PHYSICAL REVIEW D VOLUME 56, NUMBER 11 1 DECEMBER 1997
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We investigate higher order effects in the nonrelativistic expansion of lattice QERQCD) on the heavy-
light meson decay constants and some other quantities in order to understand the truncation error of NRQCD.
While our numerical results have lar@qa) andO(«a) errors due to the use of the Wilson light quark action
and tree-level matching, we find that the truncation error of higher order relativistic corrections are adequately
small around the mass of thequark. Simulations are carried out on a®¥@2 lattice with 120 quenched
gauge configurations generated with the plaquette actigp=db.8. Systematic errors and the limitation of
NRQCD theory are discussejd0556-282(97)05023-9

PACS numbdps): 12.38.Gc, 13.20.He

[. INTRODUCTION timate the remaining uncertainty in a systematic way based
on the 1ig expansion.

The properties of hadrons including a heavy quark, par- Exploratory studies of the decay constant with lattice
ticularly ab quark, provide us with crucial information for NRQCD were made by Daviest al.[4] and Hashimotg5],
constraining the Cabibbo-Kobayashi-MaskaZkM) mix-  where only a part of M terms was included. A study with
ing matrix of the standard model, which still have large un-lattice NRQCD action fully including effects of the ri},
certainties in spite of much effort through various ap-terms was carried out in Ref6]. It was concluded that the
proaches. For the combinatid¥;,V,q| the current value is magnitude ofO(1/mg) correction is significantly larger than
0.009*+0.003[1]. The large error mainly arises from uncer- the naive expectatiorr O(A gcp/Mp), WhereMp is a pseu-
tainties in the decay constafy and the bag parametBg of ~ doscalar meson mass, and therefore it was necessary to in-
B meson, which are needed to relate the experimentally meaestigate the next order term in NRQCD.
suredBP-BP transition rates witHViV,q|. It is, therefore, Within the quenched approximation, the correctness of
very important for the verification of the standard model t0the results from simulations with lattice NRQCD would be

determine thesB meson matrix elements with higher accu- expressed as a triple expansion in termaQtQCD, as, and
racy. Agcp/Mg. We must understand all the higher order effects

The lattice technique enables us to carry out this task fromWhICh are non-negligible for the desired accuracy. In this

the first principle of quantum chromodynami¢®CD). In work, we confine ourselves to the study of the truncation

thi trat the d tant and st rror of Aqgcp/Mg expansion in order to understand which
IS paper we concentrate on the decay constant and Stuyqe j, Aqcp/Mg expansion we must improve the lattice
various uncertainties in the calculation, which is also 'nStrUCNRQCD through. Since we use Wilson light quark action

tive for the calculation of the bag parameter. Extensive effort, o e remainsO(aA ocp) error. O(as) error also exists in

. . . . . S
has been devoted to a lattice QCD determinatiofigaih the  r results because of tree level matching. These remaining
past[2]. We are now at the second stage where the accuracy,stematic errors could be removed by using the improved

has become the main issue. The largest obstacle for obtaiQyilson quark action and one-loop renormalization constants.
ing a reliable prediction is the large value of thequark  These will be left for future studies.

mass. A naive application of the Wilson @r(a)-improved For this purpose we compare simulation results of the two
fermion action for théb quark causes a systematic error of sets of the lattice NRQCD action and the operator: the first
O(am) in B meson quantities whergy, is theb quark mass ~ set includes terms up t0(1/mg) consistently and the sec-
anda the lattice spacing. Sinam, exceeds unity for lattice ond set takes into account the entire correction up to
parameters currently accessible in numerical simulations, th@(l/mé). Tree-level values with tadpole improvement are
error is expected to be large, rendering an extrapolation temployed for the coefficients of the correction terms. We
the continuum limit unreliable. find that the contributions of second order i/ to the
Nonrelativistic QCD(NRQCD) [3] is designed to remove decay constants is adequately small aroundbttegiark. In
the mass scaleng of the heavy quark from the theory and order to check the generality of the above statement, fhe 1
there are noO(amg) systematic errors in this approach. hyperfine splitting of thd mesonMg —Mg andfg /g are
Since NRQCD is organized as a systematind/expansion also investigated and similar results are obtained. A prelimi-
of the full relativistic QCD, relativistic errors in NRQCD are nary report of an investigation @(1/mé) corrections simi-
induced only by the truncation of theri expansion. Itis, lar to our work has been reported in RET).
therefore, possible to improve the approximation and to es- This paper is organized as follows. In Sec. Il we introduce
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the action and the current operators used in our calculation of ) g - -
the decay constants. Simulation details such as parameter SH( )=—ﬁ0~ B, (7)
values and methods are given in Sec. lll, followed by pre- Q

