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Early growth of cosmological inhomogeneity at the horizon scale
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The weakly nonlinear evolution of collisionless matter in the expanding Universe is examined
within general relativity. An approximate solution, whose perturbation scale is comparable to or
larger than the Hubble radius, is obtained by series expansion with respect to the background scale
factor. The solution represents that the early density contrast is controlled by the initial data at
each Lagrangian position and the subsequent growth is modified by the presence of the magnetic
part of the Weyl curvature, which is produced by the nonlinear coupling, even if it vanishes in
the initial condition. The effect of the gravitomagnetic part on the dynamics is demonstrated in a
concrete example. The dynamical role becomes less important as the perturbation scale increases

beyond the horizon scale.

PACS number(s): 98.80.Bp, 04.20.Ex, 95.30.5f

I. INTRODUCTION

The evolution of density fluctuations is one of the im-
portant problems in cosmology. One approach is to use
the linear perturbation around the uniform isotropic Uni-
verse. The linear theory has been extensively studied and
is now well understood. The large-scale anisotropy of the
cosmic background radiation (CBR) is of order 10~°. The
method is adequate during early times when the ampli-
tude was very small. However, present local structure is
inhomogeneous. The initial fluctuations became nonlin-
ear at a certain stage.

Zel’dovich [1] examined the dynamics of an irrotational
dust flow as a model of the large-scale structure. He for-
mulated the motion under the Newtonian potential in
the expanding Universe in terms of the Lagrangian co-
ordinate. The model is valid before the pressure force
becomes important, and can be used to connect the re-
sults of the linear stage to the nonlinear regime regarding
the density contrast. The usefulness of the approxima-
tion is demonstrated, e.g., in Refs. [2,3]. The Lagrangian
formalism is extended to include higher order corrections
[4,5].

Recently, Matarrese et al. [6] proposed an approxi-
mate method to calculate the dynamics of dust in the
expanding universe within the relativistic framework. If
the so-called “magnetic” part of the Weyl curvature can
be neglected, the dynamics can be described by the sixth-
order ordinary differential equations. The motion of the
dust is geodesic and the dynamics of the system can be
determined only by the initial data at each Lagrangian
position. That is, there is no force exerted to change the
motion. This assumption may be too restrictive. They
subsequently estimated the effect of the gravitomagnetic
part in a qualitative way [7]. Croudace et al. [8] showed
that nearly one-dimensional dust collapse is numerically
unstable in the system where the gravitomagnetic part is
approximately neglected. They also suggested that the
instability is attributed to the neglect of the gravitomag-
netic part. It is therefore important to clarify the role
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of the gravitomagnetic part in the dynamics. The post-
Newtonian formalism is used and the relation between
the Newtonian and the general relativistic dynamics is
examined in Ref. [9]. The approximation is useful if
the characteristic scale of the spatial variation is smaller
than the Hubble radius. The opposite limit is also some-
times drawing attention, i.e., “the long wavelength limit”
or “anti-Newtonian approximation” [10]. The relevant
physical situation is as follows. Because of the large ex-
pansion during the inflationary epoch, the perturbation
scale has been stretched out beyond the horizon. The
perturbation subsequently has reentered the horizon and
has started to form the Zel’dovich’s pancake.

In this paper, the role of the gravitomagnetic part in
the dynamics is examined in such a situation. It is ade-
quate to approximate the fluid as collisionless dust, be-
cause the pressure force is negligible there. If the ini-
tial data are given by a scalar function, then the density
perturbation can be determined by the function. The
tensor modes corresponding to the degree of the gravita-
tional wave vanish for the initial condition. The nonlinear
coupling, however, produces the modes at a later time,
which subsequently affect the density growth. This pic-
ture is general, but when and how this occurs depends
on the initial data. We will consider a simple model and
demonstrate the effect. In Sec. II, the basic equations
governing the dynamics of the collisionless dust in the
expanding universe are summarized. We consider a spa-
tially flat Universe, i.e., an Einstein—de Sitter universe,
as the background. An approximate solution is obtained
by the power series of the scale factor in Sec. III. The
solution is valid until the mildly nonlinear stage. The
solution describes how the gravitomagnetic part is pro-
duced and affects the density evolution. The result is
applied to a simple case in Sec. IV. Finally, the conclu-
sion is given in Sec. V.

