Diels-Alder Reaction of α-Substituted Acrylates and α-(Methylene)lactones: Conformation of Dienophiles and Endo/Exo Selectivity

Kei Takeda, ${ }^{*}$ Ikuhiro Imaoka, and Eiichi Yoshii*
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University 2630 Sugitani, Toyama 930-01, Japan

Abstract

Diels-Alder reaction of 1,6-bis(trimethylsilyloxy)-2,4-hexadiene with α-substituted acrylates and 5 to 7 - and 9 to 11 -membered α-(methylene)lactones has been carried out to examine correlation of dienophile structure with endo/exo selectivity. While the conformationally flexible acrylates produced cycloadducts of endo/exo $=59: 41$ to $74: 26$, the 5 to 7 -membered lactones with rigid s-cis conjugated system provided cycloadducts of endo/exo $=13: 87$ to $32: 68$ and the 9 to 11 -membered lactones which can take both s-cis and s-trans conformation afforded endo/exo ratios of 37:63 to 57:43.

The usefulness of Diels-Alder (D-A) reaction in organic synthesis has been attributed to its high stereoselectivity based on endo cycloaddition, which is explained by the concept of secondary orbital overlap in the transition state. ${ }^{1}$ Exo-mode addition, however, can predominate in some cases,,$\stackrel{2,4,5}{2,5}$ particularly in the combination of cyclopentadiene and methacrylic dienophiles, ${ }^{2}$ but the factors that determine the abnormal addition mode have not been fully understood. ${ }^{\text {ld }}$ In the course of our synthetic studies on spirotetronic acid containing natural products, we demonstrated that D-A reaction of γ-(methylene)tetronate $\mathbf{1}$ with triene $\mathbf{3}$ could be used for the direct construction of the subunit structure of kijanolide, though the reaction produced undesired endo adduct in excess (Scheme 1). ${ }^{6}$ Some two years later, Roush and Brown disclosed that a highly exo-selective cycloaddition could be accomplished by the use of α-(methylene)dioxolanone $\mathbf{2}$ as a dienophile. ${ }^{3 \mathrm{~b}}$ This sharp contrast in the diastereoselectivities observed with $\mathbf{1}$ and $\mathbf{2}$ led us to investigate the D-A reactions of α-substituted acrylates and of α-(methylene)lactones of varying ring size in order to find a general correlation between dienophile structure and endo/exo ratio. As the diene in this study, we made a choice of the particular acyclic diene, 1,6-bis(trimethylsilyloxy)-2,4-hexadiene (4), ${ }^{7}$ based on, for one thing, the ease in stereochemical assignment of cycloadducts (vide infra). We also considered an additional advantage in using the linear diene $\mathbf{4}$ over cyclopentadiene, although the latter has been extensively employed in the stereochemical studies of D-A reaction. Preferential exo selectivity in the cycloaddition of cyclopentadiene with methacrylic dienophiles has been believed partly due to a steric repulsion between the diene CH_{2} and the $\alpha-\mathrm{CH}_{3}$ of the dienophiles in the endo transition state, ${ }^{1 \mathrm{~d},{ }^{8,9}}$ the unfavorable steric factor that we wanted to eliminate in the present study.

Scheme 1

$R=M O M$

endo preference endo/exo = 3:1

3

We first conducted the D-A reactions between α-substituted acrylates 5a-e and $\mathbf{4}$ in o-dichlorobenzene $(1 \mathrm{M}$ for $\mathbf{5}$, molar ratio of $\mathbf{5} / \mathbf{4}=3.0)$ at the temperature of $170{ }^{\circ} \mathrm{C}$ where each reaction proceeded at a reasonable rate. The ratios of endo products ($\mathbf{6 a - e}$) and exo products ($7 \mathbf{a}-\mathbf{e}$) recorded in Table 1 were estimated by capillary GLC analysis after determination of their stereochemistries by conversion to bicyclic cis-lactones (8a-e) and dihydroxy ester (9a-e), respectively, by brief treatment with TsOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the acrylate $(\mathbf{5 a - e})$ showed endo preference (endo/exo $=59: 41$ to $74: 26$) in contrast to the exo selectivity reported for the reactions of cyclopentadiene with 2-(trimethylsilyloxy)acrylate (5b) (endo/exo $=29: 71)^{5 \mathrm{c}}$ and methacrylate $(\mathbf{5 e})($ endo/exo $=32: 68) .{ }^{2 \mathrm{a}}$

Scheme 2

4
$+$

6a-e (endo)
$+$

Table 1. D-A Reactions of $5 \mathrm{a}-\mathrm{e}, 10$, 14 and 15 with 4 in $\boldsymbol{o}-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ at $170{ }^{\circ} \mathrm{C}$.

		time (h)	yield $(\%)^{a}$	endc $:$ exo
$\mathbf{5 a}$	$(\mathrm{X}=\mathrm{OAc})$	70	65	$74: 26$
$\mathbf{5 b}$	$(\mathrm{X}=\mathrm{OTMS})$	46	57	$73: 27$
$\mathbf{5 c}$	$(\mathrm{X}=\mathrm{OTBDMS})$	70	49	$64: 36$
$\mathbf{5 d}$	$(\mathrm{X}=\mathrm{OMe})$	70	31	$59: 41$
$\mathbf{5 e}$	$(\mathrm{X}=\mathrm{Me})$	70	52	$60: 40$
$\mathbf{1 0}$	$(\mathrm{n}=5)$	22	41	$29: 71$
$\mathbf{1 4}$	$(\mathrm{n}=6)$	22	59	$18: 82$
$\mathbf{1 5}$	$(\mathrm{n}=7)$	22	57	$21: 79$

a The yields are based on the consumed dienophiles.

On the other hand, the reaction of α-methylene- γ-butyrolactone (10) with $\mathbf{4}$ at the same temperature resulted in preferential production of the exo adduct 13 in ca. 2.5 -fold excess (endo/exo $=29: 71$) (Table 1), but this exo preference is much less significant than that reported in the reaction of $\mathbf{1 0}$ with cyclopentadiene (endo/exo $=8: 92$ in refluxing toluene ${ }^{4}$). The cis-lactone $\mathbf{1 2}$ isolated in a very small amount should be formed from the endo adduct $\mathbf{1 1}$ by an in situ lactonization-silyl transfer sequence. This type of lactonization under the thermal conditions becomes exclusive in the reaction with α-methylene- δ-valerolactone (14), in which only γ-lactone 16 and α-spiro- δ-lactone 17, endo and exo adducts respectively, were obtained in a ratio of 18:82. This exo selectivity higher than that with $\mathbf{1 0}$ was also observed with the 7 -membered α (methylene)lactone 15 (endo/exo $=21: 79) .{ }^{10}$

Scheme 3

11

16 ($\mathrm{n}=6, \mathrm{R}=\mathrm{TMS}$)
18 ($n=7, R=H$)

