central Au + Au collisions at ,/syy = 200 GeV neu-
tral pions and charged hadrons are strongly suppressed at
high transverse momentum (p7) [1-3]. In contrast, a mod-
est high-pr enhancement is observed in d + Au collisions
at the same energy [4,5]. Taken together, these observa-
tions indicate that the suppression in Au + Au collisions is
caused by final-state effects (e.g., parton energy loss in a
dense medium produced in the reaction).

Heavy quarks (charm and bottom) are complementary
probes of the hot and dense matter produced in high energy
heavy ion collisions. Because of their large masses, charm
and bottom cross sections are calculable via perturbative
quantum chromodynamics (pQCD) and their yield is sen-
sitive to the initial gluon density [6]. It has been predicted
that heavy quarks suffer less energy loss than light quarks
while traversing partonic matter due to the ‘“dead cone”
effect [7-9]. This can be studied through systematic mea-
surements of the p; spectra of open heavy flavor. In
addition, the open-charm yield is an important baseline
for understanding J/¢ production which has been pre-
dicted to be either suppressed [10] or enhanced [11] in
deconfined partonic matter.

The PHENIX experiment observed that inclusive single
electrons in central and minimum-bias Au + Au collisions
at /syy = 130 GeV were produced in excess of purely
“photonic” contributions (primarily due to 7° Dalitz de-
cays and conversion of 770 photons in the detector material)
[12]. This excess is consistent with the expected charm
production, assuming that it scales with the number of
binary nucleon-nucleon collisions (N.;) or, equivalently,
with the nuclear overlap function, 744. In this Letter, we
present results on the single electron measurement in
Svnv = 200 GeV Au + Au collisions. Our measurement
is in a py range sensitive only to charm production. The
new data have higher statistics and smaller systematic
errors than the 130 GeV data, allowing us to measure
charm production as a function of collision centrality.

The data used in this analysis were collected by the
PHENIX detector [13] during the 2001 run period of the
Relativistic Heavy lon Collider. A coincidence of the
beam-beam counters (BBC), a pair of detector arrays
covering 27 in azimuth and 1 = *(3.0-3.9), and the
zero degree calorimeters (ZDC) provides the minimum-
bias trigger (92.2723% of the 6.8 = 0.5 barn Au + Au
inelastic cross section). The centrality is determined by
the correlation between the multiplicity measured by the
BBC and the energy of spectator neutrons measured by the
ZDC. The BBC also measures the collision vertex, z, with
resolution o = 0.7 cm. We require |z| <20 c¢m to elimi-
nate electrons originating from the central magnet.

Charged particles are measured by the PHENIX east-
arm spectrometer (|| < 0.35, A¢p = 77/2) with resolution
o,/p=0.7% & 1.0%p(GeV/c). Tracks are reconstructed

PACS numbers: 25.75.Dw

with the drift chamber and the first layer of pad chambers
and confirmed by requiring an electromagnetic calorimeter
(EMCal) matching hit within 20" in position. Electron
candidates are required to have at least three associated
hits in the ring imaging Cerenkov detector (RICH) that
pass a ring shape cut, and are required to pass a timing cut
in either the EMCal or the time-of-flight detector. After
these cuts, a clear electron signal is observed as a narrow
peak at E/p = 1. By requiring —20 < (E — p)/p <30,
background from hadrons, which deposit only a fraction of
their energy in the EMCal, and nonvertex electrons, which
have misreconstructed momenta, is further reduced.
Remaining background in the electron sample, due to
accidental coincidences between RICH hits and hadron
tracks, is estimated ( = 10%) and subtracted by an event-
mixing method.

Inclusive electrons contain two components: (i) “non-
photonic” —primarily semileptonic decays of mesons
containing heavy quarks, and (ii) photonic—Dalitz decays
of light neutral mesons (7%, 1, ', p, @, and ¢) and photon
conversions in the detector material. To separate these two
components, a photon converter (a thin brass tube of 1.7%
radiation length surrounding the beam pipe at r = 29 cm)
was installed.

We analyzed 2.2 M (2.5 M) events with the converter in
(out). The corresponding raw electron p; spectra for
minimum-bias collisions are shown in Fig. 1(a). The pho-
ton converter multiplies the photonic contribution to the
electron yield by a factor R,

NgConv-out — Ngl + Ngon‘)” (1)
NGt = R NZ + (1 — e)N™". 2)

Here NSonv-in (yConv-outy jq the measured electron yield
with (without) the converter; NJ (No°"7) is the electron
yield due to the photonic (nonphotonic) component; and
€(= 2.1%) represents a small loss of electrons due to the
converter. We next define Rqy as the ratio of the raw
electron yield with and without the converter. Dividing
Eq. (2) by Eq. (1) and defining Ryp = N> 7 /N7, one has

NConv—in R. + (1 — E)RNP
RCN = Ceonv-out = ' )

If there were no contribution from the nonphotonic com-
ponent (Ryp = 0), then Rcy = R,

