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We apply heavy-quark effective theory to separate long- and short-distance effects of heavy quarks in lattice
gauge theory. In this approach, the inverse heavy-quark mass and the lattice spacing are treated as short
distances, and their effects are lumped into short-distance coefficients. We show how to use this formalism to
match lattice gauge theory to continuum QCD, order by order in the heavy-quark expansion. In this paper, we
focus on heavy-light currents. In particular, we obtain one-loop results for the matching factors of lattice
currents, needed for heavy-quark phenomenology, such as the calculation of heavy-light decay constants, and
heavy-to-light transition form factors. Results for the Brodsky-Lepage-Mackenzie gtales also given.
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[. INTRODUCTION and we compute explicitly the matching factors for the cur-
rents introduced in the “Fermilab” formalisrh5]. Heavy-
A key ingredient in flavor physics is the calculation of heavy bilinears are considered in a companion péfker
hadronic matrix elements of the electroweak Hamiltonian. To interpret lattice calculations whenga<1, it is con-
For example, one would like to calculate, from first prin- venient to describe cutoff effects with the Symanzik local
ciples, quantities such as leptonic decay constants, semilepffective LagrangianLEL) and expand the LE's short-
tonic form factors, and the amplitudes for neutral-mesordistance coefficients in powers ahga [7-10. When
mixing. Numerical calculations with lattice QCD offer a way mga+«1, however, one should realize that it is not lattice
to obtain these quantities, eventually with well-controlled es-gauge theory that breaks down but rather the Symanzik de-
timates of the numerical uncertaintigs. scription, especially its expansion mga. If mpa is large
The properties 0B andD mesons are especially interest- becausemo>Aqcp, then the simplifying features of the

ing, but the relatively largd and c quark masses make it heavy-quark limit provide an alternative. Instead of matching
difficult, with today’s computers, to carry out lattice calcula- lattice gauge theory directly to continuum QCD, one can
tions in the limitmga—0 for which lattice QCD was first match to the heavy-quark effective thedfyQET) or, for
developed(Heremg, is theb or c quark mass, and is the  quarkonia, to nonrelativistic QCBNRQCD). In this ap-
lattice spacing.One can, however, use the simplifying fea- proach, the inverse heavy-quark mass and the lattice spacing
tures of the heavy-quark limit of QCD to make lattice calcu-are both treated as short distances, and a simple picture
lations tractable. Asng is increased far above the typical arises, in which heavy-quark discretization effects are
scale of the wave function\ ocp, the hadrons’ wave func- lumped into short-distance coefficients. Heavy-quark cutoff
tions depend less and less am,. As mg—= the wave effects are systematically reducible, by adjusting the heavy-
functions become flavor and spin symmetéi¢. For quarko- quark expansion for lattice gauge theory to agree term-by-
nia similar simplifications occur, including spin symmetry term with continuum QCD.

[3]. Such application of HQET to lattice QCD was started in
In this paper we construct vector and axial vector current®Ref. [4], building on Ref.[5]. In this paper we extend the
with one quark heavy and the other light. These currents arformalism to heavy-light currents. We use the heavy-quark
needed to obtain the decay constants of heavy-light mesonsxpansion, as generated by HQET, to derive matching con-

and the form factors for decays of the foii—LIv,, where ditions, which are valid for almga and to all orders in the
H is a charmed ob-flavored hadrorte.g.,B,D;Ay,,A.), de-  gauge coupling. Our derivation is explicit for dimension-four
caying to a light hadroh (e.g.,, K, p; p, etc) and alepton  currents, which is the next-to-leading dimension, but gener-
| and its neutrinay; . In particular, we provide a way to treat alization to higher-dimension operators should be clear.
radiative and power corrections consistently. This paper is a We also present explicit results for the one-loop radiative
sequel to Ref[4], which focussed on power corrections. corrections to the normalization of the current. These calcu-
Here we discuss the case of heavy-light bilinears in detaillations show that the temporal and spatial components of the
current do not have the same radiative corrections. This fea-
ture has been found alrea@ly1,12), and the HQET formal-
*Present address: Yukawa Institute, Kyoto University, Kyoto,ism shows why it arises. In deriving these results we have
Japan. found a compact way of arranging the Dirac algebra, which
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may be useful for calculations with actions, such as highlylV, we are making a suite of programs freely availaf86].

improved actions, that are not considered here. This suite includes programs for the heavy-heavy currents
As expected, the coefficients have a strong mass depetreated in our companion papie].

dence. Most of this dependence can be handled non-

perturbatively[13—15. For equal mass, it is simple to nor- Il. MATCHING TO CONTINUUM FIELD THEORIES

malize the temporal vector current, for all masses. One can

then form ratios of renormalization factors, from which the N this section we discuss how to interpret the physical

dominant mass dependence drops out. Results for these cofRntent of lattice field theories by matching to continuum

Our one-loop results extend those of REE2], which descr@bing cutoff effects is reviewed, and we recall hqw t_his
considered heavy-light currents with the Sheikholeslamidescription breaks down for heavy quarks. After reviewing
Wohlert (SW) action[16] for Wilson fermions[17] and also  the HQET description ofcontinuum QCD, we adapt HQET
with non-relativistic QCDINRQCD). Results for the Wilson {0 describe lattice gauge theory. Comparison of the two then
action[17] have been obtained first by Kuramaghi]. In ~ Yields a matching procedure that is valid wheneweg
Refs.[11,12 a term in the currents, the so-called rotation>Aqcp, and for allmga. In the limit moa<1 both the
term [18,5], which is needed for tree-level improvement at HQET and the Symanzik descriptions should apply, so we
order 1, was omitted. Here we include the rotation, ob- 8T€ a_\b_le to derive relations between some of the matching
taining the algebraic expression of the Feynman diagrams fdroefficients.
the full Fermilab action. We present numerical results for the
Wilson action(without rotatior) and the SW actiofwith and A. Symanzik formalism
without rotation. These results are appropriate for recent
calculations of decay constarits9—23, which used the ra-
diative corrections calculated in Refd.1,12. Our new re-

The customary way to define matching factors for lattice
gauge theory is to apply Symanzik’s formalism. Then the
short-distance lattice artifacts are described by a local effec-

sults have been used in a recent calculation of the form fact'ive Lagrangian (LE) and local effective operators. For the

tors for the decay8— wlv, and D—aly, [15]. We also : S
have obtained results for the Fermilab action on anisotropkl:‘agranglém of any lattice field theory one can wiiteg]

lattices[24]. Lia= Lsym, (2.2
Our formalism should be useful for computing matching
factors(beyond one-logpalso in lattice NRQCO 25]. Ap-
plied to the static limif26], it generalizes the formalism of
Eichten and Hill[27]. At one-loop order, similar methods
have been developed to calculate the heavy-light matchin
coefficients for lattice NRQC[28,29. As in the Symanzik

where the symbok can be read “has the same on-shell
matrix elements as.” The left-hand side is a lattice field
theory, and the right-hand side is a continuum field theory,
Whose ultraviolet behavior is regulated and renormalized
completely separately from the lattice of the left-hand side.

program [7_9]’ the at;ivantage of mtroducmg a continuum ey 1 is the Lagrangian of the corresponding continuum
effective field theory is that the formalism provides a Clearfield theory, plus extra terms to describe discretization ef-
definition of the matching coefficients at every order in Pertacts. For Iéttice QCD

turbation theory(in the gauge coupling Indeed, it may also
provide a foundation for a non-perturbative improvement
program.

