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We investigate the thermal and curvature effects to dynamical symmetry breaking in a four-fermion model.
The effective potential is evaluated in the leading order of the 1/N expansion at finite temperature on positive
curvature spaceR^ SD21 or on negative curvature spaceR^ HD21 with varying temperature and curvature.
We argue the combined effects of the temperature and curvature to the phase structure. The broken chiral
symmetry is restored for a sufficiently high temperature and/or large positive curvature. The negative curvature
enhances the chiral symmetry breaking. It is found that the thermal effect restores the symmetry at high
temperature even in negative curvature spacetime.@S0556-2821~97!05020-0#

PACS number~s!: 11.10.Wx, 04.62.1v, 11.30.Qc

I. INTRODUCTION

A phase transition at the early stage of the universe has
various influences on the evolution of the universe. The sym-
metry breaking of the grand unified theory~GUT! may cause
the inflationary expansion of the universe. There is a possi-
bility of investigating the mechanism of the symmetry break-
ing at the GUT era in astrophysical observations@1#.

Much interest has been paid especially to the phase struc-
ture of symmetry breaking to classify the models of the
GUT. One of the interesting mechanisms to break symmetry
is dynamical symmetry breaking~DSB! which is caused by
the nonvanishing vacuum expectation value of the composite
operator constructed by a fermion and an antifermion with-
out introducing any elementary scalar field@2#. In the present
paper we focus on the DSB at GUT era where we cannot
neglect the thermal and curvature effects. Since there is
much uncertainty in the model of the fundamental theory at
the GUT era, the four-fermion models are often used as a
prototype model to study the phase structure of the DSB.

Many physicists pay attention to thermal and curvature
effects of DSB. Thermal restoration of the broken symmetry
is discussed in the literature@3,4#. In the four-fermion mod-
els the minimum of the effective potential is shifted by vary-
ing the temperature. Evaluating the effective potential of the
model it has been found that the broken chiral symmetry is
restored for a sufficiently high temperature through the
second-order phase transition. The analytical expression for
the critical point was known in arbitrary dimensions within a
simple model. On the other hand, a curvature-induced phase
transition is discussed in the literature@5–7#. Using the four-
fermion model it is found that the broken chiral symmetry is
restored for a sufficiently large positive curvature and the
chiral symmetry is always broken down in a negative curva-
ture spacetime. In some compact spaces~SD andR^ SD21!
the critical point was known analytically by exact calcula-
tions without making any approximation in the spacetime
curvature. The phase transition is of second order in these
compact spaces. However there is a little work for combined

effects of the temperature and curvature. The vacuum energy
density for free fermion is calculated at finite temperature in
R^ SD21 @8#. The thermal and curvature effects for dynami-
cal symmetry breaking are studied by using the four-fermion
model in the positive weak curvature limit@9#.

In the present paper we use the four-fermion interaction
model withN-component fermions. As a nonperturbative ap-
proach is necessary to study the phase transition, the model
is treated nonperturbatively at the largeN limit by using the
1/N expansion. We suppose that the system is in equilibrium
and introduce the temperature. This assumption is not ac-
cepted in a general curved spacetime. In the spacetime which
has no time evolution the equilibrium state can be defined.
We then restrict ourselves in the positive curvature spacetime
R^ SD21 and the negative curvature spacetimeR^ HD21.
To find the ground state at finite temperature and curvature
we calculate the effective potential and analyze its stationary
condition by the gap equation in the leading order of the 1/N
expansion.

The main purpose of this paper is to show the importance
of the combined effects of the temperature and curvature to
DSB. One of the important problems is whether the thermal
effect restores the broken symmetry in a negative curvature
spacetime. It may give some effect to the evolution of the
universe. The four-fermion model may be too simple to dis-
cuss DSB at the GUT era, but we expect that the model has
some fundamental properties.

The paper is organized in the following way. In Sec. II we
briefly review the dynamical symmetry breaking in a four-
fermion interaction model. The effective potential described
by the spinor two-point function in the leading order of the
1/N expansion, keeping only the effects of fermion loops. In
Minkowski space the shape of the effective potential is of the
double well for a sufficiently large four-fermion coupling
and the chiral symmetry is broken down dynamically. In Sec.
III we investigate the thermal and curvature effects to DSB.
Starting from the theory with broken chiral symmetry we
study the phase transition induced by the thermal and curva-
ture effects. Temperature and curvature are introduced to the
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effective potential through the spinor two-point function at
finite temperature and curvature. We derive the explicit form
of the effective potential at finite temperature onR^ SD21

and R^ HD21. Analyzing the gap equation we show the
critical lines which divide the symmetric phase and the
asymmetric phase. Section IV gives the concluding remarks.

II. SIMPLE MODEL OF DSB

We want to apply the mechanism of DSB to the symmetry
breaking at the GUT era. One of the simplest models of DSB
is the four-fermion interaction model. It may be interpreted
as the low energy effective theory which is steaming from
the more fundamental theory at the GUT era.