13

17 ($\mathrm{n}=6, \mathrm{R}=\mathrm{TMS}$)
$19(\mathrm{n}=7, \mathrm{R}=\mathrm{H})$

All of the cycloaddition reactions of the diene $\mathbf{4}$ with α-substituted acrylates (5a-e) as well as 5- to 7membered α-(methylene)lactones (10,14 and 15) described above were proved to be kinetically controlled by the fact that when each endo/exo mixture was heated with a large excess of diene $\mathbf{4}$ under the same conditions there was no change in endo/exo ratio. Thus, the high exo selectivity with the 5 - to 7 -membered α (methylene)lactones ($71-82 \%$ exo), in contrast to the endo preference with conformationally flexible 5a-e ($26-41 \%$ exo), should be ascribed to their rigid s-cis conformation of the conjugated system. In order to know whether these preferential exo mode additions originate from the particular conformation of the dienophiles and/or some other intrinsic bias of the cyclic structure, we undertook D-A reactions of 9- to 11membered α-(methylene)lactones (20-22) in which both s-cis and s-trans conformations are permitted (Scheme 4). ${ }^{11}$ If s-cis conformation does correlate with exo selectivity, there should be an enhancement of endo selectivity as the ring size increases.

Scheme 4

Reactions between 20-22 and $\mathbf{4}$ were performed at $120^{\circ} \mathrm{C}$ and also at $170^{\circ} \mathrm{C}$ in o-dichlorobenzene $(\varepsilon=$ $9.9){ }^{12}$ as well as in nitrobenzene $(\varepsilon=34.8)^{12}$ to see if solvent polarity can affect endo/exo ratios. The endo/exo ratios were determined by GLC analysis of the crude reaction mixture and/or by isolation of the cycloadducts after TsOH-catalyzed desilylation procedure. The results summarized in Table 2, in which the data obtained with 5- to 7 -membered dienophiles (10, $\mathbf{1 4}$ and 15) under the same conditions are included for comparison. The data indicate that in the medium-sized lactones ($\mathbf{(0 0 - 2 2}$) endo-mode cycloaddition becomes significant as expected regardless of the reaction temperature and the solvent employed, and the switching the solvent form o-dichlorobenzene to much polar nitrobenzene causes some enhancement of endo addition, the degrees of which depend on the ring size and are notable for the 7 - and 10 -membered lactones ($\mathbf{1 5}$ and 21).

Table 2. The D-A Reaction of α-Methylenelactones 10, 14, 15 and 20-22 with 4. ${ }^{a}$

a The molar ratio of the dienophiles to $\mathbf{4}$ is $1: 3.0$. b The yields are based on the consumed dienophiles. c No reactions were observed.
The overall experimental results in the reactions of the acyclic diene $\mathbf{4}$ and α-(methylene)lactones (10, $\mathbf{1 4}, \mathbf{1 5}$ and 20-22) indicate that there exists a correlation between conformation of reacting dienophile and endo/exo selectivity, and it appears that the high exo selectivities with 5 - to 7 -membered lactones ($\mathbf{1 0}, \mathbf{1 4}$ and 15) are linked to their rigid s-cis conformations in the conjugated system. However, the level of the observed exo selectivity $\left(71-87 \%\right.$ in $\left.o-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ is lower than the 92% exo in the reaction of cyclopentadiene and α -methylene- γ-butyrolactone (10) reported by Buono and co-workers, ${ }^{4}$ who summarized data for the highly exo selective D-A reactions of cyclopentadiene and $\mathbf{2}$ and α-methylenecyclohexanones. The remark able exo selectivity in the reaction with cyclopentadiene may be to some extent due to a steric interaction between the methylene group of the diene and the β-methylene group of $\mathbf{1 0}$ that destabilizes the endo transition state. Recently Roush and Brown ${ }^{3 a}$ reasoned the very high exo selectivity of 2 (94% exo with cyclopentadiene) by applying Berson's dipole moment hypothesis. ${ }^{13}$ Thus, the exo transition state is lower in energy than the endo transition state which has a greater net permanent dipole moment in such a way as translated to Fig 1 for our reaction with 4. The dipolar effect model is consistent with some enhancement of endo/exo ratios on changing the $o-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ solvent to much polar nitrobenzene.

In conclusion, we have demonstrated that in D-A reaction of α-(methylene)lactones and 4 the secondary orbital interactions are not significantly involved, rather much more important being the preferred conformation of the dienophile en-one system which is associated with a net dipole moment of the transition state. Our results are an indication that more attention should be paid to the correlation of dienophile conformation

Fig 1

 with stereochemistry of D-A reaction.

EXPERIMENTAL SECTION

General: IR spectra were recorded on a Perkin-Elmer FT1640 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Varian Unityplus-500 (500 MHz), Gemini-300 (300 MHz), or JEOL GX-270 (270 MHz) in CDCl ${ }_{3}$ with reference to CHCl_{3} ($\delta 7.26$). ${ }^{13} \mathrm{C}$ NMR spectra were measured with Varian Unityplus-500 (125 MHz) or Gemini-300 $(75 \mathrm{MHz})$ with reference to the CDCl_{3} triplet ($\delta 77.2$). Resonance patterns were described as s
$=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. High-resolution mass spectra (HRMS) (EIMS) were obtained with a JEOL JMS-D-300 spectrometer combined with a JEOL JMA-2000 data processing system. Liquid chromatography under medium pressures (MPLC) was carried out with a Waters Model 6000A chromatograph by using prepacked columns ($22 \mathrm{~mm} \times 300 \mathrm{~mm}, 10 \mu$ silica gel; $22 \mathrm{~mm} \times 150 \mathrm{~mm}, 5$ μ silica gel) (Kusano Kagakukikai Co.). For routine chromatography, the following adsorbents were used: Fuji-Davison silica gel BW-200 (150-325 mesh) for column chromatography; Merck precoated silica gel 60 F-254 plates for analytical thin-layer chromatography. GLC analyses were conducted on Shimazu GC-14AH with HiCAP column ($0.2 \mathrm{~mm} \times 25 \mathrm{~m}$) combined with Shimazu C-R6A Chromatopac data processing system. All moisture sensitive reactions were performed under a positive pressure of nitrogen. Dry solvents and reagents were obtained by using standard procedures. Anhydrous MgSO_{4} was used for drying all organic solvent extracts in workup, and removal of the solvents was performed with a rotary evaporator. Melting points were determined by using a Yanagimoto micro-melting point apparatus. All melting points are uncorrected. Elemental combustion analysis was performed at the Microanalysis Laboratory of this University.

