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Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
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We present a polynomial hybrid Monte Carlo~PHMC! algorithm for lattice QCD with odd numbers of
flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev
polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors.
The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a
new method is developed. Investigating the property of our PHMC algorithm in theNf52 QCD case, we find
that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (163348) with
intermediate quark masses (mPS/mV;0.7–0.8). We test our odd-flavor algorithm through extensive simula-
tions of two-flavor QCD treated as anNf5111 system, and comparing the results with those of the estab-
lished algorithms forNf52 QCD. These tests establish that our PHMC algorithm works on a moderately large
lattice size with intermediate quark masses (163348,mPS/mV;0.7–0.8). Finally we experiment with the (2
11)-flavor QCD simulation on small lattices (4338 and 83316), and confirm the agreement of our results
with those obtained with theR algorithm and extrapolated to a zero molecular dynamics step size.
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I. INTRODUCTION

An essential step toward realistic lattice simulations
quantum chromodynamics~QCD! is to develop efficient al-
gorithms to incorporate the dynamical sea quark effects
up, down, and strange quarks. Most of the recent dynam
QCD simulations have been, however, limited to two-flav
QCD where up and down quarks are treated dynamic
while the loop effect of the strange quark is still neglecte
This is mainly due to the lack of efficient algorithms to tre
an odd number of dynamical quark flavors. TheR algorithm
@1# is a possible candidate for this purpose, but its seri
drawback is the systematic error ofO(dt2) stemming from a
finite step sizedt in the molecular dynamics evolution. T
control this systematic error, one has to keepdt small
enough and to monitor the size of the error by perform
simulations at various values ofdt, which requires much
computational effort. Therefore, an exact algorithm such
the hybrid Monte Carlo~HMC! algorithm @2#, which is
widely used for simulations with an even number of flavo
is clearly desirable.

Recently, Takaishi and de Forcrand proposed an algori
for an odd number of dynamical flavors@3#. They use the
polynomial hybrid Monte Carlo~PHMC! algorithm @4–6#
with a non-Hermitian Chebyshev polynomial, with whic
one can approximate the inverse square root of the ferm
matrix needed for the simulation of an odd number of flav
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@7,8#. They introduced a method to calculate the correct
factor required to compensate for the truncation error due
the finite order of the polynomial, and hence the algorithm
exact. The algorithm was tested on a small lattice for 1
11, and 211 flavors of Wilson fermions.

Clearly, the next step toward realistic simulations of QC
is to investigate the practical feasibility of their algorithm f
two light ~up and down! quarks and one relatively heav
~strange! quark on large physical volumes. In this case,
and down quarks are treated with the usual pseudoferm
method, while the strange quark is incorporated with
polynomial approximation. It is known that the multiboso
algorithms, which also rely on the polynomial approximati
for the inverse of fermion matrix, fail for light quarks@9#.
Therefore, we need to examine whether the algorithm w
the polynomial approximation works for intermediate qua
masses~around the strange quark!. An implementation of the
algorithm for theO(a)-improved Wilson~clover! quark ac-
tion @10# is also important to carry out simulations with re
duced systematic errors due to finite lattice spacing.

In this work we present a modified algorithm fo
(211)-flavor QCD with theO(a)-improved Wilson quark
action. Our algorithm is a variant of PHMC with the non
Hermitian Chebyshev polynomial as that of Takaishi and
Forcrand@3#, while the treatment of the correction factor
different. We test our algorithm for two different system
One is two-flavor QCD treated as a system with 111 fla-
vors, and the simulation results are compared with those
the conventional HMC for two flavors. The other
(211)-flavor QCD, where our algorithm is compared wi
the R algorithm @1# after extrapolating to zero step sizedt
→0.

ty,
©2002 The American Physical Society07-1
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We also perform two systematic numerical tests of
HMC and PHMC algorithms in two-flavor QCD in order t
provide a basis to find the best method and param
choices for an extension to realistic simulation with 211
flavors.

As a first step, we test the even-odd preconditioning
the O(a)-improved Wilson fermion action, which was firs
proposed by Luo@11# and Jansen and Liu@12#. They intro-
duced symmetrical and asymmetrical preconditioning, a
mainly considered the asymmetric version. In our practi
tests we found significant improvement for both versio
over the simulation without preconditioning. The improv
ment is more pronounced for the symmetric case and
computer time can be reduced almost by a factor two fr
that without preconditioning.

Second, we investigate the efficiency of the PHMC alg
rithm depending on the quark mass and on the degree o
polynomial. We found that the PHMC is as effective as t
conventional HMC algorithm for two different quark mass
corresponding tomPS/mV50.8 and 0.7 on a reasonab
large lattice. This observation is encouraging, as it sugg
that the polynomial approximation is useful for future sim
lations of (211)-flavor QCD.

The rest of the paper is organized as follows. In Sec. II
outline the algorithms we consider in this paper. the poly
mial hybrid Monte Carlo~PHMC! algorithm and its gener
alization to an odd number of flavors is described. In Sec
we test the efficiency of the even-odd preconditioning for
O(a)-improved Wilson fermion action using the usual HM
algorithm with two-flavor of quarks. We then investigate t
efficiency of the PHMC algorithm for two-flavor QCD in
Sec. IV. Section V describes details of our algorithm for
odd number of flavors, and presents some numerical t
with which the consistency and the applicability is inves
gated. Our conclusion is given in Sec. VI. Our algorithm a
simulation code have already been used for a study of
phase structure of three-flavor QCD with the Wilson-ty
fermion actions@13#.

II. OUTLINE OF THE ALGORITHM

We first present the outline of our algorithm for (Nf 1

1Nf 2
)-flavor QCD, whereNf 1

is an even number whileNf 2

is odd. The details of the algorithm will be explained sep
rately in later sections.

In this section we consider the Wilson gauge and ferm
actions, but the algorithm can be applied to more com
cated lattice actions arising in the Symanzik improvem
program@14#. In particular, the algorithm is suitable for th
O(a)-improved Wilson action@10# which has a clover-leaf-
type operator to remove the discretization error ofO(a).

A. Pseudofermion representation for even number of flavors

Let D1 and D2 be the Dirac operators for two differen
fermion masses corresponding toNf 1

and Nf 2
flavors, re-

spectively. The partition function of this fermion system
given by
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Z5E DU~det@D1# !Nf 1~det@D2# !Nf 2e2Sg[U] , ~1!

whereSg@U# represents the gauge action.
Since Nf 1

is an even number, the fermion determina

(det@D1#)Nf 1 can be expressed in terms of the usual pseu
fermion integral

~det@D1# !Nf 15E Df1
† Df1 exp@2uD

1

2Nf 1
/2
f1u2#, ~2!

where we have used the relationD1
†5g5D1g5. We use a

short-hand notation for the norm of a vectorX as uXu2

[(n,a,auXa
a(n)u2 with n the site index,a the spinor index,

anda the color index.
In the usual HMC algorithm one uses some iterat

solver to calculate the inverse of the fermion matrixD1. In
the PHMC algorithm@5,6#, on the other hand, one introduce
a polynomialPNpoly

@z# of orderNpoly that converges 1/z as

Npoly→`. The non-Hermitian Chebyshev polynomial

PNpoly
@z#5 (

i 50

Npoly

ci~12z! i , ~3!

with ci5(21)i is an example of such a polynomial, whe
u12zu,1. Supposing that all eigenvalues ofD1 fall inside
the complex domainu12zu,1, we have

~det@D1# !Nf 15Fdet†D1PNpoly
@D1#‡

det†PNpoly
@D1#‡ GNf 1

5~det†D1PNpoly
@D1#‡!Nf 1E Df1

†Df1

3exp@2u~PNpoly
@D1# !Nf 1

/2f1u2#. ~4!

We notice that the inversion of the fermion matrixD
1

2Nf 1
/2

is
replaced by a calculation of the polynomi
(PNpoly

@D1#)Nf 1
/2.

Following the original proposal of the multiboson alg
rithm by Lüscher@15#, Frezzotti and Jansen@5,6# considered
a Hermitian operatorQ5cMg5D1 with cM a normalization
factor and used a polynomial approximation of det@D1#2

5det@Q#2 rather than the non-Hermitian det@D1#, using the
g5 Hermiticity propertyD1

†5g5D1g5 of the Wilson-type lat-
tice fermions. In this work, however, we consider the no
Hermitian relation Eq.~4!, as it is suitable for the extensio
to an odd number of flavors.

Since the polynomial approximation introduces a trun
tion error, one has to evaluate the correction fac
$det(D1PNpoly

@D1#)%Nf 1 in order to make the algorithm ex
act. As the correction factor is close to unity when the po
nomial is a good approximation of the inverse, a stocha
technique can be used to incorporate the correction fac
The reweighting method@15# and the global Metropolis tes
@7,16# have been proposed and used in the multiboson a
rithm. For the PHMC algorithm, the reweighting method
7-2
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POLYNOMIAL HYBRID MONTE CARLO ALGORITHM FOR . . . PHYSICAL REVIEW D 65 094507
applied in Refs.@5,6#, and the global Metropolis test in Re
@3#. We use the global Metropolis test developed for a mu
boson algorithm@7,16#. The details of the global Metropoli
test in the case ofNf 1

52 will be given in Sec. IV C.

B. Pseudofermion representation for an odd number of flavors

For an odd number of flavorsNf 2
, we use the method

developed by Alexandrouet al. @8# to take a ‘‘square root’’ of
the polynomial as described below.

We consider a polynomialPNpoly
@z# with an even degree

Npoly and rewrite it as a product of monomials

PNpoly
@z#5 (

i 50

Npoly

ci~z21! i5cNpoly )k51

Npoly

~z2zk!, ~5!

which approaches 1/z as Npoly increases. At this point the
convergence radius is assumed to cover all eigenvalue
the Wilson-Dirac operator, which will be confirmed in Sec.
numerically. Sincezk appears with its complex conjugate, w
may rewrite Eq.~5! as

PNpoly
@z#5cNpoly )

j 51

Npoly/2

~z2zk8~ j !
* !~z2zk( j )!, ~6!

where k( j ) and k8( j ) are the arbitrary reordering indice
defined to satisfy the relationzk( j )* 5zk8( j )

* with j
51 . . .Npoly/2. Using the propertyD2

†5g5D2g5 one can
show that det@D22zk8( j )

* #5det@D22zk( j )#
† and

det†PNpoly
@D2#‡5cNpoly )

j 51

Npoly/2

det@D22zk( j )#
†

3det@D22zk( j )#

5det†TNpoly

† @D2#TNpoly
@D2#‡, ~7!

whereTNpoly
@z#[AcNpoly

) j 51
Npoly/2(z2zk( j )). Then we obtain

a pseudofermion representation for an odd number of flav

~det@D2# !Nf 25Fdet†D2PNpoly
@D2#‡

det†PNpoly
@D2#‡ GNf 2

5@det†D2PNpoly
@D2#‡#Nf 2E Df2

†Df2

3exp@2u~TNpoly
@D2# !Nf 2f2u2#. ~8!

