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We investigate the thermal and curvature effects to dynamical symmetry breaking in a four-fermion model.
The effective potential is evaluated in the leading order of tiNeed{pansion at finite temperature on positive
curvature spac®®SP 1 or on negative curvature spaBe HP~! with varying temperature and curvature.

We argue the combined effects of the temperature and curvature to the phase structure. The broken chiral
symmetry is restored for a sufficiently high temperature and/or large positive curvature. The negative curvature

enhances the chiral symmetry breaking. It is found that the thermal effect restores the symmetry at high

temperature even in negative curvature spacetj®@556-282(97)05020-(

PACS numbeps): 11.10.Wx, 04.62+v, 11.30.Qc

[. INTRODUCTION effects of the temperature and curvature. The vacuum energy
density for free fermion is calculated at finite temperature in
A phase transition at the early stage of the universe haR® SP~1 [8]. The thermal and curvature effects for dynami-
various influences on the evolution of the universe. The symeal symmetry breaking are studied by using the four-fermion
metry breaking of the grand unified thediUT) may cause model in the positive weak curvature lini#].
the inflationary expansion of the universe. There is a possi- In the present paper we use the four-fermion interaction
bility of investigating the mechanism of the symmetry break-model withN-component fermions. As a nonperturbative ap-
ing at the GUT era in astrophysical observatighb proach is necessary to study the phase transition, the model
Much interest has been paid especially to the phase struis treated nonperturbatively at the lariyeimit by using the
ture of symmetry breaking to classify the models of thel/N expansion. We suppose that the system is in equilibrium
GUT. One of the interesting mechanisms to break symmetrand introduce the temperature. This assumption is not ac-
is dynamical symmetry breakindSB) which is caused by cepted in a general curved spacetime. In the spacetime which
the nonvanishing vacuum expectation value of the compositbas no time evolution the equilibrium state can be defined.
operator constructed by a fermion and an antifermion with\We then restrict ourselves in the positive curvature spacetime
out introducing any elementary scalar fi¢R. In the present R®SP~! and the negative curvature spacetiReHP 1.
paper we focus on the DSB at GUT era where we cannoto find the ground state at finite temperature and curvature
neglect the thermal and curvature effects. Since there iwe calculate the effective potential and analyze its stationary
much uncertainty in the model of the fundamental theory atondition by the gap equation in the leading order of th¢ 1/
the GUT era, the four-fermion models are often used as axpansion.
prototype model to study the phase structure of the DSB. The main purpose of this paper is to show the importance
Many physicists pay attention to thermal and curvatureof the combined effects of the temperature and curvature to
effects of DSB. Thermal restoration of the broken symmetryDSB. One of the important problems is whether the thermal
is discussed in the literatuf8,4]. In the four-fermion mod- effect restores the broken symmetry in a negative curvature
els the minimum of the effective potential is shifted by vary- spacetime. It may give some effect to the evolution of the
ing the temperature. Evaluating the effective potential of theuniverse. The four-fermion model may be too simple to dis-
model it has been found that the broken chiral symmetry isuss DSB at the GUT era, but we expect that the model has
restored for a sufficiently high temperature through thesome fundamental properties.
second-order phase transition. The analytical expression for The paper is organized in the following way. In Sec. Il we
the critical point was known in arbitrary dimensions within a briefly review the dynamical symmetry breaking in a four-
simple model. On the other hand, a curvature-induced phadermion interaction model. The effective potential described
transition is discussed in the literatf-7]. Using the four- by the spinor two-point function in the leading order of the
fermion model it is found that the broken chiral symmetry is1/N expansion, keeping only the effects of fermion loops. In
restored for a sufficiently large positive curvature and theMinkowski space the shape of the effective potential is of the
chiral symmetry is always broken down in a negative curva-double well for a sufficiently large four-fermion coupling
ture spacetime. In some compact spa@SandReSP 1) and the chiral symmetry is broken down dynamically. In Sec.
the critical point was known analytically by exact calcula- Ill we investigate the thermal and curvature effects to DSB.
tions without making any approximation in the spacetimeStarting from the theory with broken chiral symmetry we
curvature. The phase transition is of second order in thesstudy the phase transition induced by the thermal and curva-
compact spaces. However there is a little work for combinedure effects. Temperature and curvature are introduced to the
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effective potential through the spinor two-point function at d°k 1

finite temperature and curvature. We derive the explicit form S(X,X;8)= 2mP k—s’

of the effective potential at finite temperature B®SP 1 (2.5
and R&HP 1. Analyzing the gap equation we show the

critical lines which divide the symmetric phase and the \/__9: 1.

