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Cosmological family asymmetry and CP violation
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We discuss how the cosmological baryon asymmetry can be achieved by the lepton family asymmetries
of heavy Majorana neutrino decays and how the lepton family asymmetries are related to CP violation in
neutrino oscillation, in the minimal seesaw model with two heavy Majorana neutrinos. We derive the most
general formula for CP violation in neutrino oscillation in terms of the heavy Majorana masses and
Yukawa mass term. It is shown that the formula is very useful to classify several models in which e, �, and
� leptogenesis can be separately realized and to see how they are connected with low energy CP violation.
To make the models predictive, we take texture with two zeros in the Dirac matrix. In particular, we find
some interesting cases in which CP violation in neutrino oscillation can happen while lepton family
asymmetries do not exist at all. On the contrary, we can find e-, �-, and �-leptogenesis scenarios in which
the cosmological CP violation and low energy CP violation measurable via neutrino oscillations are very
closely related to each other. By determining the allowed ranges of the parameters in the models, we
predict the sizes of CP violation in neutrino oscillation and jVMNS

e3 j. Finally, the leptonic unitarity triangles
are reconstructed.
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I. INTRODUCTION

CP violations in the neutrino seesaw models have re-
cently attracted much attention because the measurements
of CP violation via neutrino oscillation are being planned
in future experiments and there may exist a connection
between the low energy neutrino CP violation and the
matter and antimatter asymmetry of the Universe through
the leptogenesis scenario in the seesaw models [1]. In
contrast to the quark sector, since the number of indepen-
dent CP violating phases in the neutrino seesaw models is
more than 1 [2], it is not straightforward to discriminate the
CP violating phases contributing to the leptogenesis from
the low energy experiments [3]. One can show that the CP
violation phases at high energy can contribute to the low
energy effective Majorana mass matrix and thus they may
be concerned with a CP violating phase called � in the
standard parametrization of the Maki, Nakagawa, and
Sakata (MNS) matrix, which is measurable from CP vio-
lation in neutrino oscillation. One might think that nonzero
� may play a role in CP violation for leptogenesis in the
neutrino seesaw models. However, this is not always the
case, because several independent CP phases contribute to
both the leptogenesis CP violation at high energy and CP
violation of neutrino oscillation at low energy. There is the
case in which at low energy the total effect of many CP
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phases are canceled, but at high energy cosmological CP
violation remains. There is the opposite case in which the
cosmological CP violation vanishes while CP violation at
low energy is nonzero. Considering the situation, it is
important to study CP violation phenomena as much as
possible both at high energy and low energy.

In the previous work [4], it was shown that the lepton
family asymmetries Ye, Y�, and Y� which are generated by
heavy Majorana neutrino decays are sensitive to one of the
many CP violating phases. Though the total lepton asym-
metry Y � Ye � Y� � Y� remains as a constant, flavor
composition of the asymmetries Ye:Y�:Y� can vary by
changing the phase. As a particularly interesting case, the
amount and the sign of each lepton family asymmetry Yi
can be very different from the total lepton asymmetry as
jYj � jY�j; jY�j. One can also find the case [4] where the
lepton asymmetry Y could be dominated by a particular
lepton family asymmetry as Y � Y� or Y � Y�. If this is
the case, it indicates the interesting scenario of baryogen-
esis that the matter in the present universe was originated
by the second or the third family of leptons. Interestingly,
the models proposed in [5] correspond to the � or � family
number dominant leptogenesis scenarios. In this work, we
study how such a scenario can be probed by low energy
flavor violating processes such as neutrino oscillations.

The paper is organized as follows. In Sec. II, we study
how CP violating phases are related to lepton family
asymmetries. The reason why, in general, the family asym-
metries can be different from the total lepton number
asymmetry is shown in a comprehensive way. Then we
show how they have some impact on the CP violation in
the neutrino mixings by deriving the formula for low
-1  2005 The American Physical Society
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energy CP violation neutrino mixings in terms of the
fundamental parameters for the minimal seesaw model.
In Sec. III, we focus on the textures with two zeros in
Yukawa mass terms. The analytical formulas for the MNS
matrix are given both for normal and inverted cases. In
Sec. IV, by using the mixing angles and mass squared
differences determined by neutrino oscillation experi-
ments, we determine the parameters of the models and
make prediction on jVMNS

e3 j and CP violation in neutrino
oscillation. Based on this numerical fit, we reconstruct the
leptonic unitarity triangles. Section V is devoted to sum-
mary and discussion.

II. CP VIOLATION RELATED TO THE LEPTON
FAMILY ASYMMETRY

We start with the lepton family asymmetries generated
from heavy Majorana neutrino decays, which are defined
by [4,6]

�ki �
�	Nk ! l�i �

�� � �	Nk ! l�i �
��

�	Nk ! l�i �
�� � �	Nk ! l�i �

��
; (1)

where i � 
e;�; �� and Nk denotes kth heavy Majorana
neutrino. The total lepton number asymmetry from Nk is
[1]

�k �
X

i�e;�;�

�kiBr
N
k ! l�i �

��; (2)

where Br denotes the tree level branching fraction. For our
purpose, let us focus on the seesaw model with two heavy
Majorana neutrinos [5,7–10],

L m � �yik� LiNk
~�� yilLilRi

��
1

2
Nk

cMkNk � h:c:;