As in the case of an even number of flavors, the correc
factor $det(D2PNpoly

@D2#)%Nf 2 has to be kept to construct a
exact algorithm. We describe the calculation of the correct
factor for theNf 2

51 case in Sec. V B.

We note that in this construction, the positivity of det@D2#
is assumed. Since the Wilson-type lattice fermions do
have chiral symmetry, the Wilson-Dirac operatorD2 may
develop a real and negative eigenvalue, which could m
det@D2# negative. In actual simulations, we do not expe
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that this happens for the following reason. Under a conti
ous change of gauge configuration, as in the molecular
namics evolution, the eigenvalues also change continuou
To change the sign of a real eigenvalue it has to cross z
for which the determinant det@D2# vanishes which is sup
pressed. In addition, since the single flavor part is to be id
tified with strange quark in realistic applications, we expe
that the intermediate mass of strange quark behaves a
infrared cutoff obstructing the appearance of negative eig
values.

In our implementation, we use the fact that the correct
factor (det†D2PNpoly

@D2#‡)Nf 2 is close to unity. If this does

not hold, the calculation will fail to converge. We shoul
therefore, be aware of the appearance of a negative dete
nant. Our algorithm fails if this happens, but a negative
terminant should be considered as a problem of the form
tion of the lattice fermion rather than the problem of t
algorithm, since it is related to the lack of chiral symmetr

C. Hybrid Monte Carlo algorithm

Once we write an effective action for the fermion dete
minant using pseudofermions as in Eqs.~2!, ~4!, and~8!, it is
straightforward to apply the hybrid Monte Carlo algorith
@2# to obtain an ensemble of gauge configurations includ
the effect of the approximated fermion determinant.

Introducing a fictitious momentumP conjugate to the link
variableU ~we suppress the site, direction, and color in
ces!, the partition function Eq.~1! is written as

Z5E DU DP Df1
† Df1Df2

† Df2 det@W#e2H. ~9!

If we use the usual form Eq.~2! for an even number of
flavors, and the polynomial representation Eq.~8! for the rest
of the fermions, the effective HamiltonianH and the correc-
tion factor det@W# take the form

H5
1

2
P21Sg@U#1uD

1

2Nf 1
/2
f1u2

1u~TNpoly
@D2# !Nf 2f2u2,

det@W#5~det†D2PNpoly
@D2#‡!Nf 2. ~10!

The HMC algorithm consists of the following four steps, f
a given gauge configurationU.

~1! Generate momentaP and pseudo-fermion fieldsf1
andf2 from a Gaussian distribution with unit variance an
zero mean.

~2! Integrate link variablesU according to the discretized
molecular dynamics evolution equation derived from t
equation of motion
7-3
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S. AOKI et al. PHYSICAL REVIEW D 65 094507
U̇m~n!5 iPm~n!Um~n!,

Ṗm~n!52 i @Um~n!Fm~n!#T.A. , ~11!

where Ẋ is the derivative of a fieldX with respect to the
fictitious time t and @•••#T.A. means the traceless ant
Hermitian part of the matrix in the bracket. The forceFm(n)
is defined through a variation of the effective Hamiltoni
under an infinitesimal changedUm(n) of the gauge link vari-
able

dH5(
n,m

Tr@$dUm~n!Fm~n!%1H.c.#. ~12!

The length in the fictitious timet is arbitrary, which we set
equal to unity throughout this paper.

~3! Make a Metropolis test with respect to the ener
differencedH between the initial configurationU(0) and the
trial configuration U(t). The acceptance probability i
Pacc@„U(0),P(0)…→„U(t),P(t)…#5min@1,e2dH#. If the test
is accepted go to the next step~4!, or else the new configu
ration is set to„U(0),P(0)… and go back to step~1!.

~4! Make a Metropolis test with respect to the correcti
factor det@W#. If the test is accepted„U(t),P(t)… is taken as
the new configuration, or else the new configuration
„U(0),P(0)…. Then return to step~1!. The details to obtain
the acceptance probability is described in Sec. V B.

III. EVEN-ODD PRECONDITIONING FOR THE
O„a…-IMPROVED WILSON FERMION ACTION

Before going to the PHMC algorithm we discuss t
even-odd preconditioning of the fermion determinant. T
even-odd preconditioning is a widely used technique to
celerate the fermion matrix inversion@17#, but it can also be
used to reformulate the fermion determinant so that
pseudofermion field lives only on odd sites@18,19#. For the
unimproved Wilson fermion action, no extra computation
cost is required by the reformulation, while the HMC sim
lation becomes faster, since the phase space to be cove
reduced by a factor of two. Luo@11# and Jansen and Liu@12#
introduced the even-odd preconditioning for t
O(a)-improved Wilson fermion which includes the clove
leaf-type operator. In this section we review their formu
tion and describe our extensive numerical test to see ho
improves the efficiency of the HMC algorithm.

A. Description of the preconditioning

The determinant of theO(a)-improved Wilson fermion
operatorD is written as

det@D#5detS 11Tee Meo

Moe 11Too
D , ~13!

when the site indexn is numbered such that even sites com
earlier than any odd site. Here, the site is even~odd!, if nx
1ny1nz1nt is an even~odd! number. The hopping termM
(Meo or Moe) represents the usual Wilson fermion matrix
09450
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4

$~12gm!Um~n!dn1m̂,n8

1~11gm!Um
† ~n2m̂ !dn2m̂,n8%, ~14!

while T (Tee or Too) describes theO(a)-improvement term
~or SW term!

Tn,n852
1

2
cswksmnFmn~n!dn,n8 , ~15!

with the clover-leaf-type field strengthFmn given by

Fmn~n!5
1

8i
@$Um~n!Un~n1m̂ !Um

† ~n1 n̂ !Un
†~n!

1Un~n!Um
† ~n1 n̂2m̂ !Un

†~n2m̂ !Um~n2m̂ !

1Um
† ~n2m̂ !Un

†~n2m̂2 n̂ !Um~n2m̂2 n̂ !

3Un~n2 n̂ !1Un
†~n2 n̂ !Um~n2 n̂ !

3Un~n2 n̂1m̂ !Um
† ~n!%2H.c.#, ~16!

where H.c. denotes the Hermitian conjugate of the preced
bracket. The Dirac matrixgm is defined such that it is Her
mitian, andsmn5( i /2)@gm ,gn#.

Factoring out the even-even component (11Tee) from
the determinant Eq.~13!, we have

det@D#5det@11Tee#det@D̂oo
A #, ~17!

where

D̂oo
A 5~11T!oo2Moe~11T!ee

21Meo . ~18!

It is also possible to factor out both the even-even and o
odd components as

det@D#5det@11Tee#det@11Too#det@D̂oo
S #, ~19!

where

D̂oo
S 512~11T!oo

21Moe~11T!ee
21Meo . ~20!

In the following, we refer to Eqs.~17! and~19! as asymmet-
ric and symmetric preconditioning, respectively. To o
knowledge, previous simulations in the literature have exc
sively been made with the asymmetric even-odd precon
tioning.

Using Eqs.~17! and ~18!, the asymmetrically precondi
tioned partition function for two flavor QCD can be writte
as

ZA-HMC5E DU DP Dfo
† Dfo e2HA-HMC[ P,U,fo] , ~21!

HA-HMC@P,U,fo#5
1

2
P21Sg@U#1Sq

A@U,fo#1Sdet
A @U#,
7-4
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Sq
A@U,fo#5u~D̂oo

A !21cou2,

Sdet
A @U#522 log det@11Tee#.

The pseudofermion fieldfo lives on odd sites, whereas th
determinant det@11Tee# of the local SW term is calculate
on even sites.

For the symmetrically preconditioned partition functio
from Eqs.~19! and ~20! we have

ZS-HMC5E DU DP Dfo
† Dfoe2HS-HMC[ P,U,fo] ,

HS-HMC@P,U,fo#5
1

2
P21Sg@U#1Sq

S@U,fo#1Sdet
S @U#,

~22!
Sq

S@U,fo#5u~D̂oo
S !21fou2,

Sdet
S @U#522~ log det@11Tee#

1 log det@11Too# !.

In this case the determinant of the local SW term is cal
lated both on even and odd sites.

The calculation of the force defined in Eq.~12! can be
divided into several parts corresponding to the contribut
from the pure gauge action, the pseudofermion part, and
determinant of the local SW term. We write down the co
tribution from the quark part in the Appendix for both pr
conditioning methods.

B. Efficiency of the even-odd preconditioning

The even-odd reformulation of the fermion determina
reduces the phase space to be covered by the HMC sim
09450
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tion. Another important effect of the preconditioning is that
lifts the lowest eigenvalue of the fermion matrix and thus t
condition number is reduced. The strength of the force co
ing from the pseudofermionic partSq@U,f# of the effective
Hamiltonian becomes smaller@4#, since it is proportional to
the inverse of the lowest eigenvalue of the Dirac matr
Therefore, the errordH accumulating in the molecular dy
namics evolution is also expected to become smaller, res
ing in a better acceptance rate in the HMC algorithm.
what extent the condition number is reduced depends on
particulars of preconditioning. We expect the symmetric o

to work better, since in the hopping parameter expansionD̂oo
S

behaves as 12O(k2) while D̂oo
A contains a term propor

tional to k coming fromToo .
In the following we describe a systematic test of the eff

of the preconditioning of both types. The test is perform
on three lattices:~i! a small lattice of size 83316 with a
heavy quark mass, which we call the ‘‘small heavy’’ lattic
~ii ! a large lattice of size 163348 with a heavy quark mas
called ‘‘large heavy,’’ and~iii ! a large lattice of size 163

348 with a light quark mass called ‘‘large light.’’ Here

TABLE I. Lattice parameters.

Small heavy Large heavy Large ligh

Size 83316 163348 163348
b 5.0 5.2 5.2
k 0.1415 0.1340 0.1350

csw 1.855 2.02 2.02
mPS/mV ;0.8a ;0.8 ;0.7

aThis number is measured on a 123332 lattice.
TABLE II. Parameters on the small heavy lattice. MD step sizedt satisfiesdt3NMD51.

