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Approximate equation relevant to axial oscillations on slowly rotating relativistic stars
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Axial oscillations relevant to the-mode instability are studied with the slow rotation formalism in general
relativity. The approximate equation governing the oscillations is derived with second-order rotational correc-
tions. The equation contains an effective “viscositylike” term, which originates from coupling to the polar
g-mode displacements. The term plays a crucial role on the resonance point, where the disturbance on the
rotating stars satisfies a certain condition at the lowest order equation. The effect is significant for newly born
hot neutron stars, which are expected to be subject to the gravitational radiation driven instabilityr of the
mode.

PACS numbes): 04.40.Dg, 04.25-g, 97.60.Jd

[. INTRODUCTION cally, the treatment is insufficient, since the modes are de-
generate at the order. It is necessary to include the higher
The surprising discovery of themode instability in ro-  order rotational corrections. Such a task will be significantly
tating stars has inspired the study of axial oscillationscomplicated when the rotation and relativistic effects are si-
[1-19. The physical mechanism of the instability is the multaneously considered.
same as that in polar modes, the so-called radiation reaction One simplification for the nonrotating case is realized as
instability found by Chandrasekhf20], and Friedman and the decomposition of the spherical harmonic function. Each
Schutz[21]. Ther-mode oscillations seem to be more impor- oscillation mode can be specified for each indgx. Fur-
tant since they are unstable on an inviscid rotating fluid everthermore, the polar and axial modes are definitely deter-
for a small angular velocity. This instability can explain the mined by an appropriate combination of the harmonic func-
spin-down process of newly born neutron stars which rotatéions. However, the functions should be mixed in the
with nearly the Kepler frequency. The gravitational wavespresence of the rotation. Considering the slow rotation, the
associated with the unstablemode oscillations may be coupling is weak, so that the entangled range can be re-
promising detectable sources on the ground based laser istricted. It is not knowra priori to specify the axial oscilla-
terferometric detectors. It was proposed that the unstablgons on the rotating stars by a few spherical harmonic func-
mode might also play a key role on the spin of the accretingions. Indeed, Lockitch and FriedmdA0Q] calculated the
white dwarfs[13,14]. However, Lindblom[15] showed that normal mode by the sum of infinite number of the spherical
the possibility is unlikely realized. It was also proposed thatharmonics indices. We will consider a different approach in
ther-mode instability could provide the loss of angular mo-this paper. Our treatment is suitable for the initial-value
mentum from the accretion disk by the gravitational waves tgroblem. We do not consider a single Fourier made”
halt the spin-up in the low mass x-ray binar{d8,16. The  with respect to time. Suppose that the initial disturbance at
proposed conclusion crucially depends on the poorly undert=0 is produced with a certain symmetry, which can be
stood dissipation mechanisfd7]. In this way, ther-mode  assumed to be specified by a few number of spherical har-
oscillations enrich the astrophysical implications. Recent remonic functions. What happens in the subsequent evolution?
view of this subject is given by Friedman and Locki{d!®]. If the oscillation possesses the symmetry, the oscillation pre-
Most of the studies are, however, limited to idealized situ-serves the symmetry. Otherwise, new patterns with different
ation. Some effects are added to the simplified models tepherical harmonics indices are induced. It is clear that the
examine the validity. For example, Rezzolla, Lamb, and Shatruncated approximation to the finite number of the spherical
piro [18] suggested that the magnetic field of a neutron star ifarmonics becomes worse for largeé general. Therefore,
wound up during the nonlinear growth of the unstable modepur method is constructing the pulsation equation adequate
and that the energy is not transfered to the gravitational rafor small t. It is difficult to address the valid domain of
diation so much. However, their calculation is not self- beforehand. For example, theanode oscillation can be well
consistent nonlinear one, so that the magnetic effect on thedescribed by a few number of the spherical harmonics indi-
mode is not conclusive at moment. The relativistic effectsces for the oscillation in the uniform density with the Cowl-
are also important for the oscillations in neutron stars. Theéng approximatior{7,22].
relativistic factor is of order 0.2, so that the frequency could The present authors applied the method to the axial oscil-
slightly shift from the Newtonian calculation. More impor- lation in a rotating relativistic star with the Cowling approxi-
tant effects of the general relativity are gravitational wavemation[7], where the metric perturbations were neglected.
and frame dragging. Each of them leads to qualitatively arhey took account of the rotational correction up to third
different result. Some authof8,6] already calculated the  order to examine the oscillation equation. They pointed out
modes in general relativity. The frame dragging effect is rethe importance of the frame-dragging effect, which causes
garded as a kind of differential rotatid8]. The rotational different property unlike the Newtonian case. Thus, the per-
effects are, however, limited to the lowest order. Mathematiturbative approach proves useful in providing a physical un-
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derstanding of many processes. In this paper, we extend tredlded to the same equations in the form as the lowest ones.
approximation scheme to include the metric perturbationsin Sec. VI, concluding remarks are given. Throughout this
The remainder of the paper is organized as follows. In Seqaper, we work in the geometrical units o G=1.