The acrylates 5a-e ($\mathrm{X}=\mathrm{OAc},{ }^{14} \mathrm{OSiMe}_{3},{ }^{5 \mathrm{c}} \mathrm{OSiMe}_{2} \mathrm{Bu}^{\mathrm{t}},{ }^{5 \mathrm{cc}} \mathrm{OMe}^{15}$) were prepared according to the literature procedures. α-Methylene- γ-butyrolactone (10) is commercially available.

Preparation of α-methylenelactone.

α-methylene- ε-caprolactone (15). This compound was prepared according to Paterson's procedure ${ }^{16}$ for α-methylene- δ-valerolactone 14. To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ and stirred solution of LDA, prepared from n $\operatorname{BuLi}(1.56 \mathrm{M}$ in hexane, $59.5 \mathrm{~mL}, 92.8 \mathrm{mmol})$ and $i-\operatorname{Pr}_{2} \mathrm{NH}(14.7 \mathrm{~mL}, 10.58 \mathrm{~g}, 92.8 \mathrm{mmol})$ in THF (200 mL), was added dropwise a solution of ε-caprolactone ($10.0 \mathrm{~g}, 33.7 \mathrm{mmol}$) in THF (10 mL) over 15 min . After stirring at $-80^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{TMSCl}(18.9 \mathrm{~mL}, 16.2 \mathrm{~g}, 148.9 \mathrm{mmol})$ was added over 7 min . The reaction mixture was warmed to room temperature by removing the cooling bath, and then stirred for 1 h . The solution was concentrated, and the residue was diluted with pentane $(40 \mathrm{~mL})$ before filtration. The filtrate was concentrated, and the residue was distilled to give enol silyl ether ($10.4 \mathrm{~g}, 64 \%$), $61-67^{\circ} \mathrm{C} / 3.5-4 \mathrm{mmHg}$.

To a solution of the enol silyl ether ($10.4 \mathrm{~g}, 55.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$ was successively added α chlorothioanisole ($10.5 \mathrm{~mL}, 12.4 \mathrm{~g}, 78.2 \mathrm{mmol}$) and powdered $\mathrm{ZnBr}_{2}(250 \mathrm{mg}, 1.12 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 28 h , then concentrated. The residue was subjected to column chromatography (silica gel, 500 g ; hexane: $\mathrm{AcOEt}=2: 1$) to give α-(phenylthiomethyl)- ε-caprolactone (12.5 $\mathrm{g}, 95 \%$) as a pale yellow oil.

A solution of this material $(12.4 \mathrm{~g}, 52.5 \mathrm{mmol})$ in $\mathrm{MeOH}(450 \mathrm{~mL})$ was treated with $\mathrm{NaIO}_{4}(11.2 \mathrm{~g}$, $52.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ at room temperature in the dark for 15 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ before extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL} \times 3)$. The combined organic phases were concentrated. The residue was dissolved in toluene (75 mL) and the solution was refluxed for 5 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 400 g ; hexane: $\mathrm{AcOEt}=2: 1$) before bulb-to-bulb distillation to give $6(4.24 \mathrm{~g}, 64 \%)$, a colorless oil, bp $90-105{ }^{\circ} \mathrm{C}$ $(0.8 \mathrm{mmHg}) . R_{f}=0.34$ (hexane: $\mathrm{AcOEt}=2: 1$). IR (film) $1725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 1.65-1.92(4 \mathrm{H}, \mathrm{m}), 2.36$ $(2 \mathrm{H}, \mathrm{brt}, J=6.1 \mathrm{~Hz}, \mathrm{H}-3), 4.16(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=4.9 \mathrm{~Hz}, \mathrm{H}-6), 5.39$ and 5.63 (each $\left.1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR δ 27.6, 28.5 (C-4 and C-5), $31.8(\mathrm{C}-3), 69.2(\mathrm{C}-6), 122.6\left(=\mathrm{CH}_{2}\right), 143.0(\mathrm{C}-2), 173.1(\mathrm{C}-1)$. HRMS, m / e 126.0655 (calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right), 126.0681$).

By using the same procedure, the following α-(methylene)lactones were prepared.
α-methyleneoctan-8-olide (20). a colorless oil, bp $85-90^{\circ} \mathrm{C}(0.15 \mathrm{mmHg}) . R_{f}=0.46$ (hexane:AcOEt = 9:1). IR (film) $1725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 1.49-1.54(6 \mathrm{H}, \mathrm{br}$ m) 1.73-1.76 $(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}-7), 2.47-2.50(2 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, \mathrm{H}-3), 4.37(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-8), 5.36\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,1.6 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.91\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR 23.9, 28.7, 29.0 (C4-C6), 28.1 (C-7), 33.0 (C-3), 64.5 (C-8), 123.5 (vinylic), 143.5 (C-2), 169.6 (C-1). HRMS, m/e 154.1004 (calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right), 154.0993$).
α-methylenenonan-9-olide (21). ${ }^{17}$ a colorless oil, bp $90-100{ }^{\circ} \mathrm{C}(0.4 \mathrm{mmHg}) . \quad R_{f}=0.45$ (hexane: $\mathrm{AcOEt}=7: 1$). ${ }^{1} \mathrm{H}$ NMR $\delta 1.12-1.30(2 \mathrm{H}, \mathrm{m}) 1.35-1.70(6 \mathrm{H}, \mathrm{m}), 1.70-1.85(2 \mathrm{H}, \mathrm{m}), 2.47(2 \mathrm{H}$, br t, J
$=6.4 \mathrm{~Hz}, \mathrm{H}-3), 4.34(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 5.47\left(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 6.14(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}$, $=\mathrm{CH}_{2}$).
α-methylenedecan-10-olide (22). ${ }^{17}$ a colorless oil, bp $95-105{ }^{\circ} \mathrm{C}(0.4 \mathrm{mmHg})\left(\right.$ lit. $.^{17} \sim 135{ }^{\circ} \mathrm{C} / 0.05$ $\mathrm{mmHg}) . R_{f}=0.55$ (hexane:AcOEt = 9:1). ${ }^{1} \mathrm{H}$ NMR $\delta 1.20-1.60(10 \mathrm{H}, \mathrm{m}) 1.70-1.80(2 \mathrm{H}, \mathrm{m}), 2.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=6.4 \mathrm{~Hz}, \mathrm{H}-3), 4.16(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{H}-10), 5.44\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{2}\right), 6.17\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$.

General procedure for the D-A reaction of acrylates 5 a-e.