sentation of results for the decay constant and related quan-

tities. In Sec. IV implications of the results and other system- 5H(2>—£(& E- E.A), )
atic errors are discussed. Our conclusions are given in Sec. gmé
V.
IIl. LATTICE NRQCD 5H<3>=—i2&-(&>< E- EXA), 9
NRQCD action at the tree level is obtained from a rela- 8ma
tivistic action by the Foldy-Wouthuysen-Ta(FWT) trans- (A2
formation: SH@® = _ , (10)
_ 8
L= h(ID_mQ)h:KNRQCDZEQ—’_‘C)(! (1)
a’A®
whereh is a four-component spinor of the heavy quark field SH®) = T (11)
and Q and y are two-component fields in the NRQCD Q
theory. The NRQCD action is represented by the following
1/mq expansion: a(A?)?
Q SHO=— ———. (12
U 1enmg
Lo=L+L3+LE+ -, cg>=<m—) Q'LYQ, (2 ) o
Q The symbolsA and A(® denote the symmetric lattice dif-

where the mass term is discarded since it only amounts to fgrentiation in spatial directions and LaQIacianLrespectiver,
constant shift in the total meson energy and does not affe@nd A “=2;(A{?)2 The field strengths8 and E are gen-
the dynamics of the system. Lattice NRQCD action is a dis€rated from the standard clover-leaf operator.

cretized version of the continuum action Wick-rotated to the ~The coefficientsc; in Eq. (6) should be determined by
Euclidean formalism. The discretization procedure is notP€erturbatively matching the action to that in relativistic
unique, and we choose a form which leads to the followingQCD. In the present work we adopt the tree-level value

evolution equation for the heavy quark propagator: ¢;=1 for alli and apply the tadpole improveme&] to all
link variables in the evolution equation by rescaling the link
Gol(t, X)=0 (for t<0), 3) :/”a'roi\ables adJ,—U,/ug. The value ofu, is given in Sec.
R aHy\" asH asH The original four-component heavy quark spirois de-
Go(t, x)=|1- W) - 1 - composed into two two-component spind@sand y after
FWT transformation:
aHg\" -
X 1_ﬁ GQ(t_l,X)"r‘éx,o (for t=0). Q(x)
h(x)=R| , (13
x'(x)

(4)

Herex=(t, X), n is the stabilizing parametdB]. Our dis-
cretization procedure is almost the same as

whereR is an inverse FWT transformation matrix which has
4% 4 spin and X 3 color indices. After discretizatiorR at
the tree level is written as

Gt9_1a5H aHo\" | aHy\"
Q( ,X)— 2 2n 4 2 RZE R(i), (14)
I
1 asH G 1%
x| 17 57| Galt=1,), RU=1, (15)
which was used in7]. These two discretization procedures 375
are the best choices from the view of the control on the RY=_- ~— — (16)
discretization error in the temporal derivative. 2mq
Ho and 6H are defined as
A2
A2 R<3>:8—, (17)
- _ m
Ho=~ o (5) Q
g3-B
. 4) _
SH=" cioH, ©®) R®= (18)

i 8mg
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igy, ;, E k.=0.16346(7) and the inverse lattice spacing determined
- (190  from the rho meson mass equals'=1.714(63) GeV. The
4mg hopping parametek, corresponding to the strange quark is
determined in two ways fronm,/m, and my/m,, which
yields k,=0.15922(39) and 0.16016(23), respectively. In
g 0 our analysis we take;=0.1600 for simplicity, except in the
atx

R() =
where

0 j (20) final results where the error arising from the uncertainty in
e ks is taken into account. We use the factgt — 3«/4k. as

the field normalization for light quarfQ].

The tadpole improvemen8] is also applied for these opera-  For the heavy quark part of calculations, two sets of lat-

tors in our simulations. tice NRQCD action and current operator are employed as
As mentioned in the Introduction, we define two sets ofdescribed in Sec. Il. For the heavy quark mass and the sta-
action and FWT transformatioppH R} as bilizing parameter, we use afng,n)=(5.0,2, (2.6,2,
(2.1,3, (1.5,3, (1.2,3, and (0.9,4, which cover a mass
set ={oH;,Ry} range between®, andm,. All of our errors are estimated
and by a single elimination jack-knife procedure.
set lI={5H,,R,}, (21) B. Method
In the continuum the pseudoscalar and vector meson de-
where cay constants are defined by
_ opq(1)
SH,=6H (0]Ao|P)=fpMp, (24)
and (OIV;[Vi) = fyMy, 29
2
R1=2 R, (22 whereAy= g y5y;h andV;=q y;h.
i=1