The photonic electron yield per photon is approximately
givenby ¥ x § + %t, where 6 is the Dalitz branching ratio
per v relative to 2y (for 9, 1, and ') or 1y (for p, w, and
@) decay, and ¢ is the thickness of the conversion material
in radiation length (X,). The factor % is the approximate
probability for a vy to convert in one X,. Plugging in 6 ™ =
0.6%, t = 1.1% (t = 2.8%) for converter out (in) we find
Ry’ = yConv-in /yConv-out =~ | 9. There is some p; depen-
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FIG. 1. Shown vs p; (a) raw e™ spectra measured with the
converter in (open circles) and out (closed circles). (b) Ratio of
the converter in/out e* yields (R¢y, points) and ratio of photonic
e™ yield with/without the converter (R,, line and shaded band).
(c) Ratio of nonphotonic to photonic e* yields (Ryp, points) and
contribution from kaon decays (dashed line).

dence in the complete formula for ¥ and the value of 6 is
species dependent (6" = 0.8%), so we perform a full
GEANT [14] simulation with and without the converter to
calculate R,,. We determine R, for 7 and 7 separately. We
use the 77° spectrum measured by PHENIX [1] as the input
for the 7 simulation and assume mj scaling (p;—
\/P7 M5 —MZ%, normalized at high pr to n/7°’=
0.45*=0.1) to obtain the input for the 7 simulation.
Contributions from other mesons which undergo Dalitz
decay (77, p, w, @) are small (6% at pr = 3 GeV/c, and
smaller at lower pr). Since they have 6 = 67, we assign
them R, = R;’. When calculating the combined R,, we
use the particle ratios at high p; (n'/7°=0.25+0.13,
p/m =w/7°=1%05, ¢/7°=0.4%0.2). The ¢/7°
ratio used here is consistent with our 7° and ¢ measure-
ment [15]. The uncertainties in the particle ratios are
included in the systematic uncertainties of R,. For this
method it is essential that the amount of material is accu-
rately modeled in the simulation. We compared the yield of
identified photon conversion pairs in the data and in the
simulation and conclude that the simulation reproduces R,
within =2.0%. This uncertainty is included in the overall
systematic uncertainty.

Figure 1(b) shows that R-y gradually decreases with
increasing pr, while R, slightly increases with py. The
difference between Rcy and R, indicates the existence of

nonphotonic electrons. Figure 1(c) shows Ryp obtained
from R, and Ry using Eq. (3). Ryp increases with pr
and is more than 30% for p; > 0.6 GeV/c. The small
amount of conversion material in the PHENIX detector
allows a sensitive measurement of Ry .

Background from kaon decays (K — mrev) and dielec-
tron decays of p, w, and ¢ remain in the nonphotonic
electron yield. The background from kaon decays is
estimated with a GEANT simulation using the kaon pgy
spectrum measured by PHENIX [16] as input. The contri-
bution of kaon decays to the nonphotonic yield, shown in
Fig. 1(c), is 18% at p; = 0.4 GeV/c and decreases rapidly
to less than 6% for pr > 1 GeV/c. To calculate back-
ground from the e*e™ decays of p, w, and ¢, we first
generate spectra by applying m scaling to the PHENIX 7°
spectrum, as described above. The contribution of these
decays to the nonphotonic electrons is <3% for all pr.
Background from J/¢ — e*e™ decays and from Drell-
Yan pairs is negligible. Possible enhancement of low mass
dileptons through 7+ 7 — p — e*e™, as reported in
Pb + Pb collisions at the Super Proton Synchrotron [17],
would contribute to the nonphotonic electrons. However,
this is neglected since the estimated p contribution in the
absence of enhancement is only = 0.6% over all py.

After these backgrounds are subtracted the only other
significant source of nonphotonic electrons is the semi-
leptonic decay of heavy flavor, overwhelmingly charm. We
denote the remaining electrons as charm electrons. The raw
spectrum of charm electrons is corrected for geometrical
acceptance (€,,), track reconstruction efficiency (€re),
and electron identification efficiency (€,p) determined
by GEANT simulation. The efficiency €y, X € is about
11% of dN,/dy, and €, is about 65% as confirmed with
electrons identified through photon conversion. Correction
of multiplicity dependent efficiency losses, estimated by
embedding simulated electron tracks into real events, is pr
independent and increases from 5% to 26% from periph-
eral to central collisions. The 1o systematic uncertainty of
these corrections is 11.8%. Fully corrected charm electron
spectra are shown in Fig. 2 for minimum-bias collisions
and for five centrality bins. We determined photonic elec-
tron spectra and found them to be in good agreement with
the background calculated from the measured 7° spectra
using the method described in [12].

We also measured the charm electron spectrumin p + p
collisions at ,/syy = 200 GeV [18]. The lines in Fig. 2
show the best fit curve of this spectrum, scaled by T4 for
each Au + Au centrality bin. Here, T4, is the nuclear
overlap function calculated by a Glauber model [1]
(Table I). The Au+ Au data points are in reasonable
agreement with the p + p fit in all centrality bins.