asymmetric phase. Section IV gives the concluding remarks.
Inserting Eq.(2.5) into Eq.(2.3) and performing the integra-

tion by using the dimensional regularization method, we ob-
tain the effective potential in Minkowski spacetime:
We want to apply the mechanism of DSB to the symmetry

II. SIMPLE MODEL OF DSB

breaking at the GUT era. One of the simplest models of DSB
is the four-fermion interaction model. It may be interpreted V(o)= —U —itr f dsf ZW)D k s
as the low energy effective theory which is steaming from
the more fundamental theory at the GUT era. 1 trl 1 D\ ,
The four-fermion interaction model in curved spacetime g WESF 1- 5)0 . (26
is characterized by the actig@0]
N N 2 It is divergent in two and four dimensions. Performing the
S:f J—gdPx 2 W“V ,/,k+ E ) } renormalization procedure by imposing the renormalization
k= k= condition
(2.1
. S d2v uP~?
where the index represents the flavors of the fermion field — = , 2.7
¢, N is the number of fermion specieg,the determinant of do o=u AR
the metric tensog,,,, y* the Dirac matrix in curved space-
time, andV , ¢ the covariant derivative of the fermion field we obtain the renormalized coupling constant
. For simplicity, we neglect the flavor index below. The
action (2.1) is invariant under the discrete transformation 1 1 trl D
@H —EJ/ This discrete chiral symmetry prohibits the fer- ot —D/?F( 1- _> (D—1)|u"% (28

mion mass term.

We introduce an auxiliary fieldr for conveniencg10]  Replacing the bare coupling constanf with the renormal-
and rewrite the actioli2.1) in the form ized one\g, we obtain the renormalized effective potential
which is no longer divergent in the spacetime dimensions,
S,= J"/ gdPx (,/,, },MV/J-I//__O- _l/,m/,) (22 2<D<4.In four d|mens_|o_ns four-ferm|on th.eory is not
renormalizable and the finite effective potential cannot be
Using th i f motion for the fietd iiv K defined. Here we regard the effective potential Bor4— e
sing the equation of motion for the Tietwe eastly Know i, ¢ sufficiently small positive as a regularization of the
that the actior(2.2) is equivalent to Eq(2.1). If the auxiliary
one in four dimensions.
field o develops the nonvanishing vacuum expectation value, Evaluating the renormalized effective potentiélo) we
{g)=m=0, there appears a mass term for the fermion fleldﬁnd the phase structure of the four-fermion model. In
i i_nd tp%d'ticref chlra;I sytmmetfn{r:s tehventually brolﬁn p C!;/Ilnkowski space the shape of the effective potential is of a
0 study the phase structure of the theory we want to fin ingle and a double well for<sA; and\ >\, respectively.

a ground state of the system. For this purpose we evaluate o ; o
effective potential for the field-. As is known in the leading ?%? critical value of the coupling constant, is given by

order of the IN expansion the effective potential of the
model (2.2) is described by5] (470"

D -1
o il (l_D)F(l_E” . (2.9

1 o 1
V(a')——(r —itr fo dsSx,x;s)+0 N)’ (2.3

Thus the ground state is invariant under the discrete chiral

whereS(x,x;s) is the spinor two-point function which satis- transformation fon <\.,. On the other hand the chiral sym-
fies the Dirac equation metry is broken down foh >\ and the fermion acquires

the dynamical massg:

(i17V,-9)S(yis) = —=L(xy), (24 [ @mer e
Mo~ K 4T (1-D/2) Ag ' =

2~

(2.10

wheresP(x,y) is Dirac’s delta function in curved spacetime.

It should be noted that the effective potential is normalized In the following sections we will apply the similar analy-

so thatV(0)=0. The ground state is determined by observ-sis at finite temperature and curvature. We fix the coupling

ing the minimum of the effective potential. constant\ g above the critical one and see whether the bro-
The two-point functiorS(x,x;s) in Minkowski spacetime ken chiral symmetry is restored in an environment of the

at T=0 is given by high temperature and/or large curvature.
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FIG. 1. Dynamical fermion mass1 at D=3.0 in R®S? as a FIG. 2. Dynamical fermion mass1 at D=3.0 in R®S? as a
function of the temperatur€ with the curvatureK fixed. function of the curvatur& with the temperaturd fixed.

Ill. THERMAL AND CURVATURE EFFECTS

2n+1
. . Ko —iw,=i T,
Here we introduce the temperature and curvature in the B
theory and investigate the phase structure with varying the
temperature and curvature. YO—i .