The lattice counterpart is calculated in the following way.
Let us define an interpolating field operator for heavy-light

° meson from a light antiquark and a heavy quark field by

SHp=>, sHW

=1 >

— Q(t,y) . -
and OY(0=2 q(X)Fx( o | &Ux=yD. (29
y

5

R,= > R 23) wherel'y is the gamma matrix specifying the quantum num-
1 ' ber of the meson. The subscrift labels the pseudoscalar

meson P) or the vector meson\), ¢ is a source function
The operator$H; andR; keep onlyO(1/mg) terms while  and the superscrigtrc denotes the choice of smearing, i.e.,
SH, andR, include the entireO(llmé) terms. In particular  L(local) or S (smearejl according to
S6H, has the leading relativistic correction to the dispersion
relation, which is arD(l/mg) term, and the terms improving P (x)=68(x) or ¢S(x)=exp —al >Z|b), (27
the discretization errors appearinghty and time evolution
are also included. Using these two sets, we can realize th&herea andb are fixed by a fit to the Coulomb gauge wave

level of accuracy oD(1/mg) andO(l/mé) for the set | and function measured in the simulation. We next define the lo-
I. cal axial-vector and vector currenls :

— : — [ Q(X)
lll. SIMULATIONS AND RESULTS Jy= q(x)FXh(x)=2 JS(I):E. q(x)FXR“)( T(X) ,
A. Parameters ! I X (28)
Our numerical simulation is carried out with 120
quenched configurations on a>+632 lattice at3=5.8. Each  With
configuration is separated by 2 000 pseudo-heat-bath sweeps
after 20 000 sweeps for thermalization and fixed to Coulomb Fe=vsva, Tv=w. (29)
gauge. For the tadpole factor we emplay= (P a9 with _ i) - .
Puag the average plaquette, which takes the vaIueThe inverse FWT transformatioR!"’s are explicitly written

=0.867994(13 d duri fiqurati in Egs.(15—(19). .
o (13) measured during our configuration gen To extract the decay constant of heavy-light mesons, we

eration. - ) .
For the light quark we use the Wilson quark action with calculate the following two point functions:

x=0.1570, 0.1585, and 0.1600, imposing the periodic and
Dirichlet boundary condition for spatial and temporal direc- o ()=, (O%(t, x)OK(0)), (30)
tions, respectively. The chiral limit is reached at X X
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— O TABLE I. Binding energies of heavy-light pseudoscalar mesons
for eachk and set. Upper lines are from set | and lower lines from
set Il
@o& 0.65 L 5 i amy  «=0.1570  0.1585  0.1600 x,=0.16346
QO
= | S ] 5.0 0.62%7) 0.6028) 0.57712) 0.52416)
- 0.6317 0.6088 0.58311 0.53115
L e ¢ 17) g8) 31y 115
< 0.60 - *e é é ¢ é é + # _ 26 0.6185)  0.5996)  0.5708) 0.51811)
E" 0.6245) 0.6016) 0.5768) 0.52411)
- 1 2.1 0.6135) 0.5906) 0.5657) 0.51310)
0.6185) 0.5946) 0.5697) 0.51610)
055 ————~1 L L 15 0.6044) 0.5805) 0.5556) 0.5018)
8 12 16 20 24 0.6004)  0.5765  0.5516) 0.4988)
t 1.2 0.5964)  0.5715)  0.5466) 0.4928)
0.5814) 0.5585) 0.5316) 0.47717)
FIG. 1. Effective mass plot with local sour(:epen circlesand 0.9 0.5794) 0.5544) 0.5295) 0.4737)
smeared sourcésolid circleg at mg=2.64=0.1585 with the 0.5364) 0.5114) 0.4865) 0.4307)

NRQCD action including entire ﬂdé corrections(set ).

S iy Loy o\ mSt In order to extract the binding energy and amplitude, we
C@x(t)_% (OX(1, x)0X(0)), (81 fit the correlation functions to the following forms:
_ L Co.(1)=2Z3 exp(—EJ, 1), (33
CS() =23 (I (t, ) OF'(0)). (32 O T O
X
Co,(=Zo, XM ~Ep,1), (34
We show the effective mass plot of pseudoscalar meson at
— — ; L _ _ _
amg=2.6 and x=0.1585 with IocaICOP(t) and smeared CJSi(')(t)=ZJS(X')eXp(—EJS§('>t). (35

sourceC%P(t) for the set Il in Fig. 1. We observe that the

effective mass for the smeared source is very stable fromis s expected from Figs. 1 and 2, all correlators with the
early time slices. From inspection of effective mass plotsggme parametesmy, «, andX give a consistent value &
such as Fig. 1, we conclude that the ground state of pseud@egpective of the choice df or S and© or J. In the final
scalar meson is sufficiently isolated in the rangegnaysis, we fit the correlators with smeared sources to obtain