The four-fermion interaction model in curved spacetime
is characterized by the action@10#

S5E A2gdDxF (
k51

N

c̄kig
m¹mck1

l0

2N S (
k51

N

c̄kckD 2G ,

~2.1!

where the indexk represents the flavors of the fermion field
c, N is the number of fermion species,g the determinant of
the metric tensorgmn , gm the Dirac matrix in curved space-
time, and¹mc the covariant derivative of the fermion field
c. For simplicity, we neglect the flavor index below. The
action ~2.1! is invariant under the discrete transformation
c̄c→2c̄c. This discrete chiral symmetry prohibits the fer-
mion mass term.

We introduce an auxiliary fields for convenience@10#
and rewrite the action~2.1! in the form

Sy5E A2gdDxS c̄ igm¹mc2
N

2l0
s22c̄sc D . ~2.2!

Using the equation of motion for the fields we easily know
that the action~2.2! is equivalent to Eq.~2.1!. If the auxiliary
field s develops the nonvanishing vacuum expectation value,
^s&5mÞ0, there appears a mass term for the fermion field
c and the discrete chiral symmetry is eventually broken.

To study the phase structure of the theory we want to find
a ground state of the system. For this purpose we evaluate an
effective potential for the fields. As is known in the leading
order of the 1/N expansion the effective potential of the
model ~2.2! is described by@5#

V~s!5
1

2l0
s22 i tr E

0

s

dsS~x,x;s!1OS 1

ND , ~2.3!

whereS(x,x;s) is the spinor two-point function which satis-
fies the Dirac equation

~ igm¹m2s!S~x,y;s!5
1

A2g
dD~x,y!, ~2.4!

wheredD(x,y) is Dirac’s delta function in curved spacetime.
It should be noted that the effective potential is normalized
so thatV(0)50. The ground state is determined by observ-
ing the minimum of the effective potential.

The two-point functionS(x,x;s) in Minkowski spacetime
at T50 is given by

S~x,x;s!5E dDk

~2p!D

1

k”2s
,

~2.5!

A2g51.

Inserting Eq.~2.5! into Eq.~2.3! and performing the integra-
tion by using the dimensional regularization method, we ob-
tain the effective potential in Minkowski spacetime:

V~s!5
1

2l0
s22 i tr E

0

s

dsE dDk

~2p!D

1

k”2s

5
1

2l0
s22

tr1

~4p!D/2

1

D
GS 12

D

2 DsD. ~2.6!

It is divergent in two and four dimensions. Performing the
renormalization procedure by imposing the renormalization
condition

d2V

ds2 U
s5m

5
mD22

lR
, ~2.7!

we obtain the renormalized coupling constant

1

l0
5F 1

lR
1

tr1

~4p!D/2GS 12
D

2 D ~D21!GmD22. ~2.8!

Replacing the bare coupling constantl0 with the renormal-
ized onelR , we obtain the renormalized effective potential
which is no longer divergent in the spacetime dimensions,
2<D,4. In four dimensions four-fermion theory is not
renormalizable and the finite effective potential cannot be
defined. Here we regard the effective potential forD542e
with e sufficiently small positive as a regularization of the
one in four dimensions.

Evaluating the renormalized effective potentialV(s) we
find the phase structure of the four-fermion model. In
Minkowski space the shape of the effective potential is of a
single and a double well forl<lcr andl.lcr , respectively.
The critical value of the coupling constantlcr is given by
@10#

lcr5
~4p!D/2

tr1 F ~12D !GS 12
D

2 D G21

. ~2.9!

Thus the ground state is invariant under the discrete chiral
transformation forl<lcr . On the other hand the chiral sym-
metry is broken down forl.lcr and the fermion acquires
the dynamical massm0 :

m05mF ~4p!D/2

tr1G~12D/2!

1

lR
1D21G1/~D22!

. ~2.10!

In the following sections we will apply the similar analy-
sis at finite temperature and curvature. We fix the coupling
constantlR above the critical one and see whether the bro-
ken chiral symmetry is restored in an environment of the
high temperature and/or large curvature.

5098 56TOMOHIRO INAGAKI AND KEN-ICHI ISHIKAWA



III. THERMAL AND CURVATURE EFFECTS

Here we introduce the temperature and curvature in the
theory and investigate the phase structure with varying the
temperature and curvature.

First we introduce the effect of the finite temperature. As
we have seen in the previous section, the effective potential
is expressed by the two-point functionS(x,x;s) of a massive
free fermion. The two-point function at finite temperature is
defined by

ST~x,x;s!5
(ae2bEa^auT„c~x!c̄~x!…ua&

(ae2bEa
, ~3.1!

where Ea is the energy in the state specified by quantum
numbera, respectively,b51/kBT with kB the Boltzmann
constant andT the temperature

Following the standard procedure of the Matsubara
Green’s function, the two-point function at finite temperature
is obtained from the one atT50 by the Wick rotation and
the replacements@11#

E
2`

` dk0

2p i
→

1

b (
n52`

`

, ~3.2!

k0→ ivn[ i
2n11

b
p,

g0→ ig0.