This paper is organized as follows. Section Il discusses . . .
three ways to separate long and short distance physics witfj€r€£aco is the renormalized, continuum QCD Lagrang-
(continuum effective field theories. The first is Symanzik’s lan. We focus on the quarks, so for our purposes
description of lattice spacing effects; we also discuss its _
breakdown whemga+1. The second is the HQET descrip- Laocp=—a(D+my)q. 2.3
tion of heavy quarks, applied to continuum QCD. The third
is the HQET description of heavy quarks on the lattice,Lattice artifacts are described by higher-dimension operators,
which applies whemg> A cp, for all mpa. In particular,
we obtain a definition of the matching factors for the vector £,=aK Faa FArg+ .- (2.4
and axial-vector heavy-light currents. Section Il also shows 7 - ’
how the HQET matching procedure is related to the Syman-

zik procedure in the regime where both apply. Then, thewherea is the lattice spacing anl . is a short-distance

Fermilab action is reviewed in Sec. lll, and in Sec. IV we coefficient that depends on details of the lattice acf@j

present one-loop results for the matching factors. Some co The lattice artifacts inC, can be treated as a perturbation. In

cluding remarks are made in Sec. V. Three Appendixes co r%_h|s way a series can be developed, with matrix elements in

tain details of the one-loop calculation, including an outline he (cor.mnu.urr) eigenstates OLqcp. E_quat|on(2.2) omits

of a method to obtain compact expressions, and explicit redimension-five operators of the formR(D+mg)q or g

sults for the one-loop Feynman integrands for the renormal¢— D +my)Rq, for arbitraryR, which make no contribution

ization factors with the full Fermilab action. to on-shell matrix elements, owing to the equations of mo-
Instead of printing tables of the numerical results in Section implied by Eq.(2.3).

‘CSym: £QCD+ £| y (22)
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similar way. Consider, for example, the flavor-changing tran- E%(p)=mi+ —p?+0(p*a?), (211

The vector and axial vector currents can be described in a m,
sition s—u. Then one may writ¢9]

where, for the Wilson and SW actions,

VEEZ,VE—aKyd uotst - (2.9
B mi%la=In(1+mya), (2.12
ALEZ AP+ aKpad Ui yss+ - -, (2.6
i 1 2 Lt 2.1
where - mPla mea(2+moa) ' 1+mea’ (2.13
VE=uiyts, (2.7

andmy is the bare lattice mass. Generalizations valid at ev-
2.9 ery order in perturbation theory also have been derj4ddl

In a similar vein, the spatial and temporal components of the
are the vector and axial vector currents in QCD. Furtheurrents no longer take the same matching coefficients, as
dimension-four operators are omitted, because they are lineghown by explicit one-loop calculations1,12.
combinations of those listed and others that vanish by the The energy-momentum relation in E@.11) is obtained
equations of motion. Like the terms of dimension five andfor pa<1 butmga+1. It can be described by modifying the
higher in £,, the dimension-four currents can be treated agtandard LE to
perturbations. Matrix elements @f,Vf;, andZ,Af;; then give
those of contin_uum QCD, at I_east in the linait-0. Lo —E< vaD 4+ /ﬂy_ D+m,

The short-distance coefficientd.-, K;, and Z; (J m,

=V,A)—are, in general, functions of the gauge coupling
and the quark masseén lattice unit3, and they depend thatis, temporal and spatial directions must be treated asym-
on the renormalization scheme of the £EFor mqa<1 metrica”y in the dimension-four Lagrangian, and also in the
(q=u,d,s), it is consistent and satisfactory to replacg. ¢ higher-dimension termg . From the tree-level formulas,
and K with their values am,a=0, and to replace th&,  Egs.(2.12 and(2.13,
with the first two terms of the Taylor expansion around
m,a=0. For example, with Wilson fermiongl7,16 and M 2 2.2 1 33
conventional bilinegrs for the lattice curre%lts, gne finds m_2_1_§mla Famate (219
KP'=K['=0, and

AMEE 'y'u")/SS,

q+L/, (219

S0 one sees that the deviation from the standard description

KOL=1(1-cgy) +0O(ma), (2.9 is of order (na)2. [At the one-loop ordef31], and at every
order ing?, Eq.(2.15 still has no term linear inma.] One
Z{f’] :Zf] =1+3%(m,+mga+0(m?a?), (2.10 can arrive at Eq92.14) and(2.15 also by starting with Eq.

(2.2), including higher-dimension terms, and eliminating
where the superscript{0]” denotes the tree level, ancky y4D3 andDj, etc., by applying the equations of motion.
is the clover coupling of the SW actidii6] (cf. Sec. Il). In any case, deviations ah;/m,—and similar ratios—
Moreover, in the hands of thAlpha Collaboration[9,10|,  from 1 are present in lattice calculations. With the Wilson or
Egs.(2.1)—(2.6) are the foundation of a non-perturbative pro- SW actions + m, /m,, for example, is 10% or greater for
cedure for adjusting(,..r, Ky, andK, to be of orderaM,, m;a>0.6. Although this numerical estimate is made at the
whereM , is a(light) hadronic mass scale, and also for com-tree level, it is implausible that radiative corrections or
puting Z, and Z, non-perturbatively(through ordeMa).  bound-state effects could wash the error away. In summary,
Then all lattice artifacts in the mass spectrum, decay conthe description of Eqs(2.2—(2.6) is no longer accurate
stants, and form factors are of orcs. whenmpa«1.
For a heavy flavoR), however, it is not practical to keep There are several possible remedies. One is to do numeri-
mpa small enough so that this program straightforwardlycal calculations witha so small that, even for the quark,
applies. Recent work that uses the full{a)-improved ac- mpa<1. Despite the exponential growth in computer power,
tion and currents has chosen the heavy-quark mgssto  this remedy will not be available for many years. Another
be as large as 0.7 or so. Thumda)z is not smallt and one  remedy is to add a parameter to the lattice action, which can
should check whether contributions of ordemda)2 are un-  be tuned to set; =m, [5]. An example of this is an action
der control. Indeed, if one keeps the full mass dependence with two hopping parameters. Then, the continuum descrip-
the coefficients, one finds that the simple description of Egstion can again take the form in ER.2), starting with the
(2.2—(2.6) breaks down. The relation between energy andcontinuumLqcp, although it is still useful to describe the
momentum becom€$,31] higher-dimension terms asymmetrically. A third remedy is to
realize that it is thedescription rather than the underlying

lattice gauge theory, that has broken down. Since lattice

'Also, the lowest chosen values of, are around 1 GeV, which gauge theory with Wilson fermions has a well-behaved
may be too small to be considered “heavy.” heavy-quark limit[5], it is possible to use heavy-quark ef-
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fective theory(HQET) or NRQCD to describe short-distance For HQET L ® contains terms of dimension+s. Note that
effects, including the lattice artifacts of the heavy quigtk  the ultraviolet regulator and renormalization scheme of the
This last remedy is explained in detail in Sec. Il C, where wetwo sides of Eq(2.18 need not be the same, although di-

show also how all three strategies are connected. mensional regularization and the modified minimal subtrac-
tion (MS) scheme are usually used for both.
B. HQET description of QCD For this paper it is enough to consider the first two terms,

The breakdown of the standard Symanzik description of6 and L. The leading, dimension-four term is

cutoff effects for Wilson fermions arises because the kine- )T

matics of heavy hadron decays single out a vector, namely, L=h,(iv-D—m)h,. (2.20

the heavy hadron velocity. But, since the heavy-quark mass . ) ) .

is also much larger than the spatial momenta of the problem! he choice ofu is Spmewhat(o(':)trb|trary. Ib is close to the
the dynamics simplify. In continuum QCD, this has led to theNeavy quark's velocitf,then£ () is a good starting point for
development of the effective field theories HQEZB,27,34— the heavy-quark expansion, which treats the higher-
36] and NRQCD[3,25]. These two effective theories are dlmen5|on operators as small. The most practical choice is
useful for generating an expansion ¥mg . They share a the velocity of the had(r)on containing the heavy quark.
common effective Lagrangian, but the powerpfmg as- The mass term inc© is of_ten omitted. By heavy-quark
signed to any given operator is not necessarily the same. [fymmetry, it has an effect neither on bound-state wave func-
HQET the power can be deduced immediately from the dilions nor, consequently, on matrix elements.. It does affect the
mension, whereas in NRQCD it is deduced by counting pow!N@ss spectrum, but only additively. Including the mass ob-

ers of the relative velocity of th@Q system. The discussion scures the heavy-quark flavor symmetry, but only slightly

S . ) . [4]. When the mass term is included, higher-dimension op-
in this paper will follow the counting of HQET, but the logic N )
could be repeated with the counting of NRQCD. erators are constructed with#=D*—imy* [32]. To de

Our aim is to show, for the case of heavy-light currents,scnbe on-shell matrix elements one may omit operators that

: anish by the equation of motion;iv-Dh,=0, derived
how to use HQET to extend the standard Symanzik progra . v o .
into the region wherenga is no longer small. This program rOT Eq.(2.20. In |c;rac:|c§, tfherrl;e)fgriabh;gher;idlmpegszl)og op-
was started in Ref4], building on Ref[5]. The formalism erators are constructed fronDy=DY and [D#D’]

holds for allmpa, but, like the usual HQET, it requires =[D*D"]=F"". .
Q UL o usu Q L requi The dimension-five interactions are
Mo>p,Aqcp- (2.1

LWV =C,0,+Cx05, (2.21)
First, in this subsection, we recall the HQET description of
continuum QCD, paralleling the discussion in Sec. Il A.whereC, andCz are short-distance coefficients, and
Then, in Sec. Il C, we explain what changes are needed to
describe the cutoff effects of lattice NRQCD and of lattice 02=Ethv, (2.22
gauge theory with Wilson fermions.