[tmin: tmax] =[17,22 for both correlators, and we adopt this gS “anq fit other correlators witES_ as the input energy.
range as our fitting interval. X X

Similar plots forCS(t) (i=2,3,4,5)with the same pa- We list results for the binding enerdsp in Table I.

rameters are shown in Fig. 2. We find that the different op- Chiral extrapolation ofEg, is shown in Fig. 3 and the
erators give a consistent value for the ground state energgxtrapolated values are given in the last column of Table I.
Effective mass plots for other values afmy and « exhibit ~ From Fig. 3 we find that the slope become a little milder for
similar features.

y T T T -
T t I ) i |
0.60 | .
s~ 0.65 . 0.55 - -
7 # M 050 .
§vm0.60 - i * 1 - T

S
E" i + ] 045 | .
055 ———rto— Lo 1 L 040- : ' — : W
8 12 16 20 24 "76.10 6.20 6.30 6.40
t 1/x

FIG. 2. Effective plot of CJS(P”(t) for pseudoscalar at FIG. 3. Chiral extrapolations cE3_. From aboveamg = 5.0

mg=2.64,=0.1585 with set 1l.i=2,3,4,5 correspond to circles, (circles, 2.6(squares 2.1 (diamond$, 1.5 (triangles, 1.2 (pluses,
squares, diamonds, and triangles, respectively. and 0.9(crossegyin set Il.
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— T T T T T T T T T 040

035

0.55 |- # T o i / |
*/ ]

045 - 0.15 - T
i ¢ 0.10 : : : : :
6.10 6.20 6.30 6.40
040 1 i 1 i " | 1 1 ! 1 L I/K
0.0 0.2 04 0.6 0.8 1.0
1/(amQ) FIG. 5. Chiral extrapolations offctMp%)'%. From aboveamg

= 5.0 (circles, 2.6 (squareys 2.1 (diamond$, 1.5 (triangles, 1.2

FIG. 4. 1/am,) dependence of chirally extrapolated binding (pluses, and 0.9(crossesin set Il. Solid lines are obtained from
energies of pseudoscakircles meson from set {open) and set I linear fits.

(solid).
n /ZZL ZJ (j)
largeramg . We also show the 14mg) dependence of bind- fx sza‘wZ Zxij——os (37)
ing energy for pseudoscalar mesorkat k. in Fig. 4. b ZOX
The meson decay constant within tree-level matching is
obtained in terms of the amplitudes defined above as wheren is the number of the relevant operators &g is a
nXxn renormalization matrix. We should remark that the
L 7S SGO Collaboration has recently completed such a calcula-

OX Iy : . . ) T .
tion [10]. Their choice of action, however, is slightly differ-

ent from ours, and the results are not applicable for our
analysis. Thus our results are stated without the one-lbop
=a‘3/22_ 5fg(i)Ea—3/2(fx M B (36) factor, but incorporating the mean field improvement.

I

fX MX —3/22i

C. Analysis of results

where 5t = \[27¢, Z51Z3, and (fx/M,)™" are defined The numerical results off\Mp)'a for all k and «. are

for convenience of discussions below. tabulated in Table Il and its chiral extrapolation is shown in
When going beyond tree level, renormalization would notrig. 5. We find from this figure that the linear extrapolation

only mix the operators measured, but would also bring in

other operators whose coefficient is zero at tree IEM@l So

the above quantity with the perturbative correction can be

expressed as

TABLE Il. Numerical results for {,M¥?)" for eachx and set. |
Upper lines are from set | and lower lines from set II.
amg «k=0.1570 0.1585 0.1600 «.=0.16346 J
5.0 0.40813) 0.377113 0.34114) 0.26817) =
0.39712) 0.36712) 0.33313 0.26416) |
2.6 0.3347) 0.3118) 0.2868) 0.23310
0.3237) 0.30%7) 0.2778) 0.2279) 7
2.1 0.3106) 0.2897) 0.2687) 0.2198) 3
0.2986) 0.2786) 0.2576) 0.2128)
1.5 0.2695) 0.2535) 0.2345) 0.1957) ' . . 04 0.6
0.2565  0.2405  0.2235) 0.1877) 1/(aM,)
1.2 0.2424) 0.2274) 0.2125) 0.1786)
0.2244) 0.21%4) 0.1975) 0.1686) FIG. 6. 1/@Mp) dependence of chirally extrapolated
0.9 0.2094) 0.1974) 0.1844) 0.1565) (fpM Y22 with set | (open circley and set li(solid circles. The
0.1764) 0.1664) 0.1575) 0.1346) dashed line is obtained by fitting the data from set | to quadratic

