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We propose a method for switchable coupling between superconducting qubits using double resonance. The
interqubit coupling is achieved by applying near-resonant oscillating fields to the two qubits. The deviation
from resonance relaxes the criterion of strong driving fields while still allowing for a fully entangling two-qubit
gate. This method avoids some of the shortcomings of previous proposals for switchable coupling. We discuss
the possible application of our proposal to a pair of inductively coupled flux qubits, and we consider the
extension to phase qubits.

DOI: 10.1103/PhysRevB.74.184504 PACS number�s�: 85.25.Cp, 32.80.Qk, 42.50.Hz

I. INTRODUCTION

Superconducting systems are among the most likely can-
didates for the implementation of quantum information pro-
cessing applications.1 In order to perform multiqubit opera-
tions, one needs a reliable method for switchable coupling
between the qubits, i.e., a coupling mechanism that can be
easily turned on and off. Over the past few years, there have
been several theoretical proposals to achieve that goal,2–11

and initial experimental advances have been made.12–21 The
early proposals involved performing fast changes in the qubit
parameters and taking the qubits out of their so-called opti-
mal points2,3 or using additional circuit elements.4–6 Both
approaches increase the complexity of the experimental
setup and add noise to the system. Rigetti et al.7 proposed a
switchable coupling mechanism that is turned on by applying
resonant oscillating fields to the qubits and employing ideas
inspired by the double-resonance physics known from
nuclear magnetic resonance �NMR�.22,23 In their proposal the
qubits are kept at their optimal points throughout the experi-
ment, neglecting the oscillating deviations caused by the
driving fields. In spite of its appealing minimal reliance on
additional circuit elements, that proposal requires the appli-
cation of large driving fields. Other authors later proposed
alternative mechanisms that avoided that limitation while
still using oscillating fields or oscillating circuit parameters
to induce interqubit coupling.8–11 Those most recent propos-
als, however, suffer from some limitations of their own, e.g.,
not being usable at the optimal point8 or requiring additional
circuit elements.9–11

Here we propose a generalized version of the double-
resonance method where the constraint on the driving ampli-
tudes is substantially milder than that required for the pro-
posal of Ref. 7. Our proposal provides an alternative to
experimentalists when deciding what is the most suitable
coupling mechanism to use in their experimental setup.

It is worth noting from the outset that the term double
resonance could be somewhat misleading in this context,
since the mechanism discussed below requires only one reso-
nance criterion, namely the one given in Eq. �6�. However,

we use it following similar mechanisms in the context of
NMR.23

The paper is organized as follows. In Sec. II we introduce
the model system and review recent proposals for achieving
switchable coupling. In Sec. III we derive our proposed cou-
pling mechanism and consider some aspects of its operation.
In Sec. IV we discuss the possible application of the proposal
to realistic experimental setups that use inductively coupled
flux qubits or capacitively coupled phase qubits. We con-
clude the discussion in Sec. V.

II. MODEL SYSTEM AND PREVIOUS PROPOSALS

We start by describing the system in general terms, and
we defer the discussion of its physical implementation to
Sec. IV. The system that we consider is composed of two
qubits with fixed bias and interaction parameters. Oscillating
external fields can then be applied to the system in order to
perform the different gate operations. In other words, we
consider the same system that was considered in Ref. 7. The
effective Hamiltonian of the system is given by:

Ĥ = − �
j=1

2 �� j

2
�̂z

�j� + � j cos�� j
rft + � j��̂x

�j�� +
�

2
�̂x

�1��̂x
�2�,

�1�

where � j is the energy splitting between the two states of the
qubit labeled with the index j; � j, � j

rf, and � j are, respec-
tively, the amplitude, frequency, and phase of the applied
oscillating fields; � is the interqubit coupling strength; and
�̂�

�j� are the Pauli matrices with �=x ,y ,z, and j=1,2. The
eigenstates of �̂z are denoted by �g� and �e�, with �̂z �g�= �g�.
Note that we shall set �=1 throughout this paper.

In order for the qubits to be effectively decoupled in the
absence of driving by the oscillating fields, we take ��	,
where 	=�1−�2, and we have assumed, with no loss of
generality, that �1
�2 and �
0. Note that the absence of
terms of the form �̂z

�1��̂z
�2� is also crucial to ensure effective

decoupling. Let us also take 	��, where � represents the
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typical size of the parameters � j. Since we will generally
assume driving amplitudes � j comparable to 	, the above
condition will be crucial in neglecting the fast-rotating terms
below, i.e., in making the rotating-wave approximation
�RWA�.