First we introduce the effect of the finite temperature. As

we have seen in the previous section, the effective potentiah Minkowski space the effective potential at finite tempera-

is expressed by the two-point functi@x,x;s) of a massive tyre in the leading order of the N/expansion readgs,4]
free fermion. The two-point function at finite temperature is
- ) d°" 'k 1
Y, (o')——(r +trf ds f (2mPT

defined by
S e el TOHX) (X)) ) 2m)°"" ks’

ST(x,x:s)= S o PE. . (39 (3.3

where E,, is the energy in the state specified by quantum!’ W€ Perform the integration ove, we obtain

number «, respectively,8=1/kgT with kg the Boltzmann

constant and™ the temperature T(U):i Z_JU Strll“[(3—D)/2] 1
Following the standard procedure of the Matsubara 2N\o (4m)P-V2 g

Green'’s function, the two-point function at finite temperature

is obtained from the one &=0 by the Wick rotation and

s}

2 2\(D-3)/2
the replacementgl 1] anz_w S(s"+ wp) : 3.4
oo 0 . . . . .
j ﬁﬂ E (3.2) Performing a summation and integrating over angle variables
—w 27 B ands in Eq. (3.3, we get
P v
1 trl 1 D trl 1 1 ([~ 1+e Aitte
T —-_ 2 _ _ D__ _ (D—-23)/2
Vi(o) 2)\00' WDF(]. 2)0’ (477)(D—1)/2 T[(D-172] B Odtt In —l—l—e*B“‘T . (35
Comparing Eq(3.4) with Eqg. (3.5 we find the following relation:
t 1./ D), 1 J L 0o 1+e Ao
(4mP2D 2|7 GO R T[(D-1)i2] B N e Ah
o trl 3-D|1 <
— - (D-3)/2.
fo dsigmo-el| ) 2 s(s*rop) 3.6

This relation will be used for numerical calculation of the effective potential at finite temperature in curved spacetime.
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Starting from the theory with the broken chiral symmetry at vanishiingnd evaluating the effective potential at finite
temperature, it is known that the broken chiral symmetry is restored at a critical tempéFgttineough the second-order
phase transition. The critical temperature is given ]

1/(2-D)

kBTcr_ 1 2I'[(3—D)/2] (23*D—1)§(3—D) . 3.7

Mo 27 | [aT[(2—D)/2]

Next we consider the constant curvature spaeeS° ! andR®HP ! as Euclidean analogs of the Einstein universe and
discuss the effect of the spacetime structure. The manRai@&® ! is defined by the metric

ds?=dt?+a?(d@>+sirfadQp_,), (3.8
wheredQp_, is the metric on a unit sphe®® 2 while the manifoldR®@HP ! is defined by
ds?=dt?+a?(d6?+sinitodQp_,). (3.9
The manifoldR® SP~! andR®HP ! are constant curvature spacetimes with positive and negative curvature
R=+(D—-1)(D—2)a ?, (3.10

respectively (2D <4).
The effect of the spacetime structure is introduced to the effective potential through the two-point function appeared. As is
shon in the Appendix the two-point functions are given by

tI’S(X,X:S)szC dw trisK(P—3)12 I'(D-1)2+ia]I'[(D-1)12—i«] (B—D

5 D—1
—» 2 (4a) D7D F(1+ie)T(1-ia) 2 ) on R®S"* [12],

» dw trlsKP=32 T[(D-1)/2+ ]
trS(x,x:s)zf

D
D-1
. 27 (4m)© D2 aF[(3—D)/2+a]F( > ) on ReHP™, (3.1

whereK =1/a? and « is defined in Eq(A21). Substituting Eq(3.11) to Eq. (2.3 the effective potential af =0 reads

VR f g J dw trisK(P—3)12 I‘[(D—l)/2+ia]F[(D—l)/Z—ia]F 3-D RoSP-1 [7
(0-)_ 2)\0 S . 271_ (477)(D*1)/2 F(1+Ia)r(l—|a) 2 on ® [ ]'
(3.12
(o)= 2_)\00' - . om (47T)(D_1)/2 al[(3—-D)/2+a] 2 on R® . (3.13

The weak curvature limit of Eq.3.13 is consistent with the result in Rd6], but is different from the result in Ref9].
Evaluating the effective potential in curved spacetime it is known that the broken chiral symmetry is restored for a sufficiently
large positive curvature. In the Einstein univer§e=(S° ~1) the critical curvature is given bjy7]

r D-1 r D
T‘ 2 'z
On the other hand only a broken phase is realized for an arbitrary negative curvature irrespective of the couplinghconstant
[6]. Thus there is no critical point where the chiral symmetry is restored for the case considered>hege, The chiral

symmetry is broken down &<0 even forn <.
Below, we investigate the combined effects of the temperature and curvatiRe 88~ andR@HP 1.