II. RELATIVISTIC DYNAMICS OF DUST
In this section, we shall summarize the basic equations

which describe the evolution of dust. (See, e.g., Ref. [7].)
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Following Ellis [11], equations can be written in terms of
the observable fluid and geometric quantities: the mass
density p, the volume expansion 6, the shear tensor o;;,
and the electric and magnetic parts of the Weyl tensor,
E;; and H;j, respectively. These tensors o;;, E;;, and
H;; are symmetric traceless tensors We shall use the
normalized quantities A, ¥, s} ’H which vanish in
the background, as

A= (p/po—1)/a, 9=

(3t/2a)(6 — 6,),
= (3t/2a)0;,€; = (3t2/2q)E: b

= (3t*/20)H}, (1)

where pg, 6y are the background density and volume ex-
pansion, respectively, and a is the scale factor in the
Einstein—de Sitter universe. They are given by

Po = 1/(67I'Gt2), 00 = 2/t,

a = ao(t/te)?/ = B~1/32/3, @)

where B = t2/a3. Throughout this paper, we use comov-
ing synchronous coordinates,

ds? = —dt? + azh"jdqidqj. (3)
The metric tensor h;; evolves as
h::j = S?h,‘k + S?hkj + %’L”Lij, (4)

where the prime means a derivative with respect to a.
The full set of equations for the variables in Eq. (1) con-

sists of two different kinds: propagation equations and

constraint equations. The propagation equations are

A’+%(A+0)+Aq9=0, (5)
—(A+19)+1192+ss =0, (6)

st + 53;(8;' +€;) + 39s; + sish — 185stsi = 0, (7)

(7] (ot i i i __ 5,k 1.k
ej + a(Sj + CJ) + '(963 + As] zeksJ zskeJ

. 3t . .

+jer s — gz k(€T Hyg + €7 HE,) =0, (8)
Hil 17_[1 ,0%1 5Hi

5 TG T U — 3
3t

+ mhjk(ekpqe

k 1 ik ik 1
i 2sk7.£j +6JH1 Sk

) =0, (9)

+ e"’qe

where €% is the Levi-Civita tensor. The quantities in
Eq. (1) have to satisfy the constraint equations

; t
'H'- = — jk(ek"qs

+ €'Plg
7 2a

pia)> (10)

S = %"9,]" (11)
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%, _ 2a2h b epq i m (12)
3T 3¢ jkllim€ " " S,€4
: 2 2a kpg L 2/m
€5 = 38, — ‘yhjkhlmf s,HT (13)
If H; = 0, s} and €} can be diagonalized at the same

time. The dynamical system is reduced to the six-
order ordinary differential equations for the six variables

1.2 .1 2 3 _ 1 o2 o3 _ _,1_ .2
A,9,s1,85,e1,e3 and s3 = —s7 — 83, e3 = —e; — €3,

III. APPROXIMATE SOLUTION

In the linear regime, the metric for the scalar pertur-
bations is given by a single gauge-invariant potential ® g
[12]. In the comoving synchronous gauge, we have

3t0a

(1 + IOQH)J';] + — q)H EYR (14)
0

We may neglect the potential itself in practical problem,
but not the spatial derivative of it [6,7]. With the def-
inition, ¢(g*) = —(3t3/2a3)®y, we take, as the initial
condition,

h,']' = 6,']' - 2ago,~j. (15)
The indices of ¢ mean the derivative with respect to g
and can be raised and lowered by 7;;,7", where 7;; and
1% are the metrics of three-dimensional Euclidean space,
e.g., goj-k = 7'18,0;0k ¢, which will be used later. Equa-
tions (5)—(13) admit the following solution by the expan-
sion series near a ~ 0:

A= Z Apya™t, 9= Zﬂ(n)a"'l,
n=1 n=1

T i n—1 i 7 n—1
5= Smi" & =) elma”
n=1 n=1

j 2a Z H("’)J ’ (16)

where the expansion coefficients such as A(,) are func-
tions of ¢*. The growing and decaying solutions in the lin-
ear regime are given, e.g., by A o const, and A « a~5%/2
in our convention (1). The only growing mode solutions
are examined here. The order 7 in this paper does not re-
fer to n-fold multiplication of ¢, i.e., perturbation ampli-
tude. The number = is related to the order of the gradient
expansion method [13], i.e., the order n means 2n times
spatial derivatives of the expansion coefficient. Equa-
tions are grouped into the terms with the same number
of spatial derivatives in the gradient expansion method.
The range of the validity of the expansion series will be
discussed later.

Corresponding to the initial condition given by the
scalar function ¢(g’), the growing solution of the lin-
earized equations can be given by
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Ay =—9q) =K, —siy); = en); = ¢; — K6, M = (pi¢] — ¢5p) /2, (29)
(17)
’('l)j =0, P= det[<p§], (30)
where K = tr[p%]. The magnetic part of the Weyl ten- . - . . il
sor vanishes for the initial condition as expected, because Q = i(er el — 4ervi + 47, pF — 3K <sz oiel)
the tensor perturbations are decoupled with the density i gk i ik i 2
+K(2 ok 4 ot oT%) + (K2 — 4M) ¥,
contrast within the linearized equations. See, e.g., stan- (20500 — @i Pk + ¥ wel") + ( )go”
dard textbooks or Ref. [14] for the linearized equations (31)
of (5)-(13).
Now we proceed the expansion to examine the effect of i _ rsipg _ ip,q
gravitomagnetic part to the density contrast. The grav- w; = (€7 H (2)jp,q + Eipa o) |- (32)

itomagnetic part at the second-order level, ’H'@ i does
not vanish in general. It affects the shear and the grav-
itoelectric part at the third-order level, sis)j,eza)j, and
the density and the expansion at the fourth-order level,
A(4), ¥(4). We calculate these quantities influenced by the
presence of gravitomagnetic part. The results are

Apy=K* - $M, (18)
9 = —K* + 7M, (19)
st; = GE? + 31M)8; — K} + Fokpy,  (20)
eln; = ~(GK* + RM)S; + PKo; - Roiel,  (21)
(27 = BEP(Omppai + 93me})
+Eipg (PP " + ™)), (22)
Apy=K*—-3KM - 3P, (23)
V@ =—-K°>+ 2KM+ 2P, (24)
Sty = —16Bw; + (3K° + MK + 31 P)3;
~(3 K>+ ZM)¢; + PKpips — Siokere;
(25)
els); = 2 Bw; — (3K° + KM + £ P)s;

(%?Kz + Y2 M)y} — LKool + Zoiel s

(26)
A = K*— RK?M + B2M* - $2PK + 2BQ,
(27)
Dy = —K*+ KM — S M? + BPK — £BQ,
(28)

where &7% and €:jx are the Levi-Civita tensor in the Eu-
clidean space, and

We can easily discriminate the terms coming from the
gravitomagnetic part in these expressions. They contain
the third- or fourth-order derivatives of . In other words,
the system can be determined only by the initial deforma-
tion tensor <pj- if the gravitomagnetic term is neglected.
The typical ratio of the gravitomagnetic term to other
terms is (B82¢i;)/(pij)? ~ t?/(I%api;), where [ is per-
turbation scale of ¢;;. The ratio of the wavelength of the
perturbation to the horizon is therefore determined by
the constant B in the approximate solution. Small values
of B correspond to the perturbations beyond the horizon
scale. In the limit of B — 0, we can eliminate the gravit-
omagnetic terms in s'('3)j,e‘£3)j, A(s),Y(q). As pointed out
in Ref. [7], this limit corresponds to the physical situa-
tion in which the perturbation scale is much larger than
the Hubble radius, {2 > t2, even though ayp;; is small.
Spatial gradients play no role in this case. However, the
dynamical role is not negligible for the perturbations with
the subhorizon scale. For such perturbations, i.e., large
B, a is limited to sufficiently small value for the conver-
gence of the expansion series (16). That is, such per-
turbations behave as waves, so that our approximation
breaks down soon and different treatment is necessary.
We therefore assume that the perturbation scale is not
smaller than the Hubble radius, and that B is smaller
than a critical value.