The HQET conventions are the same as those given Sec.
[l of Ref. [4]. The velocity needed to construct HQETuis
The fourth Euclidean component,=iv°, so in the rest
framev=(i,0). The metric is taken to be diag(1,1,1,1),
with the upper (lower) sign for Euclidean(Minkowski)
spacetime. In either case?= —1. The heavy quark field is
calledh, , and it satisfies the constraiff1—i#)h,=h,, or

Op=h,s,5B%%h,, (2.23

with s, 5= —i0,4/2 andB*#= 5% plF~".

In EQ. (2.20 one should think of the quark massas a
short-distance coefficient. By reparametrization invariance
[37], the same mass appears in the denominator of the kinetic
energyC,O,, namely,

h,=ih,, h,g=ih,. (2.17
. . Cr=5—. (2.29
Physically Eq.(2.17) means thah, describes only quarks, 2m
but not anti-quarks. The tensef, = & +v*v, projects onto

orthogonal tov is p¥= 5“p’=p+v*(v-p); in the rest mal subtraction in dimensional regularization, thars the
v ’

frame, these are the spatial components. (perturbative pole mass. With other ultraviolet regulators,

HQET describes the dynamics of heavy-light bound state{€ operator and the mass could becomeu-dependent.
with an effective Lagrangian built from, . So, for these Even in mass-independent schemes, the chromomagnetic op-
states, one can say erator Oz depends on the renormalization point of the

HQET, and that dependence is canceled by

Loco™ LHoET: (2.18
where 2In NRQCD applications the relative velocity between the heavy
quark and heavy anti-quark should not be confused with the veloc-
Luger=LO+ LW+ @4 ... (2.19 ity v introduced here.
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Z5(p) 2C
L;m : (2.29 C, =1+ j@”';[yhln(mzluz)—ﬂ, (2.39

L

Cplp)=

with 2m appearing so thaty is unity at the tree level. where the anomalous dimensiony,=3/2. The

The description of electrqweak flavor-changing Qperatoréx-independent part o, andC, given here assumes that
proceeds along the same lines. The flavor-changing vect F1 : . I . .
the axial current is renormalized in a chirally symmetric way

current for ab— q transition, defined to be”‘:a v*b as in - : .
Eq. (2.7, is described in HOET by [38]. The coefficients of the dimension-four currents are

1
6 (0] _ -
_ _ Biil=—, i=2, (2.36
VﬂiCV”v“qtherLqiyfhv—zl BviQit -, Toam
“
(226 B0, i=3, (239

whereh,, is the HQET field, which satisfies ER.19 and
whose dynamics are given b§oer. The dimension-four
operators are

at the tree level, but aBj; become non-trivial when radia-
tive corrections are included.

C. HQET description of lattice gauge theory

Qf,=—v*gb h,, (2.27
HQET provides a systematic way to separate the short
Q%:a YD, h,, (2.29 distance Ith from the scale’\lQ_CD in heavy-light matrix gle-
ments, as long as the conditi¢®.16) holds. The formalism
_ can also be applied to lattice gauge theory, again as long as
Q{s;=qiD%h,, (2.29  condition(2.16) holds(andpa<1). When lattice NRQCD is
used for heavy-light systems, this is becau§gyr is just
o +Uﬂaﬂg h (2.30 the Symanzik LE for lattice NRQCD. When Wilson fermi-
va v ons are used for heavy quarks, one may also apply HQET,
. because they have the same particle content and heavy-quark
Qys=qb,iyth,, (2.3)  symmetries[4]. In both cases bilinears of lattice fermions
fields are introduced to approximate the continuum QCD
Q%=a|5fhv- (2.32) currents. One field corresponds to the light quark, and the

other to the heavy quark. An explicit construction, through

Further dimension-four operators are again omitted, becaug¥der 1M, is in Ref.[29] for lattice NRQCD, and a similar

they are linear combinations of those listed and other onstruction for Wilson fermions is in Sec. lll. Lattice arti-
that vanish by the equations of motion. For example,aCtS stemming fr_om th_e light quark can be described as in
Sec. Il A, but lattice artifacts of the heavy quark should be

q(iv-D)o*h,=q(D, —D)v*h,= Q4 —mev“ah,, where | mned into the HQET short-distance coefficients. Some of

the Dirac .equation is used for t_h_e last step. the operators needed to describe heavy-quark discretization
The axial vect_or.currele"qu y*vsb has a completely effects do not appear in the usual HQET description of con-
analogous description, tinuum QCD. For example, the dimension-seven operator
_ _ =,h,D%h, (written here in the rest frameppears inC ® to
A#=Cp qi 71‘75hv—CA”v”CI75hU describe the breaking of rotational invariance on the lattice.

Similarly, at and beyond dimension five there are HQET cur-
6 rent operators to describe violations of rotational symmetry
_E BaiQhi+ -, (2.33 in the lattice currents. Because of the high dimension, these
i=1 effects lie beyond the scope of this paper, which concentrates
on operators of leading and next-to-leading dimension.
where each operata® 4; is obtained fromQ{;; by replacing In this way, the preceding description of continuum QCD
awith —575_ can be repeated for lattice gauge theory with the same logic
The short-distance coefficients of HQET depend on theéand structure. Instead of ER.1), one introduces a relation
heavy-quark mass, as well asu/m andmg/m, whereu is  like Eq. (2.18),
the the renormalization scale ang, is the light quark mass. N
They are not explicitly needed in this paper, but it may be Liar= LreT (2.38

instructive to give the coefficients of the dimension-three ) ) ) i
terms through one-loop order, with,=0 (J=V,A) [27]: where L, is a lattice Lagrangian for NRQCD or Wilson
a quarks, andCyqet is an HQET Lagrangian with the same

2c operators as in Eq$2.20 and (2.21), but modified coeffi-
C,=1+ u[yhm(mz/,uz)_z], (2.34  cients. In the dimension-four HQET Lagrangiai{®, one
I 6m? must now replacen with the heavy quark rest mass;. The
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other coefficients will be denote@?®. In particular, in£(®  but there are two important changes from E226). First,

the coefficient of the kinetic energy becomes the light quarkgand gluong are now also on the lattice, so
they are described by their usual Symanzik4s= Second,
C'a‘ 1 (2.39 the short-distance coefficients of HQET are modified, be-
2m,’ ' cause the lattice modifies the dynamics at short distances.

The coefﬁments(:"Slt 'at, andB'% now depend on the lat-

If operator insertions o), continue to be defined by dimen- ;¢ spacing, i.e., onma, in addition tom, x/m, andm, /m.

sional regularization with minimal subtraction, then both the 5 heavy-light lattice axial vector current has an agamgous

rest massn; and the kinetic mass, generalize the pertur- description.

t_Jative pole mass. Like the usqal pole mass, they are proper- On the other hand, in Eq€2.26 and (2.40 the HQET

:Ir?:yo;rt?ngg?elg ;ﬁﬁg‘;ﬁggﬁ‘;?ﬁg;ig;?gggﬂ@?géﬁgg operators are the same. As a rule, the ultraviolet regulator of
X an effective theory does not have to be the same as that of

tice breaks LorentZor Euclidean invariance, so reparam- th nderlying theory(The standard Symanzik program
etrization invariance no longer requires to be the same as € underlying heory{the standal yma progra
works this way) Thus, when describing lattice gauge theory

m;. ; .
Similarly, a heavy-light lattic6axial) vector currentV; one 1s free tq regulate HQET just as one would when de-
y Y9 « ) lat scribing continuum QCD. Moreover, since EqgR.27)—

“ .
(Afa) can be described by (2.32 give a complete set of dimension-four HQET currents,

the coefficients.?'eit ;. andB' contain short-distance effects

~=c! [ [ .
Via™ \Zf v*gh, +Cy' diyh, _2 BUiQi+ - - (240 from both the light and the heavy sectors.