Single-qubit operations can be performed straightfor-
wardly by a combination of letting the qubit state evolve
freely, i.e., with � j =0, and irradiating it at its resonance
frequency, i.e., taking � j

rf=� j. Under the effect of resonant
irradiation, Rabi oscillations in the state of the qubit occur
with frequency � j.

Although a clear review of previous proposals is not pos-
sible without a detailed discussion, we summarize the ideas
of those proposals briefly here. The proposal of Ref. 7 in-
volves irradiating each of the two interacting qubits on reso-
nance, i.e., taking � j

rf=� j, and relies on one manifestation of
double resonance.22,23 The idea of the double resonance in
that case is that not only is each qubit driven resonantly, but
also the sum of the Rabi frequencies of the two qubits
matches the difference between their characteristic frequen-
cies �i.e., �1+�2=	�. After making two rotating-frame
transformations and neglecting fast-rotating terms, i.e., per-
forming two RWAs, one finds that the interqubit coupling
term is no longer effectively turned off �note that those trans-
formations are essentially a special case of the ones we shall
give in Sec. III�. One thus achieves switchable coupling be-
tween the qubits. That proposal was criticized, however, for
requiring such large Rabi frequencies. The proposal of
Ref. 8 uses an external field applied to one qubit at the sum
of or difference between the characteristic frequencies of the
two qubits in order to perform gate operations �e.g.,
�1

rf=�1−�2, �2=0�. However, since all the relevant matrix
elements, e.g., �gg � �̂x

�1� �ee�, with the eigenstates of the
Hamiltonian in Eq. �1� vanish, the proposed method would
not drive the intended transitions. One therefore needs to use
a somewhat modified Hamiltonian, e.g., one that contains an
additional single-qubit static term with a �̂x operator. In prac-
tice, that means biasing one of the qubits away from its op-
timal point in the case of charge or flux qubits. Since
optimal-point operation is highly desirable in order to mini-
mize decoherence, an alternative mechanism was proposed
in Refs. 9 and 11. In those proposals an additional circuit
element that can mediate coupling between the qubits is
added to the circuit design. That addition effectively makes
the parameter � in Eq. �1� tunable, with its value depending
on the bias parameters of the additional circuit element. One
of those parameters is then modulated at a frequency that
matches either the sum of or difference between the charac-
teristic qubit frequencies. Clearly, since the driving term con-
tains the operator �̂x

�1��̂x
�2�, it can drive oscillations in the

transition �gg�↔ �ee� or �ge�↔ �eg�, even when both qubits
are operated at their optimal points. As mentioned above,
however, the use of additional circuit elements is undesir-
able, because of the increased circuit complexity and deco-
herence.

In the next section, we shall derive our proposal to couple
the qubits by applying two external fields close to resonance
with the interacting pair of qubits such that neither qubit is
driven resonantly, but the sum of the �nonresonant� Rabi fre-

quencies satisfies the double-resonance condition. Therefore,
in some sense we relax the requirement that the driving am-
plitudes must be as large as 	 /2, as is the case in Ref. 7, and
we make up for the resulting loss of frequency by adding the
qubit-field frequency detuning to the double-resonance con-
dition.

III. THEORETICAL ANALYSIS

We now turn to the main proposal of this paper, namely
driving oscillations between the states �gg� and �ee� by em-
ploying double resonance with nonresonant oscillating fields.
We take the Hamiltonian in Eq. �1� and transform it as fol-
lows:

Ĥ� = Ŝ1
†�t�ĤŜ1�t� + i

dŜ1
†

dt
Ŝ1, �2�

where

Ŝ1�t� = exp	i�
j=1

2
� j

rf

2
�̂z

�j�t
 . �3�

A solution of the Schrödinger equation id ���t�� /dt

= Ĥ ���t�� can then be expressed as Ŝ1�t� ����t��, where ����
satisfies the equation id ����t�� /dt= Ĥ� ����t��. To simplify
the following algebra, we take �1=�2=0. Neglecting terms
that oscillate with frequency of the order of � j, we find that