2/(2-D)

Rey=(D—1)(D—2)m? (3.14

A. Positive curvature space(R®SP™1)

In the positive curvature spacB® SP 1, the effective potential is given by E¢B.12. According to the definition of the
two-point function at finite temperaturg.1), we obtain the effective potential in the space at finite temperature by the
replacement$3.2):

©

trl sK(D-3)2 I'(O-1)12+ia,'[(D-1)12—ia,] ( )
st4)(D e T(1+iamT(1—iay) 5| (819

VTR( 0_) —

wherea,, is defined by
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s?+ wﬁ
an= K (3.1

Evaluating the effective potentié8.15 we will find the phase structure of the model at finite temperature in positive curvature
space.

For numerical calculations we need the finite expression of the effective potential in summation and integration. Inserting
Eqg. (2.8 and Eq.(3.6) into Eq.(3.15 the renormalized effective potential reads

ViR M1, trlrlD)Dl 5y w1 1./ D), trl 1 1
i e L R L e v T Rl ) R vPs L L ST R VT

oc ~ 1+e B+ trl 1 (3-D| <
xfo dt tP=32 n ———+ fd TR 1)/2,8r( 5 )E s| (s?+ w2)(P~372

1+e Al n==e

I'(D-1)2+ia,I'[(D-1) /2—Ian]

_K(D-3)72
Fri+ie)(1-ia,)

(3.17

In this representation of the effective potential the divergence is canceled out in the summation.
The phase structure of the theory is obtained by observing the minimum of the effective potential. The necessary condition
for the minimum of the effective potential is given by the gap equation

VR (o)

o =0. (3.18

o=m

If the gap equation has a nontrivial solution which corresponds to the minimum of the effective potential, the chiral symmetry
is broken down and the dynamical fermion mass is generated. The nontrivial solution of the gap equation is given by

efﬂvaz

(1 1) 5, F(l D) o2, trl 1 fwdt (032 1
——— ——ppl|1-5m =
N Al @mPP T2 (4m P I2T[(D-1)/2] Jo SO 14 sl

[’

> [(m + 2)(P=3)2_K(D-3)2

n=-—ow

I'((D-1)12+ia,'[(D- 1)/2—Ian]
I'i+ie)l'(l-iay,) ’

(3.19

trl 1 /3—D
+ (470 D2 EF 5

wherea,= \/(m*+ wnz)/K, \¢ is defined in Eq(2.9) andm corresponds to the dynamically generated fermion mass.

In Figs. 1 and 2 we plot the typical behaviors of the dynamical fermion mmaasD = 3.0 as a function of temperatuiie
or curvatureK. Since no mass gap is observed at the critical point in Figs. 1 and 2, only the second-order phase transition
occurs with varying temperature and/or curvature. By the same analysis we find that the broken chiral symmetry is restored for
a sufficiently high temperature and large curvature. Only the second-order phase transition is realize® fod 2

Since the dynamical fermion mass smoothly disappears at the critical point for second-order phase transition, the critical
line on theT- /K plane is given by the massless limit of £§.19. To find the equation for the critical line in an analytic form
we take the limitm—0 in Eq.(3.19 and find

trl [, D) o, Ul 2 [3-D)(2m b3 3D 1/2 trl 1.(3-D
(4P A (4m) 172 g_ 5 B &( , )+(47T)(D71)/2% 2
* F(D-1)2+iay II'[(D-1)12—iay ]
X 3 | ug 02 K@ S "o, (320
n=— o n F(1+iae )T (1-iag )

where{(z,a) is the generalized zeta functiod, =(2n+ 1)/ B, acrn=|wcrn|/\/K_cr andmy is the dynamical fermion mass
in Minkowski spacetime al =0. The critical lines are shown in Fig. 3.

The two-dimensional spacetini®e St is a flat compact spacetimB=0. Thus the symmetry restoration which caused by
increasingK is induced by the finite size effect of the compact space. In four dimensions the effective potemtal ds
divergent. However the thermal effect gives only a finite correction to the effective potential. Thus the critical temgrature
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atK =0 is divergent at the four-dimensional limit. Near four dimensions the curvature effect seems to mainly contribute to the
phase transition. But it comes from the nonrenormalizability of the four-fermion model. In a renormalizable theory the
situation must be changed.

B. Negative curvature spacg R®@HP~1)

In a negative curvature spacetime the chiral symmetry is always broken down irrespectia Bt 0. Can the thermal
effect restore the symmetry in the negative curvature spacetime? Here we consider the model at finite temperature in the
negative curvature spacetinR@HP 1, for bothA> X\, and\<<\,.