HMC A-HMC S-HMC C-PHMC A-PHMC

100, 50, 100, 50, 50, 40
100, 50,

NMD 40, 30, 40, 32, 32, 25, 32
40, 30

25, 20 25, 20 20

18, 20,
22, 24,
28, 30,

Npoly - - - 18, 20,
~for NMD532!

22
26,

~for all NMD!

Stopping condition
force

1022 10212 10212 - -

Stopping condition
Hamiltonian

10214 10214 10214 10214a 10214a

aThis is used to generate a pseudofermion field and global Metropolis test for the correction factor.
7-5
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heavy and light quarks roughly correspond tomPS/mV
50.8 and 0.7, respectively. The lattices~ii ! and~iii ! are rea-
sonably large to study the light hadron spectrum. They
actually used in our production run@20#. Details of the lattice
parameters are listed in Table I.

C. Extensive test on a small lattice

On the small heavy lattice, we investigate the molecu
dynamics~MD! step sizedt dependence of the acceptan
rate Pacc for each algorithm: ‘‘HMC’’ denotes the HMC al
gorithm without the preconditioning, ‘‘A-HMC’’ and ‘‘S-
HMC’’ are used for the asymmetrically or symmetrically pr
conditioned HMC algorithm.

We employ the BiCGStab algorithm@21# to calculate the
inverse of the Dirac matrixD ~or D̂oo

A , D̂oo
S ). The symmetri-

cal even-odd preconditioning is applied in the solver to
celerate the convergence of inversion. The stopping co
tion is defined so that the solver iterates until the resid
defined byr[AuDx2bu2/ubu2 becomes smaller than a ce
tain value, whereb is a source vector andx is the solution
vector. On the small heavy lattice, we use a rather st
stopping condition to avoid systematic errors coming fro
the matrix inversion. All numerical calculations are ma

FIG. 1. MD step size dependence of^dH& for two integration
methods (UPU and PUP) in the MD evolution. The lines show
the fit with ^dH&5p(a•dt)4.

FIG. 2. MD step size dependence of the acceptance for
integration methods (UPU and PUP) in the MD evolution. The
lines show the function erfc@Ap(a•dt)2/2# with a obtained from
Fig. 1.
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with the double precision~64 bit! arithmetic. In Table II, we
show the number of the molecular dynamics~MD! steps
NMD (dt51/NMD) and the stopping condition for the BiCG
Stab solver in force and Hamiltonian calculations.

For the MD evolution of the kinematical variablesU and
P, the simplest integration scheme to satisfy the reversibi
and measure preservation is the leapfrog algorithm. In
work we first consider two options of the leapfrog algorithm
i.e., UPU andPUP integrators. In theUPU integrator, the
link variableU is updated at the first half step and then t
integration ofP with a unit step sizedt follows. Thus the
link variableU is assigned at (n11/2)•dt with an integern,
while P is assigned atn•dt. The integration is performed in
the reverse order in thePUP integrator.

The acceptance rate in the HMC algorithm is governed
a change of the effective Hamiltonian during the MD evo
tion ^dH& as Pacc5erfc(^dH&1/2/2). With the leapfrog inte-
grator the change of effective Hamiltonian behaves
^dH&;dt4 for small dt @22–24#.

In Fig. 1 we show the MD step sizedt dependence of
^dH& for both UPU andPUP integrators. The dotted line
represent a fit with a form̂dH&5p(a•dt)4. The Metropolis
acceptance rate is plotted in Fig. 2 as a function ofdt. The
expected behavior erfc@Ap(a•dt)2/2# is also shown by dot-
ted curves. We observe that the data is described by the
pected functional form. We also find that theUPU integrator
gives better acceptance at a fixeddt than thePUP integra-
tor, which has been known for a long time for the stagge
fermion action@23#. The computational cost with theUPU
integrator is lower by a factorNMD /(NMD11) than the
PUP integrator since the computer time in dynamical QC
simulations is dominated by the force calculation that
volves the fermion matrix inversion. Therefore the advanta
of the UPU integrator is very clear. We then use theUPU
integrator in the rest of this work.

Let us now discuss the effect of preconditioning. Figur
3 and 4 show the MD step size dependence of^dH& and
Pacc for the HMC, A-HMC and S-HMC algorithms. Thedt
dependence for each algorithm is described very well by
relation^dH&}dt4 as shown in Fig. 3, and the value of^dH&
for A-HMC ~S-HMC! at a fixeddt is about a factor 5~13!
smaller than the unpreconditioned HMC. As a result,

o

FIG. 3. MD step size dependence of^dH& for preconditioned
and unpreconditioned effective actions. The lines show the fit w
^dH&5p(a•dt)4.
7-6
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acceptance is greatly improved as shown in Fig. 4. For
stance, atdt50.02 Pacc is 81% ~88%! for A-HMC ~S-
HMC! compared to 60% for the unpreconditioned case.

The efficiency of the algorithm may be defined
Pacc•dt following Ref. @25#. In order to plot the efficiency
Pacc•dt as a function ofPacc , we make use of an approx
mation ofPacc :

Pacc5expS 2~a•dt!22
1

2
~a•dt!4D . ~23!

This approximation is valid for smalldt @up to O(dt6)# and
^dH&5p(a•dt)4. The validity can be ascertained in Fig.
where the approximation Eq.~23! is plotted~dotted curve! as
well as the exact one erfc@Ap(a•dt)2/2# ~dashed curve!.
Solving Eq. ~23! for dt, we obtain the explicit functiona
form for the efficiencyPacc•dt as

Pacc•dt5
Pacc

a
AA122 log~Pacc!21, ~24!

where the only parameter isa defined through^dH&
5p(a•dt)4. In Fig. 5 we plot the efficiencyPacc•dt as a
function ofPacc , and Eq.~24! is plotted as a dotted line. It is
remarkable that the optimal efficiency is reached wh
Pacc. 0.65 irrespective of details of the algorithm as far
we use the simplest leapfrog integrator for the MD evolut
@25#.1 The efficiency of the algorithm can be measured by
parametera. We therefore conclude that the efficiency of t
A-HMC is a factor 1.5 better than the unprecondition
HMC on the ‘‘small heavy’’ lattice, and that of S-HMC by
factor of 1.9 which is even better.

1In Ref. @25# the maximum efficiency is reached atPacc.0.61
rather than 0.65. This difference comes from the expansion Eq.~23!
of the erfc function: the author of Ref.@25# considered the lowes
order only, while we include the second order.

FIG. 4. MD step size dependence of the acceptance for pre
ditioned and unpreconditioned effective actions. The dashed l
show the function erfc@Ap(a•dt)2/2# with a obtained from Fig. 3.
The dotted lines are approximations exp@2(a•dt)22(a•dt)4/2#.
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D. Reversibility

Before we extend the comparison of the precondition
to the large (163348) lattice, we describe our choice of th
stopping condition for the Wilson-Dirac operator inverter
the large lattice, since it is computationally not realistic
keep the very strict conditions of Sec. III C for the larg
lattice size. The stopping condition in the calculation of t
force may be relaxed as far as the reversibility condition
maintained, which is tested in the following. In this secti
we employ the ‘‘S-HMC’’ preconditioning to investigate th
reversibility.

As a measure of how far one may loosen the stopp
condition, we use the violation of the reversibility conditio
for the effective Hamiltonian defined by

uDHu5uH~ t r2t r !2H~0!u, ~25!

whereH(t r2t r) means the effective Hamiltonian calculate
for the reversed configuration which is obtained from t
initial configuration att50 by integrating the equation o
motion tot5t r and then integrating back tot50. The length
of trajectory ist r51. For the S-HMC effective action, we
measureuDHu for several values of the stopping condition o
20 thermalized configurations separated by 10 trajector
Figures 6 and 7 shoŵuDHu/H& measured on the ‘‘large
heavy’’ and ‘‘large light’’ lattices, respectively. While the

n-
es

FIG. 5. Efficiency Pacc•dt. The lines show the function

Pacc
AA122 logPacc21/a with a obtained in Fig. 3.

FIG. 6. The violation of the reversibility as a function of th
stopping condition on the large heavy lattice.
7-7
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violation stays around the limit of the double precision ari
metic for the heavy dynamical quark~Fig. 6!, it depends on
the stopping condition for the light dynamical quark~Fig. 7!.

The behavior for the light quark mass can be underst
as follows. If the initial vector in the BiCGStab solver
reversible (x5b is adopted in this work!, the only source of
the reversibility violation is the round-off error in the nu
merical computation. Therefore, the error accumulates as
BiCGStab solver iterates and thus the violation increase
the stopping condition is tightened. This can be seen in
7 from r 51025 to 1027. As we further decrease the stoppin
condition, the BiCGStab solver gives a solution vector w
better accuracy, and the value of^uDHu/H& is governed by
the accuracy of the solution vector. It decreases as we tig
the stopping condition fromr 51027 to 10213.

As criteria to choose the stopping condition, we dema
that the solver iterates to the region where the^uDHu/H& is
governed by the accuracy of the solution vector and that
variation of the Hamiltonian over the trajectorydH is not
distorted by the error of the solution vector. These criteria
satisfied forr<1027, and we choose 1028 in the following
simulations in this work.

For completeness, we also calculate the violation of
versibility in the link variablesU and the conjugate moment
P

uDUu5A (
n,m,a,b

u~Um!a,b~n!~ t r2t r !2~Um!a,b~n!~0!u2,

uDPu5A (
n,m,a,b

u~Pm!a,b~n!~ t r2t r !2~Pm!a,b~n!~0!u2,

~26!

where the sum runs over all sitesn, color indicesa,b, and
vector indexm. The results foruDUu and uDPu normalized
by A9343Nvol with Nvol the total number of lattice site ar
also plotted in Figs. 6 and 7, where we observe the sa
pattern of the stopping condition dependence as tha
^uDHu/H&.

Since the MD evolution is chaotic, the violation of rever
ibility due to the rounding error may grow exponential
@26,27#. The UKQCD Collaboration studied the reversibili
for the same lattice action as ours~but with the asymmetric

FIG. 7. Same as Fig. 6 but for the large light lattice.
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preconditioning! with similar lattice parameters. They con
firmed the exponential instability when the stopping con
tion is too loose@28#. The stopping condition we adoptr
,1028 is strict enough and no such problem emerges in
case. We also note that in Ref.@28# most of the numerical
calculation is made with the single precision~32 bits! arith-
metic, while we use double precision throughout this wor

For the stopping condition in the Hamiltonian calculatio
we keep a strict conditionr ,10214, since there is a large
cancellation in the differencedH5H(t r)2H(0), and the ac-
curacy ofdH is essential for the Metropolis test to be co
rect.