By comparing the HQET descriptions of lattice and con-

6 tinuum QCD, one can see how lattice matrix elements differ

AL=C ',i‘tqwL vsh, —CA‘| qush —E B'athIJr from their continuum counterparts. The continuum matrix

element ofv - V, for example, is

(2.41)

<L|v ’ Vl B> - CVu<L|5hU| B£O)> - Bv1<|—|U : Qv1| B£O)> - Bv4<|—|U : Qv4| B£O)> - C2CV\J d4X<L|T OZ(X)ahU| B£0)>*

—CiCy, f d*x(L|T O5(x)gh,|BO)* + O(AZm?), (2.42

where L is any light hadronic state, including the vacuu(ithe starredT product is defined in Refl4]; this detail is
unimportant here.On the left-hand sid® denotes a-flavored hadron, and on the right-hand SB@) denotes the corre-
sponding eigenstate of the leading effective Lagrandgl&h. Similarly, the lattice matrix element [g}]

(Llo-ViadB) = = Cy(L[ah, |B{”) — BIKL|v- Qua|B”) ~ BUKLIv - QualB”) — CZCY! f d*x(L|TO,(x)qh, [B”)*

'a‘cﬁ f d*x(L| TOx(x)gh,|B®)* — (,,Fc'vj f d*x(L| T qi eFq(x)gh,|B{?)* + O(A2a%b(ma)).

(2.43
|

Compared to Eq(2.42, the short-distance coefficients are C

e . J
modified to depend oma, there is an extra term from the Z,= 1 (2.44)
Symanzik LEC of the light quark, and the next power cor- | C'j“t
rections can, in general, be multiplied by(lzounded func-
tion of ma. The matrix elements on the right-hand sides are, C,
however, identical, because in both cases they are defined Z, =—, (2.45
with £(© describing the heavy quark anthcp describing + C'Ja:

the light quark(and gluong

Similar equations hold for matrix elements ®f and and subtracts the result from the continuum equations, one
V,at, and for the axial vector current. If one multiplies the finds that the difference can be traced solely to the mismatch
equations for the lattice matrix elements with of the short-distance coefficients, or
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[Eg. (2.41)]. One also must match the tensor and pseudo-

lattice . (2.41)].
w scalar bilinears to HQET at the dimension-three level,
7 v Vi oM

qW“ b=C+ 7la7lﬁq'Cfaﬁhv_CT,Q(U’LI yi—v"iyHh,,

C/Clat HQET
Y /
QCD

FIG. 1. Diagram illustrating how the matching facta&!, C

andZ=C/C" match lattice gauge theory and QCD to HQET, and finds that

to each other.
8C=Cl-¢;, (2.46
8Byi=Z,B5 - By, (2.47

where the normalization facto areZJH fori=1, 4, and
Z; for i=2356. In Egs.(2.46 and (2.47) a picture
emerges, wherdneavy-quark lattice artifacts are isolated
into 6C; and 6B;;. Furthermore, the analysis presented here
makes no explicit reference to any method for computing the
short-distance coefficients, so it applies at every order in per-
turbation theory (in g?) and, presumably, at a non-
perturbative level as well.

The matching factorZJ‘ andZJL play the following role,

sketched in Fig. 1. In each case, the denominator convertsfeom matching the vector current, and
lattice-regulated scheme to a renormalized HQET scheme,

and the numerator converts the latter to a renormalized-
tinuum) QCD scheme. As long as the same HQET scheme is
used, HQET drops out of the calculation ﬁﬁH andZ; .

Moreover, changes in continuum renormalization conven-
tions modify only the numerator, and changes in the lattice
action or currents modify only the denominator. In a similar

way, dependence on the HQET renormalization scheme
drops out when computingC; and éBj; .

One can derive a connection between the matching coef-

ficients of the HQET and the Symanzik descriptions when

ma<1 andm>p, so that both formalisms apply. With the fom matching the axial vector current. Of course, these re-
Lagrangian, one applies HQET to E8.2)-(2.4) and iden- Iations hold only when describing the same lattice currents

V£, and AL, and then only to ordea?. Considering similar
relations for the whole tower of higher-dimension operators,
one sees

tifies the short-distance coefficients with, , ', andCIat
Then one finds,

myp,=my+0(a?), (2.48

My, =my+0(a?), (2.49

lat__
zg=25—4muaK, C, ¢,

(2.50

qi ysb=Cpqi ysh, ,

with short-distance coefficient€
level, CO]—C[F?]zl. After carrying out these steps, one

Zy =2y +(mg+my)ak,Cr /Cy ,
ZyBYi=Byi+aZK\Cr_,
ZVHB""“ Byi+az,KyCr,, =26,
zVHB'at Bys—aZK\Cr ,
ZVHBl\%: Bva—aZyK\Cr_,

vs=Bys—aZ/Ky( Cr —

Zp, —zA1+(mq+mb)aKAcp/cAH,
Zy BRi=Bai+0(a?),
Zy BRi=Bai+aZaKaCp,

=Bag—aZpKaCp,

lim C&'=C,),

PHYSICAL REVIEW D65 094513

(2.52
(2.53

. At the tree

(2.59
(2.595
(2.56
(2.57
(2.58
(2.59
(2.60

(2.6
(2.62
(2.63
(2.69
(2.69

(2.69

(2.67

where the short-distance coefficiedt. appears in the re- Equations(2.55—(2.60 and (2.62—(2.69 illustrate for the

lation next-to-leading dimension operators how the limit is accel-

erated for standar®(a) improvement, withK ., Ky, and

bio*"F ,,b=—-2C, Op. (2.5 KA themselves of ordea.
Equations(2.54—(2.65 show that HQET matching con-
At the tree levelC;" [0l ==1. For the[axial] vector current, one nects smoothly to Symanzik matching in the limit where
inserts Eq.(2.26 [Eq (2.33] into Eq. (2.5 [Eq. (2.6)], ne-  both apply. HQET matching is, therefore, a natural and at-

glects terms of ordem?a?, and compares with Eq2.40 tractive extension into the more practical region wheris

094513-7
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not very small. Continuum QCD still can be approximated 1 2 r
well, but now order by order in the heavy-quark expansion. CRtol = >
The remainder of this paper pursues this program in per-
turbation theory. One-loop corrections to the rest nags
and the kinetic mass, have been considered already in
Ref. [31]. The one-loop correction t6z would require a
generalization of the calculation &f,,. [33] to incorporate
the full mass dependence of the quark-gluon vertex. In this,
paper we focus on heavy-light currents. We construct Iattici'v
currents suitable for matching through ordemg/in the :
heavy quark expansion. We then calculate the matching fac,elddlng
tors ZJ” and Z; at the one-loop level, which are needed to i o
fix the overall normalization of the heavy-light currents. Cur- Lg=7acslP(X) 2 Bia(X) ¢(X), (3.3
rents suitable for heavy-to-heavy transitidns>c are con-
sidered in a companion papj].

omiPla mMea(2+mea)  2(1+mea)’ .2

At higher orders in perturbation theorg, remains(for v
=0) the kinetic mass of the quark, which is expressed in
terms of the self-energy in Ref31].