A solution of the acrylate (3 mmol), diene $4(9 \mathrm{mmol})$ and 4,4'-thiobis(6-tert-butyl-m-cresol) (5 mg) in o-dichlorobenzene (3 mL) was placed in a pressure bottle and degassed. ${ }^{18}$ The bottle was placed in a $170{ }^{\circ} \mathrm{C}$ oil bath and stirred for $70 \mathrm{~h}(46 \mathrm{~h}$ for $\mathbf{5 b}$). The mixture was cooled, and the solvent was removed under reduced pressure ($100-150{ }^{\circ} \mathrm{C} / 8 \mathrm{mmHg}$). The residue was subjected to bulb-to-bulb distillation to give the crude mixture ($\mathbf{6 a - e}$ and $\mathbf{7 a - e}$) $\left(\sim 200^{\circ} \mathrm{C} / 0.04 \mathrm{mmHg}\right)$ which was subjected to capillary GC analysis. The crude product was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and the solution was allowed to stand at room temperature overnight. The reaction mixture was concentrated, and a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) was stirred for 15 min after addition of $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol})$. The solution was diluted with $\mathrm{AcOEt}(20 \mathrm{~mL})$, then successively washed with saturated aqueous NaHCO_{3} solution (10 mL) and water ($10 \mathrm{~mL} \times 3$), and concentrated. The residue was purified by column chromatography and then MPLC to give 8a-e and 9a-e.

General procedure for the D-A reaction of α-(methylene)lactones (10 and 14).

A solution of $\mathbf{1 0}(200 \mathrm{mg}, 2.03 \mathrm{mmol})$, diene $\mathbf{4}(1.57 \mathrm{~g}, 6.11 \mathrm{mmol})$ and 4,4'-thiobis(6-tert-butyl-mcresol) (5 mg) in o-dichlorobenzene (2 mL) was placed in a pressure bottle and degassed. The bottle was placed in a $170^{\circ} \mathrm{C}$ oil bath and stirred for 22 h . The reaction mixture was cooled and filtered through a short column of silica gel ($20 \mathrm{~g}, \mathrm{AcOEt}$). The filtrate was concentrated, and the residue was subjected to GC analysis before column chromatography (silica gel 100 g , hexane:AcOEt $=5: 1$) and subsequent MPLC (hexane: $\mathrm{AcOEt}=9: 1$) to give $\mathbf{1 2}(9 \mathrm{mg}, 1 \%), \mathbf{1 3}$ ($205 \mathrm{mg}, 29 \%$), and $\mathbf{1 1}(80 \mathrm{mg}, 11 \%)$.

General procedure for the D-A reaction of α-(methylene)lactones (15 and 20-22).

A solution of $15(200 \mathrm{mg}, 1.58 \mathrm{mmol})$, diene $\mathbf{4}(1.22 \mathrm{~g}, 4.76 \mathrm{mmol})$ and 4,4'-thiobis(6 -tert-butyl-mcresol) (5 mg) in o-dichlorobenzene (1.6 mL) was placed in a pressure bottle and degassed. The bottle was placed in a $170^{\circ} \mathrm{C}$ oil bath and stirred for 22 h . The reaction mixture was cooled and filtered through a short column of silica gel ($20 \mathrm{~g}, \mathrm{AcOEt}$). The filtrate was concentrated and the residue was subjected to capillary gas chromatography analysis. The crude product was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and the solution was allowed to stand at room temperature overnight. The reaction mixture was concentrated, and the residue was subjected to column chromatography (silica gel, 100 g ; hexane- $\mathrm{AcOEt}=2: 1$ to AcOEt) to give a mixture $(180 \mathrm{mg})$ of $\mathbf{1 8}$ and 19, and the starting material $\mathbf{1 5}(44 \mathrm{mg}, 22 \%)$. The mixture was subjected to MPLC (hexane: $\mathrm{AcOEt}=\mathrm{AcOEt}$) to give 18 ($42 \mathrm{mg}, 14 \%$) and 19 ($128 \mathrm{mg}, 43 \%$).

Table 3. GLC Retention Times of Diels-Alder Adducts. ${ }^{a}$

compd	$R_{t}{ }^{b}$	conditions c	compd	$R_{t}{ }^{b}$	conditions c	compd d	$R_{t}{ }^{b}$	conditions c
$\mathbf{6 a}$	5.83	A	$\mathbf{7 d}$	8.89	B	$\mathbf{1 8}$	14.70	B
$\mathbf{6 b}$	5.13	A	$\mathbf{7 e}$	7.86	B	$\mathbf{1 9}$	14.75	B
$\mathbf{6 c}$	7.59	A	$\mathbf{1 1}$	6.69	A	$\mathbf{2 3}$	15.80	B
$\mathbf{6 d}$	9.27	B	$\mathbf{1 2}$	6.77	A	$\mathbf{2 4}$	15.96	B
$\mathbf{6 e}$	7.97	B	$\mathbf{1 3}$	7.38	A	$\mathbf{2 5}^{\text {e }}$	16.91	B
7a	5.94	A	$\mathbf{1 6}$	8.68	A	$\mathbf{2 6}^{e}$	16.91	B
$\mathbf{7 b}$	5.33	A	$\mathbf{1 7}$	9.57	A	$\mathbf{2 7}$	16.97	A
$\mathbf{7 c}$	7.72	A			$\mathbf{2 8}$	13.36	A	

a The TMS ethers were obtained by treatment with 3 equivs of TMS-Cl and $i-\mathrm{Pr}_{2} \mathrm{NEt} \mathrm{in}_{2} \mathrm{Cl}_{2}$ in the presence of 0.1 equiv of DMAP. $b R_{t}$ in minutes. c A: $230^{\circ} \mathrm{C}(5 \mathrm{~min})$, then programmed to $280^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C} / \mathrm{min}\right)$; B: $200^{\circ} \mathrm{C}(8 \mathrm{~min})$, then programmed to $280^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right) . d$ TMS ether. $e \mathbf{2 5}$ and $\mathbf{2 6}$ were inseparable.

Table 4. Characterization Data for the Cycloadducts from Acrylates. ${ }^{a}$

compd b	TLC, R_{f} (solvent)	IR (neat), cm^{-1}		HRMS, calcd (found)
$\mathbf{8 c}$	0.53 (hexane-AcOEt = 1:2)	3420,1780	$\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+1\right):$	$299.1676(299.1675)$
$\mathbf{8 d}$	$0.48($ AcOEt $)$	3425,1780	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}:$	$182.0942(182.0923)$
$\mathbf{8 e}$	0.51 (AcOEt)	3420,1770	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}:$	$198.0891(198.0867)$
$\mathbf{9 c}$	0.37 (hexane-AcOEt = 1:2)	3380,1740	$\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}^{+}+1\right):$	$331.1938(331.1921)$
9d	0.31 (AcOEt)	3385,1735	$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5}\left(\mathrm{M}^{+}+1\right):$	$231.1231(231.1214)$
$\mathbf{9 e}$	0.38 (AcOEt)	3355,1730	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}:$	$214.1204(214.1201)$

a All compounds were obtained as colorless oils. b For $\mathbf{8 a}$ and $\mathbf{8 b}$, see ref. 7.
Table 5. Characterization Data for the Cycloadducts from α-(Methylene)lactones.