In Minkowski space the effective potential at finite tempera-
ture in the leading order of the 1/N expansion reads@3,4#

VT~s!5
1

2l0
s21tr E

0

s

ds
1

b (
n
E dD21k

~2p!D21

1

k”1s
.

~3.3!

If we perform the integration overk, we obtain

VT~s!5
1

2l0
s22E

0

s

ds
tr1G@~32D !/2#

~4p!~D21!/2

1

b

3 (
n52`

`

s~s21vn
2!~D23!/2. ~3.4!

Performing a summation and integrating over angle variables
ands in Eq. ~3.3!, we get

VT~s!5
1

2l0
s22

tr1

~4p!D/2

1

D
GS 12

D

2 DsD2
tr1

~4p!~D21!/2

1

G@~D21!/2#

1

b E
0

`

dt t~D23!/2ln
11e2bAt1s2

11e2bAt
. ~3.5!

Comparing Eq.~3.4! with Eq. ~3.5! we find the following relation:

tr1

~4p!D/2

1

D
GS 12

D

2 Ds21
tr1

~4p!~D21!/2

1

G@~D21!/2#

1

b E
0

`

dt t~D23!/2ln
11e2bAt1s2

11e2bAt

5E
0

s

ds
tr1

~4p!~D21!/2GS 32D

2 D 1

b (
n52`

`

s~s21vn
2!~D23!/2. ~3.6!

This relation will be used for numerical calculation of the effective potential at finite temperature in curved spacetime.

FIG. 1. Dynamical fermion massm at D53.0 in R^ S2 as a
function of the temperatureT with the curvatureK fixed.

FIG. 2. Dynamical fermion massm at D53.0 in R^ S2 as a
function of the curvatureK with the temperatureT fixed.
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Starting from the theory with the broken chiral symmetry at vanishingT and evaluating the effective potential at finite
temperature, it is known that the broken chiral symmetry is restored at a critical temperatureTcr through the second-order
phase transition. The critical temperature is given by@3,4#

kBTcr

m0
5

1

2p F 2G@~32D !/2#

ApG@~22D !/2#
~232D21!z~32D !G 1/~22D !

. ~3.7!

Next we consider the constant curvature spaceR^ SD21 andR^ HD21 as Euclidean analogs of the Einstein universe and
discuss the effect of the spacetime structure. The manifoldR^ SD21 is defined by the metric

ds25dt21a2~du21sin2udVD22!, ~3.8!

wheredVD22 is the metric on a unit sphereSD22 while the manifoldR^ HD21 is defined by

ds25dt21a2~du21sinh2udVD22!. ~3.9!

The manifoldR^ SD21 andR^ HD21 are constant curvature spacetimes with positive and negative curvature

R56~D21!~D22!a22, ~3.10!

respectively (2<D,4).
The effect of the spacetime structure is introduced to the effective potential through the two-point function appeared. As is

shon in the Appendix the two-point functions are given by

trS~x,x:s!5E
2`

` dv

2p

tr1sK~D23!/2

~4p!~D21!/2

G@~D21!/21 ia#G@~D21!/22 ia#

G~11 ia!G~12 ia!
GS 32D

2 D on R^ SD21 @12#,

trS~x,x:s!5E
2`

` dv

2p

tr1sK~D23!/2

~4p!~D21!/2

G@~D21!/21a#

aG@~32D !/21a#
GS 32D

2 D , on R^ HD21, ~3.11!

whereK51/a2 anda is defined in Eq.~A21!. Substituting Eq.~3.11! to Eq. ~2.3! the effective potential atT50 reads

VR~s!5
1

2l0
s22E

0

s

dsE
2`

` dv

2p

tr1sK~D23!/2

~4p!~D21!/2

G@~D21!/21 ia#G@~D21!/22 ia#

G~11 ia!G~12 ia!
GS 32D

2 D on R^ SD21 @7#,

~3.12!

VR~s!5
1

2l0
s22E

0

s

dsE
2`

` dv

2p

tr1sK~D23!/2

~4p!~D21!/2

G@~D21!/21a#

aG@~32D !/21a#
GS 32D

2 D on R^ HD21. ~3.13!

The weak curvature limit of Eq.~3.13! is consistent with the result in Ref.@6#, but is different from the result in Ref.@9#.
Evaluating the effective potential in curved spacetime it is known that the broken chiral symmetry is restored for a sufficiently
large positive curvature. In the Einstein universe (R^ SD21) the critical curvature is given by@7#

Rcr5~D21!~D22!m0
2F 1

Ap
GS D21

2 DGS D

2 D G 2/~22D !

. ~3.14!