II, we formulate the perturbation scheme to solve the linear-

ized Einstein equations. We employ the slow rotation ap-

proximation, i.e., angular velocity is assumed to be small Il. PERTURBATION SCHEME

expansion parameter. We look for the solution in which

axial-led functions are dominant, where the axial-led func- We consider a rotating star with uniform angular velocity
tions mean the functions describing axial modes in the ab€)~O(e), wheree is a small rotational parameter. The met-
sence of the rotation. We use the terminology “polar led” in ric and fluid quantities describing the equilibrium state can
the same way. In our scheme, the lowest order equations abe calculated by the slow rotation formalidi?4,25. They
determined only by the axial-led functions. They were al-are summarized in Appendix A. We next investigate the per-
ready derived elsewhef8,6,10,23 but are reviewed in Sec. turbations from the state. The metric perturbations can be
[ll. In Sec. IV, first-order corrections to the polar-led func- described by six functions. Working in the Regge-Wheeler
tions are shown. In Sec. V, second-order correction terms amgauge[26], the perturbations are expressed as

Im

duY .
e"Hom(t,N)Yim  Hum(t,1)Yim —h0|m(t,r)—s(?n hoim(t,r)siN8d,Y

0
A 94YIm .
h;w:E sym e Hym(t,r)Ym _hl'm(t’r)TnG hym(t,r)singd,Y, | | (1)
I,m
sym sym r2Kim(t,1) Yim 0
sym sym sym r2sirf 0K m(t,r)Yim
|
where Y=Y m(6,¢) represents spherical harmonics. -
“sym” indicates that the missing components lof,, are to (p+p)oug=e” % [Vim(t,r)34Yim
be found from the symmetriy,,=h,,,. The angular part is '
expanded with an appropriate combination of the harmonics. +Uin(t,r)sin0d,Y . (6)

In the same way, the fluid perturbations are described by five

functions. They are the pressure perturbati#m density These eleven functions are determined by ten components of
perturbationdp, and three components of the four-velocity the linearized Einstein field equations

(éu;,6uy,6uUy). The componenbu; can be determined by

the condition,du,,u*=0. These perturbed quantities are also 6G,,=8mdT,, (7)

expanded as
and the adiabatic condition for the perturbations

I'p
6p=§n SPim(t,1) Yim, 2 8Pt & Vp=7 (9p+E-Vp), ®

wherel" is the adiabatic index and is the Lagrange dis-
placement.
8p=2 3pim(t.1)Yim, 3 Now we will solve the pulsation equations by the expan-
hm sion of the spherical harmonics. In the spherically symmetric
star, the equations are decoupled for each harmonic index
(I,m). The perturbations can also be decoupled into the axial
(p+Pp) U, =€"2> Rin(t,1)Ym, (4  and polar perturbations. They are, respectively, described by
f,m the axial functions4n=(Um,hoim.h1m), and the polar
functions Pim=(0Pim,pim Rim:Vim, Hoym:Him Ham,
Kim)- In the presence of rotation, the perturbations are de-
scribed by the mixed state of them. From now on, we call
these functions as the axial-led ones #y, and the polar-
led ones forP,,,. Since the slow rotation is associated with
the perturbation with=1, the formal relation betweed,,
and P, in Egs.(7),(8) can schematically be expressed as

(p+p)ou,= eu/2;n [Vlm(t:r)aaYlm

Ulm(t!r)