(3)

where i � e;�; � and k � 1; 2. Li, lR, � are SU
2� lepton
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doublet fields, charged lepton singlet fields, and Higgs
scalar, respectively. Here we take a basis in which both
charged lepton and singlet Majorana neutrino mass matri-
ces are real and diagonal. In this basis, the lepton family
asymmetries given in Eq. (1) can be written as [4]

�ki �
1

8�

X
k0�k

�
I
xk0k�

Im	
yy�y��kk0 
y��
�
ik
y��ik0 �

j
y��ikj2

�
1

1� xk0k

Im	
yy�y��k0k
y��
�
ik
y��ik0 �

j
y��ikj
2

�
; (4)

where xk0k � M2
k0=M

2
k and I
x� is given as [1,11]

I
x� �
���
x

p
�
1�

1

1� x
� 
1� x� ln

x
1� x

�

�

�
� 3

2 x
�1=2 for x � 1;

�2x3=2 for x � 1:
(5)

It is convenient to write 3� 2 Dirac mass matrix mD �

y�
v��
2

p as

mD � 
mD1;mD2� �

mDe1 mDe2

mD�1 mD�2

mD�1 mD�2

0
@

1
A

� 
u1;u2 �
mD1 0
0 mD2


 �
; (6)

where two unit vectors are introduced,

u k �
mDk

mDk
; (7)

with mDk � jmDkj. Without loss of generality, we can take
u1 and u2 to be real and complex, respectively. Then, three
CP violating phases correspond to arg
ui2� (i � e, �, and
�). With the definitions, one can write
Br
Nk ! l�i �
�� � juikj2;

�1iBr
N
1 ! l�i �

�� �

mD2�

2

4�v2



I


M2

2

M2
1

�
Im	
uy

1 � u2�u
�
i1ui2� �

M2
1

M2
1 �M2

2

Im	
uy
1 � u2�

�u�i1ui2�
�
;

�2iBr
N
2 ! l�i �

�� � �

mD1�

2

4�v2



I


M2

1

M2
2

�
Im	
uy

1 � u2�u�i1ui2� �
M2

2

M2
2 �M2

1

Im	
uy
1 � u2�

�u�i1ui2�
�
:

(8)
It is interesting to note that the lepton family asymmetries
are related to the following combinations of Yukawa terms,

Ae
12 � 
uy

1 � u2�u
�
e1ue2; A�

12 � 
uy
1 � u2�u

�
�1u�2;

A�
12 � 
uy

1 � u2�u
�
�1u�2;

(9)

Be
12 � 
uy

1 � u2�
�u�e1ue2; B�

12 � 
uy
1 � u2�

�u��1u�2;

B�
12 � 
uy

1 � u2�
�u��1u�2; (10)
where Ai
12 � Bi

12 exp
2i#� with # � arg
uy
1 � u2�. In addi-

tion, A12 and B12 satisfy the following sum rules,

Ae
12 � A�

12 � A�
12 � 
uy

1 � u2�
2;

Be
12 � B�

12 � B�
12 � j
uy

1 � u2�j
2:

(11)

The relations are shown in Fig. 1, where # � �
4 is taken.

They are quadrangles in a complex plane. The imaginary
part of A is related to CP asymmetry of leptogenesis. The
ratios of lepton family asymmetry to the total lepton asym-
-2



FIG. 1. Schematic view of quadrangles.
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metry are written as

�1i
�1

�
I
M2

2=M
2
1�ImA

i
12 � 	M2

1=
M
2
1 �M2

2��ImB
i
12

I
M2
2=M

2
1�
ImA

e
12 � ImA�

12 � ImA�
12�

;

�2i
�2

�
I
M2

1=M
2
2�ImA

i
21 � 	M2

2=
M
2
2 �M2

1��ImB
i
21

I
M2
1=M

2
2�
ImA

e
21 � ImA�

21 � ImA�
21�

:

(12)

In the model with two heavy Majorana neutrinos N1 andN2

with large hierarchical mass, e.g., M1 � M2, the family
asymmetries from the lightest heavy Majorana neutrinos
decay are approximately given as

�1e
�1

�
ImAe

12

Im
Ae
12 � A�

12 � A�
12�

;

�1�
�1

�
ImA�

12

Im
Ae
12 � A�

12 � A�
12�

;

�1�
�1

�
ImA�

12

Im
Ae
12 � A�

12 � A�
12�

:

(13)

Therefore one-family dominant leptogenesis can be real-
ized when the quadrangle is replaced by a line which is
determined by one of Ae

12, A
�
12, and A�

12 with a nontrivial
CP violating phase. If this is the case, the imaginary parts
of Ae

12, A
�
12, and A�

12 are related to e leptogenesis, � lepto-
genesis, and � leptogenesis, respectively. We also note that
the imaginary part of

P
iA

i can be smaller than the imagi-
nary part of Ai. If this is the case, each family asymmetry is
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much larger than the total lepton asymmetry. Now let us
discuss how the family asymmetry is related to the CP
violation in neutrino oscillations,

P
�� ! �e� � P
 ��� ! ��e�

� 4J


sin

�m2
12L

2E
� sin

�m2
23L

2E
� sin

�m2
31L

2E

�
; (14)

where J is the Jarlskog invariant [12] defined as

J � Im
VMNS
e1 VMNS�

�1 VMNS�
e2 VMNS

�2 �: (15)