On the other hand only a broken phase is realized for an arbitrary negative curvature irrespective of the coupling constantl
@6#. Thus there is no critical point where the chiral symmetry is restored for the case considered here,l.lcr . The chiral
symmetry is broken down atR,0 even forl<lcr .

Below, we investigate the combined effects of the temperature and curvature onR^ SD21 andR^ HD21.

A. Positive curvature space„R^ SD21
…

In the positive curvature space,R^ SD21, the effective potential is given by Eq.~3.12!. According to the definition of the
two-point function at finite temperature~3.1!, we obtain the effective potential in the space at finite temperature by the
replacements~3.2!:

VTR~s!5
1

2l0
s22E

0

s

ds
tr1

~4p!~D21!/2

sK~D23!/2

b (
n52`

`
G@~D21!/21 ian#G@~D21!/22 ian#

G~11 ian!G~12 ian!
GS 32D

2 D , ~3.15!

wherean is defined by
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an[As21vn
2

K
. ~3.16!

Evaluating the effective potential~3.15! we will find the phase structure of the model at finite temperature in positive curvature
space.

For numerical calculations we need the finite expression of the effective potential in summation and integration. Inserting
Eq. ~2.8! and Eq.~3.6! into Eq. ~3.15! the renormalized effective potential reads

VR
TR~s!5

1

2 F 1

lR
1

tr1

~4p!D/2GS 12
D

2 D ~D21!GmD22s22
tr1

~4p!D/2

1

D
GS 12

D

2 Ds22
tr1

~4p!~D21!/2

1

G@~D21!/2#

1

b

3E
0

`

dt t~D23!/2 ln
11e2bAt1s2

11e2bAt
1E

0

s

ds
tr1

~4p!~D21!/2

1

b
GS 32D

2 D (
n52`

`

sF ~s21vn
2!~D23!/2

2K ~D23!/2
G@~D21!/21 ian#G@~D21!/22 ian#

G~11 ian!G~12 ian! G . ~3.17!

In this representation of the effective potential the divergence is canceled out in the summation.
The phase structure of the theory is obtained by observing the minimum of the effective potential. The necessary condition

for the minimum of the effective potential is given by the gap equation

]VR
TR~s!

]s
U

s5m

50. ~3.18!

If the gap equation has a nontrivial solution which corresponds to the minimum of the effective potential, the chiral symmetry
is broken down and the dynamical fermion mass is generated. The nontrivial solution of the gap equation is given by

S 1

lR
2

1

lcr
DmD222

tr1

~4p!D/2GS 12
D

2 DmD221
tr1

~4p!~D21!/2

1

G@~D21!/2#
E

0

`

dt t~D23!/2
1

At1m2

e2bAt1m2

11e2bAt1m2

1
tr1

~4p!~D21!/2

1

b
GS 32D

2 D (
n52`

` F ~m21vn
2!~D23!/22K ~D23!/2

G@~D21!/21 ian#G@~D21!/22 ian#

G~11 ian!G~12 ian! G50,

~3.19!

wherean5A(m21vn
2)/K, lcr is defined in Eq.~2.9! andm corresponds to the dynamically generated fermion mass.

In Figs. 1 and 2 we plot the typical behaviors of the dynamical fermion massm at D53.0 as a function of temperatureT
or curvatureK. Since no mass gap is observed at the critical point in Figs. 1 and 2, only the second-order phase transition
occurs with varying temperature and/or curvature. By the same analysis we find that the broken chiral symmetry is restored for
a sufficiently high temperature and large curvature. Only the second-order phase transition is realized for 2<D,4.

Since the dynamical fermion mass smoothly disappears at the critical point for second-order phase transition, the critical
line on theT-AK plane is given by the massless limit of Eq.~3.19!. To find the equation for the critical line in an analytic form
we take the limitm→0 in Eq. ~3.19! and find

tr1

~4p!D/2GS 12
D

2 Dm0
D222

tr1

~4p!~D21!/2

2

bcr
GS 32D

2 D S 2p

bcr
D D23

z~32D,1/2!1
tr1

~4p!~D21!/2

1

bcr
GS 32D

2 D
3 (

n52`

` F uvcrn
uD232Kcr

~D23!/2
G@~D21!/21 iacrn

#G@~D21!/22 iacrn
#

G~11 iacrn
!G~12 iacrn

! G50, ~3.20!

wherez(z,a) is the generalized zeta function,vcrn
5(2n11)p/bcr , acrn

5uvcrn
u/AKcr andm0 is the dynamical fermion mass

in Minkowski spacetime atT50. The critical lines are shown in Fig. 3.
The two-dimensional spacetimeR^ S1 is a flat compact spacetime,R50. Thus the symmetry restoration which caused by

increasingK is induced by the finite size effect of the compact space. In four dimensions the effective potential atT50 is
divergent. However the thermal effect gives only a finite correction to the effective potential. Thus the critical temperatureTcr

56 5101THERMAL AND CURVATURE EFFECTS TO DYNAMICAL . . .



at K50 is divergent at the four-dimensional limit. Near four dimensions the curvature effect seems to mainly contribute to the
phase transition. But it comes from the nonrenormalizability of the four-fermion model. In a renormalizable theory the
situation must be changed.