Ly has cutoff artifacts, which are described by dimension-
e and -higher operators ifis,, (if mga<1) or Lyger (if
mMo>Aqcp). The dimension-five effect can be reduced by

Le=3acelp(X) @ Eig(X) h(x), (3.4

and suitably adjusting afg andcg . The lattice chromomag-
netic and chromoelectric fieldB,,; andE,,, are those given

In this section our aim is to define heavy-light currentsin Ref.[5]. _
with Wilson fermions that are suited to the HQET matching By matching the gluon-quark vertex, one finds
formalism. Because Wilson fermions have the right particle 5
content and obey the heavy-quark symmetries, the descrip- lat{0] _ 1 _ { n ce{
tive part of the formalism applies in any case. To use HQET B 2miPla mMoa(2+mea)  2(1+mpa)
to match lattice gauge theory to continuum QCD, however,
we would like to ensure thaéC; and 6Bj; [cf. Eqs.(2.46  Higher-order corrections t6'a' have not been obtained. By
and(247)] remain bounded in the infinite-mass limit. Good Comparing Eq3(32) and (3.5 one sees, however, thah

behavior is attained by mimicking the structure of Egs.—r_+0(g?) is needed to adjust to its continuum coun-
(2.27)—(2.32, so that improvement terms are guaranteed tQerpartC,=z,/2m,.

remain small. Then we would like to adjust free parameters The Eyclidean action iS=—a*s,£(x). Special cases
in the currents so thaiC; and 6B;; (approximately vanish. g6 the Wilson actiorf17], which setsre=¢=1, Cg=Cg

IIl. LATTICE ACTION AND CURRENTS

(3.5

We show how to do so in perturbation theory, obtainB§  —0; and the Sheikholeslami-Wohlert actifs], which sets
at the tree level and, in Sec. 1V, the matching fathbjFand r<={=1, cg=Cg=Cgy. But to remove lattice artifacts for
Z; at the one-loop level. arbitrary masses, the couplings, ¢, cg and cg must be

A suitable lattice Lagrangian was introduced in H&l. It ~ taken to depend omea [5]. Our analytical results for the

is convenient to write the lattice Lagrangialy,=Lo+Lg  integrands of Feynman diagrams, given in Appendix B, are
+ Lg. The first term is for arbitrary choices of these couplings. Indeed, our expres-

sions allow the heavy and light quarks to have different val-
ues of all couplings.
L= — (M~ Mn2) () () — L x Heavy-light currents are defined in an essentially similar
0 (Mo Mocy) $X) () = 2(x) way. For convenience, first define a “rotated” fidl8,5]
X[(1+ ¥4)D g 1ar— (1= ¥4) Dy 1ad (%)

V,=[1+adyy Dial¥q, (3.6
— LX) ¥ Diah(X) + 3rlag () AP w(x). (3.0)

where iy is the field inL, of flavor g, andD,y is again the
symmetric covariant difference operator. Simple bilinears
The mass counterterm,,, is included here so that, by defi- with the right quantum numbers are
nition, my=0 for massless quarks. The covariant difference

operatord; 1, D, andA (S, are defined in Ref5]. They Vo="Vqiy“ ¥y, 3.7
carry the label “lat” to distinguish them from the continuum _
covariant derivatives in Secs. Il A and Il B. The symiols AG=Tqi y*ysWy. (3.9

reserved in this paper for lattice fermion fields. The temporal e ) .

kinetic term is conventionally normalized, but the spatial ki- "€ subscript “0” implies that, as witiC,, some improve-
netic term is multiplied with the coupling. The coupling, ~ Ment is desired. To ensure a good largedimit, one should

is, in the technical sense, redund#8i, but is included to  Pattern the improved current after the right-hand side of Eq.

solve the doubling probleri.7]. (2.40. Thus, we take

For L,y the tree-level relations between its couplings and 6
the coefficients in the,oer are well known. By matching VE=VE—S b Ok 39
the kinetic energy, one findgor v =0) a0 21 viQui 39
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o

Since (continuum QCD'$ C[”!=1 there already is a non-
AGFAS—El bAiQAi s (3.10 trivial matching factor at the tree level relating the lattice and
=

continuum currentszy = Z{ = e M3’

where theb;; are adjustable, and the dimension-four lattice ~ After comparing Eqs.(3.18—(3.19 with Egs. (2.36—
operators are (2.37), one sees that one can tdk&%lzo for all six opera-
_ tors, if d; is adjusted correctly. At the tree level, the way to
QU1=—v"¢qidD | by, (3.1)  adjustd, is to setm{! equal to thetree-leve) heavy-quark
o mass. In the effective Lagrangian there are two quark
Qo= gl YD | jarthy (3.12 masses, the rest mass; and the kinetic massn,. The
former has no effect on matrix elemerignd a trivial, addi-
Q%:Zqinlat%, (3.13  tive effect on the mass spectrimAs discussed above,
hle?vy-quark cutoff effects in matrix elements are reduced if
B— ol D C3'=C,, which means one should identify the continuum
Qua=—0"YaDrad by, (319 quark mass with the kinetic mass. Thus, one should set

mPl=mi” | which is obtained if one adjusts

Q%:%ﬂﬁuaﬂ Yy, (3.19

(316) _5(1+moa_§)_ rsg
M mea(2+mpa) 2(1+mea)’

QGGZEq”jiLIat'ﬂb’

and each lattice operat@?,; is obtained fromQ{; by replac-
ing Jq with _Eq),s_ Lattice quark fields do not satisfy Eq. The same rotation also improves heavy-heavy currents at the
(2.17), sod appears explicitly. In practice, one uses the resfree level.

(3.22

tion for lattice NRQCD has been given by Morningstar andSPatial component of the degenerate-mass, to the heavy-
Shigemitsy 29]. heavy curren{6]. Then the corrections to the heavy-heavy

It is worthwhile to emphasize the difference between Eqscurrent analogous @, andQys would be superfluous, but
(2.40 and(3.9). Equation(2.40 is a general HQET descrip- for unequal masses they are still required.
tion of any heavy-light lattice current. EquatidB.9) is a For equal mass currents it is possible to complijenon-
definition of a specific lattice current, namely the one used irperturbatively for all masses,. One may therefore prefer
this paperand in calculations of g and other hadronic ma- to write [13—15
trix elements. In the same vein, th&y; in Egs. (2.27)—
(2.32 are HQET operators, whereas tg; in Egs.(3.1)- Zyub = \/mpﬂb (3.23
(3.16) are lattice operators. Finally, the coefficie®§' are It [
I/Cﬁi(?#tr?"llljts?fbae rgatjgt'gg fg‘ﬁﬂ&?é‘%ﬁ epend ortife and compute only the fact%m in perturbation theory. To

To illustrate, let us consider the calculation of the coeffi-calculate the pre-factoZ,»v appearing in Eq(3.23, one

: : _ I, _ -
cients B'' at the tree level. One computes on-shell matrixmust have a massive quark in the final state. The definition of

elements such a&|J;,b) and<0|~]|at|ab> in lattice gauge the heavy-heavy matching fac_tor is given in our companion
theory and compares them to the corresponding matrix elg?@per[6], along with a calculation of its one-loop level con-

ments in HQET. Then one finds tribution. We give the results for heavy—ligth’L in Sec. IV.
1. 0] For a light quark, withmga<1, the right hand side of Eq.
C'Jit["]:C'Jaj[O]:e‘(mlq+m1b)a/2, (317  (3.22 vanishes linearly irmya. Therefore, T mg,/my, is
O(mgaz), and the distinction betweemg, and my is neg-
0. 0] 1 ligible. For this reason, and to simplify calculation, we set
B'al0] = g~ (Miq *Mip)a/2 anbB?] . i=2 m,=0. Then Eq.(3.22 impliesd,=0 for the light quark.
m;3
(3.18
IV. ONE-LOOP RESULTS
—(ml® 4 0] .
Bi{0=e (Mq*Mp)a2plR)  j=3 (3.19 In this section we present results for the matching factors
at the one-loop level in perturbation theory. The one-loop
where contributions are known for the Wilson[11l] and
mi%a=In(1+mya) (3.20 Sheikholeslami-WohlefSW) actions[12]. Both these works

omit the rotation term in the currefit8,5], which is needed
to obtain 1Mms correctly. In this section we complete the

and, for our lattice Lagrangian and currents, _ )
work started in Ref[12] and report results with the clover

1 Z(1+mya) term and with the rotation. For comparison we also present
o= —d;. (3.21) our results without the rotation, both with and without the
2m[3 Ja  moa(2+mea) clover term.
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The computer code for generating these results is freely We have calculated the one-loop Feynman diagrams for
available[30]. the action specified in Eq$3.1)—(3.4), with arbitrary my,

The matching factorZ; (J=V|, V., A, andA ) are rg, {, cg, andcg for the incoming heavy quark, ana
simply the ratios of the lattice and continuum radiative cor-=0Q, ri, ¢', cg, andcg for the outgoing light quark. The
rections: needed Feynman rules are in Refl], apart from three new