function and the long dashed line from set Il.
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TABLE Ill. The coefficients obtained by fitting each data to a

quadratic function. 0.02
set (fpyMp)” a; a, 0.00
set | 0.32022 —-0.9711) 0.3610 —0.02
set Il 0.30820) -0.8711) 0.17111)
e,
- 0.04
is very smooth. In contrast to the binding energy, the slope
tends to increase as the heavy quark mass becomes large -0.06
Figure 6 shows the 14Mp) dependence off\Mp)™at
at k= k. for the set I(open symbolsand Il (filled symbolg, -0.08
whereaMp; is the pseudoscalar meson mass in lattice unit: i
calculated as described below. Shaded bands represent { -0.10 . '
mass region corresponding to tBeandD meson. They are 0.0 02 04 0.6 0.8

estimated from the value @ ! determined from the me- 1/(aMy)
son mass and a string tensién1.3 Ge\j at 8=5.8. Solid
curves are results of a fit with a quadratic function in
1/(aMp) given by

FIG. 8. 1/@Mp) dependence of the nonleading contributions to
(fpME3 " with set I (open circlesand set li(solid symbol3. Solid
symbols(Sf(Fl)(i =2,3,4,5) correspond to circles, squares, diamonds,
and triangles, respectively.

a a
+
aMp  (aMp)?

(fpyMp)alt=(fp/Mp)*

1+

. (38

It may appear at first sight that there are no large differ-
ence over almost all of the region aMp between the re-
The values of the fitted parameters are tabulated in Table llisults from set I(open circle and those from set I{solid
We observe thatf(\VMp)” anda, are consistent between circles in Fig. 6. In order to investigate the differences fur-
the set | and Il within the statistical error, whitg is differ- ther, we decompose the results into contribution of each op-

ent as expected. erator 5f) . Figure 7 shows the leading contributigi$"
The meson mass is given by for each set. The values from set Il are larger than those from
the set I, showing effects of thert§ correction in the ac-
aMp=Zramg+Eg —&, (39 tion. In Fig. 8 the other current contributio@$) (i=2 for

set | andi=2,3,4,5 for set Il are shown. As expected, the
whereZ,, and&, are the mass renormalization factor and themagnitude of th@©(1/mg) operato(circles is larger than the
energy shift, respectively. Since perturbative results for thesetherO(1/mg) operatoréother symbols The numerical data
guantities are not fully available for our NRQCD action, we for 5f(Fl) are tabulated in Table IV.
setaMp=amg+ E(%P in this work. For the action, for In summary,O(l/mé) correction in the action tends to
which our one-loop results are available, the one-loop cortaise ¢p+y/Mp)®* while the one in the current lower. After all
rection is very small ¢ 5%) and we expect that effects for We find a remarkable fact that the small difference in Fig. 6

the final prediction forfz are not significant. results from a cancellation between the correction from the
action and that from operators, and between different opera-
tors.
I | TABLE IV. Numerical results forsf8) at x =« in lattice unit.
Upper lines with set | and lower lines with set Il.
0.30 B
I | amg oY of @ of® st st
(x 100 (X 100 (X 100 (X 100
0.25 - 4
~ 5.0 0.29018) —2.2(3)
s [ | 0.28616) —2.13) -0.183) 0.031) —0.06615)
“ 020 | 4 26 02671) -3.303)
I J 0.266100 —3.33) —0.464) 0.132) -0.243)
2.1 0.2589) —3.903)
0.15 - B 0.2599) -3.93) -0655 0212 —0.353)
: 1 15 0.2437) —4.993)
0.10 ) 0.2527) -5.1(3) —-1.117) 0.434) —0.695)
0.0 . 04 0.6 0.8 1.2 0.23%) -—5.7(3)
1/(aM,) 0.2487) —6.14) -1599) 0715 -—1.017)
0.9 0.2266) —6.94)
FIG. 7. 1/@Mp) dependence of the leading contribution to 0.2477) —-7.84) -2.7910 1.358 —1.9910)

(feME?) ' with set I (open circley and set li(solid circles.
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0.20 T T T T

0.15 T 7]
S o010 | . ]

0.05 + + + . ]

0.00 . L : : .