_WaqﬁYlm}i 5
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0=[Am]+EX[Prs1ml+ E2X[Am  Ajcoml+ -+, (9) asL=(l,m) for the abbreviation. The relevant functions are
hoL.hy , andU, . They are calculated from three compo-
0=[Pim]+EX[ A+ 1m]+E2X[ P, Praom] + -+ - nents, essentiallyt¢), (r¢), and (@¢) components, of the
(10 Einstein equations. We define a functid]'ﬁl) as
where the symbof denotes some functions of order and h()
the square bracket formally represents the relation among the d){l)=%, (16)
perturbation functions therein. These selection rules follow r

from the addition of angular momenta. We moreover assume
that the axial-led functions are dominant in the slowly rotat-
ing star, i.e., 4> Pm. This assumption is not valid for the
some cases. If the star and its perturbations obey the san®

where the superscriptt) denotes the lowest order term in
Eqg. (11). The relation between the metric functions is given

one-parameter equation of statemodes andy modes are rhe—v 2ime’

coupled at the lowest order in general. They are, respec- (1L) —_ (3T_imm)q)(Ll)’+_¢(L1) '
tively, described byP,, and A,,,, which have zero fre- [1(+1)—-2] I(1+1)

quency in the spherical isentropic star. They form hybrid (17

modes in the rotating stdf0]. However, ther modes are
discriminated from thg modes for nonisentropic stars, since
the g-mode frequencies are nonzero in the spherical limit. |
that case, we may use the assumptigp>P,,, to solve the

wheredr= d;+im{) denotes a time derivative in a corotating
frame and a prime denotes a derivation with respect The
Maxial velocity function is expressed in two ways:

r-mode oscillations, and expand as (dr—imy) U= —4m(py+po)rie "o:d, (18
A= A+ AR -, P (PP ) 22 1
@D =" | (") ~ (v +16m(po+ po)e) P(V|,
r
Substituting these functions into Eq9),(10), and com- : 19
paring each order of, we have the following equations of (19)
e"(n=0,1,2): where
0=[A(, (12) 2z
TSN TIES V) (20
=[PP+ EXAE, (13
e)\
0=[e?A@+EX[eP{H 1+ EX[AR AL, v=—[I(I+1)-2], (21)
(14 '
:[SZA(2)+52><A(1)]. (15) j=e (02 (22

We have here assumed that the perturbation in the lowe&liminating Ut? in Egs. (18) (19), we have a second-order
order is described by a single component of spherical hadifferential equation forb{",

monic, that |s,A|(,1r)n—0, forl’ #1. The polar-led functions in
Eq. (14) are eliminated by Eq13). Equation(12) represents
the axial oscillation in the lowest order. Equatici®) is the

second-order form of it, and the teri?x A(Y can be re- =(dr—imy)| -
garded as the rotational corrections. The method to solve the
equations is straightforward. The first-order equations are
solved by the axial-led functions. The polar-led functions are

expressed using them. We have the second-order equatio
with the corrections expressed by the axial-led functions i
the lowest order. These equations are successively solved
the following sections. In the actual calculations, we als
assume that the time variation of the oscillation is slow an

0=L[®]

. (jr4(13(1) ) —vdM

+16mimy(po+ po)e* ®Y. (23)

e linear operator is defined above. This equation is re-
"Huced to a singular eigenvalue problgsj, by assuming the
{ine dependence for the mode as the f@m’!. The equa-
ion can be written as

proportional toQ}, i.e., ,~Q~0O(e). This is true in the 1
r-mode frequency,~[1—2/(l+1)]mQ. (w—p) jr_4(jr4q)(Ll) ) —vdP|=qd®, (29
lIl. LOWEST-ORDER CALCULATION
where
In this section, we review the equations governing the
axial oscillations at the lowest order. The radial functions are _ |(| + 1)
m== (o—mQ), (25

decoupled for each spherical harmonic index. We denote it
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1 | I+1
q=jr—4(]r4m’)’:167(p0+p0)ekm20. (26) Si=i77Q+s S =7Q-, T.=IQ.4,

There is a singular pointy in Eq. (24) unlessq(rg)=0, T =—(1+1)Q_ (29)
corresponding to the real value pf=w(ry). It is evident
that the singularity originates from the mismatch in E28),

i.e., the first term vanishes whereas the second never does. ~ ~ ~ ~
When the first term, which is formally of first order, is small o _ |/ (I+1)—m o =+/ I"—m
enough, then higher order corrections become important. =" (21+1)(21+3)’ - 21-1)(21+1)