To quantify the centrality dependence of charm produc-
tion, we calculated the integrated yield dN,/dy (0.8 <
pr <4.0 GeV/c) and fit it to AN2 |, where A is constant.
In the absence of medium effects @ = 1 is the expectation
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FIG. 2. Fully corrected charm electron pr spectra for different
Au + Au centralities scaled by successive factors of 10 for
clarity. Error bars (brackets) correspond to statistical (system-
atic) uncertainties. Curves are described in the text.

in the absence of medium effects. In this comparison,
most of the systematic effects will cancel. Figure 3
shows dN,/dy(0.8 < p;y <4.0)/N.y; vs N for mini-
mum bias and five centrality bins in Au + Au collisions
and p + p collisions. We find a = 0.938 * 0.075(stat) =
0.018(syst). If p + p data are included, o = 0.958 =
0.035(stat). This shows that the total yield of charm elec-
trons for all centralities is consistent with N . scaling.
For each centrality bin we scale the charm electron spec-
trum (pr > 0.8 GeV/c) by T4, and fit it with a PYTHIA
calculation of the electron spectrum resulting from leading
order charm and bottom production. We used PYTHIA
6.205 with a modified set of parameters (described in
[12]) and CTEQSL parton distribution functions [19].
Based on experimental input [20,21] we modified the
PYTHIA default charm ratios, using instead D" /D% =
0.45%+0.1, D,/D*=0.25*0.1, and A./D° = 0.1 = 0.05.

TABLE 1.

FIG. 3. Charm electron yield (0.8 < py <4.0 GeV/c) mea-
sured in Au + Au collisions at 200 GeV scaled by N as a
function of N, (left-hand scale). Normalizing instead by the
nuclear overlap function we obtain charm electron cross section
per N + N collision (right-hand scale).

This gives a ¢ — e total branching ratio of 9.5 = 0.4%.
Charmed hadron ratios from the statistical model [22]
gives a similar branching ratio (9.3%). The scaled charm
and bottom cross sections are treated as fit parameters,
although our data are restricted to pr values which are
sensitive only to charm production. We evaluated the sys-
tematic error due to background subtraction (=21%) by
refitting to the electron spectrum at the minimum and
maximum of its 1o systematic error band. The change of
the pr range for fitting the charm electron spectrum gives
3% systematic error for minimum-bias collisions. The sys-
tematic error due to the PYTHIA spectral shape (= 11%) is
dominated by the uncertainty in (k;)=1.5%+0.5GeV/c.
Different parton distribution functions yield a systematic
error of 6.2% for the rapidity-integrated cross section.
These systematic errors are added in quadrature to give
the overall systematic error on the charm cross section. For
minimum-bias collisions we obtain idt%? y=0 = 143%
13(stat) = 36(syst) ub and N_z/Ty4 =622 * 57(stat) *
160(syst) wb. Results for all centrality bins are shown in
Table I. The STAR collaboration reports a somewhat larger
charm cross section (oM =1.3%0.2+0.4mb) in p+p
and d+ Au collision at ,/syy = 200 GeV [23]. Next-to
leading order pQCD calculations of the charm production
cross section have large associated uncertainties, with
typical values between 300 and 450 ub [24].

Centrality bin, number of NN collisions, nuclear overlap function, charm cross section per NN collision, and total charm

multiplicity per NN collision, in ./syy = 200 GeV Au + Au reactions.

Centrality (%) Neon Tpx (mb™") 7 ‘@ ly=0 (ub) Nee/Tan (ub)

Minimum bias 258 £25 6.14 = 0.45 143 £ 13 £ 36 622 * 57 = 160
0-10 955+94 22.8 1.6 137 £21 £35 597 £93 = 156
10-20 603 = 59 144 1.0 137 +26 + 35 596 = 115 £ 158
20-40 297 * 31 7.07 = 0.58 168 £ 27 £ 45 731 = 117 = 199
40-60 91 £ 12 2.16 = 0.26 193 £47 £52 841 + 205 = 232
60-92 14.5 4.0 0.35+0.10 116 =87 £43 504 =378 £ 190

082301-5



PRL 94, 082301 (2005)

PHYSICAL REVIEW LETTERS

week ending
4 MARCH 2005

We note that final-state effects influence only the mo-
mentum distribution of charm; they have little or no effect
on the total open-charm yield. Therefore, our results in-
dicate N, scaling of the initial charm production, as
expected for pointlike pQCD processes. pQCD calcula-
tions without charm quark energy loss and hydrodynamic
calculations assuming complete thermalization of charm
quarks predict very similar charm electron spectra for
pr <2 GeV/c [25]. Differentiating between these oppo-
site physical pictures is possible only for p; > 2.5 GeV/c,
where statistics of the current analysis are limited.

In conclusion, we have measured single electrons from
charm decays in Au + Au collisions at \/syy = 200 GeV.
We observe that the centrality dependence of charm quark
production is consistent with N . scaling, as expected for
hard processes. The much larger Au + Au data set col-
lected by PHENIX in the 2003-04 run will allow us more
detailed exploration of medium effects on charm produc-
tion, both through deviations of the charm electron spec-
trum from N scaling, and also through a measurement of
charm quark flow.
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