0.0 04 0.6 0.8 0.0 0.2 04 0.6 0.8
1/(aM,) 1/(aM,)
FIG. 9. 1/@Mp) dependence o@(l/mé) correction. FIG. 10. 1/@Mp) dependence of re@(l/mé) correctionA f

(solid) and imaginary ongAf| (open. For details, see the text.
In order to quantify the magnitude @(1/mg) correc-

tions, we define the following quantity: This quantity provides a conservative estimate()(fllmé)
correction since allO(1/m2) corrections are added. The
_ (fpyMp) = (fpMp) " 1/(aMp) dependence dfA f| is shown in Fig. 10 with open
Af= (f JM ot ) (40) symbols, together with the result fdxf (solid symbols. If
P P/

we estimate the unknowm(llm%) correction to have a

where | and Il corresponds to the set | and Il. We shody ~ magnitude=|Af|, which Iistt presumably an overestimation,
in Fig. 9. We see that th@(1/m3) correction is about 3% We deduce that fVMp);" would be corrected by only

around theB meson region, while increasing to about 15% about 6% around thB meson. On the other hand, there is no
around theD meson. reason that th@(l/mg) correction would be small in thB

We have seen thatf 4/Mp)" " does not change much meson region. For completeness, we also show the result of
with inclusion ofO(1/m3) terms. Since this is due to a can- the vector meson decay constarfit, (My)"®", and the spin
cellation among th@(l/mé) contributions whose origin is average and the ratio of pseudoscalar and vector decay con-
not apparent, the smallness does not necessarily mean tH4gnts-

higher order corrections of the i, expansion are negli- The numerit_:al results for the vector meson delct?y constant
gible. To examine this point, we define the following quan-are tabulated in Table V. The results fdf/(/My)"* show

tity: only small difference between the set | and Il as in the pseu-

doscalar case. Making a decomposition into current compo-

|Af|=(|6F6)— 8E5H| +| 6F 5 — 8T Q)|+ of | nents as before, we find that there are cancellations among

@ (5) att 5f§,') as in the pseudoscalar, though to a lesser extent. The

+]SF St/ (foVMp) . (4)  npumerical data for the spin averaged decay constant

TABLE V. Numerical results for {yMy?'a" and 5f{)) at k= « in lattice unit. Upper lines with set | and
lower lines with set II.

amg (fyM {3t st(H v ot st} st
(X 100 (X 100 (X 100 (X 100
5.0 0.28018) 0.27418) 0.6311)
0.27510) 0.27016) 0.61(10) -0.163) 0.0036) 0.0175)
2.6 0.24810) 0.24Q9) 0.8711)
0.24Q9) 0.2359) 0.8611) -0.395) 0.0279) 0.042)
2.1 0.2379) 0.2278) 1.0012)
0.2298) 0.2238) 0.9911) -0.536) 0.052) 0.092)
15 0.2207) 0.2076) 1.2412)
0.2347) 0.2077) 1.2013) -0.838) 0.11(2) 0.192)
1.2 0.2106) 0.1966) 1.4213
0.2057) 0.1986) 1.3615 -1.11(10) 0.1993) 0.304)
0.9 0.2016) 0.1845) 1.7016)

0.1957) 0.1886) 1.5820) —1.7816) 0.375) 0.557)
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TABLE VI. Numerical results for spin averaged lattice matrix elements and their current components at
k= kK. in lattice unit. Upper lines with set | and lower lines with set II.

amg (FMY2)R5 St St St Sty St
(X 100 (X 100 (X 100 (X 100

5.0 0.27817) 0.27§18) —0.065)

0.27716) 0.27416) -0.075) -0.173) 0.0104) —0.0042)
2.6 0.2449) 0.2469) -0.196)

0.2379) 0.2429) -0.196) —0.41(4) 0.0535) -0.0126)
2.1 0.2328) 0.2358) —0.227)

0.2258) 0.2328) —0.257) —0.565) 0.0897) -0.0188)
1.5 0.2136) 0.2147) -0.308)

0.2077) 0.2187) -0.379) -0.907) 0.19314) —0.03216)
1.2 0.2026) 0.2056) -0.369)

0.1956) 0.2106) -0.4911) -1.239) 0.322) —0.04825)
0.9 0.1895) 0.1945) —0.4611)

0.1806) 0.2036) —0.7615) —2.0315) 0.624) —0.08451)

(FYM) =] (f oM p) "2+ 3(f,My)'2]/4 can be found in
Table V1. The behavior of f{yM)'3% as a function oM,y
is shown in Fig. 11 wheraM,y=(aMp+3aMy,)/4.

Figure 12 shows  f(o/f\)'®(circles and
(fp/fy)®(diamonds with set | (open symbolsand set II
(solid symbol$. For the numerical data, see Table VII.