Ĥ� = − �
j=1

2 ��� j

2
�̂z

�j� +
� j

2
�̂x

�j��
+

�

4
��̂x

�1��̂x
�2� cos ��rft + �̂y

�1��̂y
�2� cos ��rft

+ �̂y
�1��̂x

�2� sin ��rft − �̂x
�1��̂y

�2� sin ��rft� , �4�

where �� j =� j −� j
rf, and ��rf=�1

rf−�2
rf. We now make a basis

transformation in spin space from the operators �̂ to the op-
erators 
̂ such that the time-independent terms in Eq. �4� are
parallel to the new z axis and the y axis is not affected.
Equation �4� can then be re-expressed as:

Ĥ� = − �
j=1

2 � �̃ j

2

̂z

�j�� +
�

4
�
̂x

�1�
̂x
�2� cos �1 cos �2 cos ��rft

+ 
̂y
�1�
̂y

�2� cos ��rft + 
̂y
�1�
̂x

�2� cos �2 sin ��rft

− 
̂x
�1�
̂y

�2� cos �1 sin ��rft + Â� , �5�

where �̃ j =
�� j
2+� j

2, the angles � j are defined by the crite-

rion tan � j =� j /�� j, and Â contains terms in Eq. �4� that
were not written out explicitly in Eq. �5� because they will
soon be neglected. We now take the frequencies to match the
criterion �̃1+ �̃2=��rf, or more explicitly


��1
2 + �1

2 + 
��2
2 + �2

2 = 	 − ��1 + ��2, �6�
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where, as mentioned above, �� j =� j −� j
rf, and 	=�1−�2.

We also take the two terms on the left-hand side of Eq. �6� to
be comparable to one another. Taking the above condition

allows us to simplify Ĥ� with one more transformation. Us-
ing a similar procedure to that we used above for the first
transformation, we now take

Ŝ2 = exp	i�
j=1

2
�̃ j

2

̂z

�j�t
 , �7�

and after neglecting terms that oscillate with frequency of
order 	 we find that

Ĥ� =
�

16
�1 − cos �1��1 + cos �2��
̂y

�1�
̂y
�2� − 
̂x

�1�
̂x
�2�� . �8�

The reason why we can neglect the term Â in the above
transformation can be seen by observing that all the terms

contained in Â contain at least one 
̂z operator, and they
oscillate with frequency ��rf. Therefore, even after the trans-
formation, those terms will still oscillate with frequencies
that are of the order of 	 �and amplitudes smaller than ��,
meaning that their effects on the dynamics can be neglected

in Ĥ�, whose typical energy scale is a fraction of �.
Equations �6� and �8� form the basis for the coupling

mechanism that we propose in this paper. The Hamiltonian

Ĥ� drives the transition �gg�↔ �ee� but does not affect the
states �ge� and �eg� in the basis of the operators 
̂. Therefore,
a single two-qubit gate that can be performed using the

Hamiltonian Ĥ� and the set of all single-qubit transforma-
tions form a universal set of gates for quantum computing.
Note that since the two-qubit gate is performed in the basis
of the 
̂ matrices rather than the �̂ matrices, one needs to
include in the pulse sequence the appropriate single-qubit
operations before and after the two-qubit gate. Note also
that if we take the special case cos �1=cos �2=0, i.e.,
��1=��2=0, we recover the corresponding case in the re-
sults of Ref. 7.

A first look at Eq. �8� shows that one can achieve faster
gate operation than in the special case cos �1=cos �2=0 by
choosing cos �1 to be negative and cos �2 to be positive. In
other words, instead of using the special case of resonant
driving ���1=��2=0� one chooses ��1 to be negative and
��2 to be positive �i.e., �1

rf
�1 and �2
rf��2�. However,

inspection of Eq. �6� while noting that 
�� j
2+� j

2� ��� j�
+� j shows that one would then have to increase at least one
of the frequencies � j above the value 	 /2 in order to satisfy
Eq. �6� with that choice of ��1 and ��2. Since we started
with the motivation of finding an alternative double-
resonance method that works with smaller values of � j, we
focus on the opposite case, namely ��1
0 and ��2�0, and
we accept the resulting reduction in gate operation speed.
Starting from the special case ��1=��2=0 and moving in
the direction given above, we find that both �s can now be
reduced below the value 	 /2 while satisfying Eq. �6�.