compd	TLC $R_{f}(\text { solvent })^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$ $(\text { solvent })^{a}$	IR cm^{-1}	$\mathrm{HRMS}\left(\mathrm{M}^{+}\right)$or C/H Combustion analysis calcd (found)	
$\mathbf{1 1}$	$0.45(\mathrm{H}-\mathrm{A}=4: 1)$	oil	1770^{b}	$\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}_{2}:$	$356.1837(356.1823)$
$\mathbf{1 2}$	$0.50(\mathrm{H}-\mathrm{A}=4: 1)$	oil	1775^{b}	$\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}_{2}:$	$356.1837(356.1845)$
$\mathbf{1 3}$	$0.44(\mathrm{H}-\mathrm{A}=4: 1)$	$53-54(\mathrm{H}-\mathrm{A})$	1770^{c}	$\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}_{2}:$	$\mathrm{C}, 57.26(57.37) ; \mathrm{H}, 9.04(9.03)$
$\mathbf{1 6}$	$0.50(\mathrm{H}-\mathrm{A}=4: 1)$	oil	1775^{b}	$\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}_{2}:$	$370.1993(370.2011)$
$\mathbf{1 7}$	$0.38(\mathrm{H}-\mathrm{A}=4: 1)$	$28-30(\mathrm{H})$	1730^{c}	$\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}_{2}:$	$\mathrm{C}, 58.33(58.34) ; \mathrm{H}, 9.25(9.27)$
$\mathbf{1 8}$	$0.27(\mathrm{H}-\mathrm{P}=99: 1)$	oil	$3385,1755^{b}$	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}:$	$240.1360(240.1337)$
$\mathbf{1 9}$	$0.26(\mathrm{H}-\mathrm{P}=99: 1)$	oil	$3385,1720^{b}$	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}:$	$240.1360(240.1353)$
$\mathbf{2 3}$	$0.31(\mathrm{~A})$	oil	$3385,1720^{b}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}:$	$268.1673(268.1655)$
$\mathbf{2 4}$	$0.38(\mathrm{~A})$	$124-125(\mathrm{H}-\mathrm{A})$	$3320,1720^{c}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}:$	$\mathrm{C}, 67.14(66.93) ; \mathrm{H}, 9.01(8.99)$
$\mathbf{2 5}$	$0.38(\mathrm{~A})$	oil	$3404,1755^{b}$	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}:$	$282.1829(282.1850)$
$\mathbf{2 6}$	$0.41(\mathrm{~A})$	$110-112(\mathrm{H}-\mathrm{A})$	$3375,1720^{c}$	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}:$	$\mathrm{C}, 68.06(67.95) ; \mathrm{H}, 9.28(9.28)$
$\mathbf{2 7}$	$0.41(\mathrm{~A})$	oil	$3385,1760^{b}$	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}:$	$296.1986(296.1946)$
$\mathbf{2 8}$	$0.43(\mathrm{~A})$	$117-118(\mathrm{H}-\mathrm{A})$	$3335,1725^{c}$	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}:$	$\mathrm{C}, 68.89(68.76) ; \mathrm{H}, 9.52(9.73)$

$a \mathrm{H}=$ hexane $, \mathrm{A}=\mathrm{AcOEt}, \mathrm{P}=2$-propanol. b neat. $c \mathrm{KBr}$.
Table 6. ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}$-NMR Spectral Data for $8 \mathrm{c}-\mathrm{e}$.

position	8c (X = OTBDMS)		8d (X = OMe)		$\mathbf{8 e}(\mathrm{X}=\mathrm{Me})$	
	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$
1	123.3	$\begin{aligned} & 5.66 \\ & \text { (ddd; 10.0, 4.4, 2.7) } \end{aligned}$	123.2	$\begin{aligned} & 5.68 \\ & \text { (ddd; 10.4, 4.1, 2.5) } \end{aligned}$	124.8	$\begin{aligned} & 5.63 \\ & \text { (ddd; 10.0, 4.1, 2.5) } \end{aligned}$
2	131.6	$\begin{aligned} & 5.90 \\ & (\mathrm{br} \mathrm{dm} ; 10.0) \end{aligned}$	131.7	$\begin{aligned} & 5.92 \\ & (\mathrm{br} \mathrm{~d} ; 10.4) \end{aligned}$	130.4	5.85 (br dm; 10.0)
3	34.7	$\begin{aligned} & 2.57-2.63 \\ & (\mathrm{~m}) \end{aligned}$	34.6	$\begin{aligned} & 2.57-2.63 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$	35.0	$\begin{aligned} & 2.38-2.44 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$
4	30.8	$\begin{aligned} & 1.56 \\ & (\mathrm{dd} ; 13.2,10.4) \\ & 1.88 \\ & (\mathrm{dd} ; 13.2,4.9) \end{aligned}$	27.5	$\begin{aligned} & 1.76 \\ & (\text { dd; } 13.7,9.3) \\ & 2.05 \\ & (d d ; 13.7,5.5) \end{aligned}$	29.2	$\begin{aligned} & 1.60 \\ & (\text { dd; 13.2, } 9.3) \\ & 1.65 \\ & \text { (dd; 13.2, 6.0) } \end{aligned}$
4 a	74.4	-	77.4	-	40.3	-
5	178.1	-	176.6	-	182.2	-
7	70.3	$\begin{aligned} & 3.75 \\ & \text { (dd; } 8.8,8.8 \text {) } \\ & 4.47 \\ & \text { (dd; } 8.8,8.8) \end{aligned}$	70.2	$\begin{aligned} & 3.83 \\ & \text { (dd; } 8.8,8.8 \text {) } \\ & 4.52 \\ & \text { (dd; } 8.8,8.8) \end{aligned}$	70.8	$\begin{aligned} & 3.84 \\ & (\mathrm{dd} ; 8.8,8.8) \\ & 4.44 \\ & \text { (dd; } 8.8,8.8 \text {) } \end{aligned}$
7 a	44.0	$\begin{aligned} & 2.85-2.94 \\ & (\mathrm{~m}) \end{aligned}$	38.3	$\begin{aligned} & 3.11-3.16 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$	42.5	$\begin{aligned} & 2.69-2.72 \\ & \text { (br m) } \end{aligned}$
$3-\mathrm{CH}_{2}$	65.8	$\begin{aligned} & 3.57 \\ & (\text { dd; } 11.0,6.0) \\ & 3.65 \\ & (\text { dd; } 11.0,6.0) \end{aligned}$	65.5	$\begin{aligned} & 3.60 \\ & (\mathrm{dd} ; 10.7,5.8) \\ & 3.65 \\ & (\mathrm{dd} ; 10.7,6.3) \end{aligned}$	65.9	$\begin{aligned} & 3.56 \\ & (\mathrm{~d} ; 6.6) \end{aligned}$
X	$\begin{aligned} & 25.8,18.4 \\ & -2.9,-3.5 \end{aligned}$	$\begin{aligned} & 0.06(\mathrm{~s}) \\ & 0.19 \text { (s) } \\ & 0.83 \text { (s) } \end{aligned}$	51.8	3.42 (s)	21.2	1.23 (s)

a Multiplicity and J in Hz are recorded in parenthesis.
Table 7. ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathbf{H}-\mathrm{NMR}$ Spectral Data for 9c-e.