12+ —12cont rules for the current itself, which are in Appendix A. As
:[ZzhAJzzl 4.1) shown in Appendix B, we have found a simple way to incor-
[ZL2A jz 42t ' porate the rotation into the Dirac algebra. The resulting ana-
lytical expressions are surprisingly compact, and they are
whereZ,, andZ,, are wave-function renormalization factors given explicitly in Appendixes B and C.
of the heavy and light quarks, and the vertex functionis We have evaluated these expressionsrigr {=1 and
the sum of one-particle irreducible three-point diagrams, irce=Cg=Csy. Thus, the numerical results correspond to the
which one point comes from the currehaind the other twvo  SW action €sy=1) and to the Wilson actioncgy=0).
from the external quark states. Figure 2 plots the full mass dependence of the matching

The expression relating, to the lattice self energy, for all factors for the vector currenta) Zy, (b) Zy,, (c) py,, and

masses and gauge couplings, can be found in [Ba}. Its  (d) p, . These numerical results are for the SW action with

dominant mass dependence is rotation(solid lineg and also for the SW and Wilson actions
without the rotation(dotted line$. Figure 3 plots the full
mass dependence of the matching factors for the axial vector

wherem, is the all-orders rest magsf the heavy quark  CUment(@ Za, (b) Za , () pa, and(d) ps . These and the
This mass dependence is not present in the vertex function é@llowing figures are plotted against!a because this vari-
the continuum part of Eq4.1). Consequently, we write able conveniently covers the whole mass range: for small
massm;~m,, and for large mase;a~In mya.
0] - We have carried out several checks on our calculations. In
e M aIZZJF=1+Z gé'ZS'F], (4.3 each case, identical numerical results have been obtained
=t with two or more completely independent programs. The re-
sults for ZJHL agree with those previously obtained, for

Ccsw=0 [11] and forcgy=1, d;=0 [12]. We have also re-

J

Z,ce” ™3, (4.2)

so that thez|)! are only mildly mass dependerta slightly
ggfrfglt]C)Ogveggggtmizounse?h;g %zzinggggﬁjggize@im produced limiting cases, as we briefly discuss below.
' ' _y o P Py} . Forma=0 our calculation reduces to the usual matching
cancels out in a gauge-invariant, all orders way. So, we Writ 5culation for massless quarks. We fitwdth Cp=4/3)
—0.12942386), cgu=1,

—1+ 21 1] 4.4 [1] — ~[1] —
Par 21909% @4 2V =2, —0.1740787), csw=0, 49

This rest of this section is split into two subsections. In —0.1164505). Cew=1
the first, we present our results for the full mass dependence Z§]=Z%]={ ' 05), Csw=1, (4.6)
of Z{t andpljll. In the second, we discuss the related cal- I [ —0.1333685), csw=0,

culation of the Brodsky-Lepage-Mackenzie sagfe In both

cases, we discuss fully a range of checks on our calculationd) &xcellent agreement with previous work fog,=1 [40—

42] and cqy=0 [42-44. (Referenc42] gives precise re-
sults as a polynomial iggy.)
As the mass tends to infinity, these actions and currents all
The combinations of wave-function and vertex renormal-lead, up to an unphysical factor, to the same vertices and
ization inZ; are gauge invariant and ultraviolet and infrared quark propagator—a Wilson line. Perturbative corrections to
finite. For vanishing light quark mass there is a collinearthe vertex functions must respect this universal static limit,
divergence(which can be regulated by an infinitesimally and, therefore, they must tend to a universal valuenfes
small masy but it is common to lattice and continuum func- — <, one expects th& factors for a massive quark to ap-
tions. In the desired rati¢4.1), the divergence cancels, and proach those for the static limit, namely
the result is independent of the scheme for regulating the
collinear singularity. For largena a remnant of this cancel- C
lation appears. The lattice theory approaches its static limit, z= Fz[yhln(mza)er Z[H, (4.7
where its ultraviolet behavior is non-logarithmic. But the re- 6
gion of momentuma'<q<m in the continuum diagrams
generates logarithms. At the one-loop level one must findvhere the constarztB” depends on the curredtand oncgyy
3In(ma), with the same anomalous dimension as in Eqgs(of the light quark. Since Infn,a)~mya in this region one
(2.34 and (2.35. At higher loops the usual polynomial in expects the linear behavior seen in Figs. 2 and 3. The static
In(ma) will arise. limit is also shown in Figs. 2 and 3 with

A. M and pi¥
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0.05F

-~ static g, = 0

0.25 __ [ K L. rl2 = l'l(moll)
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020F 000w =0
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-- static gy, = 0 o
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0.15 :__ [ NP (ll = (Illmﬂu) ]
' o0y =1d=0 ]
0.10F OO4%w*= 0 1
— static gy, =1

-~ static ¢ = 0 =

—0.05F
-0.10f

'.
-0.15F

~0,20-—ber

0.25 gy, =1 (I1 =d,omga) _:
oo, =1.d=0 ]
0.20F ©O0%w = [t} 1
—_ statrc =1 :
0.15 - static ¢, = 0 3

FIG. 2. Full mass dependence of the one-loop coefficients of the matching factors of the vector(@u&ht (b) Z{,lj , (© p{}H] , and

(d) p{/lj Filled (open symbols denote the SWWWilson) action; solid(dotted lines connecting squardsircles indicate the rotation is

included (omitted.

~10.248, coy=1,

S
VH —7929, CSW:O,
_8248, CSW:l,

Al
| -5.929, coy=0,
—14.414, coy=1,

Sl
Vi | —=20.379, cgw=0,
_16414, CSW:]‘!

A

4.9

4.9

(4.10

(4.1

Equations (2.54—(2.65 allow us to check the small
(heavy-quark mass limit against the work of Sint and Weisz
[46]. In our conventions the matching factats andZ, are
functions of gauge coupling and quark mass. Thus,

(4.12

Zy(Mga,mya) = Zy[ 1+ 3 (my+my)aby ],

Za(mga,mpa) =Zx[ 1+ 3(my+my)aba], (4.13
where, on the right-hand side, we adopt the notation of Refs.
[9,10,44, and theZ's andb’s do not depend on mass. Here
only the mass dependence is displayed; all quantities depend
also on the gauge coupling.

We have obtained these constants ourselves. They agree with |t we omit the rotation, our currents and those considered
previous(less preciseresults forcgy=1 [45] and cgy=0

[27]. As one can see from looking at Figs. 2 and 3, the stati¢erms, Thus, in one-loop calculations the slopes of our mass-

result is a good approximation fm[1°]a>5 or, equivalently,

mpa~ mya>150.

by Sint and Weisz coincide, apart from one-loop counter-

dependent matching factors must agree with them. Setting
my=0, and using Eqs2.54—(2.69),

Some of the points at the highest masses have large error

and lie nearly oner off the curve. The origin of this behav- [1]

. . . . . . (92\/

ior is that the lattice and continuum integrals are dominated | —1pl] (4.14

by different momenta: the continuum integral is dominated amy, 2V

by the regionk~m,>a"!, whereas the lattice integral is

dominated by the regiok~a 1. This mass region is not of gz

much practical interest, since here one has an essentially L 1plil gl (4.15
. am 2 MV Vv o .

static quark. 1b
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FIG. 3. Full mass dependence of the one-loop coefficients of the matching factors of the axial vector(apii{%ht (b) Z[lj , (0 pkl”] ,
and (d) pglj )

ozIM KEN=Crx0.005680611)=0.007574115) (4.21)
| — 1yl _ g1l (4.16
amlb 2MA A .
VS
[1]
(?ZAL_l 1] 417
g, 2PA : CrXx0.0056802) [46],

To extract these slopes, we form a combination of integrand@hich agrees perfectly with Ref46]. These results have

with three differentsmal) values ofmya, yieldingbi'l and 4154 been checked by Taniguchi and Ukad]. We also
KM up to O(mya)?. In this way we find(for cgy=1) obtain

b{H=Crx0.11492910)=0.15323914) (4.18
b1 —bli! = Crx0.000783811) = 0.001044416)
o (4.22

Crx0.114924) [46], by subtracting the integrands first, and then integrating. In

taking the difference, large contributions from the self energy
cancel, but, even so, the near equalitplf andb! is a bit
astonishing. Comparing the slopes of Fig&) 2nd 3b) one
sees thab{! — bl for the Wilson action is not so small.
Cex0.114144) [46], Although these checks are reassuring, the main result of
this section is to obtain the full mass dependence of the
K{,l]=CF><0.01224996)=0.0163327) (4.20 matching factors. The results at intermediate mass, with
m;a<3 or, equivalentlym,a<1.5, are needed for realistic
VS calculations ofB meson properties. This region is neither
particularly close to the massless limit, nor to the logarithmic
CegX0.01225%1) [46], behavior of the static limit.

blH=Crx0.11414210)=0.15218914) (4.19

VS
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FIG. 4. Full mass dependence of the estimaggg* terms of the matching factors of the vector curr@t* z{H , (b) *Z{}1, (c) *plH,
. 1] I i I
and(d) *py'.