It is worth pausing here to comment on the higher-order
effects that we have neglected in making the two RWAs. The
second-order shifts that we have neglected in making our

first RWA, i.e., the Bloch-Siegert shifts, are of order � j
2 /� j

�Ref. 24�. That energy scale is not obviously smaller than the
interqubit coupling strength �. One might therefore suspect
that those shifts will prohibit the performance of the pro-
posed method. That is not the case, however, since those
shifts only modify the values of the required driving frequen-
cies and amplitudes, as we shall demonstrate with numerical
simulations in Sec. IV. There we shall take the case where
	2 /�1=2�, and we shall show that full oscillations between
the states �gg� and �ee� can still be obtained when the shifts
are properly taken into account. Other frequency shifts that
result from our approximations, and possibly other
experiment-specific shifts, also affect the required driving
frequencies and amplitudes. We will not attempt to give ana-
lytic expressions for those shifts. However, we will take
them into account by numerically scanning the driving am-
plitudes to achieve optimal gate operation.

We now ask the question of how low can � j be chosen
to be. In principle, Eq. �6� can still be satisfied by taking
� j to be very small and taking ��1�	 /4, ��2�−	 /4.
Note, however, that the frequency of gate operations
is given by the coefficient in Eq. �8�, namely
��1−cos �1��1+cos �2� /16. That coefficient therefore deter-
mines the width of the resonance, or in other words, the error
tolerance in driving amplitudes from the resonance criterion
�Eq. �6��.25 One is therefore restricted to using values of �1
and �2 such that the above coefficient is larger than the ac-
curacy of the available pulse generators. Furthermore, taking
the inverse of the frequency determines the period of oscil-
lations in the doubly rotating frame, or in other words, the
time required to perform a two-qubit gate operation. Since
the decoherence time sets an upper limit on how slowly one
can perform the gate operations, that consideration provides
another restriction on the allowed values of �1 and �2. An
experimentalist must therefore take the two above consider-
ations into account, along with any restriction they have on
the maximum usable driving amplitudes, in order to deter-
mine the window of parameters where the coupling mecha-
nism can be realized. The parameters can then be fine-tuned
within that window for optimal results.

As an added perspective to help visualize the resonance
criterion, we show in Fig. 1 the relevant energy-level struc-
ture. One can compare this figure to Fig. 2 in Ref. 7. In that
case, the on-resonance Rabi frequencies provide all of the
energy splitting �i.e., �̃1 and �̃2� required to satisfy the reso-
nance criterion. In the present case, the energy levels in-
volved in the frequency matching are already brought closer
to each other by the facts that �i� the difference �1

rf−�2
rf is

smaller than the difference �1−�2 and �ii� the detuning of
each driving field from its corresponding qubit brings the
relevant levels even closer to each other. It would appear
from Fig. 1 that the resonance criterion can be satisfied with
arbitrarily small driving amplitudes and the proper choice of
�1

rf and �2
rf. As was discussed above, however, the matrix

element coupling the relevant energy levels �in the dressed-
state picture� becomes very small in that case, leading to the
undesirable situation of high required accuracy in the driving
fields and slow gate operation.

We reiterate that care must be taken in using the term
double resonance in describing the coupling mechanism dis-
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cussed above. However, since it seems that the term is used
to describe a number of distinct phenomena in NMR �Ref.
23�, some of which bear resemblance to the one discussed
here, we have followed that broad definition of the term.
Note, in particular, that the mechanism discussed above re-
quires only one resonance condition, namely the one given in
Eq. �6�. Neither applied field has to be resonant with its
corresponding qubit, provided that they are kept close
enough to resonance that the two-qubit gate can be per-
formed in reasonable time.

IV. EXPERIMENTAL CONSIDERATIONS

In the above discussion, we have not specified what kind
of qubits we consider. Our results therefore apply to any kind
of qubit where the effective Hamiltonian of Eq. �1� describes
the two-qubit system. Because of its relevance to current
experimental attempts to achieve switchable coupling be-
tween superconducting qubits, we now focus on the case of
two inductively coupled flux qubits, as shown in Fig. 2.20,26

Since the truncation of the full Hamiltonian to the effective
Hamiltonian of Eq. �1� has already been discussed by several

authors �see, e.g., Ref. 8� and it is not central to our discus-
sion, we do not include it here.