position	9c (X = OTBDMS		9d (X = OMe)		9e (X = Me)	
	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$	$\delta \mathrm{C}$	$\delta \mathrm{H}^{a}$
1	79.6	-	82.8	-	44.6	-
2	44.7	$\begin{aligned} & 2.96-3.00 \\ & (\mathrm{~m}) \end{aligned}$	42.8	$\begin{aligned} & 3.03-3.06 \\ & \text { (br m) } \end{aligned}$	42.0	$\begin{aligned} & 2.78-2.81 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$
3	130.4	$\begin{aligned} & 5.60-5.70 \\ & (\mathrm{~m}) \end{aligned}$	130.0	$\begin{aligned} & 5.60-5.70 \\ & (\text { br m) } \end{aligned}$	131.3	$\begin{aligned} & 5.77-5.78 \\ & (\mathrm{~m}) \end{aligned}$
4	126.8	overlapped with H-3	126.4	overlapped with H-3	129.3	overlapped with H-3
5	38.9	$\begin{aligned} & 2.61-2.67 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$	38.2	$\begin{aligned} & 2.54-2.59 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$	36.8	$\begin{aligned} & 2.43-2.49 \\ & (\mathrm{br} \mathrm{~m}) \end{aligned}$
6	31.9	$\begin{aligned} & 1.87 \\ & (\text { dd; } 12.6,10.4) \\ & 2.26 \\ & (\text { ddd; } 12.6,6.8,1.6) \end{aligned}$	27.0	$\begin{aligned} & 1.73 \\ & (\text { dd; } 12.9,9.6) \\ & 2.42 \\ & \text { (ddd; 12.9, } 6.6,1.6) \end{aligned}$	32.1	$\begin{aligned} & 1.70 \\ & (\text { dd; } 13.5,10.4) \\ & 2.03 \\ & (\text { dd; } 13.5,6.3) \end{aligned}$
$2-\mathrm{CH}_{2}$	63.3	$\begin{aligned} & 3.71-3.78 \\ & (\mathrm{~m}) \end{aligned}$	63.5	$\begin{aligned} & 3.54-3.72 \\ & (\mathrm{~m}) \end{aligned}$	62.4	$\begin{aligned} & 3.68 \\ & (\mathrm{dd} ; 11.5,4.4) \\ & 3.76 \\ & (\mathrm{dd} ; 11.5,4.4) \end{aligned}$
$5-\mathrm{CH}_{2}$	66.0	$\begin{aligned} & 3.54 \\ & (\text { dd; } 10.4,4.9) \\ & 3.62 \\ & \text { (dd; 10.4, 4.9) } \end{aligned}$	65.9	overlapped with $2-\mathrm{CH}_{2}$	65.9	$\begin{aligned} & 3.53 \\ & (\text { dd; } 12.4,4.4) \\ & 3.62 \\ & (\mathrm{dd} ; 12.4,4.4) \end{aligned}$
CO	52.2		52.4	-	52.2	-
OMe	173.2	3.70 (s)	172.1	3.74 (s)	178.1	3.65 (s)
OH	-	2.15 (br s)	-	2.75 (br s)		2.16 (br s)
X	$\begin{aligned} & 25.9,18.4 \\ & -2.5,-3.7 \end{aligned}$	$\begin{aligned} & 0.07(\mathrm{~s}), 0.13(\mathrm{~s}) \\ & 0.88(\mathrm{~s}) \end{aligned}$	52.1	3.29 (s)	24.1	1.27 (s)

a Multiplicity and J in Hz are recorded in parenthesis.
Fig 2.

Table 8. ${ }^{1} \mathrm{H}$-NMR Spectral Data for Bicyclic γ-Lactones. ${ }^{a}$

positio	12	16	18	23	25	27
n	$(\mathrm{n}=5)$	$(\mathrm{n}=6)$	$(\mathrm{n}=7)$	$(\mathrm{n}=9)$	$(\mathrm{n}=10)$	$(\mathrm{n}=11)$
1	$\begin{gathered} 3.07-3.08 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.83-2.87 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.85-2.92 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\underset{(\mathrm{m})}{2.83-2.92}$	$\begin{gathered} 2.84-2.88 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.81-2.89 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$
2	$\begin{gathered} 5.66 \\ (\mathrm{ddd} ; 10.0,5.0, \\ 2.5) \end{gathered}$	$\begin{gathered} 5.64 \\ \text { (ddd; } 10.0,4.5,2.5 \text {) } \end{gathered}$	$\begin{gathered} 5.70 \\ \text { (ddd; } 9.9,4.4,2.2 \text {) } \end{gathered}$	$\begin{gathered} 5.70 \\ \text { (ddd; } 10.4,4.4,2.2) \end{gathered}$	$\begin{gathered} 5.68 \\ \text { (ddd; } 10.2,4.4,2.2) \end{gathered}$	$\begin{gathered} 5.66 \\ \text { (ddd; } 10.3,4.4,2.2) \end{gathered}$
3	$\begin{gathered} 5.81 \\ \text { (br d; 10.0) } \end{gathered}$	$\begin{gathered} 5.75 \\ \text { (br d; 10.0) } \end{gathered}$	$\begin{gathered} 5.84 \\ \text { (br d; 9.9) } \end{gathered}$	$\begin{gathered} 5.85 \\ \text { (ddd; } 10.4,2.2,2.2) \end{gathered}$	$\begin{gathered} 5.83 \\ \text { (ddd; } 10.2,1.9,1.9) \end{gathered}$	$\begin{gathered} 5.82 \\ \text { (ddd; 10.3, 1.6, 1.6) } \end{gathered}$
4	$\begin{gathered} 2.39-2.43 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.35-2.39 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.40-2.46 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\underset{(\mathrm{m})}{2.37-2.50}$	$\begin{gathered} 2.38-2.43 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.36-2.42 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$
5	$\begin{gathered} 1.41 \\ (\mathrm{dd} ; 13.5,11.3) \\ 1.71 \\ (\mathrm{dd} ; 13.5,5.0) \end{gathered}$	1.43 (dd; 13.5, 11.0) 1.71 (dd; 13.5, 5.0)	$\underset{(\mathrm{m})}{1.50-1.77}$	$\begin{gathered} 1.64-1.75 \\ (\mathrm{~m}) \\ 4.44, \\ (\mathrm{dd} ; 8.8,8.8) \end{gathered}$	$\underset{(\mathrm{m})}{1.62-1.70}$	$\underset{(\mathrm{m})}{1.18-1.70}$
$1-\mathrm{CH}_{2}$	$\begin{gathered} 3.77 \\ \text { (dd; } 10.2,8.7) \\ 4.41 \\ (\mathrm{dd} ; 8.7,8.7) \end{gathered}$	$\begin{gathered} 3.76 \\ (\mathrm{dd} ; 10.0,8.5) \\ 4.39 \\ (\mathrm{dd} ; 8.5,8.5) \end{gathered}$	3.86 (dd; $8.8,8.8$) 4.44 (dd; $8.8,8.8)$	$\begin{gathered} 3.85 \\ \text { (dd; } 8.8,8.8) \\ 4.44 \\ \text { (dd; } 8.8,8.8) \end{gathered}$	$\begin{gathered} 3.83 \\ \text { (dd; } 8.8,8.8) \\ 4.42, \\ \text { (dd; } 8.8,8.8) \end{gathered}$	$\begin{gathered} 3.82 \\ \text { (dd; } 8.8,8.8) \\ 4.41 \\ (\mathrm{dd} ; 8.8,8.8) \end{gathered}$
4-CH2	$\begin{gathered} 3.46,3.49 \\ \text { (each dd; } 9.7,6.5 \text {) } \end{gathered}$	$\begin{gathered} 3.42-3.53 \\ (\mathrm{br} \mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.52,3.57 \\ \text { (each dd; } 11.0, \\ 6.0 \text {) } \end{gathered}$	$\underset{(\mathrm{m})}{3.50-3.60}$	$\begin{gathered} 3.50,3.52 \\ \text { (each dd; } 13.0,10.5 \text {) } \end{gathered}$	$\begin{gathered} 3.48-3.52 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$
$1^{\prime}-(\mathrm{n}-4)^{\prime}$	$\begin{gathered} 1.78 \\ (\mathrm{dt} ; 14.0,6.3) \\ 1.93 \\ (\mathrm{dt} ; 14.0,7.0) \end{gathered}$	$\begin{aligned} & 1.46-1.56 \\ & (\mathrm{~m}) \\ & 1.58-1.68 \\ & (\mathrm{~m}) \end{aligned}$	$\underset{(\mathrm{m})}{1.50-1.77}$	$\underset{(\mathrm{m})}{1.20-1.65}$	$\underset{(\mathrm{m})}{1.20-1.59}$	$\underset{(\mathrm{m})}{1.18-1.70}$