According to the method used in the previous subsection the effective potential at finite temper&arel ! can be
obtained from Eq(3.13 by the replacements.2):

trl sK(P-3722  * I[(D-1)/2+ 3-D
[( ) a’n] ( ) (3.21)

1 o
TR\ — 2_
Vo= 5%,° fods(4w)<0—1>/2 B  n“. al[(3-D)2+a,] | 2

R®H?! is equivalent to the two-dimensional Minkowski spaR& At the two-dimensional limit of Eq(3.21) the effective
potential in two-dimensional Minkowski space is reproduced. Because of the convenience for numerical calculations we
rewrite the effective potentidB.21) in the same form described in the previous subsection. Inserting?Ey.and Eq.(3.6)

into Eq.(3.21) we get

PTG )Dl oz M 1.( D), trl 1 1
R (=3 5T @mo” 7| (- D" TG g 27 T (4m @ I2T[(D-1)/2] B
_ it o2
1+e BNt+o

><f°cdtt<'3*3>’2 In r ! (3_D)
0

—_+ J—
1+e—ﬁ\t fo ds(4,77)(D—1)/2 BF 2

- I'[(D-1)/2+ay]
X 2 s al[(3-D)2+ o]

n=—oo

(s2+ wﬁ)(o—s)/z_ K(D-3)2

. (3.22

To find the minimum of the effective potenti€8.22) we analyze the nontrivial solution of the gap equation. Substituting
Eq. (3.22 to Eq.(3.18 the gap equation reads

e—B\H—mZ

(i_i>MD2_t_r1D,?I‘<1_ _)mD2+ trl 1 fwdt t<D73)/2
AR ANer (47) 2 (47)P~V2T[(D-1)/2] Jo JEEN? 1 4 g-prm2

T[(D—1)/2+a,]
a [[(3—=D)/2+ ay]

trl 1 (3-D
( =0. (3.23

Fame e 2 )E [<m2+wg)<os>/z_,<<o3>,2

n=—o

Evaluating the gap equatidB.23 numerically we obtain the
dynamical fermion masm. KeTer=575- (3.29
In Figs. 4—7 we draw the typical behaviors of the dynami-

cal fermion massn in R®H? with varying the temperature e cyrvature effects enhance the symmetry breaking on
or curvature. In drawmlg flggres the normalization scajds R®H2 Hence there is only the broken phase for
taken to the value defined in E(.10 for A>\, and keT<1/(2In2) in the modeh>\,,. ForksT=1/(2 In2) or
4.m\DP2 1 UD-2) A<M\ the dyna_mical fermion mass is smoothly generated as
Mo= p| — (4) ~ _D+1 (3.24 the curvatureK increases and the chiral symmetry is broken
tril’'(1—D/2) \g ' down by the curvature effect. After the same analysis in
arbitrary dimensions D <4 we find the same behavior for
for A<\q. As is shown in Figs. 4 and 5 the dynamical the dynamical fermion mass. The thermal effect restores the
fermion mass smoothly disappears as the temperature ifroken chiral symmetry while the negative curvature effect
creases with the curvature fixed for botb>\ ., and\<\. breaks the chiral symmetry. Only the second-order phase
Then the broken chiral symmetry is restored for a sufficientlytransition occurs with varying the temperature and the cur-
high temperature. On the other hand the dynamical fermiowature in 2<D<4. In two dimensions Eq(3.23 has the
mass becomes heavier as the curvat(iacreases with the same behavior in Minkowski space.
temperature fixed as can be seen in Figs. 6 and 7. Calculating For the second-order phase transition the critical point is
Eqg. (3.7 in three dimensions the critical temperature for obtained by the massless limit of the gap equation. Taking
K=0 is given by the massless limin—0 in Eq.(3.23 we find the equation
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that gives the relation between critical temperaturethe chiral symmetry breaking in negative curvature space. At

Bea=1(kgT.,) and critical curvature,: finite temperature the lower limit of the momentum for the
fermion field k°<x/B) appears from the antiperiodicity
trl D\ 5., trl 2 (3-D and then the long range effect is suppressed. Thus the ther-
WF 1- oo T Wm ,3_cr o mal effect restores the broken symmetry even in a negative