B. Negative curvature space„R^ H D21
…

In a negative curvature spacetime the chiral symmetry is always broken down irrespective ofl at T50. Can the thermal
effect restore the symmetry in the negative curvature spacetime? Here we consider the model at finite temperature in the
negative curvature spacetime,R^ HD21, for bothl.lcr andl<lcr .

According to the method used in the previous subsection the effective potential at finite temperature inR^ HD21 can be
obtained from Eq.~3.13! by the replacements~3.2!:

VTR~s!5
1

2l0
s22E

0

s

ds
tr1

~4p!~D21!/2

sK~D23!/2

b (
n52`

`
G@~D21!/21an#

anG@~32D !/21an#
GS 32D

2 D . ~3.21!

R^ H1 is equivalent to the two-dimensional Minkowski spaceR2. At the two-dimensional limit of Eq.~3.21! the effective
potential in two-dimensional Minkowski space is reproduced. Because of the convenience for numerical calculations we
rewrite the effective potential~3.21! in the same form described in the previous subsection. Inserting Eq.~2.8! and Eq.~3.6!
into Eq. ~3.21! we get

VR
TR~s!5

1

2 F 1

lR
1

tr1

~4p!D/2GS 12
D

2 D ~D21!GmD22s22
tr1

~4p!D/2

1

D
GS 12

D

2 Ds22
tr1

~4p!~D21!/2

1

G@~D21!/2#

1

b

3E
0

`

dt t~D23!/2 ln
11e2bAt1s2

11e2bAt
1E

0

s

ds
tr1

~4p!~D21!/2

1

b
GS 32D

2 D
3 (

n52`

`

sF ~s21vn
2!~D23!/22K ~D23!/2

G@~D21!/21an#

anG@~32D !/21an#G . ~3.22!

To find the minimum of the effective potential~3.22! we analyze the nontrivial solution of the gap equation. Substituting
Eq. ~3.22! to Eq. ~3.18! the gap equation reads

S 1

lR
2

1

lcr
DmD222

tr1

~4p!D/2GS 12
D

2 DmD221
tr1

~4p!~D21!/2

1

G@~D21!/2#
E

0

`

dt t~D23!/2
1

At1m2

e2bAt1m2

11e2bAt1m2

1
tr1

~4p!~D21!/2

1

b
GS 32D

2 D (
n52`

` F ~m21vn
2!~D23!/22K ~D23!/2

G@~D21!/21an#

anG@~32D !/21an#G50. ~3.23!

Evaluating the gap equation~3.23! numerically we obtain the
dynamical fermion massm.

In Figs. 4–7 we draw the typical behaviors of the dynami-
cal fermion massm in R^ H2 with varying the temperature
or curvature. In drawing figures the normalization scalem0 is
taken to the value defined in Eq.~2.10! for l.lcr and

m05mF2
~4p!D/2

tr1G~12D/2!

1

lR
2D11G1/~D22!

, ~3.24!

for l<lcr . As is shown in Figs. 4 and 5 the dynamical
fermion mass smoothly disappears as the temperature in-
creases with the curvature fixed for bothl.lcr andl<lcr .
Then the broken chiral symmetry is restored for a sufficiently
high temperature. On the other hand the dynamical fermion
mass becomes heavier as the curvatureK increases with the
temperature fixed as can be seen in Figs. 6 and 7. Calculating
Eq. ~3.7! in three dimensions the critical temperature for
K50 is given by

kBTcr5
1

2 ln2
. ~3.25!

The curvature effects enhance the symmetry breaking on
R^ H2. Hence there is only the broken phase for
kBT,1/(2 ln2) in the modell.lcr . For kBT>1/(2 ln2) or
l<lcr the dynamical fermion mass is smoothly generated as
the curvatureK increases and the chiral symmetry is broken
down by the curvature effect. After the same analysis in
arbitrary dimensions 2,D,4 we find the same behavior for
the dynamical fermion mass. The thermal effect restores the
broken chiral symmetry while the negative curvature effect
breaks the chiral symmetry. Only the second-order phase
transition occurs with varying the temperature and the cur-
vature in 2,D,4. In two dimensions Eq.~3.23! has the
same behavior in Minkowski space.