D. Other quantities

In order to find how large th@(l/mé) corrections are in
other quantities, we compare S1 hyperfine splitting,
Mp ,—Mp andfpS/fP obtained with set | and Il. Figure 13
shows theaMp dependence of 3 hyperfine splitting. The
splitting linearly increases with 1dMp) for both sets and
O(1/m<23) terms do not affect this quantity. The results for
aMp —aMp are shown in Fig. 14. We expect from experi-

ments that this quantity depends only weakly on the heavy

guark mass ¥ B0~ MBg=90.1 MeV andV DI~ MDd::99.2

04

0.6
1/(aM, )

0.8

FIG. 11. 1/@M,,) dependence of spin averagefiM*/?)'a"
with set | (open circlesand set ll(solid symbol$. The solid line is

MeV). Our results are consistent with this expectation in-

cluding the trend that the mass difference increases for

smaller heavy quark mass, albeit errors are large. Finally we

show fps/fp in Fig. 15 calculated from the jack-knife
fp If

samples of the following ratio:
(fp,(Mp )™ [aMp
= X .
© 7 (fpMp)et T N aMe,
The ratiofg_/fg has phenomenological importance since it is
necessary to extract the standard model paramtgf
which is up to now only poorly determined. One can see in
Figs. 13-15 that there is no significant difference between
the results from the two sets of simulations over almost all
mass region up to thB meson. Numerical results are tabu-
lated in Table VIII.

With a~* from p meson mass, we fini p(amg=2.6)
~5.3 GeV which is close to the experimental valuehbf .

(42)

0.8

04
1/(aM

0.6

AV)

FIG. 12. 1/@Mp) dependence of the ratiof4/f,)'® and

obtained from a quadratic fit and small symbols represent the extfp/fy)® at k=« with set | (open symbolsand set Il (solid

trapolated values.

symbol3. Circles refer to {p/f\)", diamonds refer tof( /f,)%.
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TABLE VII. Ratio of pseudoscalar and vector lattice matrix elementg-atc.. Upper lines with set |
and lower lines with set 1.

amg (Fp/f )R 8(fplf)D  8(fplfy)@  8(fplf)®  8(fplf)@  8(fplfy)®

5.0 0.95424) 1.05520) —3.4237)
0.96224) 1.06518) —3.47(35) 1.08458) 14(48) —3.9975)
2.6 0.94124) 1.11316) —3.8335)
0.94522) 1.13316) —3.8937) 1.18666) 4.82.1) —3.7747)
2.1 0.925%22) 1.13616) —3.8933
0.92722) 1.16317) —4.0037) 1.23567) 4.21.3 —3.7644)
1.5 0.88721) 1.17415) —3.9631)
0.87725) 1.21518) —4.2439) 1.33577) 3.9280) —3.7041)
1.2 0.84822) 1.19516) —4.003)1)
0.81927) 1.25320) —4.4543) 1.42687) 3.80(65) —3.6541)
0.9 0.78Q24) 1.22817) —4.0934)
0.69432) 1.31124) —4.9258) 1.5611) 3.61(53 —3.61(44)
We therefore consideam,=2.6 to be the physical point for IV. fg TO O(1/M%) AND REMAINING
theb quark and convert the numerical results above from the SYSTEMATIC UNCERTAINTIES

set Il into physical units. We obtain . L R .
Our investigation shows that relativistic corrections of or-

Mg+ —M =26+ 9(statistica] MeV, der ltné is small in the region of B meson, and that higher
order corrections are likely to be bound within a 5% level.
Mg — Mg, =99+ 8(statistica) = 13(strange MeV, One of the remaining source of systematic uncertainties is a
discretization error of forn®[ (aAocp)"]. The leading error
st of this form existing in our calculation i©(aA gcp) Which
= 1.23+ 0.03 statistica) + 0.03 strange, appears from the Wilson fermion action since the gauge and
By NRQCD action have n®(a) term. The characteristic size
. Y . .. of O(aAqgcp) at B=5.8 is 20—-30 %. This error can be re-
where “strange” means the error arising from the amb|gwtyduced to the level of 5% by the use ©{a)-improved Wil-

in s using my/m, or mK/mP.' The hyperfine splitting is ._son actions. Alternatively, one may carry out simulations at a
much smaller than the experimental value of 46 MeV. It 'slarger value ofg in order to reduce th®©(aA ocp) error

known that this quantity is very sensitive @(a) error and within the Wilson action for light quark. However, care must

quenching effects. Other quantities are in reasonable agrefg, yan in this alternative because of the problem of diver-

ment with experiment and results of previous lattice studlesgence of one-loop coefficient famg= 0.6—0.8[11]. Such

flthotqgh the physical \(;Ilykestshciwn aﬁove tnave Ialrlge SYS3 situation can arise when the heavy quark mass parameter in
ematic errors, we would like 10 Stress here the Smaliness Qlyice ynits becomes small, which will be encountered in

the differences between two results rather than the Value&mulations at large8. These limitations in the values ¢f

itself.
0.05 . — 0.07 : —
0.04 | . i 1
[ 1 0.06 -
Ay - - Ay
<™ 0.03 S
< [o ]
| 3 h ] 3
> a®
S 0.02 | - s
“’ i ] < 0.05 .
0.01 - | ]
0.00 : L. 0.04 : L
0.0 0.4 0.6 0.8 0.0 0.4 0.6 0.8
1/(aM,) 1/(aM,)