curvature spacetime.
trl 1 (3-D In two spacetime dimensions it is not able to introduce the
(47)0-DP2 ,3_ch 2 combined effects of the temperature and curvature within our
method because of the assumption of the equilibrium. This
assumption is not accepted in an inflationary expanding uni-
verse, but we may discuss the phase transition at an early
universe within our results.
Under the discrete chiral symmetfy two kinds of states
-0. (3.26  which are labeled by=* (o) have the same potential en-
ergy. Thus the grand states of the present model are doubly
degenerate. If the transition rate between these degenerate
Evaluating Eq.(3.26 numerically we draw the phase dia- vacua is not negligibly small, a nonstatic field configuration
gram of the four-fermion model with varying the tempera-is realized. We cannot deal with the nonstatic configurations
ture and/or curvature oR®@HP~1 at D=2.5, 3.0, 3.5 in in the effective potential approach.
Figs. 8 and 9. A ratidl .,/ VK, takes larger value for higher We consider the static Einstein univer&®SP 1, as an
dimension. At a scald ~+K~m, the thermal effect gives example of the positive curvature spacetime. The spatial vol-
the main contribution to the phase structureloe 3 and the  ume forR® SP~ 1 is finite. For a small volume system it is
symmetric phase is realized. At the four-dimensional limitexpected that the transition rate between the degenerate
T, is divergent for\>\.,. It comes from the divergence vacua may be large enough to induce the nonstatic field con-
that appears at the four-dimensional limit. Thus it may be diguration. As is known forD=2 at finite temperature the
result obtained especially from the nonrenormalizability ofkink and antikink configurations which are one kind of the
the theory. nonstatic configurations restore the broken chiral symmetry
[4]. Thus our results are useful only in some finite region of
the space for largl in R® SP~1. When summing contribu-
tions from different regions we would obtain the qualita-
We have investigated the phase structure of DSB in théively different results. There is a possibility that the chiral
four-fermion model at finite temperature and curvature insymmetry is resorted for a smaller curvature than the critical
arbitrary dimensions (D <4). curvatureK ., obtained in Eq(3.20 and the phase diagram
Evaluating the effective potential and the gap equation irshown in Fig. 3 may be modified. We will need a new idea
the leading order of the W/ expansion we found the thermal and further investigations to evaluate the nonstatic configu-
and curvature induced phase transition. The dynamicallyations inR®SP 1,
generated fermion mass is calculated numerically with vary- We are only looking the four-fermion model in the lead-
ing the temperature and curvature. Only the second-ordeng order of the 1N expansion but there may be some fun-
phase transition is observed with varying the temperatureamental properties of DSB. Decreasing the temperature, the
and curvature. We found the lines dividing the symmetricphase transition may occur from the negative curvature
phase and asymmetric phase in #e/K plane. In positive
curvature space the curvature effect restores the broken chi-

X

20 D-3
2l «3-pa)+
BCT)

X 2
n=—w

I'[(b-1)/12+ acrn]
% a’crnr[(3_ D)2+ a’crn]

|wcrn|D_3_ K(c?_3)/2

IV. CONCLUSION AND DISCUSSIONS

ral symmetry. On the contrary the curvature effect enhances 18 .
1 16 | D=30 \IK/”’O:?:(O) o
14 [ =3.0 -
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kBTcr/ moy

0.2  Broken Phase
01t

6 o5 1 15 2 25 3 35 4
NK./mp FIG. 4. Dynamical fermion mass at D=3.0 for A\>\, in

R®H? as a function of the temperatufie with the curvatureK
FIG. 3. The phase diagram Bt=2.0, 2.5, 3.0, 3.5 ilR®SP 1, fixed.
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FIG. 5. Dynamical fermion mass at D=3.0 for A<\ in FIG. 7. Dynamical fermion masm at D=3.0 for A<\ in
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places of the universe. After that the chiral symmetry is bro-naking any approximation Ilgliclieallng W"g[}he spacetime
ken down at the flat places and then at the positive curvaturglrvature(12,14-17. OnR@S""andR@H" "~ the spinor
places. It may have something for the evolution of the uni-tWo-point functions are obtained from those 8h andHP®.
verse but it is difficult to cause the inflationary evolution of Here we closely follow[12] and show the spinor two-point

the universe in the four-fermion modEgl3] without a new functions an® s° 1.and R®HD K . .

idea. 'The spinor two-point functiors(x,y;s) is defined by the
To investigate the phenomena at the period of the phasB'raC equatioh

transition we cannot avoid considering the nonequilibrium 1

state. We will continue our work further and hope to extend (y*V ,+5)S(x,y;8)= —=P(x,y). (A1)

our analysis to a nonequilibrium state. \/—_g

We introduce the bispinor functioB defined by

_ ) _ (¥*V ., =9)G(X,y;8) =S(X,y). (A2)
We would like to thank Kenji Fukazawa, Taizo Muta, and . ) o o
Kazuhiro Yamamoto for useful conversations. According to Eq.(A1) in R©S” andReH" G(x,y;s) sat-
isfies the following equation:
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APPENDIX: TWO-POINT FUNCTIONS R 1