For the second-order phase transition the critical point is
obtained by the massless limit of the gap equation. Taking
the massless limitm→0 in Eq. ~3.23! we find the equation
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that gives the relation between critical temperature
bcr51/(kBTcr) and critical curvatureKcr :

tr1

~4p!D/2GS 12
D

2 Dm0
D222

tr1

~4p!~D21!/2

2

bcr
GS 32D

2 D
3S 2p

bcr
D D23

z~32D,1/2!1
tr1

~4p!~D21!/2

1

bcr
GS 32D

2 D
3 (

n52`

` F uvcrn
uD232Kcr

~D23!/2

3
G@~D21!/21acrn

#

acrn
G@~32D !/21acrn

#G50. ~3.26!

Evaluating Eq.~3.26! numerically we draw the phase dia-
gram of the four-fermion model with varying the tempera-
ture and/or curvature onR^ HD21 at D52.5, 3.0, 3.5 in
Figs. 8 and 9. A ratioTcr /AKcr takes larger value for higher
dimension. At a scaleT;AK;m0 the thermal effect gives
the main contribution to the phase structure forD<3 and the
symmetric phase is realized. At the four-dimensional limit
Tcr is divergent forl.lcr . It comes from the divergence
that appears at the four-dimensional limit. Thus it may be a
result obtained especially from the nonrenormalizability of
the theory.

IV. CONCLUSION AND DISCUSSIONS

We have investigated the phase structure of DSB in the
four-fermion model at finite temperature and curvature in
arbitrary dimensions (2,D,4).

Evaluating the effective potential and the gap equation in
the leading order of the 1/N expansion we found the thermal
and curvature induced phase transition. The dynamically
generated fermion mass is calculated numerically with vary-
ing the temperature and curvature. Only the second-order
phase transition is observed with varying the temperature
and curvature. We found the lines dividing the symmetric
phase and asymmetric phase in theT-AK plane. In positive
curvature space the curvature effect restores the broken chi-
ral symmetry. On the contrary the curvature effect enhances

the chiral symmetry breaking in negative curvature space. At
finite temperature the lower limit of the momentum for the
fermion field (k0,p/b) appears from the antiperiodicity
and then the long range effect is suppressed. Thus the ther-
mal effect restores the broken symmetry even in a negative
curvature spacetime.

In two spacetime dimensions it is not able to introduce the
combined effects of the temperature and curvature within our
method because of the assumption of the equilibrium. This
assumption is not accepted in an inflationary expanding uni-
verse, but we may discuss the phase transition at an early
universe within our results.

Under the discrete chiral symmetryZ2 two kinds of states
which are labeled bys56^s& have the same potential en-
ergy. Thus the grand states of the present model are doubly
degenerate. If the transition rate between these degenerate
vacua is not negligibly small, a nonstatic field configuration
is realized. We cannot deal with the nonstatic configurations
in the effective potential approach.

We consider the static Einstein universe,R^ SD21, as an
example of the positive curvature spacetime. The spatial vol-
ume forR^ SD21 is finite. For a small volume system it is
expected that the transition rate between the degenerate
vacua may be large enough to induce the nonstatic field con-
figuration. As is known forD52 at finite temperature the
kink and antikink configurations which are one kind of the
nonstatic configurations restore the broken chiral symmetry
@4#. Thus our results are useful only in some finite region of
the space for largeK in R^ SD21. When summing contribu-
tions from different regions we would obtain the qualita-
tively different results. There is a possibility that the chiral
symmetry is resorted for a smaller curvature than the critical
curvatureKcr obtained in Eq.~3.20! and the phase diagram
shown in Fig. 3 may be modified. We will need a new idea
and further investigations to evaluate the nonstatic configu-
rations inR^ SD21.

We are only looking the four-fermion model in the lead-
ing order of the 1/N expansion but there may be some fun-
damental properties of DSB. Decreasing the temperature, the
phase transition may occur from the negative curvature

FIG. 3. The phase diagram atD52.0, 2.5, 3.0, 3.5 inR^ SD21.

FIG. 4. Dynamical fermion massm at D53.0 for l.lcr in
R^ H2 as a function of the temperatureT with the curvatureK
fixed.
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places of the universe. After that the chiral symmetry is bro-
ken down at the flat places and then at the positive curvature
places. It may have something for the evolution of the uni-
verse but it is difficult to cause the inflationary evolution of
the universe in the four-fermion model@13# without a new
idea.

To investigate the phenomena at the period of the phase
transition we cannot avoid considering the nonequilibrium
state. We will continue our work further and hope to extend
our analysis to a nonequilibrium state.
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APPENDIX: TWO-POINT FUNCTIONS
IN R^ SD21 AND R^ H D21

In maximally symmetric spacetimeSD andHD the exact
expression of the two-point functions are known without

making any approximation in dealing with the spacetime
curvature@12,14–17#. OnR^ SD21 andR^ HD21 the spinor
two-point functions are obtained from those onSD andHD.
Here we closely follow@12# and show the spinor two-point
functions onR^ SD21 andR^ HD21.