In the basis where the charged lepton mass matrix is
diagonal, J is related to the following quantity [3],

� � Im

meffm
y
eff�e�
meffm

y
eff���
meffm

y
eff��e�; (16)

where meff � �mD
1
MmT

D, and the relation between J and
� is given as

J �
�


n21 � n22�
n
2
2 � n23�
n

2
3 � n21�

; (17)

where n2j are three mass eigenvalues of meffm
y
eff . To facili-

tate the calculation of �, we introduce three 2� 2
Hermitian matrices He, H�, and H�,

Hi �

jmDi1j
2

M1

mDi1m�
Di2����������

M1M2

p

m�
Di1mDi2����������
M1M2

p jmDi2j
2

M2

0
@

1
A; 
i � e;�; ��; (18)

and � is obtained by simply taking trace of the product of
Hs,

� � ImTr
H�HeH�H�H�H��; (19)

with H � He �H� �H�. The formula given in terms of
2� 2 matrices H is useful and can be generalized to the
seesaw model including any number (nM) of heavy
Majorana neutrinos by replacing 2� 2 matrices H in
Eq. (18) by nM � nM matrices. Equation (19) shows that
CP violation in neutrino oscillation is related to the imagi-
nary part of He12, H�12, and H�12. We introduce the
following parameters with mass dimension,

Xk �
m2
Dk

Mk
; 
k � 1; 2�: (20)

By substituting Eq. (18) into Eq. (19), we obtain
� � 
1� juy
1 � u2j

2�
X4
1X

2
2
Im	
u�e1ue2u�1u��2�ju�1j

2 � 
u��1u�2u�1u��2�jue1j
2 � 
u��1u�2ue1u

�
e2�ju�1j

2��

� X3
1X

3
2
Im	
u�e1ue2�
u

y
1 � u2�
ju�1u�2j

2 � ju�1u�2j2� � 
u��1u�2�
u
y
1 � u2�
jue1u�2j2 � ju�1ue2j2�

� 
u��1u�2�
u
y
1 � u2�
ju�1ue2j2 � jue1u�2j

2��� � X2
1X

4
2
Im	
u�e1ue2u�1u��2�ju�2j

2 � 
u��1u�2u�1u��2�jue2j
2

� 
u��1u�2ue1u
�
e2�ju�2j

2���: (21)

This is the most general formula to express the low energy CP violation measurable via neutrino oscillation in terms of the
Majorana masses and the Yukawa terms in the seesaw model and a main result of the paper. In the model with two heavy
Majorana neutrinos, the same quantity is computed for two zero texture models in [5]. For the most general case, J is
-3



TABLE I. Type I texture models and low energy CP violation.

Type �

Type I(a) e leptogenesis
ue1 ue2
u�1 0
0 u�2

0
@

1
A 
1� jue1ue2j

2�X3
1X

3
2 Im
u�e1ue2�

2
�ju�2j
2ju�1j

2�

Type I(b) e leptogenesis
ue1 ue2
0 u�2

u�1 0

0
@

1
A 
1� jue1ue2j

2�X3
1X

3
2 Im
u�e1ue2�

2ju�1j
2ju�2j

2:

Type I(a) � leptogenesis
ue1 0
u�1 u�2

0 u�2

0
@

1
A 
1� ju�1u�2j

2�X3
1X

3
2 Im
u��1u�2�

2
ju�2j
2jue1j

2�

Type I(b) � leptogenesis
0 ue2
u�1 u�2

u�1 0

0
@

1
A 
1� ju�1u�2j

2�X3
1X

3
2 Im
u��1u�2�

2
�jue2j
2ju�1j

2�

Type I(a) � leptogenesis
ue1 0
0 u�2

u�1 u�2

0
@

1
A 
1� ju�1u�2j

2�X3
1X

3
2 Im
u��1u�2�

2
�jue1j
2ju�2j

2�

Type I(b) � leptogenesis
0 ue2
u�1 0
u�1 u�2

0
@

1
A 
1� ju�1u�2j

2�X3
1X

3
2 Im
u��1u�2�

2
jue2j
2ju�1j

2�
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obtained by using bi-unitary parametrization of mD [7]. It
is worthwhile to note that the terms proportional to X3

1X
3
2

are related to the family asymmetries because they are
proportional to ImAe

12, ImA
�
12, and ImA�

12. However, the
terms proportional to X4

1X
2
2 and X2

1X
4
2 are not directly

related to ImAi. Now, let us study the following two
interesting cases.

(1) uy
1 � u2 � 0.

This corresponds to the case that there is no leptogenesis
and any family asymmetries are vanishing. However, CP
violation in neutrino oscillation can occur in this case
because � is not vanishing,

� � X2
1X

2
2
X

2
1 � X2

2�Im
u��1u�2ue1u
�
e2�: (22)

(2) uy
1 � u2 � u�a1ua2 
a � e;�; ��.