B. BLM scalesq* V(q)=—Crg2(q)/q%. Equation(4.23 shows that the defi-
It is well-known that perturbation theory in the bare cou- Nitions of g* in Refs.[48] and [49] are identical in thev
pling g3(1/a) converges poorly. Therefore, we calculate theSCheme. , . , ,
ingredients needed to determine the Brodsky-Lepage- Fpr our matchmg facztors it is straightforward to weight
Mackenzie(BLM) scale[48,49. For a coupling in schemg ~ the integrands with Irig)” to obtain
we denote the BLM expansion paramegé(qg). The BLM
scaleqg is given by

(4.29

because the integration ovefk has no divergences. The
denominators are the one-loop coefficients given above, and
the numerators are presented now.

Figure 4 plots the full mass dependence of the numerators

for the vector current(a) *Z{}H], (b) *Z{}j, (© * p{}H], and

wherekiis the gluon momentum, arfik) ii}he integrand of  (q) * o[} . As before, these numerical results are for the SW
th(%quanuty of interest, e.gfd"k f(k)=Z;" . The constanF action with rotation(solid lineg and also for the SW and
bg” is the Bo-dependent part Of“ the one-lo?p CONVersIoNyjilson actions without the rotatiofdotted lines. Figure 5
from the arbitrary schem8to the “V scheme,” namely plots the full mass dependence of the numerator of £85

for the axial vector currenta) *Z%H], (b) *ZlAlj, (©) *pklu],
and (d) *p%ﬂ. We have carried out several checks on our
calculations. Once again, identical numerical results have
been obtained with two or more completely independent pro-
grams. Also, atmya=0 we reproduce the results, for the
where forn; light quarksBo=11—2n/3, andb’ is inde-  Wilson action, of Ref[44].
pendent ofn¢. The V-scheme coupling?(q) is defined so For *Z[* and * p[Y the limit of largema also has dis-
that the Fourier transform of the heavy-quark potential readsinctive features. In that case

f d*kIn(ka)? f(ka)

. (4.23

In(q8a)?=—b+

f d*k f(ka)

(4m)?2  (4m)?
0ia) gi(q)

+BobP+bQ+0(g?),  (4.24
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FIG. 5. Full mass dependence of the estimasggd* terms of the matching factors of the axial vector curr@nt* ZE\lH] , (b) *ZEE , (©

*pl), and(d) * ol

Cr Z,=2,1uo, (4.27)

*7[1]
Y 1672

[3vnIn?(M,a)?+ yhin(mya)?+ * z;],

(4.26 where the mean linkuy is any tadpole-dominated short-
distance quantity, the arguments of Rdf9] suggest that the

perturbative series faf; has smaller coefficients. In analogy

) : .
wherew|, is related to the two-loop anomalous dimension. Awith Eq. (4.1) we write

similar expression holds fot pi!!, with a different constant.
Note that—in both cases—the one-loop anomalous dimen- o
sion appears multiplying fiim,a). The growth expected e—ﬁn[f]a/zz :1+2 g2zl (4.28
from Eq. (4.26 is seen in Figs. 4 and 5. As a consequence, J sy 0T '
one findsg*ac«m,a as ma—o. Square root behavior is
typical of cases with an anomalous dimension. where

For theZ factors, the resulting values faf*a are rela-
tiyely constant in the “low mass” regiong*a~2.7-2.9. ﬁq[l‘)]a:In[leroa/uo] (4.29
Figure 6 shows hovg* a depends on the heavy quark mass
in the regionm;a<2, which is the one most relevant to is the tadpole-improved rest mass. Then
calculations of decay constants and form factors. At larger '
masse<Z[* goes through zero, at which point the original 1
BLM prescription breaks down. A prescription fgf in this ’251] 2251] _Z
case is given in Ref50]. For the Wilson action the zero in 2
Z{,l] is at a smaller than usual magsee Fig. 2a)], which

I [1] [1]
explains its behavior for the BLM*a seen in Fig. €). For ~ and becaus&;”<0 andug"<0 one sees that the one-loop
the p factors the denominatgri! is small over most of the coefficients are reduced. Similarly, for computing the BLM

ufH, (4.30

+—
! 1+mgya

interesting region, as seen in Figgc2-(d) and 3c)—(d). scale
It is also interesting to see hogf changes under tadpole
improvement. If one introduces the tadpole-improved match- *S[1] _ % 7[1] 1 1 *[1]
: ZM =z —{14+ — =l (4.3)
ing factors 2 1+mpa
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FIG. 6. Full mass dependence of the BLM scagfg for (a) ZVH’ (b) Zy (c) ZA”, and(d) Zp, .

To illustrate, we take, from the average plaquette, s§!  applied to lattice NRQCD, although here it is applied to Wil-
=—C(/16 and*u%”: —0.2040491). Figure 7 shows that, SON fermions. In the latter case, HQET matching agrees with
as a ruleg* is significantly reduced, which means that tad- Symanzik matching whema<1. In this way, HQET match-
pole improvement has removed some of the most ultraviolef’d 1S @ natural and attractive extension into the regime
contributions. With a lower scale, the couplig@(q*) be- ma%1, which is needed for heavy-quark phenomenology.

. . . Our one-loop results for the SW action are of immediate
comes a bit larger with tadpole improvement. EWH and value for lattice calculations dfy and of form factors for the

Zp . however, the denominatcz!!! already vanishes for semi-leptonic decayd— =l v. Indeed, our earlier one-loop
m,a~1.5-2.0, leading to rapid growth in the BLK§¢t for  results[12] (which omitted the “rotation” terms in the cur-
the Wilson action, and a zero in the BLGF for the Sw  'end were used fofg in Refs.[19-23, and our results were
action. One should again defimg in a more robust way used for seml-lep'gonlc form factors in RéL5]. In particu-
[50]. Another choice for the mean field i =8 . It gives & We have obtained the BLM scat’ for the matching

coefficients and BLM scales that lie between the unimproved@ctors: which should reduce the uncertainty of one-loop cal-

and tadpole-improved casfsd]. culations. Similarly, computing part of the normalization fac-
Our method also allows us to obtain the BLM scale for ©°" namely\/ZVﬁ;qZVﬁ)b, non-perturbatively reduces the nor-

the improvement coefficients in thalpha Collaboration’s ~Mmalization uncertainty even furthdd3-15. (The heavy-

program. Then we are in a position to compare BLM pertur_hea.vy normalization faCtCZ\/ﬁ)b is defined in our companion

bation theory with non-perturbative determinations of thesepaper for heavy-heavy currenis].)

coefficients. We will give these results fg and the men- An outstanding problem at this time is the one-loop cal-

tioned comparison in another publicatifs2]. culation of the coefficient8'%" of the dimension-four terms

in the HQET description. A calculation of these coefficients,

and the subsequent adjustment of the paramétgra the

lattice currents, would eliminate uncertainties of order

In this paper we have set up a matching procedure, baseg,A/m and aAa in (future) calculations of heavy-quark
on HQET, for heavy-light currents. It is valid for atha, = matrix elements. The algebra quickly becomes voluminous,
wherem is the heavy quark’s mass aads the lattice spac- making this problem well-suited to automated techniques
ing, and to all orders in the gauge coupling. It could be[53].