The spinor two-point functionS(x,y;s) is defined by the
Dirac equation1

~gm¹m1s!S~x,y;s!5
1

A2g
dD~x,y!. ~A1!

We introduce the bispinor functionG defined by

~gm¹m2s!G~x,y;s!5S~x,y!. ~A2!

According to Eq.~A1! in R^ SD andR^ HD G(x,y;s) sat-
isfies the following equation:

F ~]0!21hD212
R

4
2s2GG~x,y;s!52

1

Ag
dD~x,y!, ~A3!

FIG. 5. Dynamical fermion massm at D53.0 for l<lcr in
R^ H2 as a function of the temperatureT with the curvatureK
fixed.

FIG. 6. Dynamical fermion massm at D53.0 for l.lcr in
R^ H2 as a function of the curvatureK with the temperatureT
fixed.

FIG. 7. Dynamical fermion massm at D53.0 for l<lcr in
R^ H2 as a function of the curvatureK with the temperatureT
fixed.

FIG. 8. The phase diagram atD52.5, 3.0, 3.5 forl.lcr in
R^ HD21.

1The Euclidean metric (1,1,1,1) is used here.
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where hD21 is the Laplacian for a bispinor function on
R^ SD andR^ HD. Performing the Fourier transformation

G~x,y;s!5E dv

2p
e2 iv~y2x!0

G̃~v,x,y;s!, ~A4!

we rewrite Eq.~A3! in the form

FhD212
R

4
2~s21v2!GG̃~v,x,y;s!52

1

Ag
dD21~y!.

~A5!

Equation~A5! is of the same form as the one for the spinor
Green’s function with massAs21v2 on the maximally sym-
metric spaceSD21 or HD21.

The general form of the Green’s functionG̃(v,x,y;s) is
written as@17#

G̃~v,x,y;s!5U~x,y!g~ l !, ~A6!

whereU is a matrix in the spinor indices,g is a scalar func-
tion only of l , l 5au which is the geodesic distance between
x andy on SD21 or HD21, ni is a unit vector tangent to the
geodesicni5¹ i l . Inserting Eq.~A6! into Eq. ~A5! we get

FUhD21g12~¹ jU !¹ jg1~hD21U !g2S R

4
1s21v2DUgG

50, ~A7!

where we restrict ourselves to the regionlÞ0. To evaluate
Eq. ~A7! we have to calculate the covariant derivative ofU

andni . U is the operator which makes parallel transport of
the spinor at pointx along the geodesic to pointy. Thus the
operatorU must satisfy the following parallel transport equa-
tions @15#:

ni¹ iU50,
~A8!

U~x,x!51.

To evaluate the second derivative ofU we set

¹ iU[ViU. ~A9!

From the integrability condition@14# on Vi ,

¹ iVj2¹ jVi2@Vi ,Vj #5
R

~D21!~D22!
s i j , ~A10!

and the parallel transport equation~A8! we easily find that

Vi52
1

a
tanS l

2aDs i j n
j on SD21, ~A11!

Vi5
1

a
tanhS l

2aDs i j n
j on HD21, ~A12!

wheres i j are the antisymmetric tensors constructed by the
Dirac gamma matrices,s i j 5@g i ,g j #/4. To find Vi we have
used the fact that the maximally symmetric bitensors are rep-
resented as a sum of products ofni andgi j with coefficients
which are functions only ofl @16#. After some calculations
we get the Laplacian acting onU:

hD21U52
D22

4a2 tan2S l

2aDU on SD21,
~A13!

hD21U52
D22

4a2 tanh2S l

2aDU on HD21.

The derivative ofni is also the maximally symmetric biten-
sor @16# and found to be

¹ inj5
1

a
cotS l

aD ~gi j 2ninj ! on SD21,

¹ inj5
1

a
cothS l

aD ~gi j 2ninj ! on HD21. ~A14!

Therefore Eq.~A7! reads

F] l
21

D22

a
cotS l

aD ] l2
D22

4a2 tan2S l

2aD2
R

4
2~s21v2!Gg50 on SD21, ~A15!

F] l
21

D22

a
cothS l

aD ] l2
D22

4a2 tanh2S l

2aD2
R

4
2~s21v2!Gg50 on HD21. ~A16!

We define the functionshSD( l ) andhHD( l ) by g( l )5cos(l/2a)hSD( l ) andg( l )5cosh(l/2a)hHD( l ), respectively, and make a

FIG. 9. The phase diagram atD52.5, 3.0, 3.5 forl<lcr in
R^ HD21.
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change of variable byz5cos2(l/2a) in Eq. ~A15! andz85cosh2(l/2a) in Eq. ~A16!. We then find that Eqs.~A15! and~A16!
are rewritten in the forms of hypergeometric differential equations:

Fz~12z!]z
21S D11

2
2DzD ]z2

~D21!2

4
2~s21v2!a2GhSD~z!50, ~A17!