Each case for a corresponds to one-family dominant
leptogenesis, such as e leptogenesis, � letogenesis, or �
leptogenesis. This implies that the lepton asymmetry is
dominated by one particular family asymmetry. In order
TABLE II. Type II texture m

Type (a)

Type II (e leptogenesis)
ue1 ue2
0 u�2

0 u�2

0
@

1
A

0
@

Type II (� leptogenesis)
0 ue2
u�1 u�2

0 u�2

0
@

1
A u

0
@

Type II (� leptogenesis)
0 ue2
0 u�2

u�1 u�2

0
@

1
A

0
@
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to see how the scenarios of leptogenesis are connected with
the low energy CP violation parametrized by �, we con-
sider the Dirac neutrino Yukawa matrix containing two
zeros which makes the scenarios more predictable. In
this class of the models, the light neutrino mass matrix
given by meff can be parametrized by five independent
parameters. From the experimental results on three mixing
angles and two mass squared differences, the five parame-
ters including a CP phase are strongly constrained. In
Tables I and II, we classify the models with two zeros
texture into type I and II depending on the positions of the
two zeros in the neutrino Dirac Yukawa matrix. As one can
see from Table I, for type I models, � is generally non-
vanishing and proportional to Im
u�a1ua2�

2, which implies
that there exists a strong correlation between low energy
CP violation and leptogenesis. In contrast to the type I
models, for the type II models, the low energy CP violating
parameter � is vanishing and thus it is difficult to trace the
origin of cosmological family asymmetries from the mea-
surement of the CP violation in neutrino oscillation.
odels and the MNS matrix.

(b) VMNSN VMNSI

ue1 ue2
u�1 0
u�1 0

1
A 0 � �

� � �

� � �

0
@

1
A � � 0

� � �

� � �

0
@

1
A

ue1 0

�1 u�2

u�1 0

1
A � � �

0 � �

� � �

0
@

1
A � � �

� � 0
� � �

0
@

1
A

ue1 0
u�1 0
u�1 u�2

1
A � � �

� � �

0 � �

0
@

1
A � � �

� � �

� � 0

0
@

1
A
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III. NEUTRINO MASS SPECTRUM AND ITS
MIXINGS

First we examine the neutrino mass spectrum. The ei-
genvalue equation for meff is given by det
meffm

y
eff � ,� �

0, where , denotes the eigenvalues for the mass squared
matrix and can be determined by the following equations,

,3 � ,2 Tr


mD

1

M
mT
Dm

�
D
1

M
my

D

�
� ,



det
my

DmD�

M1M2

�
2
� 0:

(23)
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Three mass eigenvalues of meff are related with the MNS
matrix through the following equation,

VMNSymeffV
MNS� �

n1 0 0
0 n2 0
0 0 n3

0
@

1
A: (24)

We note that, in the minimal seesaw model with two heavy
Majorana neutrinos, there are one massless neutrino and
two massive neutrinos whose masses are given by
n2� �
X2
1 � X2

2 � 2X1X2 Re
u
y
1 � u2�

2

2
�

����������������������������������������������������������������������������������������������������������������������������

X2

1 � X2
2 � 2X1X2 Re
u

y
1 � u2�

2�2 � 4X2
1X

2
2
1� juy

1 � u2j
2�2

q
2

: (25)
For the normal hierarchical case, the mass spectrum is
given by

n21 � 0; n22 � �m2
sol � n2�;

n23 � �m2
atm � �m2

sol � n2�;
(26)

and for the inverted mass hierarchical case [8], it is

n21 � �m2
atm ��m2

sol � n2�; n22 � �m2
atm � n2�;

n23 � 0: (27)

Now, let us consider how to obtain the MNS matrix VMNS.
The diagonalization of meff can be implemented by two
steps. First, we decouple a massless state by rotating meff

with a unitary transformation V. Then, the rotated mass
matrix contains a nontrivial 2� 2 part which is diagonal-
ized by another unitary matrix K. The MNS matrix is then
given by their product as follows,

VMNS � VK: (28)

In fact, the unitary matrix V can be found from the follow-
ing relations: for the normal hierarchical case, denoting it
as VN ,

Vy
NmD �

0 0
0 �

� �

0
@

1
A; (29)

and for the inverted hierarchical case, denoting it as VI,

Vy
I mD �

� �

0 �

0 0

0
@

1
A: (30)

Using the two unit vectors defined in Eq. (7), the matrix VN
and VI can be written as

VN �
u�
2�u�

1������������������
1�juy

1 �u2j
2

p ;
u2�
uy

1 �u2�u1������������������
1�juy

1 �u2j
2

p ; u1


 �
; (31)

VI � u1;
u2�
uy

1 �u2�u1������������������
1�juy

1 �u2j
2

p ;
u�
2�u�

1������������������
1�juy

1 �u2j
2

p
 �
: (32)

From Eqs. (29) and (30), we indeed see that a massless
state is decoupled as

ZN � Vy
NmeffV

�
N �

0 0 0
0 ZN22 ZN23

0 ZN23 ZN33

0
@

1
A; (33)

where

ZN22 � �X2
1� juy
1 � u2j

2�;

ZN33 � �
X1 � X2
u
y
1 � u2�

2�;

ZN23 � �X2

�����������������������������
1� juy

1 � u2j
2

q

uy

1 � u2�:

(34)

For the inverted hierarchical case,

Vy
I meffV�

I �

ZI11 ZI12 0
ZI12 ZI22 0
0 0 0

0
@

1
A; (35)

where

ZI11 � ZN33; ZI12 � ZN23; ZI22 � ZN22: (36)