FIG. 13. 1/aMp) dependence of S hyperfine splitting with set FIG. 14. 1/@Mp) dependence oMp —Mp with set | (open
| (open symbolsand set lI(solid symbols. symbolg and set ll(solid symbol$.
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TABLE VIII. Simulation results atk= k. in lattice unit. Upper

1.35 T lines with set | and lower lines with set Il.
1.30 + - amg aMp aMy—aMp  aMp —aMp fpslfP
s - (X 100 (X 100
125 | | 5.0 5.52416)  0.81(60) 5.31(57) 1.27135)
120 k i 553115  0.8655) 5.2754) 1.25832)
o I | 26 3.11811) 1.5353) 5.2640) 1.21624)
:ml_ls K | 3.12411) 1.5454) 5.2939) 1.21423)
i l 21 2.61210) 1.80(53) 5.3237) 1.20621)
110 i 2.61610) 1.84(55) 5.3536) 1.20221)
I 1 15 2.0018) 2.3451) 5.41(33) 1.18518)
1.05 k- 4 1.9988) 2.47(56) 5.41(32) 1.17620)
I ; 1.2 1.6928) 2.81(52) 5.4931) 1.17117)
1.00 . 1.6717) 3.0559) 5.4730) 1.15921)
0.0 - 0.4 0.6 0.8 0.9 1.3737) 3.61(55) 5.5729) 1.15317)
1/(aM,) 1.3307) 4.0666) 5.5629) 1.13424)

FIG. 15. 1/@Mp) dependence oifpslfP with set | (open sym-
bols) and set ll(solid symbols.

tion is sufficiently small for theB meson, so that there will
. S . ... be no need for incorporatin@(l/m%) corrections unless an
and 1/amg) should be kept in mind in simulations with accuracy of better than 5% is sought for. Our examination of

lattice NRQCD. . . .
Another source of systematic errors is the deviation of theOther physical quantities in the same respect also provides

expansion parameters of the NRQCD action and renormafncouraging support to this statement. We have thus shown

ization constants of currents from their tree-level values Perl-JSing our highly improved lattice NRQCD that the relativis-
" tic error, which has been one of the largest uncertainty in

turbative corrections in these quantities are not negligible Nattice calculations of th® meson decav constant. is well
general, amounting te-20% at one-loop order. The renor- under control y '

malization factor of the axial-vector current in the static limit : .
Our results still have several sources of large systematic

is known to be particularly large, andn corrections could errors. In order to obtaifig with a higher precision, we need

also be important. We expect, however, that after includin . 5

the one—logp correction tﬁe systematic error of this origir%0 _reduce(l) the O(aAQCD). and O(a.AQCD/mQ) errors by

will be reduced toO(a§)~5% in magnitude. using ar_1_O(a)-|mproved Wilson fermion action for the light
Taking into account the uncertainties discussed above, wiuark, (ii) the O(ay), O(aAqcpas) and O(asAqcp/mo)

. . errors with the fully one-loop corrected perturbative renor-
quote the following estimate from the present work for Ehe malization coefficients for both the action and the operator
meson decay constant in the quenched approximation: . . : Co

and(iii) the scale setting and quenching error by doing simu-
lations with full QCD configurations. It is pointed out in Ref.
[10] that the problemsi) and (ii) should be improved simul-
taneously and these are currently under study, and we are
planning to pursuéiii) soon. When these improvements are
with discretization and perturbative errors of 20% each. As all in place, we expect to achieve a lattice NRQCD determi-
central value of the perturbativg factor, we use the static nation offg with the accuracy of less than 10%.
result ZA=1—0.057g\2,(q*) [12] for the renormalization
constant, and an average is taken of the result @itk 1/a
andg* = m/a. For completeness we should incorporate full
one loop calculation including operator mixing, which is, ACKNOWLEDGMENTS
however, still absent in this analysis.

fg= 184+ 7(statistica) = 5(relativisticc MeV,
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V. CONCLUSION Hioki for allowing us to use his program to generate gauge
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lattice NRQCD and Wilson quark action in the quenchedlike to thank the Japan Society for the Promotion of Science
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