Fz8~12z8!]z8
2

1S D11

2
2Dz8D ]z82

~D21!2

4
1~s21v2!a2GhHD~z8!50. ~A18!

Noting that the Green’s functions are regular at the pointl 5ap and fall off for l→` we write the solutions of Eqs.~A17! and
~A18! by the hypergeometric function

hSD~z!5cSDFS D21

2
1 ia,

D21

2
2 ia,

D11

2
;zD , ~A19!

hHD~z8!5cHD~2z8!~12D !/2 2aFS D21

2
1a,a,2a11;

1

z8D , ~A20!

wherea5aAs21v2. As we remained in the region wherelÞ0 the normalization constantscSD and cHD are yet undeter-
mined. To obtaincSD andcHD we consider the singularity ofG̃(v,x,y;s) in the limit l→0,

G̃→cSD

G@~D11!/2#G@~D23!/2#

G@~D21!/21 ia#G@~D21!/22 ia# S l

2aD 32D

,

G̃→cHD~21!~12D !/2 2a
G~2a12!G@~D23!2#

G@~D21!/21a#G~a! S l

2aD 32D

, ~A21!

and compare them with the singularity of the Green’s function in flat spacetime. This procedure is justified because the
singularity on a curved spacetime background has the same structure as that in the flat spacetime. Forl;0 the Green’s
function in the flat spacetime behaves as@12,17#

G̃flat~ l !;
1

4p~D21!/2GS D23

2 D l 32D. ~A22!

Comparing Eq.~A21! with Eq. ~A22!, the overall factorscSD andcHD are obtained:

cSD5
a32D

~4p!~D21!/2

G@~D21!/21 ia#G@~D21!/22 ia#

G@~D11!/2#
,

cHD5
~21!~12D !/2 2aa32D

~4p!~D21!/2

G@~D21!/21a#G~a!

G~2a11!
. ~A23!

Inserting Eqs.~A19!, ~A20!, and~A23! into Eq. ~A6! we find onSD21

G̃~v,x,y;s!5U~x,y!
a32D

~4p!~D21!/2

G@~D21!/21 ia#G@~D21!/22 ia#

G@~D11!/2#

3cosS l

2aDFXD21

2
1 ia,

D21

2
2 ia,

D11

2
;cos2S l

2aD C, ~A24!

and onHD21

G̃~v,x,y;s!5U~x,y!~21!~12D !/22a
a32D

~4p!~D21!/2

G@~D21!/21a#G~a!

G~2a11! FcoshS l

2aD G22D22a

3FXD21

2
1a,a,2a11;cosh22S l

2aD C. ~A25!

Thus the Green’s functionsG̃(v,x,y;s) on the maximally symmetric spacetime are obtained.
The spinor two-point functionS(x,y;s) is derived from the Green’s functionG̃(v,x,y;s). From Eq.~A2! we get
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S5~2 ivg01g i¹ i2s!E dv

2p
e2 iv~y2x!0

Ug

5H E dv

2p
e2 iv~y2x!0 F ~s1 ivg0!Ug2g in

iUX] l2
D22

2a
tanS l

2aD CgG on R^ SD21,

E dv

2p
e2 iv~y2x!0 F ~s1 ivg0!Ug2g in

iUX] l1
D22

2a
tanhS l

2aD CgG on R^ HD21.

~A26!

Substituting Eqs.~A24! and ~A25! in Eq. ~A26! the spinor two-point functionS(x,y;s) is obtained:

S~x,y;s!52
a32D

~4p!~D21!/2 E dv

2p
e2 iv~y2x!0 G@~D21!/21 ia#G@~D21!/22 ia#

G@~D11!/2#

3F ~s1 ivg0!U~x,y!cosS l

2aDFXD21

2
1 ia,

D21

2
2 ia,

D11

2
;cos2S l

2aD C1g in
iU~x,y!

D21

2a

3sinS l

2aDFXD21

2
1 ia,

D21

2
2 ia,

D21

2
;cos2S l

2aD CG , ~A27!

on R^ SD21 @12# and

S~x,y;s!52
a22D

~4p!~D21!/2 E dv

2p
e2 iv~y2x!0 G@~D21!/21a#G~a!

G~2a11!

3FcoshS l

2aD G22D22aFa~s1 ivg0!U~x,y!coshS l

2aDFXD21

2
1a,a,2a11;cosh22S l

2aD C
1ag in

iU~x,y!sinhS l

2aDFXD21

2
1a,a11,2a11;cosh22S l

2aD CG , ~A28!

on R^ HD21. According to the anticommutation relation of spinor fields the two-point function~A27! satisfies the antiperiodic
boundary conditionS( l )52S( l 12pna) wheren is an arbitrary integer.
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