Finally, the unitary matrix K is obtained from diagonaliz-
ing the 2� 2 submatrix of Z. It can be parametrized by an
angle / and two phases � and 0. The final form for VMNS

for the normal hierarchical case is presented as
-5
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VMNS
N �

u��2u
�
�1�u��2u

�
�1������������������

1�juy
1 �u2j

2
p ue2�ue1u

y
1 �u2������������������

1�juy
1 �u2j

2
p ue1

u��2u
�
e1�u�e2u

�
�1������������������

1�juy
1 �u2j

2
p u�2�u�1u

y
1 �u2������������������

1�juy
1 �u2j

2
p u�1

u�e2u
�
�1�u��2u

�
e1������������������

1�juy
1 �u2j

2
p u�2�u�1u

y
1 �u2������������������

1�juy
1 �u2j

2
p u�1

0
BBBBBBBB@

1
CCCCCCCCA

1 0 0
0 cos/N sin/Ne


�i�N�

0 � sin/Nei�N cos/N

0
@

1
A 1 0 0

0 ei0N 0
0 0 e�i0N

0
@

1
A; (37)

where /N , �N , and 0N are given as

tan2/N �



2jZ�

N22ZN23 � Z�
N23ZN33j

jZN33j
2 � jZN22j

2

�
;

�
2X2

�����������������������������
1� juy

1 � u2j
2

q
jX1
u

y
1 � u2�

� � X2u
y
1 � u2j

X2
1 � X2

2
2ju
y
1 � u2j

2 � 1� � 2X1X2 Re
u
y
1 � u2�

2
:

�N � arg
Z�
N22ZN23 � Z�

N23ZN33�;

� arg
X1
u
y
1 � u2�

� � X2
u
y
1 � u2��;

20N � arg	cos2/ZN22 � sin2/ZN33 exp
�2i�� � sin2/ZN23 exp
�i���: (38)

The mixing angle /N can be unambiguously determined by requiring the condition sin/N cos/N � 0, so that the normal
mass hierarchy (n22 � n23) is maintained. For the inverted hierarchical case, the MNS matrix becomes

VMNS
I �

ue2�ue1u
y
1 �u2������������������

1�juy
1 �u2j

2
p ue1

u��2u
�
�1�u��2u

�
�1������������������

1�juy
1 �u2j

2
p

u�2�u�1u
y
1 �u2������������������

1�juy
1 �u2j

2
p u�1

u��2u
�
e1�u�e2u

�
�1������������������

1�juy
1 �u2j

2
p

u�2�u�1u
y
1 �u2������������������

1�juy
1 �u2j

2
p u�1

u�e2u
�
�1�u��2u

�
e1������������������

1�juy
1 �u2j

2
p

0
BBBBBBBB@

1
CCCCCCCCA

cos/I sin/Ie
�i�I� 0
� sin/Ie

i�I cos/I 0
0 0 1

0
B@

1
CA ei0I 0 0

0 e�i0I 0
0 0 1

0
@

1
A; (39)
where /I, �I, and 0I have the same expressions as the
normal hierarchical case given in terms of X1, X2, u1, and
u2. The condition sin/I cos/I � 0 (n21 � n22) is required
for the inverted hierarchical case. Having established how
to construct the MNS matrix, we study the flavor mixings
of two zeros texture models which are discussed in the
previous section. We first study zero of MNS matrix ele-
ments of type II models. The type II models predict that
one of the MNS matrix elements is zero. Because experi-
mental constraints allow jVMNS

e3 j to be vanishing, among
type II models, only e leptogenesis and the inverted hier-
archical case is allowed. About the type I models, in
general, we do not have zero of the MNS matrix elements.
Therefore, we need to carry out the detailed numerical
study on the mixing angles, which will be presented in
the next section.
IV. NUMERICAL ANALYSIS

A. Determination of parameters

From neutrino oscillation experiments, two mixing an-
gles, the upper bound on jVMNS

e3 j, and two neutrino mass
squared differences have been determined [13,14], which
are taken as inputs. Because in models with two zeros for
mD, the effective low energy mass matrix meff can be
presented in terms of five independent parameters includ-
016006
ing a CP phase, all these parameters can be severely con-
strained from the experimental results mentioned above. In
this class of models, the allowed ranges for VMNS

e3 and the
Jarlskog invariant J [12] may be predicted. In this section,
we determine the allowed ranges for the parameters and
predict jVMNS

e3 j and CP violation in neutrino oscillations
jJj. Based on this analysis, we can construct the possible
forms of the unitarity triangle of the leptonic sector. We
first show how two parameters X1 and X2 with mass
dimensions can be fixed by using �m2 and uy

1 � u2 as
inputs. Writing uy

1 � u2 as

u y
1 � u2 � cos1ei#; (40)

where 0 � cos1 and �� � # � �, and using Eq. (25), we
can write X1 � X2 and jX1 � X2j as

X1 � X2 �

��������������������������������������������������������������������������������������
n2� � n2� � 2n�n� cos2#�

4n�n�
sin21

sin2#

s
;

jX1 � X2j �

���������������������������������������������������������������������������������������
n2� � n2� � 2n�n� cos2#�

4n�n�
sin21

cos2#

s
:

(41)

Choosing either X1 � X2 or X1 � X2, we may write X1 and
X2 in terms of 1, #, and neutrino masses. [See Eqs. (26)
-6
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and (27)]. For numerical analysis, we use �m2
sol � 7:1�

10�5 (eV2) and �m2
atm � 2:6� 10�3 (eV2). Here, we note

that the inputs 
1;#;�m2
sol;�m

2
atm� are sufficient for de-

termining sin/N;I and �N;I in K with the help of Eq. (38).
We also note that cos1 is bounded as

cos1 �

n� � n�������������������������������������������������������

n2� � n2� � 2n�n� cos2#
q : (42)

Next we illustrate how one can fit the models with two
zeros in mD by using the experimental results. As an
example, we take the type I(a) �-leptogenesis model which
is listed in Table I. In the model, u�1, ue1, and u�2 can be
taken to be real and positive and u�2 is a complex variable.
From the �-leptogenesis assumption,
FIG. 2 (color online). jVMNS
ij j for �-leptogenesis mo

016006
u�1u�2 � cos1 exp
i#�: (43)

By considering the range of the parameters, cos1 � u�1 �
1, j#j � �, one can numerically generate u�1, #, and 1 as

u�1 � cos1�
k
Nk


1� cos1� 
k � 0� Nk�;

# � ��� 2

ng � 1��

Ng

ng � 1� Ng�;

1 �

n1 � 1��

2N1

n1 � 1� N1�;

(44)

where the number of divisions for each variable are taken
to be N1 � Ng � 50 and Nk � 10. Then, we generate

Nk � 1�NgN1 sets of 
1;#; u�1�. The other parameters
in uai can be determined as
del type I(a) with normal hierarchy and X1 � X2.
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u�2 �
cos1 exp
i#�

u�1
; ue1 �

���������������������
1� ju�1j2

q
;

u�2 �
���������������������
1� ju�2j2

q
:

(45)

By fixing the parameters 
1;#; u�1�, which is equivalent to
giving a set of three integers 
n1; ng; k�, we can generate all
the elements of the MNS matrix through Eqs. (37)–(41)
and (45). To show how we determine the parameters by
taking into account the experimental constraints, it is con-
venient to represent a set of the integers 
n1; ng; k� with an
integer N defined as

N � kN1Ng � 
ng � 1�N1 � n1: (46)

For a given N, one can extract a set of three integer
numbers 
n1; ng; k� as follows,
FIG. 3 (color online). jVMNS
ij j for �-leptogenesis mo

016006
k �

�
N

NgN1

�
; N0 � Mod:	N;NgN1�;

ng �
�
N0

N1

�
� 1; n1 � Mod:	N0; N1�;

(47)

where 	x� denotes the maximum integer which is not larger
than x. By taking N in the horizontal axis, we show the
prediction for the absolute values of MNS matrix elements
in the vertical axis as shown in Fig. 2. A point of the
horizontal axis corresponds to a set of parameters for
(1;#; u�1). We also show the experimentally allowed range
for MNS matrix elements both at 90% confidence level and
at 33 level taken from [14]. One can find N which leads to
the MNS matrix elements consistent with experiments.
Then, we can determine 
n1; ng; k� by Eq. (47) and

1;#; u�1� by Eq. (45), respectively. In Fig. 3, we show
del type I(a) with inverted hierarchy and X1 � X2.
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TABLE III. The predictions for jVMNS
ij j and jJj. The magnitudes of the VMNS

ij given in the second row correspond to experimental
constraints at 90% C.L. taken from [14].

Type jVMNS
e1 j jVMNS

e2 j jVMNS
e3 j jVMNS

�3 j jVMNS
�3 j jJj

Exp. (90%) 0:79� 0:86 0:50� 0:61 0� 0:16 0:63� 0:79 0:60� 0:77
I(a) � normal X1 � X2 0:79� 0:86 0:50� 0:61 0:058� 0:11 0:63� 0:79 0:60� 0:77 0� 0:023
I(b) � normal X2 � X1 0:79� 0:86 0:50� 0:61 0:058� 0:11 0:64� 0:79 0:61� 0:77 0� 0:024
I(a) � normal X1 � X2 0:79� 0:86 0:50� 0:61 0:054� 0:10 0:63� 0:79 0:61� 0:77 0� 0:022
I(b) � normal X2 � X1 0:79� 0:86 0:50� 0:61 0:054� 0:10 0:63� 0:79 0:61� 0:77 0� 0:022

TABLE IV. The predictions for jVMNS
ij j and jJj. The magnitudes of the VMNS

ij given in the second row correspond to experimental
constraints at 33 taken from [14].

Type jVMNS
e1 j jVMNS

e2 j jVMNS
e3 j jVMNS

�3 j jVMNS
�3 j jJj

Exp. (33) 0:73� 0:88 0:47� 0:67 0� 0:23 0:56� 0:84 0:54� 0:82
I(a) � normal X1 � X2 0:73� 0:88 0:47� 0:67 0:046� 0:13 0:57� 0:83 0:54� 0:82 0� 0:028
I(b) � normal X2 � X1 0:73� 0:88 0:47� 0:67 0:047� 0:13 0:57� 0:83 0:54� 0:82 0� 0:028
I(a) � normal X1 � X2 0:73� 0:88 0:47� 0:67 0:044� 0:13 0:56� 0:84 0:54� 0:82 0� 0:027
I(b) � normal X2 � X1 0:73� 0:88 0:47� 0:67 0:043� 0:12 0:56� 0:84 0:54� 0:82 0� 0:027
I(a) � inverted X1 � X2 0:86� 0:87 0:48� 0:49 0:027� 0:14 0:63� 0:82 0:56� 0:77 0:0055� 0:027
I(b) � inverted X2 � X1 0:86� 0:87 0:48� 0:49 0:022� 0:14 0:57� 0:84 0:54� 0:82 0:0044� 0:028
I(a) � inverted X1 � X2 0:86� 0:87 0:48� 0:49 0:027� 0:13 0:59� 0:84 0:54� 0:80 0:0055� 0:026
I(b) � inverted X2 � X1 0:86� 0:87 0:48� 0:49 0:021� 0:13 0:57� 0:84 0:55� 0:82 0:0039� 0:027
II(a) e inverted X1 � X2 0.87 0:49� 0:50 0 0:57� 0:84 0:55� 0:82 0
II(b) e inverted X2 � X1 0.87 0:49� 0:50 0 0:57� 0:84 0:55� 0:82 0