E. Efficiency on large lattices

We list the simulation parameters used for A-HMC a
S-HMC algorithms in Tables III~‘‘large heavy’’! and IV
~‘‘large light’’ !. HMC means without preconditioning. W
observe that the number of MD steps is much reduced for
preconditioned HMC algorithm compared to the unprecon
tioned one at the almost same acceptance rate. More
cisely, using the relation̂dH&5p(adt)4, we can compare
the best efficiency of the algorithm which depends only oa
as in Eq.~24!. The gain is 1.5 from HMC to A-HMC (1.9
from HMC to S-HMC! on the large heavy lattice. For th

TABLE III. Simulation with the HMC algorithm on the large
heavy lattice.

HMC A-HMC S-HMC

NMD 160 100 80
Stopping condition

(force)

10218 a 1028 1028

Stopping condition

(Hamiltonian)

10220 a 10214 10214

Trajectories 3000 1200 1200
^dH& 0.144~15! 0.182~17! 0.187~28!

HMC acceptance 0.799~9! 0.764~12! 0.759~23!

Plaquette 0.52801~10! 0.52803~9! 0.52827~13!

aThe residual is defnined byuAx2bu in the HMC case.

TABLE IV. Same as in Table III but for the large light lattice.

HMC A-HMC S-HMC

NMD 200 125 100
Stopping condition

(force)

10218 a 1028 1028

Stopping condition

(Hamiltonian)

10220 a 10214 10214

Trajectories 3000 1200 850
^dH& 0.313~23! 0.182~17! 0.218~22!

HMC acceptance 0.702~11! 0.724~13! 0.761~16!

Plaquette 0.53413~5! 0.53404~9! 0.53393~11!

aThe residual is defnined byuAx2bu in the HMC case.
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large light lattice it is 1.8 from HMC to A-HMC (2.2 from
HMC to S-HMC!. The effect of even-odd preconditionin
becomes more significant for lighter quark masses~note that
for infinite quark mass there is no choice for even-odd p
conditioning and is no improvement!. From our tests we con
clude that the symmetrically even-odd preconditioning
again the best choice within the simple even-odd preco
tioning. Further improvement of the HMC algorithm may b
achieved by preconditioning the partition function with i
complete LU factorization type preconditioning@4,19,29,30#.
Hereafter we employ the symmetrically even-odd precon
tioned form for theO(a)-improved Wilson-Dirac operato
and the QCD partition function to develop the PHMC alg
rithm.

IV. PHMC ALGORITHM FOR TWO-FLAVOR QCD

The use of the polynomial hybrid Monte Carlo~PHMC!
algorithm is essential for the construction of an exact al
rithm for odd number of flavors. Before going to the PHM
algorithm with odd number of quarks, we investigate a
develop the PHMC algorithm with two-flavors of quark
The PHMC algorithm in two-flavor QCD was first propose
by Frezzotti and Jansen@5,6#. Some numerical tests of it
performance were made@6,31# on small lattices and used fo
the determination ofcsw @32# or the running coupling con
stant @33# with the Schro¨dinger functional method. In this
section we perform further tests to explore the most effec
choice of the polynomial and its degree with the PHM
algorithm in two-flavor QCD. The numerical simulation an
its comparison to the HMC algorithm are carried out with t
same lattice parameters employed in Sec. III.

A. Partition function

The partition function of two-flavor QCD with the sym
metrical preconditioning in the PHMC algorithm is given b

ZPHMC5E DU DP Dfo
† Dfo~det@Woo# !2

3e2HPHMC[ P,U,co] ,

Woo5D̂oo
S PNpoly

@D̂oo
S #,

HPHMC@P,U,fo#5
1

2
P21Sg@U#1Spoly

S @U,fo#1Sdet
S @U#,

Spoly
S @U,fo#5uPNpoly

@D̂oo
S #fou2, ~27!

andSdet
S @U# is the same as in Eq.~22!. The difference from

Eq. ~22! is in the pseudo-fermion actionSpoly
S @U,f# and in

the insertion of the correction factor (det@Woo#)
2.

The polynomialPNpoly
@z#5( i 50

Npolyci(z21)i approximates

1/z for a complexz placed in the convergence region
Npoly→`, and the coefficientsci are chosen so as to mak
the correction factor (det@Woo#)

2 as close to unity as pos
sible for smallNpoly . For this purpose, several polynomia
have been investigated in the literature. They include Che
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shev@7#, least-squares@34#, and adopted~with or without the
UV filtering! @35,36# polynomials. We consider the Cheby
shev and adopted polynomials in this work.

The Chebyshev polynomial with unit circle convergen
domain in the complex plane is defined byci5(21)i . This
is the same as the Taylor expansion with respect to the h
ping matrix. We call the PHMC algorithm with the Cheby
shev polynomial as C-PHMC. In this case, the accuracy
the polynomial is characterized byuzPNpoly

@z#21u5(z

21)Npoly11.
The coefficientsci for the adapted polynomial are dete

mined so as to minimizeuD̂oo
S PNpoly

@D̂oo
S #ho2hou2 with a

Gaussian noise vectorho with unit variance on a thermalize
background gauge configuration@35#. The coefficients thus
obtained do neither show a strong dependence on the b
ground gauge configuration nor on the noise vector. We
this choice as A-PHMC. We note that the adapted poly
mial with the UV filtering is simple and proven to be mo
efficient for the unimproved Wilson fermion in the multibo
son algorithm@35,36#. For theO(a)-improved Wilson fer-
mion, on the other hand, the UV filtering requires an ad
tional term in the effective Hamiltonian, and to ou
knowledge its efficiency has not been tested yet. We leav
as a future subject to study the efficiency of the UV filteri
for the PHMC algorithm with theO(a)-improved Wilson
fermion action.

B. Force calculation

The molecular dynamics step in the PHMC algorithm
quires a calculation of the forcedSpoly

S @U,fo#/dUm(n).
Frezzotti and Jansen@5,6# proposed to use a product repr
sentation of the polynomial

PNpoly
@z#5 (

i 50

Npoly

ci~z21! i5cNpoly )k51

Npoly

~z2zk!, ~28!

with zk the roots ofPNpoly
@z#50. The computational cos

can be reduced by holding the intermediate vectors obta
by multiplying monomials on the pseudofermion field.

In the product representation with a naive ordering of m
nomials, however, there is a problem of numerical instabi
and accumulation of round-off errors due to the fact that
partial product)k51

l (z2zk) fluctuates by several orders o
magnitude for intermediatel @37#. The problem becomes
more severe for smallz and for large order of the polyno
mial. Bunk et al. proposed some ordering schemes to mi
mize the problem@37#. In this work, instead of the produc
representation, we consider the Clenshaw’s recursive rela
@38#

PNpoly
@z#5c0F11

c1

c0
~z21!F11

c2

c1
~z21!

3F •••F11
cNpoly

cNpoly21
~z21!G•••G G G , ~29!
7-9
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for which the numerical instability is suppressed, because
add from the term giving the smallest contribution to t
terms with larger contributions. We assume that the poly
mial is converging and the higher order terms are sma
otherwise the algorithm does not work efficiently.

Adopting this representation, we expect that the calcu
tion of the pseudofermion actionSpoly

S in Eq. ~27! before and
after the MD evolution become stable numerically. The fo
from dSpoly

S @U,fo# is given by

dSpoly
S 5H (

j 51

Npoly

@XP( j ) †dMYP( j )1XP( j ) †dTZP( j )#J 1H.c.,

~30!

where

XP( j )5S 2~11T!ee
21Moe

† X̂o
P( j )

X̂o
P( j ) D , ~31!

YP( j )5S 2~11T!ee
21MeoŶo

P( j )

Ŷo
P( j ) D , ~32!

ZP( j )5S 2~11T!ee
21MeoŶo

P( j )

~11T!oo
21Moe~11T!ee

21MeoŶo
P( j )D ,

~33!

X̂o
P( j )5~11T!oo

21@~D̂oo
S 21!†# j 21Ŷo

P(0) , ~34!

Ŷo
P( j )5cjF11

cj 11

cj
~D̂oo

S 21!F11
cj 12

cj 11
~D̂oo

S 21!

3F11
cj 13

cj 12
~D̂oo

S 21!3F¯
3F11

cNpoly

cNpoly21
~D̂oo

S 21!G•••G G G Gfo . ~35!

In our implementation of the simulation code, we first calc
late Ŷo

P( j ) from j 5Npoly to 0 and store them on memory. W

then calculateX̂o
P( j ) and the force fromj 51 to Npoly using

the storedŶo
P( j ) . We do not need to storeX̂o

P( j ) . The require-
ment for memory is therefore the same as in the prod
representation used in Refs.@5,6#.

A potential source of the round-off errors in the calcu
tion of the force is the sum overj in Eq. ~30!, because the
sum runs from the highest order to the lowest order ink, the
j th term being of orderk2( j 21). The numerical problem in
the calculation of the force may be checked by looking at
violation of reversibility. We expect that the reversibility vio
lation is small compared to HMC because the MD evolut
involves no iterative processes and is completely determ
istic. Numerical stability of the summation representation
polynomial and the reversibility of the molecular dynami
will be discussed in Sec. IV E.
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The pseudofermion fieldfo is generated from the Gauss
ian noise vectorho at the beginning of the molecular dynam
ics step through

fo5PNpoly
@D̂oo

S #21ho5D̂oo
S Woo

21 ho . ~36!

SinceWoo is a matrix close to the identity matrix, the inve
sion of Woo is easily performed by any iterative solve
within a few iterations. We use the BiCGStab solver in o
implementation.

C. Noisy Metropolis test for the correction factor

In order to construct an exact algorithm, we have to ta
account of the correction factor (det@Woo#)

2. We use the
noisy Metropolis test method of Kennedy and Kuti@39#,
which was previously applied to make the multiboson alg
rithm exact in Refs.@7,16#.

After a trial configurationU8 is accepted by the HMC
Metropolis test, we make another Metropolis test for the c
rection factor. Generating a Gaussian vectorxo with unit
variance and zero mean, the probabilityPcorr@U→U8# to
accept the trial configuration is given by

Pcorr@U→U8#5min@1,e2dS#, ~37!

where

dS5u~Woo@U8# !21Woo@U#xou22uxou2. ~38!

The inverse (Woo@U8#)21 is calculated using the BiCGSta
solver as in the generation of the pseudofermion fieldfo .