This situation is very similar to the inviscid shear flows. (30
When the viscosity is small enough, the stability is almost

determined by the Rayleigh equation, the perturbation equa-

tion for the inviscid theory. The Rayleigh equation has criti- These quantities are expressed by the axial-led functions
cal points for some mean fluid. The viscous correctiong®(",U{") and H{!). There is another relation among
should be included to determine the behavior near the neighqglt), K(tl), and 5P(:1) in the field equations. Eliminating
borhood of the critical points. Therefore, the equation shoulds,(1) by Eq. (28), we have a second-order differential equa-
be replaced by the Orr-Sommerfeld equation derived oMoy for the metric perturbations. The equation can be re-

the Navier-Stokes equation. garded as relativistic version of the Poisson equa¥iéa ¢

As we will show in the subsequent sections, the function o . .
. ' =417 6p, for the gravitational potentiab¢ and the densit
CIJ(,_l) can also affect the polar-led functions. When one con- mop g P ¢ y

. . ) . perturbationdp. In the relativistic case, the Newtonian po-
siders the equations of the next ordef’ additional terms o i jg replaced byi{" or K. The second-order differ-
appear in the forn{23). The terms depend on different as- ential equation is explicitly given b
pect of the background flow, and play an important role as lal equation Is explicitly giv y
the viscosity terms.

w _ & 1@
IV. FIRST-ORDER CORRECTIONS KE — V,rz{nt(Kt —Hg2)

IN POLAR-LED FUNCTIONS

. . . . . ) 20 ah_ 1M —
In this section, we will derive the equations governing the +2[4m(potpo)r te *—1JHgit=s1, (31

polar-led functionsH{Y, H{Y, HY, KO, s5p@), 5p1),

RM, and V™). As shown in Sec. I, the functions witH (

+1,m) are coupled with the axial-led functions with,if).

We will shorten the subscript of the spherical harmonic in-

dex as, e.g.ppP=6p(Y, ... These eight functions are de-
termined by seven components of the linearized Einstein
field equations and one thermodynamical relation. The calwhere
culations are straightforward, but results are sometimes
messy. The pressurép'!) and density perturbationsp’®

are expressed by Ne=—2+1"(I"+1)|;r =1, (33

!

vr
(KQ)—Hg};)'—u'Hg};=(1+7 si+s;, (32

4mspM=2m(po+po)(HSL +2T.Qr2e "o
mop="=2m(Pot po)(Ho=+ 2T L) 8,= — Q.[8wrUM+32m(py+ po)wrie "o

+2S.wUd, (27) .
' e
+2w'j2r3p (M 1+ S, 8[r+—]mU(L1)
V/
p/
4mspW=—4mr—(H{L +2T.Qr%e o) 4"
v - ——{l(I+1)we* + 16mpywr 3~ 1}
—vl2
-4, —(e"?mw UMy’ oy
v’ 2.3 (1) 2e A A
2w 0 |+ T ——{[2-2e*=I(I+1)e*]w
14
24—y (1)
+2T. V,rz(mr e ")'u”, (28) - , " o'r2e " ay
+87Q(potporet—w'rjd— ———o |,
14
where (34
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parameter. In this section, we consider how the next order
—S.[4wer U —2{I(I +1) we* terms modify Eq(23) derived in Sec. Ill. The relevant equa-
tions for this purpose are three components of the Einstein
1 equations, i.e.,t@) (r¢), and (¢¢) components, which are
—Zm’r}eVCD(Ll)]+T+[—m’r2eV<D(L1)' used in the leading order equation in Sec. Ill. These equa-
2 tions contain the relations among the axial-led functions of
(1 +1)+2)0—8m(pot po)r2ied " second-prdehg,_) h@, u® and the polar-led functions cal-
culated in the previous section. We follow the same proce-
w're”’ dure as done in Sec. lll. Defining the functio®(?
oL =h{/r? and eliminatingh{? andu{?, we eventually have
the equation governing the axial oscillations. It can be writ-
(2w'r—8w)e "’ ten in the following form:
—(I)(Ll) )

2
r+—
V’

32:

+2we "]dM

+| 4s.

14

+T.| 20r2e " @™ +

14

(35 where the operataf is defined in Eq(23) and the right hand
the functlonsH(l) and K(l) are solved Wlth approprlate consist of several terms as

boundary condmons In a similar way, we can solve the (1) w1 (1) (1) O (1)
A DD, hi U 1=Dy+ aihi!+ a0, P +im(B,U
other polar-led functlonsH(lll, HY, RY, and V) by [PE L UL1= Dot ashy o+ agd b ritim( B, U

(@MU and HEY ,KD)). The expressions for these four + B0 M+ B0 M), (40)
polar-led functions are omitted here, since they are elimi-

nated in the following calculations, and never appear in the GHE KO]=(A9r+imAy) KD

final results. However, here is a comment on using the adia-

batic condition Eq(8). The time derivative of it can be writ- +(Bydr+imBy)HSY . (42)
ten as