IV. EFFECT OF THE MAGNETIC PART

Different degrees of freedom, i.e., information about
higher derivatives of ¢, are necessary to evaluate the
gravitomagnetic term. We cannot evaluate the effect
of the term unless the function is specified. One triv-
ial example is @;jx = @ijikt = 0, in which the con-
tribution from the gravitomagnetic part vanishes in
sfa)j,e‘és)j,A(,;),ﬂ(‘i). In order to demonstrate the effect
of the gravitomagnetic term, we adopt a simple function
near the origin:

¢ = —X1(q")X2(a*) X3(¢%),

where X;(¢*) = 1 — Ai(¢%)%/2 + A2d(¢*)*/8 + -+, and \;
and d are positive constants. This potential gives the lo-
cal density maximum at the origin and the matter near
the origin collapses anisotropically with the rate A; along
the axis ¢*. The function X; is the approximation of the
cosine type, cosy/A;q* for d = 1/3, and of the Gaus-

(33)
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sian type, exp[—2X;i(¢*)?] for d = 1, near the origin. In
this way, a class of the potential can be described in the
form (33) near the density peak. Although it is possi-
ble to calculate the evolution at every Lagrangian point,
the motion at the density peak is the most interesting.
Therefore, we concentrate on the behavior at the La-
grangian coordinate ¢* = 0 from now on. The evolution
at the linear stage is given as

A(l) = —'19(1) =A1+2A2+2A3>0,

%dlag(Z/\l - Ag d A3, —'Al + 2A2 - A3,
—A1 = Az + 2X3). (34)

—8(1; = €); =

If the distortion is one dimensional, the solution of
Eqgs. (5)—(13) can be written as the Szekeres solution [15]:
3 3

—3e§ = 563

A=-9=3s] =3s2= —g-sg = —3el =
f

- (35)
where f is a constant given at each Lagrangian posi-
tion and the other components vanish. The caustic, i.e.,
the shell-crossing singularity, corresponds to af = 1.
Croudace et al. [8] showed that the Szekeres solution
is unstable in the system without the gravitomagnetic
part. They showed that the deviation from the exact
solution goes to minus infinity in one component of the
electric part, el, and to plus infinity in eZ, as the solu-
tion approaches the singularity. They also conjectured
that the gravitomagnetic part might suppress the insta-
bility. We will consider this problem in terms of the
expansion solution. For small af, the function in (35)
can be written as af =f(1+af + (af)?+---), and
we compare the analytic form with the expansion one.
If completely planar initial condition is imposed, i.e.,
A1 = Az = 0, then the gravitomagnetic part term al-
ways vanishes and Egs. (18)—(28) reduce to the Szekeres
solution with f = A3. The initial condition is relaxed to
include the small deviation from the symmetric case, i.e.,
nearly one-dimensional collapse, f = A3 > A; > A2 = 0.
Keeping the lowest order of £ = A;/A3, we have the ap-

J

Ay = A} + A2+ 23+ 22(Ahz + A2ds + Ashy),
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proximate solution as

3%1)1 = %(1 - 2¢), 3?1)2 = g(l +£),

fZ

2

3%2)1 = ‘3_(1 - 329), 3?2)2 = %(1 + 2¢),

3
shan = L[1 - 26 + £ (1 +30)Be],

3
s{a)2 = %[1 + 3¢ - (1 +3d)Bg],
e%1)1 = _g(l - 25)’ 6%1)2 = —g(l +£)7 (36)

1 f2 20 2 .f2 40

€i2)1 = “‘5‘(1 - 78, €(2)2 = —g(l + 7€),
elay = -—I;[l —122¢ 4 3(1+ 3d)B¢],
6%3)2 = “L;‘[l + 2R¢ — 3(1+3d)B¢).