D. Numerical test of the efficiency

The total acceptance ratePtotal of the PHMC algorithm is
a product of that of the HMC Metropolis testPacc and of the
noisy Metropolis testPcorr . In this section we present sev
eral numerical tests on howPacc and Pcorr depend on pa-
rameters of the algorithm, such as the order of polynom
and the MD step size. The simulations are made on the s
heavy lattice, whose parameters are summarized in Tabl

FIG. 8. Npoly dependence of̂dH& on the small heavy lattice
^dH& with the S-HMC algorithm is also plotted on the most rig
side in the figure for comparison.
7-10
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For the choice of polynomial type, we test the~non-
Hermitian! Chebyshev polynomial~C-PHMC! and the
adapted polynomial@35,36# ~A-PHMC!. The order of the
polynomial tested is listed in Table II.

We first study theNpoly dependence ofPacc . In Fig. 8 we
show^dH& as a function ofNpoly on the small heavy lattice
at a fixed dt51/32 (Npoly532) for both C-PHMC and
A-PHMC algorithms. We find that̂dH& is almost indepen-
dent of Npoly and agrees with the same quantity for t
S-HMC algorithm. This is expected if the effective action
the PHMC algorithm approximates the original action we
because the PHMC replaces@D̂oo

S #21 by a polynomial

PNpoly
@D̂oo

S # and the two are equivalent if the polynomial is
good approximation of the inverse. The MD step size dep
dence of̂ dH& is plotted in Fig. 9 for the usual S-HMC an
for the C-PHMC with Npoly526 @which we call
C-PHMC~26!#, where we find good agreement among diffe
ent algorithms. This means that the acceptancePacc in
PHMC is almost the same as that in the usual HMC.

In contrast,Pcorr is expected to be sensitive toNpoly .
Since the acceptance ratePcorr is directly related to the ex
pectation value ofdS as defined in Eq.~38!, we measure the
dependence of̂dS& on Npoly . Figure 10 shows the plot fo
C-PHMC and A-PHMC at a fixeddt51/32 (Npoly532).
The dotted lines represent a fit with an exponential form@16#

^dS&5pa2 exp~22bNpoly!. ~39!

FIG. 9. ^dH& versusdt with C-PHMC~26! and S-HMC algo-
rithms.

FIG. 10. ^dS& versusNpoly in the PHMC algorithm. The lines
show a fit function̂ dS&5pa2exp(22bNpoly).
09450
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The exponential form is expected because the error of
polynomial approximation behaves asuzPNpoly

@z#21u5(z

21)Npoly11 in the Chebyshev polynomial case. We find th
the data are well described by the exponential form and
^dS& is much smaller for the adapted polynomial A-PHM
than that for the Chebyshev polynomial C-PHMC, whi
demonstrates the efficiency of the adapted polynomial.

The acceptance rate in the noisy Metropolis stepPcorr is
related to^dS& as Pcorr5erfc(^dS&1/2/2). We then obtain a
plot of Pcorr as a function ofNpoly in Fig. 11. The dotted
curves represent

Pcorr5erfcSApa

2
exp~2bNpoly! D , ~40!

with a andb the parameters in Eq.~39!. We clearly see that
A-PHMC requires a smaller polynomial orderNpoly than
C-PHMC to achieve the same acceptance rate. For insta
to obtainPcorr.0.8 we needNpoly524 for C-PHMC while
A-PHMC requires onlyNpoly518.

The efficiency of the PHMC algorithm for the noisy Me
tropolis test step can be quantified byPcorr /Npoly , because
the number of arithmetic operations is roughly proportion
to Npoly . In Fig. 12 we plotPcorr /Npoly againstPcorr , and
find that the A-PHMC is about 30% more efficient tha

FIG. 11. Pcorr as a function ofNpoly . The lines represen
Pcorr5erfc@Apa exp(2bNpoly)/2# with a andb are obtained from a
fit in Fig. 10.

FIG. 12. Efficiency of the noisy Metropolis testPcorr /Npoly .
See the text for details.
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C-PHMC. We also find that the efficiency peaks arou
Pcorr50.85. From Eq.~40! we obtain

Pcorr

Npoly
5

1

b

Pcorr

2 logH 1

a
@A122 log~Pcorr!21#J ~41!

using an expansion erfc(x)5exp$2(2/Ap)@x1(x2/Ap)#%
1O(x3). The efficiency is proportional to 1/b, which con-
trols the exponential fall off of̂dS& as in Eq.~39!, and the
position of the maximum efficiency depends ona. Whena
;O(10), as we observe in these tests, the maximum app
aroundPcorr50.85 and it moves to larger values ofPcorr as
a becomes larger. Sincea is expected to scale asV1/2(k/kc)
@16#, the maximum efficiency is obtained forPcorr.0.85
when the lattice volume becomes larger or when the
quark becomes lighter.

E. PHMC on large lattices

The PHMC algorithm works well with a reasonable ord
of the polynomial on the small heavy lattice. It is not trivia
however, whether it really works on larger lattices, beca
we expect that a polynomial with much larger order
needed.

For a numerical test on the ‘‘large heavy’’ and ‘‘larg
light’’ lattices ~Table I! we consider the Chebyshev polyn
mial ~C-PHMC! only, since we were not able to obtain a
optimized polynomial for the A-PHMC. The reason is th
the minimization ofuD̂oo

S PNpoly
@D̂oo

S #ho2hou2 with respect
to the coefficients of polynomial failed to converge for pol
nomials of a large (;100) order which are needed for the
large lattices. This is likely a problem of the steepest desc
algorithm used in the minimization, and not a fundamen
difficulty of the adapted polynomial. We leave a resolution
this problem to future studies.

We first consider the question of how the polynomial a
proximation of@D̂oo

S #21 works for reasonably large lattices
To investigate this we define a residual

FIG. 13. Npoly dependence of the residual^uPNpoly
@D̂oo

S #D̂oo
S ho

2hou/uhou&.
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uPNpoly
@D̂oo

S #D̂oo
S ho2hou

uhou
, ~42!

with a Gaussian noise vectorho . We expect that the residua
becomes exponentially smaller asNpoly increases, if the
polynomial provides a good approximation of the inver
Dirac matrix. We measure this quantity on 20 thermaliz
configurations of large heavy and large light lattices and p
it as a function ofNpoly in Fig. 13. For both heavy and ligh
dynamical quarks, we find a clear exponential decrea
while the slope significantly depends on the sea quark m
We also note that the polynomial approximation is not d
torted by the round-off error even forNpoly;100–200.

When the order of polynomial is large, another importa
test is the check of the reversibility in the MD steps. As w
mentioned in Sec. IV B, our implementation of the for
calculation may cause round-off errors. As in Sec. III D w
investigate the violation of reversibility in̂ uDHu/H&,
^uDUu&, and ^uDPu& by measuring these quantities on th
same 20 configurations. The results are plotted in Figs.
and 15, for large heavy and large light, as a function
Npoly . We observe no dependence onNpoly for both lattices
and the violation of reversibility remains close to the limit
the double precision arithmetic. This implies that t
Clenshaw-type representation of the polynomial Eq.~29!
adopted in our implementation of the PHMC algorithm do
not accumulate round-off errors even for largeNpoly . We

FIG. 14. Npoly dependence of the reversibility violation on th
large heavy lattice.

FIG. 15. Same as Fig. 14 but for the large light lattice.
7-12
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also emphasize that the violation is much smaller than in
usual HMC plotted in Figs. 6 and 7. In the HMC algorith
the number of arithmetic operations can be different betw
forward and backward steps, because the convergence o
BiCGStab solver is controlled by the condition that the
sidual is smaller than a certain value. We suspect that
reversibility becomes better if the number of iterations~thus
the number of arithmetic operations! is fixed in the solver.
Even if this is the case, the numerical stability is not op
mized in the BiCGStab solver, and the PHMC is still e
pected to perform better regarding the reversibility.

We then measure the actual efficiency on large lattic
The simulation parameters and some results are summa
in Tables V and VI for heavy and light dynamical quarks. W
plot ^dS& andPcorr5erfc(^dS&1/2/2) as functions ofNpoly in
Figs. 16 and 17. Compared to the small lattice, substanti
larger Npoly are needed to keep the acceptance rate at
sonably large values.

Furthermore,̂ dS& and the acceptance depends subst
tially on the sea quark mass. As discussed in Ref.@16# the
parameterb, which parametrizes the slope of^dS&, is ex-
pected to be proportional to the quark mass. This expecta
is confirmed in our simulations: the ratio of the quark mas
in the two simulations is 2.04~6!, while the ratio ofb is
2.15~15!.

TABLE V. Simulation with the C-PHMC algorithm on the larg
heavy lattice.

C-PHMC~70! C-PHMC~80! C-PHMC~90!

NMD 80 80 80
Stopping conditiona 10214 10214 10214

Trajectories 1300 1000 1000
^dH& 0.151~21! 0.187~22! 0.154~31!

HMC acceptance 0.775~17! 0.763~23! 0.787~21!

^dS& 0.244~32! 0.069~24! 0.013~7!

Correction acceptance 0.731~20! 0.851~21! 0.930~13!

Total acceptance 0.568~17! 0.658~27! 0.732~30!

Plaquette 0.52803~11! 0.52809~10! 0.52809~10!

aThis is used for the generation of the pseudofermion field and
calculation of the correction factor.
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The efficiency of the noisy Metropolis stepPcorr /Npoly is
plotted in Fig. 18. The maximum efficiency is achieve
aroundPcorr50.9, and the height at the maximum is low
for the lighter quark mass than that for the heavier one
about a factor of two, as we expected from the ratio ofb @and
from Eq. ~41!#.

Finally, we compare the total efficiency of the PHM
algorithm with that of the usual HMC. The efficiency is p
rametrized asPtotal /@NMult /traj#, which is plotted in Fig. 19
against the total acceptance ratioPtotal . The total acceptance
ratio Ptotal of the PHMC algorithm is defined byPtotal
5PaccPcorr ; for the HMC algorithm it isPtotal5Pacc . The
number of hopping matrix multiplications to cover a un
trajectory,@NMult /traj#, is counted in the program. The effi
ciency of PHMC is slightly better than the usual HMC fo
both heavy and light dynamical quarks. We note that
efficiency of HMC depends substantially on the stoppi
condition imposed. As we discussed in Sec. III D, we ca
fully chose the stopping condition for HMC, but the remai
ing violation of the reversibility is still large compared to th
PHMC. Therefore, in order to guarantee the exactness of
algorithm strictly, a strict stopping condition is required a
then the efficiency of HMC becomes much lower.