The explicit forms of the coefficients;, B;, A;, andB; are

(1) I'po 1 given in Appendix B. They are expressed by the quantities
Amdr| 6pL’— 0ot po ———0px determined by the stellar model in the equilibrium. Since the
term D, contains higher order derivatives, we explicitly
Al poe” 3im show
:i _)\RG)_—ngtU(Ll) , (36)
Pot po - r2 — 2 U@y’
we " | (potPo)r® | wdrUp
Dy=32c3— -
where jr2 jAv’ Pot Po
2 1 16c,w’e™ " | (po+ Po)e” e
E=——|hy+ gwir?e "], (37 +[ — ——(wr?e™")’
v 3 (pot+pPo)ir°l Awjv
Po Po 8c,e” 2,-7)172 (1) :
= - (38) “\ [(wree ") 19 d7U 7+ (dr—imy)
Potpo I'Po Aj%v'r
This thermodynamical relation determines the functRifY v 2 . - w|
; L . - —— = |(dr—imw)+2im— hi)
unless the Schwarzschild discriminaAt vanishes. Other- r2 3 r2 :

wise, we have one constraint for the functibiy®) through
Egs. (27),(28), and the functiorR}) should be specified in —eM (gr—imy) (o1~ imw)2DY, (42
another way(For example, see the method in Rf] in the
Cowling approximation.The mathematical drawback for the
isentropic caséA=0 is related with the coupling of thg

where

modes. Bothr modes andy modes are degenerate to zero c.= 1Q2 +(—1)n L I Q2 (43)
frequency in the non-rotating star, and hence a particular "o T (I+1)" *

treatment is necessaf$0]. From now on, we will consider

the caseA#0 only. From Egs.(23) and (39), a function® = ® )+ £2d () sat-

isfies the following equation, which is correct up@{s?),

V. INCLUDING SECOND-ORDER CORRECTIONS
) ) ) LI® ]=D[®,hy ,U ]+ G[Ho- K] (44)
So far we have considered ten components of the Einstein
equations and one thermodynamical relation. They were limThe quantities without the superscript satisfy the same rela-

ited to the lowest-order form with respect to the rotationaltions as in the leading order, i.e., Eq47), (19), (31), and
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(32), which are adequate approximation to this order. Thisoriginated from considering the subsystem only, i.e., a single
equation is of course reduced to the leading order equatiobomponent of the spherical harmonics. There is no produc-
(23), when the second-order rotational effects and the coution or extinction in the whole system, but, e.g., the “en-
pling to the polar modes are neglected. ergy” of a component is partially transfered to the others.
The first term inD, contains fourth derivative ab, with This tr_ansportation is regarded as dissipative effect so far as
respect ta, sinceU, can be expressed by the second deriva@ Particular subsystem is concerned. The term also has a

tive of d, as shown in Eq(19). The highest derivative term Significant implication. The conditioA=0 is a good ap-
of @, with respect ta is therefore given by proximation for cold neutron stars, so that the coupling may

be neglected. On the other hand, it is not clear that the con-
—v dition holds, in particular for newly born hot neutron stars, in
which ther-mode instability sets in.
In this paper, we concentrated the equations only inside a
N star, to be more precise, the equations for the regigD.
_— ' The pulsation equation derived here should be solved with
2(1r IrPL) : appropriate boundary conditions. The boundary conditions
are determined from matching with the equations outside, or
(45 regularity conditions. For example, the regularity condition
. ) of a function® is given by®~r'~* near the center. De-
Neglectingg andD exceptD, in Eq. (44) leads toL[®|]  pending on details of the stellar structure, the solution for the
=D,[®_], which is analogous to the Orr-Sommerfeld equa-A+0 region may be matched to the solution for isentropic
tion in the incompressible shear floee Ref.[27]). The  region, A=0. Furthermore, the interior solution should be
term (45) effectively gives the “viscosity” in the viscous matched to the exterior one at the stellar surface. The exte-
fluid. The viscosity is important for the stability of the flows. rior perturbation equation in vacuum is not derived here, but
For the small Reynolds number, the laminar flow is realizedthe form should be reduced to the wave equation describing
whereas the flow becomes turbulence above a critical Reygravitational wave. The perturbation equation should be
nolds number. The effective Reynolds numBgrin Eq.(45  solved by out-going boundary condition at infinity. One

we
D, L0]=80s—

(pot po)rz( jm
JAY' (potPo)r

is estimated from dimensional argument as question may arise. Is it possible to calculate the radiation
reaction at this order? Newtonian estimate indicates that the
A’ backreaction is of ordes®™*2 for m=2. Our expansion of
Re~—- (46)  the rotational parameter is limited to the third order, and
)

higher order corrections are necessary to examine the effect
in a consistent way. The radiation-reaction effect is also a