$(\mathrm{n}-3)^{\prime}$	$3.68-3.76$	$3.42-3.58$	3.63	3.61	3.58	3.56
	$(\mathrm{br} \mathrm{m})$	(m)	$(\mathrm{t} ; 6.3)$	$(\mathrm{t} ; 6.0)$	$(\mathrm{t} ; 6.3)$	$(\mathrm{t} ; 6.6)$
R	$0.07(\mathrm{~s})$	$0.05(\mathrm{~s})$	2.08	1.88	2.21	2.49
	$0.08(\mathrm{~s})$	$0.06(\mathrm{~s})$	$(\mathrm{br} \mathrm{s})$	$(\mathrm{br} \mathrm{s})$	$(\mathrm{br} \mathrm{s})$	$(\mathrm{br} \mathrm{s})$

a The numberings shown in Fig. 2 were used for convenience.
Table 9. ${ }^{13}$ C-NMR Spectral Data for Bicyclic γ-Lactones. ${ }^{a}$

position	$\mathbf{1 2}$ $(\mathrm{n}=5)$	$\mathbf{1 6}$ $(\mathrm{n}=6)$	$\mathbf{1 8}$ $(\mathrm{n}=7)$	$\mathbf{2 3}$ $(\mathrm{n}=9)$	$\mathbf{2 5}$ $(\mathrm{n}=10)$	$\mathbf{2 7}$ $(\mathrm{n}=11)$
1	38.9	39.0	39.2	39.1	39.1	39.0
2	124.2	124.0	125.1	125.0	125.2	125.0
3	130.8	130.9	130.5	130.5	130.5	130.4
4	35.1	34.9	35.2	35.1	35.2	35.1
5	29.8	29.8	28.9	29.0	29.0	29.0
6	42.7	43.7	44.1	44.0	44.1	44.0
$1^{-\mathrm{CH}_{2}}$	70.8	70.7	71.0	70.9	70.9	70.9
$4-\mathrm{CH}_{2}$	66.3	66.1	66.0	65.8	65.9	65.8
$\mathrm{C}=\mathrm{O}$	181.0	180.9	181.7	181.7	181.6	181.7
$1^{\prime}-(\mathrm{n}-4)^{\prime}$	35.1	$27.2,29.4$	$20.3,32.9,33.8$	$23.9,25.5,29.7$	$23.9,25.7,29.2$	$24.0,25.7,29.3,29.4$
$(\mathrm{n}-3)^{\prime}$	58.5	62.6	62.4	$32.6,34.0$	$30.0,32.8,34.2$	$29.9,32.7,34.1$
R	$-0.4,-0.5$	$-0.4,-0.5$	-	62.7	63.0	62.9

a The numberings shown in Fig. 2 were used for convenience.
Table 10. ${ }^{1} \mathbf{H}$-NMR Spectral Data for Spirolactones. ${ }^{a}$