V. PHMC ALGORITHM FOR AN ODD NUMBER
OF FLAVORS

In this section we describe an extension of the PHM
algorithm to the case of odd number of flavors. As we

e

FIG. 16. ^dS& versusNpoly for the large heavy~pentagons! and
large light ~diamonds! lattices.
r.
TABLE VI. Same as Table V but for the large light lattice.

C-PHMC~120! C-PHMC~140! C-PHMC~160!

NMD 100 100 100
Stopping conditiona 10214 10214 10214

Trajectories 1600 1200 1100
^dH& 0.197~18! 0.243~43! 0.194~20!

HMC acceptance 0.750~12! 0.768~13! 0.765~14!

^dS& 0.719~48! 0.188~17! 0.052~14!

Correction acceptance 0.563~18! 0.770~12! 0.886~19!

Total acceptance 0.422~14! 0.597~15! 0.678~17!

Plaquette 0.53417~11! 0.53396~18! 0.53411~15!

aThis is used for the generation of the pseudofermion field and the calculation of the correction facto
7-13
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S. AOKI et al. PHYSICAL REVIEW D 65 094507
ready outlined in Sec. II, the algorithm is almost the same
that for even number of flavors, except for the polynomial
the evaluation of the correction factor. We make a numer
check of the algorithm by comparing the simulation of
11-flavor QCD with the two-flavor case simulated with th
HMC and PHMC algorithms. In addition we carry out
simulation of 211-flavor QCD and compare the results wi
that obtained by theR algorithm.

A. PHMC for one-flavor QCD

In order to construct a real and positive definite effect
action for one-flavor of dynamical quark, we use the tri
proposed by Boric¸i and de Forcrand@7# and Alexandrou
et al. @8#, which was already described in Sec. II B.

A polynomial of even degreePNpoly
@z# can be split into

the product of two polynomialsTNpoly
@z# and T̄Npoly

@z# as

PNpoly
@z#5TNpoly

@z#T̄Npoly
@z#, ~43!

TNpoly
@z#[ (

i 50

Npoly/2

di~z21! i , ~44!

T̄Npoly
@z#[ (

i 50

Npoly/2

di* ~z21! i . ~45!

FIG. 17. Pcorr versusNpoly for the large heavy~pentagons! and
large light ~diamonds! lattices.

FIG. 18. EfficiencyPcorr /Npoly versusPcorr on the large heavy
~pentagons! and large light~diamonds! lattices.
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s

al

Note that here we use the summation representation
TNpoly

@z# (T̄Npoly
@z#) instead of the product representation

in Eq. ~7!. The coefficientsdi in TNpoly
@z# are determined as

follows. First, we consider the product representation
PNpoly

@z# asPNpoly
@z#5cNpoly

)k51
Npoly(z2zk). The ordering of

the monomials is defined so that arg(zk21) increases mono
tonically with increasingk. Since the rootszk appear with
their complex conjugate, we findzk5zNpoly112k* (k

51 . . .Npoly/2). We then split the polynomial into the prod
uct of two polynomial as PNpoly

@z#5cNpoly
) j 51

Npoly/2(z

2zk( j ))(z2zk( j )* ), where the reordering indexk( j ) is defined
by k( j )52 j 21. Then we obtain a ‘‘square root’’ of the poly
nomial asTNpoly

@z#5AcNpoly
) j 51

Npoly/2(z2zk( j )), from which
we arrive at the polynomial representation Eq.~44! by ex-
panding the product representation. Since we do not use
product representation ofTNpoly

@z# in the numerical simula-
tion, the problem of the ordering of monomials is irreleva
as long as one uses long enough decimal precision or c
puter algebra systems to obtain the coefficientsdi .

We note thatTNpoly
@z#†ÞT̄Npoly

@z# for complexz, but for
the determinant of the Wilson-Dirac operatorD one can
prove the relation

det†TNpoly
@D#‡* 5det†T̄Npoly

@D#‡, ~46!

using theg5 hermiticity propertyD†5g5Dg5. It follows that

det†PNpoly
@D#‡5det†T̄Npoly

@D#‡•det†TNpoly
@D#‡

5udet†TNpoly
@D#‡u2. ~47!

For the preconditioned case, the Hermiticity is modified
D̂oo

S †5g5(11T)ooD̂oo
S (11T)oo

21g5, for which Eq. ~46!
holds as well.

The partition function for one-flavor QCD can be writte
as

FIG. 19. Total efficiencyPtotal /@NMult /traj# as a function of
Ptotal .
7-14
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Z5E DU DP Dfo
† Dfo det@Woo#

3e2HPHMC[ P,U,fo] ,

HPHMC@P,U,fo#5
1

2
P21Sg@U#1Spoly

S @fo#

1Sdet
S @U#, ~48!

Spoly
S @fo#5uTNpoly

@D̂oo
S #fo] u2,

Sdet
S @U#52~ log det@11Tee#1 log det@11Too# !.

The polynomialPNpoly
@D̂oo

S # in the two-flavor case Eq.~27!

is replaced byTNpoly
@D̂oo

S #. The correction factor det@Woo# is
the same as that defined in Eq.~27!, but the exponent is 1.

Every step of the HMC part of the simulation is the sam
as the corresponding step in the two-flavor case, except
we use the polynomialTNpoly

rather thanPNpoly
. The pseudo-

fermion field is similarly generated by

fo5TNpoly
@D̂oo

S #21ho5T̄Npoly
@D̂oo

S #D̂oo
S Woo

21 ho , ~49!

with a Gaussian noise vectorho at the beginning of each MD
step. On the other hand, the noisy Metropolis step to inc
porate the correction factor requires a special treatment,
cause the correction factor is not (det@Woo#)

2 but det@Woo#.

B. Noisy Metropolis test for the one-flavor case

If the fermion determinant det@D̂oo
S # is positive, det@Woo#

is also positive and its square root is well defined. We cal
late the square root of the matrixWoo by solving the equa-
tion Aoo

2 5Woo using the Taylor expansion

Aoo511(
k

`
~2k23!!!

~2k!!!
doo

k

511
1

2
doo2

1

8
doo

2 1
1

16
doo

3
••• ~50!

with doo[Woo21, because we expect thatWoo is close to
the identity matrix when the polynomialPNpoly

@D̂oo
S # is a

good approximation of (D̂oo
S )21. We obtain

det@Woo#5udet@Aoo#u2, ~51!

using the ~preconditioned! g5 Hermiticity property Aoo
†

5g5(11T)ooAoo(11T)oo
21g5.

Once we obtain the matrixAoo , we can perform the noisy
Metropolis test Eq.~37! replacingWoo in Eq. ~38! by Aoo ,

dS5u~Aoo@U8# !21Aoo@U#xou22uxou2. ~52!

The only complication is the use of the Taylor expansion E
~50! every time we need a multiplication withAoo . For the
inverseAoo

21 we use another polynomial
09450
at

r-
e-

-
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Aoo
21511(

k

`

~21!k
~2k21!!!

~2k!!!
doo

k

512
1

2
doo1

3

8
doo

2 2
5

16
doo

3
•••. ~53!

In the numerical calculation, summation from the lower o
der to the higher should be avoided to reduce round-off
rors. We therefore use the following~Clenshaw’s type! ex-
pressions:

Aoo5F11
1

2
dooF11

21

4
dooF11

23

6
doo•••

3F11
322k

2k
dooG•••G G G , ~54!

A8oo
215F11

21

2
doo8 F11

23

4
doo8 F11

25

6
doo8 •••

3F11
122k

2k
doo8 G•••G G G . ~55!

A shortcoming of this method is that we have to recalcul
the entire expressions when we need to increase the ord
truncationk in the Taylor expansion.

In order to avoid systematic errors from the truncation
the Taylor expansion, we monitor the residual

r 15
uAoo@U#~Aoo@U#xo!2Woo@U#xou

uWoo@U#xou
, ~56!

in the calculation ofAoo@U#xo , and

r 25
uWoo@U8#~Aoo@U8# !21$~Aoo@U8# !21vo%2vou

uvou
,

~57!

in the calculation of (Aoo@U8#)21vo with vo5Aoo@U#xo .
We require that the residuals be smaller than 10214 to keep
the exactness of the algorithm. In the simulation program
always monitor the residuals, and when the residuals bec
larger than our condition we repeat the calculation increas
k until it becomes satisfied.

The necessary order of the Taylor expansion depends
nificantly on the order of polynomialNpoly . If Npoly is large
enough,Woo is very close to the identity and the Taylo
expansion may be truncated at very low orders. Theref
there is a complicated trade-off betweenNpoly and k to the
computational cost in the algorithm. We consider briefly t
computational cost to calculate the square root of the cor
tion matrix and the noisy Metropolis acceptance probabi
as follows. In the case of the Chebyshev polynomial,
residual of the correction matrix is estimated as

Woo215doo5~D̂oo
S 21!Npoly11. ~58!

If we takel as the largest eigenvalue ofD̂oo
S 21, this leads

to udoou.uluNpoly11 where ulu,1 is assumed. To keep th
7-15
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TABLE VII. A comparison of the two- and (111)-flavor QCD simulations atb55.0, 83316, k
50.1415,csw51.855.

S-HMC C-PHMC~26! C-PHMC~26!

Nf52 Nf52 Nf5111

NMD 32 32 32
Trajectories 5000 5000 5000

^dH& 0.2634~107! 0.2236~106! 0.1262~70!

HMC acceptance 0.7172~79! 0.7444~70! 0.7994~78!

^dS& ~quark 1! - 0.0553~59! 0.0234~36!

Correction acceptance~quark 1! - 0.8595~53! 0.9264~54!

^dS& ~quark 2! - - 0.0167~37!

Correction acceptance~quark 2! - - 0.9370~58!

Total acceptance 0.7172~79! 0.6398~117! 0.6950~74!

Plaquette 0.43877~22! 0.43839~27! 0.43857~20!
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residual of the square root Eq.~56! ~for example! lower than
a constante, we have the following inequality when the Tay
lor expansion is truncated at an orderk:

r 1}udoo
k11u5ulu(k11)(Npoly11),Ce, ~59!

with a coefficientC. Thus (k11)(Npoly11) must be larger
than a constant proportional to ln(e). When we fixe as a
stopping condition, the truncation orderk is chosen so as to
satisfy Eq. ~59!. The computational cost to calculate th
square root of the correction matrix becomes a constant
cause the number of multiplication ofD̂oo

S is proportional to
k3Npoly , which is roughly ;(k11)(Npoly11). Conse-
quently the total amount of the computational cost to cal
late Eq. ~52! becomes almost constant. Thus we conclu
that the choice ofNpoly does not affect the cost in the nois
Metropolis test, and that the efficiency of the whole alg
rithm is governed by the cost of the molecular dynamics s
~proportional toNpoly) and by the acceptance rates of t
HMC and the noisy Metropolis tests.