IN R®SP~1 AND ReHP-1 (d0)*+p_1= 7 =5*|G(x.y;8) =~ \/65D(x,y), (A3)
In maximally symmetric spacetimg® andHP the exact
expression of the two-point functions are known without 1.8
1.6 - Symmetric Phase D:§3 e ]
25 14| o =S
27 o
3
5
15 | =
&g
1 04 r
0.2 |  Broken Phase
o L L L 1 1 1 L
05 0 05 1 15 2 25 3 35 4
\chr/mO
0
0 1 2 3 \/E‘}mo 5 6 7 8 FIG. 8. The phase diagram &=2.5, 3.0, 3.5 forA>\, in
RoHPL,

FIG. 6. Dynamical fermion mass1 at D=3.0 for A>\, in
R®H? as a function of the curvatur with the temperaturd
fixed. The Euclidean metric€,+,+,+) is used here.



56 THERMAL AND CURVATURE EFFECTS TO DYNAMICA. . .. 5105

' - v , andn; . U is the operator which makes parallel transport of
Symmetric Phase D=25 — the spinor at poink along the geodesic to poigt Thus the
1.5t =3.0 —- 1 . )
235 o operatoiJ must satisfy the following parallel transport equa-
- tions[15]:
1+ .
n'vV;U=0,
g ! (A8)
£ 05} ] U(x,x)=1.
To evaluate the second derivative dfwe set
0
Broken Phase Viu=viu. (A9)
0 2 4 6 8 10 From the integrability conditiofl4] on V;,
VK. /o
ViVi—=V.V,—[V;,Vi]= oii, (A10)
FIG. 9. The phase diagram &=2.5, 3.0, 3.5 forA<\, in Y a v (D-1)(D-2) Y
ReHP L,
and the parallel transport equatioh8) we easily find that
where (p_; is the Laplacian for a bispinor function on 1 |
D D i ; i .
R®S” andR®H". Performing the Fourier transformation V= — < tar(E) o.ijnj on SP-1, (A11)
dw . 0~
G(x,y;S)=J S—e VTG(oxyis), (A 1 |
V,=—tanH =—|o;n} on HP™1 (A12)
a 2a) Y

we rewrite Eq.(A3) in the form

1 where g;; are the antisymmetric tensors constructed by the
G(w,X,y;8)= — — 2 L(y). Dirac gamma matricesr;; =[ v; , ;1/4. To findV; we have
\/6 used the fact that the maximally symmetric bitensors are rep-
(A5)  resented as a sum of productsmpfandg;; with coefficients
which are functions only of [16]. After some calculations
we get the Laplacian acting da:

R
Up-1— Z_(32+ ®?)

Equation(A5) is of the same form as the one for the spinor
Green's function with masg's’+ w? on the maximally sym-
metric spaces® ! or HP 1, _ )

The general form of the Green’s functi@®y w,x,y;s) is Hp-1U==—=2 tar?
written as[17]

|
—) U on SP71,
2a
(A13)
|

2a

G(w.xy:9)=Uxy)g(]), (A6) Op-1U=——— tanff| 5-|U on H°~%.
a

whereU is a matrix in the spinor indiceg, is a scalar func-

tion only of I, | =a#@ which is the geodesic distance betweenThe derivative ofn; is also the maximally symmetric biten-
x andy on SP~% or HP~1, n; is a unit vector tangent to the sor[16] and found to be

geodesin; =V,l. Inserting Eq.(A6) into Eq. (A5) we get

1 I
. R Vinjz—COE(— (gij—mn;) on SP7L,
UOp-19+2(V;U)Vig+(Op-_1U)g— Z+Sz+w2 Ug a \a
1 |
= A7 _ _
0, (A7) Vinj—acotr(a)(gij—ninj) on HP™1.  (A14)

where we restrict ourselves to the regibA0. To evaluate
Eqg. (A7) we have to calculate the covariant derivativelbf =~ Therefore Eq(A7) reads

D-2 I D-2 | R
(9|2+ a CO[(E)&—WU:IHZ %a —Z—(SZ-F(UZ) g=0 on sP-1 (A15)
D-2 I D-2 I R
P+ 3 cotl’(a (9|—4—aztanh’- >a —Z—(s2+w2) g=0 on HP L, (A16)

We define the functionbgp(l) andhyp(l) by g(l)=cos(/2a)hsp(l) andg(l)=cosh{/2a)hyp(l), respectively, and make a
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change of variable by=cog(I/2a) in Eq. (A15) andz’ =cost(1/2a) in Eq. (A16). We then find that EqgA15) and (A16)
are rewritten in the forms of hypergeometric differential equations:

, (D+1 (D-1%
z(1-2)9;+ > —Dz|d,~ 7 —(s*+w?)a‘|hgp(z)=0, (A17)
, ., [D+1 , (D-1)% ,
2'(1-2")ad, + > —Dz'|d,— +(s°+w)a“|hyp(z')=0. (A18)

Noting that the Green'’s functions are regular at the ploinda and fall off for| — < we write the solutions of Eq$A17) and
(A18) by the hypergeometric function

D-1  D-1  D+1
hsp(z)=CspF| ——t+ia, ———ia, ——z, (A19)
D-1 1
hHD(Z,):CHD(_Z,)(lD)/ZaF(T'i'a’aayza"'l;?); (A20)

where a=a\/s>+ w?. As we remained in the region whefe 0 the normalization constantsp andcyp are yet undeter-

mined. To obtaircgp andcyp we consider the singularity db(w,X,y;s) in the limit 1 —0,
| 3-D

2a

~ I'[(D+1)/2]T[(D-3)/2]
G_“’SDF[(D— D/2+ia][[(D-1)2—ia]

3-D
: (A21)

|
2a

I'(2a+2)T[(D—3)2]

G—Cyp(—1)A"D2-e I[(D-1)2+a]l(a)

and compare them with the singularity of the Green’s function in flat spacetime. This procedure is justified because the
singularity on a curved spacetime background has the same structure as that in the flat spacetim®. thaer Green’s
function in the flat spacetime behaves[48,17]

~ 1 D-3
fl 3-D
g at(|)~477(D—1)/2F( 5 )| . (A22)

Comparing Eq(A21) with Eq. (A22), the overall factorgsp andcyp are obtained:

_a*?  TD-D2+ia][[(D-1)/2—ia]
S0~ (4 )@ T[(D+1)/2]

(—1)1D2egd P T[(D-1)/2+ ]l (a)

CHD= T (4 ) 0D T(2a+1) (A23)

Inserting Eqs(A19), (A20), and(A23) into Eq. (A6) we find onSP 1

a® P T[D-1R2+ia]ll[[(D-1)/2—ia]
(47) P~ D72 T[(D+1)/2]

| D-1 D-1 D+1 |
xcos(—)F( +ia, —ia, ;0052(5)), (A24)

2a 2 2 2
I
cosh 52

F(D_l oat1:cost?] - ) A25
XF\——+a.a2a+1;cosh?| —||. (A25)

G(w,x,y;9)=U(xy)

and onHP~1

a® P T[D-1)/2+a]l(a) 2-D-2a

(47)P~DP2 F'(2a+1)

E(w,x,y;s) =U(x,y)(— 1)(17D)/2—a

Thus the Green's functioré(w,x,y;s) on the maximally symmetric spacetime are obtained.
The spinor two-point functior®(x,y;s) is derived from the Green'’s functidB(w,X,y;s). From Eq.(A2) we get



56 THERMAL AND CURVATURE EFFECTS TO DYNAMICA. . .. 5107

)0

. . do .
S=(—|wy°+y'Vi—S)J Ee_""(y_x Ug

f d—we‘i“’(y_")0 (s+iwy?)Ug— -niU(a—Eta I—) on RosP™*
2 Y 9= i | 2a 2a g !
) f (j—we’i“’(y”‘)0 (s+iny®)Ug— -n‘U(a+Etan l—) on ReHP1 e
2 Y 9= | 2a 2a g )
Substituting Eqs(A24) and (A25) in Eq. (A26) the spinor two-point functiors(x,y;s) is obtained:
a® P do ol [(D—D/2+ial[[(D-1)/2—ia]
SxyiS) === | 5-¢
(4r) 27 I'[(D+1)/2]
o | F(D—l D=1 Dl ) Uiy DL
x| (s+iwy’)U(xy)cog 5 5 Tla,———ia, ——cos| | |+ nn'U(xy) — -
] F(D—l . Db-1 . D-1 ] ) e
xsin| 5— 5—+ia,———ia, —5—icod| |||, (A27)
onR®SP~1[12] and
o a? P do _iw(y_X)OF[(D—1)/2+a]F(a)
S(X,y;8)=— (477)(D71)/2 E F(2a+1)
x ) astiwyu | F(D_l 2+ 1;c0s17? )
cosh o>~ a(s+iwy”)U(x,y)cos 2a)F\ T taaatlicosh® o
U(xy)sint] = F(D_l 1,20+ 1:cost?| - ) A28
+ ay;n'U(x,y)sin %a T+a,a+ ,2a+1;cos 2alll (A28)

onR®HP 1. According to the anticommutation relation of spinor fields the two-point fund#@7) satisfies the antiperiodic
boundary conditior5(l) = — S(I + 27rna) wheren is an arbitrary integer.
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