In experiments on flux qubits, the individual qubits typi-
cally have � j ��2���5 GHz �note that the exact value is
not completely controllable during fabrication, with the un-
certainty reaching 0.5–1 GHz in some experiments�.20,26,27

The interqubit coupling strength � can be taken to be around
�2���0.1 GHz. The highest achievable on-resonance Rabi
frequencies � j are in the range of several hundred MHz to
1 GHz �times 2��. The achievable Rabi frequencies are
therefore large enough when compared with the naturally
�i.e., uncontrollably� occurring interqubit detuning 	, sug-
gesting that it might be possible to implement the proposal of
Ref. 7 with the above qubit design. However, additional dif-
ficulties that we have not discussed in Sec. III arise in dif-
ferent experimental setups.

One experimental difficulty arises when 	 is 0.5–1 GHz
�Ref. 26�. In that case, the required Rabi frequencies are
large enough to excite higher states outside the truncated
qubit basis, in addition to exciting other modes in the circuit.
One would therefore ideally want to avoid using the highest
values of � j cited above ��0.5 GHz�. Taking intermediate
values of cos � between 0 and 1, the required Rabi frequen-
cies can be reduced substantially, and the two-qubit gate op-
eration can still be performed in a time of the order of a few
hundred nanoseconds. That time scale is smaller than the
qubit decoherence times �typically 1–3 �s�, which means
that a simple two-qubit quantum gate operation could be
observable in the near future. Clearly, an increase in the de-
coherence times would be highly desirable in order to
achieve longer sequences of gate operations.

We have performed numerical simulations to show that
the two-qubit gate can be performed for a wide range
of values of �1 and �2 �note that smaller values of �1 corre-
spond to smaller driving amplitudes, and that we take
���1=�−�2�. The simulations are performed by solving the
time-dependent Schrödinger equation with the Hamiltonian
of Eq. �1�. We therefore make the two-level system approxi-
mation in describing each qubit. The results are shown in
Fig. 3. If we take realistic experimental parameters and
�=� /3, which corresponds to a reduction in the required
driving amplitudes by a factor of about two, and we take the
qubit to be initially in the state �gg�, we can see that the
occupation probability oscillates between the states �gg� and
�ee� with negligible errors and a very reasonable oscillation
period �note that since we are considering a simple experi-
ment designed to provide a proof-of-principle demonstration
of switchable coupling, errors of the order of 1% are negli-
gible�. In Fig. 3�b�, we take the same experimental param-
eters, but we now take �=� /8, which corresponds to a re-
duction in the required driving amplitudes by a factor of five.
We can see that full oscillations can still be achieved when
taking into account the shifts in the required driving fields.
However, the period of oscillations and the required accuracy
in tuning the driving amplitude are now outside the experi-
mentally desirable range. These results therefore agree with
the statement made above that one should look for the ideal
point of gate operation, i.e., reduce the amplitudes of the
driving fields just enough to reduce the errors caused by
them to acceptable levels.

FIG. 1. �Color online� The energy level diagrams of the two
qubits in the dressed-state picture. The resonance criterion is satis-
fied when the smallest energy difference between two adjacent
manifolds of qubit 1 states becomes equal to the largest energy
difference between two adjacent manifolds of qubit 2 states. Note
that �̃ j =
�� j

2+� j
2.

FIG. 2. Two inductively coupled flux qubits. The symbols �
represent Josephson junctions. The static and oscillating externally
applied magnetic fluxes, � j

�0� and � j
rf�t�, are used to control the two

qubits. The interaction is mediated by the mutual inductance M
between the two qubit loops.
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Another experimental issue that we have not addressed
above arises in the case of crosstalk, i.e., when each qubit
feels the microwave signal intended for the other qubit.20 In
other words, the Hamiltonian describing the system includes

additional terms of the form �� j cos�� j
rft+� j��x

�j��, where
j� j�, and the coefficient � quantifies the amount of
crosstalk. If the amplitudes of the applied fields are small, a
microwave signal that is resonant with one qubit will not
affect the other qubit. However, if the Rabi frequencies are
comparable to the interqubit detuning, e.g., when
�2= ��1−�2

rf� /2 and ��1, crosstalk cannot be neglected.
In our method the ratio �2 / ��1−�2