In order to evaluate the correction factor det@Woo#, Takai-
shi and de Forcrand@3# employed the idea of the unbiase
stochastic estimator@40# using Adet@Woo@U8#2/Woo@U#2#
5A^e2dS&xo

from several estimates of̂e2dS&xo
with dS

defined in Eq.~38! for theNf52. Their method is faster tha
ours because they do not need to calculate the square ro
the correction matrix as we did in Eqs.~50! and~53!. On the
other hand, the stochastic estimator may produce nega
probabilities for the Metropolis test, which leads to syste
atic errors in the final results. In order to avoid this proble
they keepdS sufficiently small with a high acceptance rat
so that the negative probabilities within a desired traject
length do not appear. In our method these problems
avoided at the price of additional computational costs
taking explicitly the square root of the correction matrix.

C. Numerical test with „1¿1…-flavor QCD

The algorithm for one-flavor of dynamical fermion can
tested by considering (111)-flavor QCD, which should be
identical to two-flavor QCD. Since we already have resu
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with established algorithms for two-flavor QCD, we check
we can reproduce the results with the (111)-flavor QCD
simulation. For (111) flavors, we introduce two sets o
pseudofermion fieldsfo

[ f ] ( f 51,2) with the effective action

Spoly
S @fo

[ f ] #5uTNpoly
@D̂oo

S #fo
[ f ] u2. The correction factor

det@Woo# is evaluated twice with the noisy Metropolis te
described in Sec. V B.

Simulation parameters and some results on our sm
heavy lattice are listed in Table VII. We employ the Cheb
shev polynomial of orderNpoly526 both in the two-flavor
simulation and in the (111)-flavor simulation with PHMC
algorithms. Note that the order of the polynomialTNpoly

in

Nf5111 is 26/2513 by its definition for each pseudofe
mion. We also have a result with the standard S-HMC.

We observe in Table VII that the three algorithms give
consistent plaquette expectation value within the statist
error of less than 0.1%. It is evident that the algorithm
odd number of flavors works as we expected. The statist
error is evaluated with the binned jack-knife method and
bin size is increased until the error ceases to grow.

In the same table we find that^dH&, which controls the
HMC acceptancePacc , is significantly smaller for the (1
11)-flavor simulation at the same MD step sizedt. The size
of ^dH& depends on the precise form of the Hamiltonian
consider. While the formula described in Ref.@23# may be
employed to examine this issue, we do not pursue it h
because of the complication of the force contribution fro
the pseudofermion action. Note that this decrease of^dH& in
theNf5111 case does not immediately mean an increas
the efficiency. The reason is that we expect the duplication
the pseudofermion field to cause an extension of the auto
relation time.

We find that the acceptance ratePcorr
Nf52 in the correction

factor for the two-flavor case is related to those of the
11)-flavor simulation asPcorr

Nf52.(Pcorr
Nf51)2. This property

can be explained as follows: ExpandingdSNf52 in Eq. ~38!
in terms ofdoo5Woo@U#21 anddoo8 5Woo@U8#21, we ob-
tain dSNf5252 Re@xo

†(d2d8)ooxo# up to O(d2,d82,dd8).
On the other hand,dSNf51 in Eq. ~52! is expressed as
7-16
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dSNf515Re@xo
†(d2d8)ooxo#. Up to higher orders indoo

and doo8 we then obtaindSNf52.2dSNf51 and Pcorr
Nf52

.(Pcorr
Nf51)2.

We also test our algorithm on large heavy and large li
lattices. The convergence of the polynomialTNpoly

@D̂oo
S # and

of the Taylor expansion of the correction factor is non-triv
on these large lattice sizes. To investigate the convergenc
the polynomialTNpoly

@D̂oo
S # we perform the same check a

that made forPNpoly
@D̂oo

S #. In Fig. 20 we show the conver
gence behavior using

uT̄Npoly
@D̂oo

S #TNpoly
@D̂oo

S #D̂oo
S ho2hou

uhou
, ~60!

as the residual. Hereho is a Gaussian noise vector and t
measurement is made on 20 thermalized configurations s
rated by ten trajectories. SinceT̄Npoly

@D̂oo
S #TNpoly

@D̂oo
S #

should bePNpoly
@D̂oo

S # by definition, Eq.~60! must be iden-
tical to Eq.~42! except for round-off errors. As shown in Fig
20, Eq. ~60! decreases exponentially asNNpoly

increases,
which is the same behavior as in Fig. 13. Thus we confi
that there is no unexpected accumulation of round-off err

FIG. 21. Npoly dependence of the reversibility violation on th
large heavy lattice (Nf5111).

FIG. 20. Npoly dependence of the residua

^uT̄Npoly
@D̂oo

S #TNpoly
@D̂oo

S #ho2hou/uhou& (Nf5111).
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in the calculation ofTNpoly
@D̂oo

S # with our choice ofNpoly

(TNpoly
@D̂oo

S # is also evaluated with the Clenshaw’s recu
rence formula!. The violation of reversibility is extremely
small as plotted in Figs. 21 and 22. Their magnitude st
around the limit of the double precision arithmetic, whic
parallels our finding with the two-flavor case~Figs. 14 and
15!.

Figures 23~large heavy! and 24 ~large light! show the
convergence behavior of the Taylor expansion of the corr
tion matrix as a function of the order of the expansion. T
convergence is monitored with the residualsr 1 and r 2 de-
fined in Eqs.~56! and~57!, respectively. We also monitor th
convergence of the weightdS defined in Eq.~52!, by mea-
suring udS2dSendu, wheredSend is the value ofdS at the
highest order of the expansion. These figures are also plo
with measurements on 20 configurations separated by 10
jectories. Open symbols are obtained for the smallestNpoly
~70 for large heavy, 100 for large light!, and filled ones are
for the largestNpoly ~190 for large heavy, 200 for large
light!. The convergence of the residuals is almost expon
tial. The slope, however, becomes weaker near the limi
the double precision arithmetic. In the region where the
ponential decay is observed,k3Npoly seems to behave a
roughly constant irrespective of the choice ofNpoly . This is
the expected behavior discussed in Sec.V B. When the s
ping condition forr 1 andr 2 is set to be 10214, the improve-

FIG. 22. Same as Fig. 21 but for the large light lattice.

FIG. 23. Convergence behavior of the Taylor expansion of
correction matrix on the large heavy lattice. Open:Npoly570;
filled: Npoly5190.
7-17
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ment of udS2dSendu stops at;10212. SincedS itself is of
O(1022), we expect thatdS has ;10 digits of significant
figure, which we expect to be sufficient for current simu
tion trajectory lengths. The negative eigenvalue problem
not occur in these investigations, probably because of
intermediate quark mass we employed.

Table VIII shows the simulation statistics for C-PHM
with Nf5111 on both of the large lattices. We obtain r
sults for the averaged plaquette value which are consis
with those for the Nf52 case. The relationPcorr

Nf52

.(Pcorr
Nf51)2 holds again for such large lattice sizes, and

did not encounter the negative eigenvalue problem du
the long trajectories (;1000). We expect that the total effi
ciency has the same functional dependence onNpoly as that
with theNf52 PHMC, since the behavior onNpoly is mostly
ruled by the molecular dynamics. The actual value of
total efficiency is slightly worse than that with theNf52
PHMC algorithm due to the two pseudofermion generatio
the Hamiltonian calculation, and monitoring of the residu
in the noisy Metropolis test. We note that the autocorrelat
time may be extended by the increase of the dynamical v
able in the path integral. Examination of this point is left f
future studies. With the numerical tests described here
conclude that our PHMC algorithm for one-flavor dynamic
quark works well even for a moderately large lattice s
163348 at intermediate quark masses ofmPS/mV;0.7–0.8,
at least in theNf5111 case.

D. A „2¿1…-flavor QCD simulation

Combining the two-flavor HMC algorithm with the one
flavor PHMC leads to an exact algorithm for (211)-flavor
QCD. For the two-flavor part, we may also choose
PHMC if the usable amount of memory allows to store wo
vectors. A test of the algorithm can be performed compar
the results with those of theR algorithm@1# after an extrapo-
lation to zero step size in the latter. In this section we sh
the results of such a comparison on some small lattices.

The numerical test is made with the following two sets
lattice parameters. One set uses a lattice of size 4338 at b
54.8, sea quark mass ofkud50.150 for two light flavors,
andks50.140 for the third flavor, andcsw51.0 for all three

FIG. 24. Same as Fig. 23 but for the large light lattice. Op
Npoly5100; filled: Npoly5200.
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flavors (Nf5211 small!. The order of the polynomial is se
to Npoly510 for the single flavor. The second set uses a3

316 lattice,b55.0, kud50.1338, andks50.1330, andcsw
52.08 (Nf5211 middle!, whereNpoly558 is employed.
For both lattice sizes we use the Chebyshev polynomial w
unit circle convergence domain.

The simulation statistics is tabulated in Tables IX and
together with the plaquette expectation value extracted fr
the R algorithm. Figures 25 and 26 show the plaquette
pectation value from the runs with theR algorithm at several
values of the MD step sizedt ~open symbols!. Filled sym-
bols are from the PHMC algorithm. The plaquette valu
with the R algorithm extrapolated to zero step size are pl
ted with dotted horizontal lines. We observe that our ex
algorithm~filled symbols! gives results at a finitedt ~see also
Tables IX and X! consistent with the extrapolated valu
~horizontal dotted line! of the R algorithm. Because of the
finite dt dependence, the cost to obtain reliable results w
the R algorithm is higher than that of the PHMC algorithm

For larger and realistic lattice sizes, we started a para
eter search in order to realize a physical volumeL;1.7
22.0 fm, a lattice cutoffa21;1.522.0 GeV, and pseudo
scalar to vector meson mass ratiosmPS/mV;0.7–0.8. Dur-
ing the parameter search we found an unexpected first-o
phase transition@13#. Details of this search, including th
property of the PHMC algorithm with the realistic param
eters in theNf5211 case on large lattice sizes, will b
reported elsewhere.

VI. CONCLUSIONS

In this paper, we introduced a polynomial hybrid Mon
Carlo ~PHMC! algorithm which is applicable to QCD with
an odd number of flavors. The algorithm is an extension
the one by Takaishi and de Forcrand@3# to the
O(a)-improved Wilson quark action. We also described
method to remove the systematic error from the no
Hermitian polynomial approximation to the invese of th
Wilson-Dirac operator in the single flavor case.