positio	11	13	17	19	24	26	28
n	($\mathrm{n}=5$)	($\mathrm{n}=5$)	($\mathrm{n}=6$)	$(\mathrm{n}=7)$	$(\mathrm{n}=9)$	$(\mathrm{n}=10)$	$(\mathrm{n}=11)$
1	2.24-2.28	2.38-2.48	2.92-2.95	2.83-2.88	2.89-2.94	2.75-2.76	2.71-2.72
	(m)	(m)	(br m)				
2	5.72	5.57	5.45	5.77-5.87	5.79	5.79	5.75
	(dddd; $10.5,4.52 .0,2.0)$	(br ddd; $10.4,3.3,2.2)$	(ddd; $10.5,3.0,3.0)$	(m)	(br d; 10.1)	(br ddd; $10.0,1.0,1.0)$	(br d; 10.8)
3	10.5, 5.77	10.4.72	10.5 5.70	overlapped	5.85	5.84	5.84
	(br d; 10.5)	(br ddd;	${ }_{10.5,3.0,30)}$	with H-2	(ddd;	(dddd; 10.0	(ddd;
		10.4, 2.2, 2.2)	10.5, 3.0, 3.0)		10.1, 4.6, 1.6)	5.1, 2.2, 2.2)	10.8, 4.9, 2.0)
4	2.34-2.35	2.38-2.48	2.41-2.44	2.63-2.70	$2.54-2.60$	$2.46-2.50$	2.42-2.44
	(m)	(m)	(br m)	(br m)	$\stackrel{(\text { br m) }}{\text { NA }}$ ((br m) $1.65-1.71$	$\stackrel{\text { (br m) }}{1.21-1.85}$
5	(dd; 13.5, 5.5)	(dd; 14.3, 5.5)	(dd; 14.0, 4.5)	(dd; 13.7, 9.9)		(m)	(m)
1-CH2	1.68		2.01	2.12	$\begin{gathered} 2.10 \\ (\mathrm{dd} ; 13.2,6.6) \end{gathered}$	$\begin{gathered} 2.02 \\ (\mathrm{dd} ; 13.1,6.5) \end{gathered}$	$\begin{gathered} 1.98 \\ \text { (dd: } 13.2,6.6 \text {) } \end{gathered}$
$4-\mathrm{CH}_{2}$	(dd, 13.50 , 11.5)	(dd, $14.3,7.1)$	(dd, $14.0,8.0)$	($\mathrm{dd}, 13.5,7.1)$	(dd, $3.5 .2,6.6)$	($\mathrm{dd}, 13.5$, 6.5)	(dd, 13.70 , 6.6)
	(dd; 10.0, 6.5)	(dd; 12.9, 7.7)	(dd; 10.5, 8.0)	(dd; 10.4, 4.4)	(dd; 10.4, 4.4)	(dd; 10.2, 4.2)	(dd; 11.5, 3.8)
	3.48	3.50	3.47	3.64	3.65	3.63	3.78
	(dd; 10.0, 6.5)	(dd; 12.9, 10.1)	(dd; 10.5, 8.5)	(dd; 10.4, 4.9)	(dd; 10.4, 4.9)	(dd; 10.2, 4.7)	(dd; 11.5, 4.4)
$1^{\prime}-(\mathrm{n}-4)^{\prime}$	2.09-2.12	1.98	1.72-1.83	1.62-1.85	1.25-1.79	1.42-1.52	1.21-1.85
	(m)	(dd; 12.9, 6.0)	(m)	(m)	(m)	(m)	(m)
		2.38-2.48	1.92-2.00			1.74-1.81	
		(m)	(m)			(m)	
$(\mathrm{n}-3)^{\prime}$	4.27-4.32	4.23	4.24	4.19-4.33	4.20	4.16	4.09
	(m)	(dd; 8.2, 6.0)	(ddd; 10.5, 4.0)	(m)	(ddd;	(dddd;	(ddd
					10.7, 6.24.4)	11.1, 8.0, 4.0)	11.1, 7.1, 1.6)
R	0.08 (s)	0.05 (s)	0.07 (s)	2.09-2.16	1.25-1.79	1.90	1.21-1.85
	0.10 (s)	0.06 (s)	0.08 (s)	(br s)	(brs)	(brs)	(brs)

a The numberings shown in Fig. 2 were used for convenience. b not assigned.
Table 11. ${ }^{13} \mathrm{C}$-NMR Spectral Data for Spirolactones. ${ }^{a}$

position	$\mathbf{1 1}$ $(\mathrm{n}=5)$	$\mathbf{1 3}$ $(\mathrm{n}=5)$	$\mathbf{1 7}$ $(\mathrm{n}=6)$	$\mathbf{1 9}$ $(\mathrm{n}=7)$	$\mathbf{2 4}$ $(\mathrm{n}=9)$	$\mathbf{2 6}$ $(\mathrm{n}=10)$	$\mathbf{2 8}$ $(\mathrm{n}=11)$
1	36.2	36.2	37.0	37.0	36.7	36.5	36.8
2	126.9	126.9	126.8	128.8	129.4	129.4	129.4
3	129.6	129.2	128.0	131.5	131.9	131.3	131.2
4	42.7	42.4	42.7	40.9	40.6	40.8	40.6
5	30.4	30.6	32.7	30.8	30.5	31.7	31.9
6	43.1	42.9	43.6	50.0	48.8	47.8	49.4
$1-\mathrm{CH}_{2}$	66.5	63.4	62.7	62.4	62.5	62.4	62.7
$4-\mathrm{CH}_{2}$	63.6	66.0	66.1	65.8	66.2	66.0	66.2
$\mathrm{C}=\mathrm{O}$	180.2	180.8	176.5	178.7	177.2	176.7	176.3

$1^{\prime}-(\mathrm{n}-4)^{\prime}$	65.1	65.3	69.8	68.7	64.8	66.0	64.9
$(\mathrm{n}-3)^{\prime}$	35.7	32.1	$20.1,26.1$	$23.3,28.7,34.2$	$19.2,22.2,27.2$	$21.2,24.1,25.0$	$19.8,21.7,23.3,25.0$
R	$-0.3,-0.4$	$-0.4,-0.5$	$-0.3,-0.5$	-	$29.8,36.5$	$25.2,26.0,33.4$	$26.6,26.7,33.3$

a The numberings shown in Fig. 2 were used for convenience.
Acknowledgments. The author (KT) wishes to thank The Tamura Foundation for the Promotion of Science and Technology for support of this work.

REFERENCES AND NOTES

${ }^{1}$. For reviews on Diels-Alder reaction, see: (a) Oppolzer, W.; in Comprehensive Organic Synthesis; Trost, B. M., Freming, I. Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 315-399. (b) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990. (c) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction; John Wiley \& Sons, Inc.: New York, 1990. (d) Sauer, J.; Sustmann, R. Angew. Chem. Int. Ed. Engl. 1980, 19, 779-806.
${ }^{11}$. Examination of molecular models showed that they can adopt both s-cis and s-trans conformations and their interconversion can be possible. For conformations of the parent medium ring lactones, see: (a) Wiberg, K. B.; Waldron, R. F. J. Am. Chem. Soc. 1991, 113, 7697-7705. (b) Huisgen, R.; Ott, T. Tetrahedron 1959, 6, 253-267.
${ }^{12}$. Dean, J. A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill: New York, NY, 1979.
${ }^{13}$. Berson, J. A.; Hamlet, Z.; Mueller, W. A. J. Am. Chem. Soc. 1962, 84, 297-304.
${ }^{14}$. Wolinsky, J.; Novak, R.; Vasileff, R. J. Org. Chem. 1964, 29, 3596-3598.
${ }^{15}$. Ogata, N.; Nozakura, S.; Murahashi, S. Bull. Chem. Soc. Jap. 1970, 43, 2987-2988.
${ }^{16}$. Paterson, I. Tetrahedron 1988, 44, 4207-4219.
${ }^{17}$. Baldwin, J. E.; Adlington, R. M.; Mitchell, M. B. Robertson, J. Tetrahedron 1991, 47, 5901-5918.
${ }^{18}$. For the degassing procedure, see: Ciganek, E. Org. React., 1984, 32, 97.

