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Abstract: The reactions of acylsilanes with KCN under liquid-liquid phase-transfer catalytic

conditions proceeded smoothly via the Brook rearrangement to produce O-silylated cyanohydrin

derivatives in excellent yields. We also found that α-cyano carbanions generated by the Brook

rearrangement in the reaction of (β-(trimethylsilyl)acryloyl)silane 7 can undergo alkylation at the γ-

position and that in the reaction of  β-bromoacylsilane 14 intramolecular alkylation occurs to afford

cyclopropanone cyanohydrin derivative 16.
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Reactions of acylsilanes with nucleophiles have attracted considerable attention because of the

unique transformation, including the Brook rearrangement, which allows the carbonyl group to

serve as a 1,1-dipole.1,2 We became interested in the reaction of acylsilanes with a cyanide ion in

connection with our ongoing investigation directed to the development of Brook rearrangement-

mediated reactions.3 Since the Brook rearrangement is facilitated by carbanion-stabilizing groups,2

we reasoned that the reaction of acylsilanes with a cyanide ion would be more synthetically useful if

the ion could be nucleophilic enough to generate an appropriate concentration of a carbanion for the

Brook rearrangement in the reaction with acylsilanes. To the best of our knowledge, there has been

only one report, that by Reich, on the reaction of acylsilanes with a cyanide ion.4 We decided to try

the reaction of acylsilanes with KCN in a liquid-liquid two-phase system under phase-transfer

conditions. One of our interests was also to see whether the Brook rearrangement can occur in the

presence of water or whether it is intercepted by water to give an α-silylcarbinol, because it is

known that acylsilanes are cleaved by dilute alkaline solutions to give aldehydes via the attack of a

hydroxide ion at the carbonyl carbon5 and, to our knowledge, there has been no report on the

occurrence of the Brook rearrangement in α-hydroxysilanes under aqueous conditions.

When β-alkyl substituted acryloylsilanes 16 were treated with KCN in the presence of n-Bu4NBr

in CH2Cl2-H2O, O-silylated cyanohydrin derivatives 4 were obtained (Table 1).7,8 The use of n-
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Bu4PBr as a PTC gave a better result. In both cases, no α-silylcarbinol arising from protonation of 2

before the Brook rearrangement was detected.

O

R

SiMe2But

KCN (1.1eq)
PTC (20 mol%)

CH2Cl2 - H2O
(1 : 1) R

CN

OSiMe2But

n-Bu4NBr
75
56
85
64
85

n-Bu4PBr
82
93
95
96
95

yield (%)

R

CN

SiMe2ButO

1 R

CN

SiMe2ButO

2 3 4

1
a
b
c
d
e

R
Me
i -Pr

c -C3H5
c -C6H11

t -Bu

Table 1

The almost same result was obtained when the reaction was performed with benzoylsilane 5a

and acylsilanes 5b,c9 (Table 2).
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The fact that no α-silylcarbinol was detected suggests that an intramolecular nucleophilic attack

of the oxyanion on silicon in adduct 2 to lead to the pentavalent silicon species 3 is faster than the

protonation of the oxyanion by water or that the reaction proceeds via a concerted process involving

3.

In the reaction of the β-alkyl-substituted acryloylsilane 1, no allylic rearrangement to lead to the

formation of enol silyl ethers was observed. We envisaged that the introduction of an anion-

stabilizing group at the β-position in 1 causes the allylic rearrangement to produce a γ-anion

derivative of α-siloxyacrylonitrile. To test this possibility, we examined the reaction of (β-

(trimethylsilyl)acryloyl)silane 710,3a with KCN. Under the same conditions employed for 1, we

obtained α-siloxyacrylonitrile 9 (Z:E = 2.4:1), a product arising from the Brook rearrangement
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followed by an allylic rearrangement of a generated carbanion, β-silylpropanoic acid 10, a

hydrolysis product of 9, and 11, the Brook rearrangement product (Scheme 1).
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The above results led us to investigate the reaction of 7 with KCN under non-aqueous conditions

in the presence of an electrophile and a PTC that would allow the introduction of substituents on the

α- or γ-position of α-siloxyacrylonitriles. We examined the reactions of 1 and 7 with KCN using

methyl iodide and 18-crown-6 as an electrophile and a PTC, respectively. Whereas the reaction of 1

resulted in recovery of the starting material, methylated product 12 was obtained in 65% yield

together with protonated derivative 13 from the reaction of 7 (Scheme 2). The Z geometries of 12

and 13 were assigned on the basis of results of NOESY experiments, and the exclusive formation of

the Z derivative was attributed to the coordination of the allylic anion to the silicon atom.
O

SiMe2But

Me3Si

KCN (1.1 eq)
MeI (5.0 eq)

18-crown-6
CH2Cl2

OSiMe2But

CN
H

Me3Si

HOSiMe2But

CN
H

Me3Si

Me
+

7 12
65%

13
21%

Scheme 2

Finally, intramolecular alkylation11 of the silyl-protected cyanohydrin carbanion 15 derived from

the reaction of 14 with KCN in the presence of the crown ether in CH2Cl2 was examined, and the

results are shown in Scheme 3. It is noteworthy that the reaction proceeds at room temperature,

because the base-induced cyclization of O-protected β-chlorocyanohydrin is reported to require

heating at 95 °C.12
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In conclusion, we have demonstrated that KCN can serve as a nucleophile in combination with

PTC in the reaction with acylsilanes and thereby provide potentially synthetically useful silyl-

protected cyanohydrin carbanions. Attempts to explore the scope of the reactions are underway.
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