This is roughly the square of the ratio of tiyemode fre-  kind of dissipative one, so that the accurate evolution for a
quency to rotational one. The viscosity term will play a key |ong period is necessary.

role on the singular point of the first-order equation, but the

consequence is not clear at moment. It is necessary to ex- ACKNOWLEDGMENTS
plore further how the effective Reynolds number should op- , ) )
erate in the stability and so on. We would like to thank John Friedman and Nils Anders-

son for helpful discussions. This was supported in part by the
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In this paper, we have explored an effective theory to08NP0O80L
describe the axial oscillation on a slowly rotating stars. The
approximate equation governing the oscillation is con- APPENDIX A: EQUILIBRIUM CONFIGURATION
structed from the Einstein equations. The equation is derived OF A SLOWLY ROTATING PERFECT FLUID
by assuming that the angular dependence of the oscillation is \ye here summarize the equilibrium of a slowly rotating
dominated by a single component of spherical harmonicsstar to explain our notation. The equilibrium state with uni-

The assumption in general breaks down as the evolution Ghrm angular velocity) ~O(s) can be described by station-
oscillation. There are coupling terms of ordein the rotat- ary and axisymmetric metricg four-velocity u*
pvo

ing fluids. Other oscillation patterns with different spherical =(u',0,0u?), pressure, and energy density of the fluid.
harmonics will gradually be produced through the rotationale otational corrections up 10(s%) is needed to assure

coupling. For this reason, the equation is valid for small nq consistency in our analysis. The metric is given by
and can be used to examine the time evolution as the initial-

VI. CONCLUDING REMARKS

value problem. The rotational effects up to third order are o, s 2¢et
involved in this paper, so that the regime of application is ds’=—eT1+2(ho+h,Py)Jdt* + €' 1+ T
enlarged. The equation derived here is also irrelevant to the

singular point found in the first order one. .

The equation also shows a remarkable property. It is evi- X (Mo+maP) |dr®+r%(1+2kpP;)| d6”+ sir6
dent that the axial oscillation strongly couples gemode 5
oscillations. A viscositylike term arises from the polar pieces | dp—| o+ W, —W. i% dt (A1)
related to theg-mode oscillations. The “viscosity” term @ ! 3sing do '

044006-6



APPROXIMATE EQUATION RELEVANT TO AXIAL . .. PHYSICAL REVIEW D 62 044006

where P, = P|(coss) (1=2,3) is the Legendre polynomial of P=Pot{P20t P2P2}, pP=pot{paot PP}, (A3)

orderl. The metric functions introduced above obey the fol- _

lowing ordering in e w~O(g), hg,hy,my,my.k, Wherepy andp, are the pressure and energy density of non-

~0(s2), W;,Ws~0(s3). These are functions of radial co- rotating fluid. The centrifugal force of order? alters the

ordinater only. The components of the four-velocity are configuration shape, WhICh corresponds to the quantities in
the braces. The functions,g, P22, p2g, andp,, are related

ut:(_gtt_29t¢Q_g¢¢Qz)_1/21 u?=Qut. (A2) with the metric functions of ordee“. We rather use the

metric functions to eliminate the pressure and density of or-

The pressure and energy density are, respectively, given byer 2 in the oscillation equations.

APPENDIX B: THE SECOND-ORDER TERMS

1. Coefficient ofh{}, a;

2 8
a1=Co| 32m(potPo)| 55 ;@ (we ) + —wow—(0+3w)w’ |~ ——(or)' =’
v'2j%r r reh
Cq —om W - ww — w
' poT=Po 3reet 127 213y 12re
Aot 5m2+23w ,, 28, 56 12 o
’7T(p0 po) T w Ewm gwm j2r27‘6)‘(0)6‘ )
2 11 N 47 15 > o, e’ 3 P ,
+|(|+1) 2 |(|+1)—7 (pot3py)®™ +r—2 |(|+1)—7 (pot Po)(w*ro) —21}, |(|+1)+§ (er 9 vow
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