The shear and electric part tensors can be diagonalized

in this model up to this order, and e:(3 )3 = ~€ny1~ ?n)z’
(n)3 s(n)1 s( )2* If a small £ is allowed, the numeri-

cal coefficients in front of £ increase with the order n and
have definite sign in each series. When summing up the
series, the terms with £ cannot be ignored for later time.
This tendency is significant in the electric part terms.
The sign in front of ¢ is opposite in e%")l and efn)z, so
that the deviation in these components increases toward
different direction, i.e., to minus infinity and to plus in-
finity. In this way, we can understand the reason why
the deviation from the planar symmetric case increases
as a increases. The expansion solution up to the third
order suggests that the planar collapse solution is un-
stable in the system without the gravitomagnetic part.
One interesting thing is that the gravitomagnetic term
has the opposite sign in 3%3)1, 3%3)2, e%3)1, 6%3)2. Hence, the
gravitomagnetic part will cancel or weaken the instabil-
ity somewhat. This is true in the third-order level, but it
is necessary to extend to the higher order or to simulate
numerically in order to address this problem completely.
Next we consider the effect of the gravitomagnetic part
on the evolution of density contrast. For the initial con-
dition (33), the solutions at the origin are given by

Ay = AT+ 23+ A3+ B[(A1 + 22)A2 + (A2 + A3)A2 + (A3 + A1)A3] + 2 Ads,
Ay =M1+ 23+ 23+ 2[(A + A2)A3 + (A2 + /\3)/\3 + Az +A)AJ] + (222 4+ 2B(1 - d)](A2A2 + AZAZ + A2A2)
+[4200 _ 12 B(1 — d)](Ay + Az + As) A d2ds — S BAI(A2 — A3)2 + A3(As — A1)? + A2(A — A2). (37)

All terms except the terms proportional to B in A(y)
are positive. As mentioned before, there is no force
to stop the collapse in the system without the gravit-
omagnetic part. The gravitomagnetic part terms affect
the evolution of A(,) except the spherically symmetric
case, A\; = Az = A3z, and the planar symmetric case,
A1 = A2 = 0. The terms are not a definite sign, but the

terms become negative and hence suppress the collapse
in the Gaussian peak, d = 1. In this way, the gravito-
magnetic parts in general affect the density contrast in
the fourth-order level and the effect is significant for the
perturbation with subhorizon scale, which corresponds
to larger B.
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V. CONCLUSION

In this paper, the dynamical role of the magnetic part
of the Weyl tensor was examined in the model of the
expanding Universe. We assumed that the density per-
turbation with long wavelength is given and the gravit-
omagnetic part vanishes at the linear stage. The grav-
itomagnetic part is produced in general, and affects the
shear and gravitoelectric part at the third-order level,
and the density contrast at the fourth-order level in the
expansion series solution. The effect of the gravitomag-
netic part is therefore crucial for the late stage.

We evaluated the effect at the Lagrangian position cor-
responding to the local density peak. The model shows
that the planar collapse is unstable in the approximate
system without the gravitomagnetic term, but that the
gravitomagnetic term suppresses the growth of the in-
stability at the lowest order. In this way, nearly planar
collapse may be realized if the gravitomagnetic part is
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correctly taken into account. We have to pay attention to
avoiding spurious solutions, if the gravitomagnetic part
is approximately ignored.

Finally, Zel’dovich solution is also interesting from the
viewpoint of the Lagrangian maps. The structure of the
first collapsed object is related to the singularity the-
ory of the maps [16]. The early evolution can be well
described by the Zel’dovich model, but higher order cor-
rections like the gravitomagnetic part are necessary for
the later stages. If we add them to the Zel’dovich solu-
tion, the behavior near the singularity will be modified.
Further consideration is therefore necessary to know the
structure near the singularity.
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