0.015

0.02

0.025

0.03

J
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the fit for the inverted hierarchical case. By finding N
which reproduces the magnitude of five MNS matrix ele-
ments simultaneously, we can determine the parameters of
the model. In this way, one can find N which puts MNS
matrix elements within the experimentally allowed range.
In Table III, we show our fit based on the experimental
determination of the mixing angles at 90% C.L. Only four
types of textures are allowed and all the types correspond
to the normal hierarchical case and either the �- or �-
leptogenesis case. jVMNS

e3 j is determined to be nonzero and
the upper bound for CP violation jJj is obtained. In
Table IV, we relax experimental constraints by using the
33 allowed range. In this case, more textures are allowed
and the allowed ranges are larger than the previous case. In
addition to the previous allowed textures, the type II
e-leptogenesis (inverted hierarchical) case is allowed. As
for the type I � and � leptogenesis, the inverted hierachical
cases can also be fitted. Let us summarize the fitted results
for each texture as follows.
(i) T
0.005

0.01

ype II e-leptogenesis scenarios. In this class of

models, because jVMNS
e3 j � 0, CP violation in neu-

trino oscillation J is vanishing in spite of nonzero
#.
(ii) T

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ve3

FIG. 4. jJj and jVMNS
e3 j for �-leptogenesis model type I(a) with

normal hierarchy and X1 � X2 (90%).
ype I � and � leptogenesis for the normal hier-
archical case. In this class of models, VMNS

e3 is
nonvanishing. About the CP violation phase, the
allowed range of jJj is from zero to some non-
vanishing value.
016006
(iii) T
-9
ype I � and � leptogenesis for the inverted hier-
archical case. In this class of models, both VMNS

e3
and jJj are nonvanishing.
B. jVMNS
e3 j versus jJj

To clarify the differences of predictions between the
inverted hierarchical case and the normal hierarchical
case, we have plotted jVMNS

e3 j versus jJj in Figs. 4–6.
When jVMNS

e3 j � 1, J is approximately proportional to
jVMNS

e3 j. By choosing the standard parametrization of the
MNS matrix, we obtain



TABLE V. The parameters which are determined by fitting with m
magnitudes of MNS elements corresponding to a 33 fit taken from

II(a) e inverted X1 � X2 
0:30� � ju�2j
2 � 
0:67� 
0

II(b) e inverted X1 � X2 
0:30� � ju�1j
2 � 
0:67� 
0

I(a) � normal X1 � X2 0:085 � jue1j
2 � 0:29 0


0:050� � jue1j
2 � 
0:37� 
0

I(a) � inverted X1 � X2 
0:97� � jue1j
2 � 
1:0� 
0

I(b) � normal X1 � X2 0:25 � ju�1j
2 � 0:68 0


0:16� � ju�1j
2 � 
0:75� 
0:

I(b) � inverted X1 � X2 
0:33� � ju�1j
2 � 
0:70� 
0

I(a) � normal X1 � X2 0:093 � jue1j
2 � 0:29 0


0:054� � jue1j
2 � 
0:38� 
0

I(a) � inverted X1 � X2 
0:98� � jue1j
2 � 
1:0� 
0

I(b) � normal X1 � X2 0:28 � ju�1j
2 � 0:71 0


0:18� � ju�1j
2 � 
0:78� 
0:

I(b) � inverted X1 � X2 
0:30� � ju�1j
2 � 
0:67� 
0

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Ve3

0.005

0.01

0.015

0.02

0.025

0.03
J

FIG. 5. jJj and jVMNS
e3 j for �-leptogenesis model type I(a) with

normal hierarchy and X1 � X2 (33).

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Ve3

0.005

0.01

0.015

0.02

0.025

0.03

J

FIG. 6. jJj and jVMNS
e3 j for �-leptogenesis model type I(a) with

inverted hierarchy and X1 � X2 (33).
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J � 
1� s213�s13c12s12c23s23 sin�; (48)

with VMNS
e3 � s13 exp
�i��. In Figs. 4–6, within good

approximation, we can find the linear correlation between
jJj and jVMNS

e3 j. One can read j sin�j from the slope since

j sin�j ’
1

c12s12c23s23

jJj
s13

: (49)

In type I models with normal hierarchy, � and � lepto-
genesis are allowed. The allowed range for sin� is

0 � j sin�j & 1: (50)

For type I with inverted hierarchy, sin� is almost maximal,

j sin�j ’ 1; (51)

which implies that the CP violating phase # takes some
nonvanishing definite value. By fitting the data of neutrino
mixings, we have determined the allowed ranges for the
parameters which are presented in Table V.