rf� is equal to
sin � / �2+cos ��, suggesting that the harmful effects of
crosstalk could be reduced by decreasing �. In fact, we have
verified with numerical simulations that the errors caused by
crosstalk are reduced by using our method, as shown in Fig.
4. Some of the shifts to the driving frequencies and ampli-
tudes were determined manually by looking for optimal re-
sults. Note that the driving parameters corresponding to Fig.
4�b� also drive oscillations between the states �eg� and �ge�.
However, combining the two driven transitions still describes
effective coupling between the qubits. The period of oscilla-
tions in Fig. 4�b� is about 100 ns, suggesting that an experi-
mental demonstration of the coupling should be possible
even in the presence of 100% crosstalk.

Finally, let us make a few remarks about the possible
implementation of our method to capacitively coupled phase
qubits.14,18 It is perhaps clearest to start by noting a point that

is not directly related to the procedure of implementing our
proposal: one of the main considerations in charge and flux
qubits, namely the question of optimal-point operation, is
rather irrelevant to the study of phase qubits, at least in the
usual sense of using eigenstates with special symmetries to
minimize decoherence. The phase qubit is simply a single
Josephson junction controlled by a bias current. The static
part of the bias current determines the qubit splittings � j,
whereas the amplitude of the oscillating part of the bias cur-
rent determines the Rabi frequencies � j.

29 If one now takes
two capacitively coupled phase qubits, one finds that the
coupling term has the form �̂y

�1��̂y
�2� �Ref. 30�. If we now take

the phases of the oscillating fields �1=�2=� /2, we can fol-
low the derivation of Sec. III and obtain the same results. In
phase qubits the qubit splittings � j are typically a few GHz
�times 2��, and unlike flux qubits those splittings can be
tuned using the bias current during the experiment. Rabi fre-
quencies can reach a few hundred MHz, and the coupling
strength can be taken to be �2���0.1 GHz, giving essen-
tially the same values for the parameters as discussed above
for flux qubits. We finally note that the driving fields are
supplied through the bias current rather than through external
fields, which means that crosstalk is not a problem with
phase qubits. Realization of our proposal, or even that of
Ref. 7, should therefore be possible with capacitively
coupled phase qubits.

V. CONCLUSION

We have derived a generalized double-resonance method
for switchable coupling between qubits. The qubits are

FIG. 3. �Color online� The occupation probabilities of the four
eigenstates as functions of time. The blue �black�, green �gray�,
cyan, and yellow lines �the last two are essentially zero and barely
visible� correspond, respectively, to the states �ee�, �gg�, �ge�, and
�eg�. The initial state is �gg�, �1 /2�=5 GHz, �2 /2�=4 GHz, and
� /2�=0.1 GHz. The driving frequencies and amplitudes include
shifts caused by higher-order corrections. In both �a� and �b�, � j

rf

includes the Bloch-Siegert shift � j
2 /4� j. In �a� �1=�−�2=� /3,

and the �s �approximately 2��0.29 GHz� were shifted by 0.5% to
correct for shifts in our second RWA. In �b� �1=�−�2=� /8, and
the �s �approximately 2��0.1 GHz� were shifted by 6.38%
�Ref. 28�.

FIG. 4. �Color online� Same as in Fig. 3, but including the
effects of 100% crosstalk �the occupation probabilities of the states
�ge� and �eg� are now more visible than in Fig. 3, but they are
still small compared to those of the states �gg� and �ee��. In �a�
�1=�2=� /2, the �rfs were shifted by 0.5%, and the �s
�2��0.49 GHz� were shifted by 2%. In �b� �1=�−�2=� /3, the
�rfs were shifted by 2.5%, and the �s �approximately
2��0.29 GHz� do not include any shifts from the expressions of
Sec. III.
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driven close to resonance such that the sum of their Rabi
frequencies is equal to the difference between the frequen-
cies of the driving fields. Our proposal with nonresonant
driving of the qubits relaxes the constraint on the resonant-
driving proposal, i.e., that of Ref. 7, requiring large driving
amplitudes. We have compared the operation of resonant and
nonresonant driving. Although our proposal can be applied to
any kind of qubits, we have discussed in some detail its
possible application to the special, but experimentally rel-
evant, case of inductively coupled superconducting flux qu-
bits. We have also considered the possible extension to the
case of capacitively coupled phase qubits.
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