An important technical point uncovered in our work co

TABLE VIII. Simulation statistics with theNf5111 C-PHMC
algorithm on large lattices.

Large heavy Large light
C-PHMC~80! C-PHMC~140!

Nf5111 Nf5111

NMD 80 100
Trajectories 1000 1500

^dH& 0.081~14! 0.042~11!

HMC acceptance 0.829~14! 0.872~14!

^dS& ~quark 1! 0.014~7! 0.042~10!

Correction acceptance~quark 1! 0.944~11! 0.878~9!

^dS& ~quark 2! 0.0084~61! 0.047~10!

Correction acceptance~quark 2! 0.936~9! 0.876~16!

Total acceptance 0.733~20! 0.671~20!

Plaquette 0.52782~12! 0.53392~9!

:
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TABLE IX. Simulation parameters for a (211)-flavor QCD simulation.b54.8,4338,csw51.00,kud

50.150,ks50.140 are used. The stopping conditions are defined as follows:~a! the force calculation from the
Nf52 pseudofermion action,~b! the calculation of the Hamiltonian of theNf52 pseudofermion action,~c!
the generation of the pseudofermion field, and the calculation of the correction factor for the single
part.

Hybrid-R ~extrapolated! C-PHMC~10! C-PHMC~10!

Nf5211 Nf5211 Nf5211

NMD - 20 10
Stopping condition~a! - 10214 10214

Stopping condition~b! - 10214 10214

Stopping condition~c! - 10214 10214

^dH& - 0.055~5! 0.839~28!

HMC acceptance ratio - 0.877~7! 0.521~12!

^dS& - 0.00014~61! 0.00056~62!

Correction acceptance ratio - 0.9843~21! 0.9861~22!

Total acceptance ratio - 0.864~7! 0.514~12!

Plaquette 0.39702~13! 0.39669~38! 0.39695~32!
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cerns the choice of the even-odd preconditioning to
O(a)-improved Wilson-Dirac operator. Asymmetric an
symmetric even-odd preconditionings were introduced
investigated in the HMC algorithm with two-flavor dynam
cal quarks. We found that the HMC algorithm with thesym-
metrically even-odd preconditioned form of the lattice QC
partition function yields roughly a factor two gain in effi
ciency over the unpreconditioned one. This performance
ceeds the gain of about 1.5 for the asymmetrical preco
tioning employed in actual simulations so far. We, the
decided to use the symmetrically even-odd preconditio
form for the quark determinant for the PHMC algorithm.

We explored distinctive features of the PHMC algorith
using the case of two flavors of quarks where comparis
with the standard HMC are possible. Our findings are~i! the
reversibility is much better with the PHMC algorithm b
cause of the fully deterministic nature of multiplication wi

TABLE X. Simulation parameters for a (211)-flavor QCD
simulation. b55.0,83316,csw52.08,kud50.1338,ks50.1330 are
used. The definition of the stopping condition~a!–~c! is the same as
those in Table IX.

Hybrid-R ~extrapolated! C-PHMC~58!

Nf5211 Nf5211

NMD - 32
Stopping condition~a! - 1029

Stopping condition~b! - 10214

Stopping condition~c! - 10214

^dH& - 0.194~9!

HMC acceptance ratio - 0.743~7!

^dS& - 0.019~3!

Correction acceptance ratio - 0.926~5!

Total acceptance ratio - 0.688~8!

Plaquette 0.53161~7! 0.53145~11!
09450
e
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x-
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s

the Wilson-Dirac operator in the force calculation in the m
lecular dynamics step,~ii ! for the order of the polynomia
chosen sufficiently large, the total efficiency of the PHM
algorithm is almost identical to or rather better than that w
the HMC algorithm. Hence the PHMC algorithm is an alte
native forNf52 dynamical QCD simulations on moderate
large lattice size in the intermediate quark mass reg
mPS/mV;0.7–0.8.

We demonstrated the consistency and applicability of
PHMC algorithm for an odd number of flavors by conside
ing the case of two single-flavor pseudofermions (Nf51
11 QCD) and comparing it with the established algorith
for the two-flavor pseudofermion (Nf52 QCD). The re-
versibility holds to almost the same degree as that with
Nf52 PHMC algorithm. The noisy Metropolis test fo
single-flavor part, in which we have to take the square r
of the correction matrix explicitly, works well on moderate
large lattices with intermediate quark masses ofmPS/mV
;0.7–0.8.

FIG. 25. MD step sizedt dependence of the plaquette expec
tion value on the lattice of size 4338 at b54.8, cSW51.00, kud

50.150,ks50.140. Open circles are results of theR algorithm, and
the filled circles are from our exact algorithm.
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S. AOKI et al. PHYSICAL REVIEW D 65 094507
Finally we constructed a PHMC algorithm for 211 fla-
vors of quarks by combining a two-flavored pseudofermi
which is employed in the usual HMC algorithm, and
single-flavored pseudofermion described by the polynom
approximation. Running the algorithm on two small latti
sizes we confirmed an agreement of plaquette values
those from theR algorithm after an extrapolation to the ze
step size in the latter.

We conclude that the PHMC algorithm is a viable cho
for realistic simulations of lattice QCD with 211 flavors.
Since our numerical tests show that the computational
for two single-flavor pseudofermions is comparable to tha
the two-flavor case, the cost for the single-flavor part of
(211)-flavor QCD is about a half of the two-flavor part. W
thus expect that the simulation of the (211)-flavor QCD
may be performed with a cost of a factor 1.5–2 compared
the two-flavor QCD simulation.
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APPENDIX: FORCE CALCULATION IN THE HMC
ALGORITHMS

In this appendix we describe the explicit form of th
quark force in the HMC algorithms for different precond
tionings. Since most of the definitions and extractions of
quark force are common to the standard Wilson quark act
we only show the variation of the quark action under
infinitesimal change of the gauge link variable as defined
Eq. ~12!.

1. Without preconditioning

If we do not apply the even-odd preconditioning, the for
from the pseudofermion field is simply written as

FIG. 26. MD step sizedt dependence of the plaquette expec
tion value on the lattice of size 83316 atb55.0, cSW52.08, kud

50.1338,ks50.1330. Open circles are results of theR algorithm,
and the filled circle is from our exact algorithm.
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dSq5$2X†dDY%1H.c., ~A1!

where

X5~D†!21D21f, ~A2!

Y5D21f, ~A3!

dD5S dTee dMeo

dMoe dToo
D . ~A4!

The contribution from the derivative of the hopping matr
dMeo(oe) is the same as that in the Wilson action. The co
tribution from the SW termdTee(oo) is shown in Fig. 27,
whereÃ is a 333 matrix defined by

~Ã!mn~n!5H 2
icswk

8
trdirac@smnY~n!X~n!†#J 1H.c.

~A5!

trdirac@•••# means the trace over the spinor indices.

2. Asymmetric preconditioning

The force from the pseudofermion field with the asym
metric preconditioning is given by

dSq
A5$2XA†dDYA%1H.c., ~A6!

where

XA5S 2~11T!ee
21Moe

† X̂o
A

X̂o
A D , ~A7!

YA5S 2~11T!ee
21MeoŶo

A

Ŷo
A D , ~A8!

X̂o
A5~D̂oo

A †!21~D̂oo
A !21fo , ~A9!

Ŷo
A5~D̂oo

A !21fo . ~A10!

Note thatD̂oo
A †5g5D̂oo

A g5 andMoe
† 5g5Meog5.

In addition we need the force from the determinant of t
SW term,

-
FIG. 27. Diagrams contributing toFm(n) from the SW term.
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dSdet
A 522 Tr@dTee~11T!ee

21#. ~A11!

This is calculated only for even sites. The termÃ in Fig. 27
from the SW term is replaced by

~Ã!mn~n!5H 2
icswk

8
trdirac@smnYA~n!XA~n!†#

2
icswk

8
trdirac@smn~11T!21~n!#

3dn,evensiteJ 1H.c. ~A12!

3. Symmetric preconditioning

For the symmetric preconditioning the force is separa
into two parts as

dSq
S5$2XS†dMYS2XS†dTZS%1H.c., ~A13!

where

dM5S 0 dMeo

dMoe 0 D , ~A14!

dT5S dTee 0

0 dToo
D , ~A15!

XS5S 2~11T!ee
21Moe

† X̂o
S

X̂o
S D , ~A16!

YS5S 2~11T!ee
21MeoŶo

S

Ŷo
S D , ~A17!
L.

th

y

.

09450
d

ZS5S 2~11T!ee
21MeoŶo

S

~11T!oo
21Moe~11T!ee

21MeoŶo
SD , ~A18!

X̂o
S5~11T!oo

21~D̂oo
S †!21~D̂oo

S !21fo , ~A19!

Ŷo
S5~D̂oo

S !21fo . ~A20!

The g5 Hermiticity is slightly different forD̂oo
S , which is

D̂oo
S †5g5(11T)ooD̂oo

S (11T)oo
21g5.

The force contribution from the determinant of the S
term is written as

dSdet
S 522 Tr@dT~11T!21#, ~A21!

at every lattice site. The termÃ in Fig. 27 is replaced by

~Ã!mn~n!5H 2
icswk

8
trdirac@smnZS~n!XS~n!†#

2
icswk

8
trdirac@smn~11T!21~n!#J

1H.c. ~A22!

4. PHMC

In the PHMC algorithm, the termÃ from the SW termdT
in Fig. 27 is written as

~Ã!mn~n!5H icswk

8 (
j 51

Npoly

$trdirac@smnZP( j )~n!XP( j )~n!†#%

2
icswk

8
trdirac@smn~11T!21~n!#J 1H.c.

~A23!
d

@1# S. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, and R.
Sugar, Phys. Rev. D35, 2531~1987!.

@2# S. Duane, A.D. Kennedy, B.J. Pendleton, and D. Rowe
Phys. Lett. B195, 216 ~1987!.

@3# T. Takaishi and Ph. de Forcrand, hep-lat/0009024; Nucl. Ph
B ~Proc. Suppl.! 94, 818 ~2001!; hep-lat/0108012.

@4# Ph. de Forcrand and T. Takaishi, Nucl. Phys. B~Proc. Suppl.!
53, 968 ~1997!.

@5# R. Frezzotti and K. Jansen, Phys. Lett. B402, 328 ~1997!.
@6# R. Frezzotti and K. Jansen, Nucl. Phys.B555, 395 ~1999!;

B555, 432 ~1999!.
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