V. CONCLUSIONS
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0-gluon=T| 1+id; >, y,sin(p,)|, (A3)
r

1-gluon=got?d,I" y,coq p+ 2k); , (A4)

where momentunp is quark momentum flowing into the
vertex, andk and| are gluon momentum flowing into the

. o ; S
The needed propagators and vertices for quark-gluon ir]\_/ertex. As in Ref[31], the matrices?® are anti-Hermitian,

teractions are given in Rel31]. Here we give the additional € Uﬁ=exp@0taAZ), Zaititic=—Crdk, and 1%t
Feynman rules induced by the rotation term of the heavy  ~ 2
quark. The additional rules are easy to derive by expressing
the covariant difference operator [t

APPENDIX A: FEYNMAN RULES

APPENDIX B: DIRAC ALGEBRA

To compute the vertex function, there are four diagrams to

Dla=[T+,—T-.1/(22), (A1) consider, depicted in Fig. 8: the usual vertex diagi@rith

the rotation insidg Fig. 8a); two diagrams with the gluon

where connected to the incoming rotation, Fighgand(c); and a
tadpole diagram connected to the incoming rotafiosing

TiM:tiﬂ,ZeigoaAutiM,z, (A2) rule (A5)], Fig. 8d). The tadpole diagram, Fig.(@, van-
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(a) (b) () (d)

FIG. 8. Feynman diagrams for calculating the vertex function. ®hen each side of the indicates the rotation.

ishes for zero external three-momentum, becaese k and . l ~ 5
pi=0. IP=di 5| (3-k)L+3(> Krsr}, (83)
For each non-vanishing diagram, Figsa-89, define the '
integral whereS,; =sink,, and the function®, L, andK, are given in
(@b, 2 d'k 1 (ab.) Appendix C. The diagram with a gluon going from the out-
=~ 00Cr (2m)* @IF ' (B1) going leg to the rotation, Fig.(8), is

wherek is the momentum of the gluon in the loop, afq)gl
=2 sin(%kﬂ). Let the incoming massive quark have couplings
mg, r's, ¢, Cg, andcg, and external momentum Similarly,
let the outgoing massless quark have couplings=0, r¢,
{', cg, andcg, and external momentum’. The internal C, ands; is given in Table I. The unbarred functiob

quark lines carry momenturp+k in and p’+k out. The  (parred functionL) is for I'=1y, and y;jvs (T=y; and
integrals | are obtained directly from the loop diagrams. Y4Ys).

Then L The vertex diagram, Fig.(8), is complicated. We find
7®=N®/DD’, with numerator
251] = E (Z[zlh] cont™ Z[Zlh] latt Z[le] cont™ Z[21I] Iat) r r

gl t2\ ’ ’
I%C>=srd1§[<3—%k2n s> Krsf}, (B4)

(=)
where the function®’, L', andK/ are given in Appendix

(=) =)
Nf¥=(=£)(UgR[Uol—srLoR[LoIS) — ¢4 X (BD)
+ 2 (1 con— 1 Hiad) B2
% (Ircont™ Tiat) ©2) The upper sign and unbarred functioflewer sign and
barred functionsare forl'= y, andy; ys (I'=y; and y,ys).

from Eq. (4.1). The relation between the curredtand its The partXy comes from spatial gluon exchange:

Dirac matrixI" is contained in Table I. The expression relat-

ing ZLH  to lattice self-energy functions is in RéB1]. Xp= —sp(3— 2k L RIL]+ $2(3— 2R3 V' R V]S
The most onerous task in evaluating the diagrams is the : 8 * r N

manipulation of the Dirac matrices. A convenient method is O O

to treat each quark line separately, starting from the initial-or +3(V'R[U]-sp L"R[{])Z KrSr2

final-state spinor. Then the spinor, the propagator, and the r

vertices can be written out inX22 block diagonal form, with

Pauli matrices appearing in the blocks. Once the Feynman +%(U’R[V]—SF§’R[L])E Kr'sr2

rules are as complicated as in the present calculation, it is r

easier to manipulate>22 matrices of Pauli matrices than to )

manipulate Dirac matrices. A special advantage of this orga- + %(U’R[U]—srszg’R[g])E K;Kr&r2+ %(1—5%)

nization is that the rotation bracket in E@A3) merely “ro- r

tates” the rest of the leg. We also obtatlj'!,, in this way,

with much less effort than in Ref31]. X
A further advantage is that the vertex corrections can be

expressed compactly. The diagram with a gluon going fro

the incoming leg to the rotation, Fig(l8, is

VIR[VI, (B6)

stz—sg k?s?

Myhere the last term is absent fo, and A, (i.e., whens%
=1). The rotation enters in the “rotated” functions

TABLE I. The factorsy, defined byz=,y,I'y,=sT. R[Uq]=Uo+d; Ly, (B7)

J r Sr R[Lo]=Lo—d;Uy, (B8)
Va Ya -1 — 2

R[U]=U+d,S¢, B9)
A, aye +} [U] 157¢ (
Vi Vi -3 R[{]=¢—d,U, (B10)
A Yi7s +3

R[V]=V+d,L, (B11)
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RIL]=L—d;SV. (812) U=p—efm ik, (CH)

Although the vertex diagram is not easy to write down, thepecqse these combinations appear in the other functions.
rotation modifies it in a fairly simple way, when using the tan

2% 2 Pauli matrix method described above.

We have verified that these expressions are correct by 1 armOiky2_ 1.2 1 2
completely independent calculation with more common Uo=Ue™™ 247cecodzka) S €O
methods for the Dirac algebra. 0] . _
Lo=¢[e*™ ~"%+ Fcecod 3kq) U], (C7)
APPENDIX C: USEFUL FUNCTIONS _
i
In this appendix we list the functions appearing in Appen- V=¢|1+ ECEsin( ky) [+3CgU, (Cy

dix B for the action and currents given in Sec. Ill. First, let

_ 2 i
p=1+mo+ 31k, (C1) L= —qu S Cesin(ky) |+ 3¢5¢ S, (C9)
w' =1+mj+irls' k2. (C2) ) o
. : . . K, =rs—cgcoS(3k,)=(rs—cg)+5cgky, (C10
From now on a prime means to replace incoming couplings
and momenta with corresponding outgoing couplings angng
momenta.
When the quark propagator is rationalized it has the de- U0=Ue’m[10]“k4’2—%gzcEcos(%k4)Sz, (C1)
nominator
— N ()
D=1-2u cogk,+imP) + u?+ 2, (C3 Lo=¢[e ™ *ika24 1o cogik,)U], (C12
wherem{® =In(1+my). _ i _
In this calculation, the heavy quark has zero three- V=§[1— 5 Cesin(ky) |+ 35U, (C13
momentum, so its spinor consists only of upper components.
Depending on the matrik the heavy quark couples either to i
the upper or lower components of the light quark. With the | =— U[l— =cesin(ky) |+ icgl S (C14)
upper components the unbarred functions arise, and with the 2

lower componentgof the light quark the barred functions
P g ght quark The barred functions are obtained from unbarred counter-

arise.
To express the useful functions compactly, it is convenienP@ts by puttingk— —k and mil— —mi%, so there is no
to introduce first need to introduceK,=K,. In the present calculation the
o barred functions arise only for the outgoing massless quark,
U=p—e M Tk (C4  for whichmj=m;1=0.
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Erratum: Application of heavy-quark effective theory to lattice QCD.
I1. Radiative corrections to heavy-light currents
[Phys. Rev. D 65, 094513 (2002)]

Junpei Harada, Shoji Hashimoto, Ken-Ichi Ishikawa, Andreas S. Kronfeld, Tetsuya Onogi, and Norikazu Yamada
(Received 30 December 2004; published 19 January 2005)

DOI: 10.1103/PhysRevD.71.019903 PACS numbers: 12.38.Gc, 13.20.He, 12.15.Hh, 99.10.Cd

In Ref. [1] the numerical values in Egs. (4.9) and (4.10) should read

m_ [ 12248, ey =1,
ZAJ_ [ _9929, Csw — 0, (49)
m _ [ 18414, cqy =1,
2y, [ —24.379, cgy = O, (4.10)

These values are consistent with the asymptotic behavior exhibited in Figs. 2 and 3.
Our calculations in the static limit were described in Ref. [2], which should have been cited at the end of the sentence
following Eq. (4.10).

We thank Matthew Nobes for detecting the error.
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