C. Unitarity triangle

Further, one can reconstruct the unitarity triangles of the
models with two zeros texture which can satisfy the ex-
perimental constraints. We focus on the unitarity triangle
of the �� e sector,

VMNS
e1 VMNS�

�1 � VMNS
e2 VMNS�

�2 � VMNS
e3 VMNS�

�3 � 0;

VMNS
e1 VMNS�

�1 � �c13
c12s12c23 � c212s23s13 exp
�i���;

VMNS
e2 VMNS�

�2 � c13
s12c12c23 � s212s23s13 exp
�i���;

VMNS
e3 VMNS�

�3 � �c13s13s23 exp
�i��:

(52)

First we show the triangle schematically in Fig. 7. The
ixing angles. The values in parentheses are obtained from the
[14]. The others correspond to 90% C.L. fit in [14].

j#j 1

:33� � ju�2j2 � 
0:70� 
1:4� � 
1:8� (1.5)
:33� � ju�1j2 � 
0:70� 
1:4� � 
1:8� (1.5)
:24 � ju�2j

2 � 0:68 0� 3:1 0:60� 1:1
:16� � ju�2j

2 � 
0:75� 
0� � 
3:1� 
0:47� � 
1:1�
:40� � ju�2j

2 � 
0:68� 
1:4� � 
1:8� (1.5)
:082 � jue2j

2 � 0:29 0� 3:1 0:60� 1:1
050� � jue2j

2 � 
0:37� 
0� � 
3:1� 
0:47� � 
1:1�
:97� � jue2j

2 � 
1:0� 
1:4� � 
1:8� (1.5)
:28 � ju�2j

2 � 0:71 0� 3:1 0:63� 1:1
:18� � ju�2j

2 � 
0:78� 
0� � 
3:1� 
0:50� � 
1:2�
:30� � ju�2j

2 � 
0:64� 
1:4� � 
1:8� (1.5)
:092 � jue2j2 � 0:29 0� 3:1 0:63� 1:1
054� � jue2j2 � 
0:37� 
0� � 
3:1� 
0:50� � 
1:2�
:97� � jue2j

2 � 
1:0� 
1:4� � 
1:8� (1.5)
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FIG. 9. Unitarity triangles for �-leptogenesis model type I(a)
with inverted hierarchy which correspond to jVe1j ’ 0:86,
jVe2j ’ 0:49, jVe3j ’ 0:13, jV�1j ’ 0:40, jV�2j ’ 0:70, jV�3j ’

0:59, jV�3j ’ 0:80, jJj ’ 0:026, j sin�j ’ 1:0, j#j ’ 1:6, and
1 ’ 1:5.
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Re

-0.01

-0.005

0

0.005

0.01

I
m

FIG. 8. Unitarity triangles for �-leptogenesis model type I(a)
with normal hierarchy which correspond to jVe1j ’ 0:80, jVe2j ’
0:60, jVe3j ’ 0:098, jV�1j ’ 0:41, jV�2j ’ 0:65, jV�3j ’ 0:64,
jV�3j ’ 0:76, jJj ’ 0:0044, j sin�j ’ 0:19, j#j ’ 3:0, and 1 ’
0:94.

FIG. 7. Schematic view of unitarity triangle.
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triangle can be drawn inside a parallelogram as shown in
Fig. 7. We note that

OB :AB � c212:s
2
12; (53)

and � is the argument between VMNS
e3 and the real axis. In
016006
Figs. 8 and 9, we have shown the triangle corresponding to
the type I(a) � leptogenesis for the normal and inverted
hierarchical cases, respectively. As we have already noted,
the inverted hierarchical case sin� is almost maximal.
Therefore the argument of Ve3 with respect to the real
axis is 90�. For the normal hierarchical case, j sin�j is
smaller than 1. Because only the magnitude of VMNS is
known, we have two-fold ambiguities for � even if the
sizes of s12, s23, jVMNS

e3 j, and jJj are given. In Fig. 8, we plot
two triangles which correspond to � and ��. Two triangles
which are related to each other by reflection with respect
to the real axis can be distinguished by measuring the sign
of J.
V. SUMMARY AND DISCUSSIONS

In this work, we study CP violation in neutrino oscil-
lations and its possible connection to lepton family asym-
metries generated from heavy Majorana neutrino decays.
We have derived a general formula for CP violation in
neutrino oscillations by means of heavy Majorana masses
and the Dirac mass matrix. We identify the two zeros
texture models in which lepton asymmetry is dominated
by a particular family asymmetry. We have explored the
e-leptogenesis, �-leptogenesis, and �-leptogenesis scenar-
ios and determined the allowed range of parameters from
the neutrino experimental results. Using the 90% and 33
bound on the magnitude of mixing angles measured at
experiments, we have constrained the parameters of the
models. Based on the analysis above, we have predicted the
possible ranges of jVMNS

e3 j and the low energy CP violation
observable jJj. We have found that in the models with two
zeros in mD and inverted hierarchy, j sin�j is predicted to
be almost maximal. Once those two unknown quantities
are determined in future neutrino oscillation experiments,
we could compare them with our predictions. Because the
sign of J would be determined from the measurement of
CP violation via neutrino oscillations, we can conclude
whether the sign ofCP violation at low energy is consistent
with CP violation required in cosmology [3,5,7].
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