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We present a polynomial hybrid Monte CarflBHMC) algorithm for lattice QCD with odd numbers of
flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev
polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors.
The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a
new method is developed. Investigating the property of our PHMC algorithm iNthe2 QCD case, we find
that it is as efficient as the conventional HMC algorithm for a moderately large lattice siZ& 485 with
intermediate quark massesgs/my~0.7-0.8). We test our odd-flavor algorithm through extensive simula-
tions of two-flavor QCD treated as afy=1+1 system, and comparing the results with those of the estab-
lished algorithms foN;=2 QCD. These tests establish that our PHMC algorithm works on a moderately large
lattice size with intermediate quark masses3(288mps/my,~0.7-0.8). Finally we experiment with the (2
+1)-flavor QCD simulation on small lattices {4 8 and §x 16), and confirm the agreement of our results
with those obtained with th& algorithm and extrapolated to a zero molecular dynamics step size.
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I. INTRODUCTION [7,8]. They introduced a method to calculate the correction
factor required to compensate for the truncation error due to
An essential step toward realistic lattice simulations ofthe finite order of the polynomial, and hence the algorithm is
quantum chromodynamid€CD) is to develop efficient al- €Xact. The algorithm was .tested on a small lattice for 1, 1
gorithms to incorporate the dynamical sea quark effects oft 1, and 2+ 1 flavors of Wilson fermions. .
up, down, and strange quarks. Most of the recent dynamical C!€ary, the next step toward realistic simulations of QCD
QéD sim,ulations have been however. limited to two-flavor'> to investigate the practical feasibility of their algorithm for

_two light (up and dowmn quarks and one relatively heavy
QCD where up and down quarks are treated dynamicallygyanga quark on large physical volumes. In this case, up
while the loop effect of the strange quark is still neglected

e ; - : and down quarks are treated with the usual pseudofermion
This is mainly due to the lack of efficient algorithms to treat method, while the strange quark is incorporated with the
an odd number of dynamical quark flavors. TRelgorithm  holynomial approximation. It is known that the multiboson
[1] is a possible candidate for this purpose, but its seriougigorithms, which also rely on the polynomial approximation
drawback is the systematic error©{dt?) stemming from a  for the inverse of fermion matrix, fail for light quark®].
finite step sizedt in the molecular dynamics evolution. To Therefore, we need to examine whether the algorithm with
control this systematic error, one has to kegp small the polynomial approximation works for intermediate quark
enough and to monitor the size of the error by performingmassesaround the strange quarkAn implementation of the
simulations at various values aft, which requires much algorithm for theO(a)-improved Wilson(cloven quark ac-
computational effort. Therefore, an exact algorithm such asion [10] is also important to carry out simulations with re-
the hybrid Monte Carlo(HMC) algorithm [2], which is  duced systematic errors due to finite lattice spacing.
widely used for simulations with an even number of flavors, In this work we present a modified algorithm for
is clearly desirable. (2+1)-flavor QCD with theO(a)-improved Wilson quark
Recently, Takaishi and de Forcrand proposed an algorithraction. Our algorithm is a variant of PHMC with the non-
for an odd number of dynamical flavof8]. They use the Hermitian Chebyshev polynomial as that of Takaishi and de
polynomial hybrid Monte CarldPHMC) algorithm [4—6]  Forcrand[3], while the treatment of the correction factor is
with a non-Hermitian Chebyshev polynomial, with which different. We test our algorithm for two different systems.
one can approximate the inverse square root of the fermio@ne is two-flavor QCD treated as a system with 1 fla-
matrix needed for the simulation of an odd number of flavorsyors, and the simulation results are compared with those of
the conventional HMC for two flavors. The other is
(2+1)-flavor QCD, where our algorithm is compared with
*Present address: Department of Physics, Hiroshima Universitthe R algorithm[1] after extrapolating to zero step size
Higashi-Hiroshima, Hiroshima 739-8526, Japan. —0.

0556-2821/2002/69)/09450722)/$20.00 65 094507-1 ©2002 The American Physical Society



S. AOKI et al. PHYSICAL REVIEW D 65 094507

We also perform two systematic numerical tests of the
HMC and PHMC algorithms in two-flavor QCD in order to sz DU (defD,])N1:(def D,]) e~ ol (1)
provide a basis to find the best method and parameter
choices for an extension to realistic simulation with 2 whereSy[ U] represents the gauge action.

flavors. Since Ny, is an even number, the fermion determinant

As a first step, we test the even-odd preconditioning for(de(Dl])Nfl can be expressed in terms of the usual pseudo-
the O(a)-improved Wilson fermion action, which was first fermion integral

proposed by Lud11] and Jansen and Lill2]. They intro-
duced symmetrical and asymmetrical preconditioning, and N2

mainly considered the asymmetric version. In our practical (de(Dl])NM:f D¢J{ Doy exr[—lDl ft ¢1|2], 2
tests we found significant improvement for both versions

over the simulation without preconditioning. The improve- ..o \we have used the relati®] = ysD;ys. We Use a

ment is more pronounced for the symmetric case and thghort-hand notation for the norm of a vectdr as |X|2

computer time can be reduced almost by a factor two from . o ) .
that 5vith0ut preconditioning y =3 2.alX&(n)|? with n the site index,a the spinor index,
y anda the color index.

Second, we investigate the efficiency of the PHMC algo- In the usual HMC algorithm one uses some iterative
rithm depending on the quark mass and on the degree of the g

polynomial. We found that the PHMC is as effective as thesolver to calculate the inverse of the fermion mafdix. In

conventional HMC algorithm for two different quark mas:sesthe PHMC algorithni5,6], on the other hand, one introduces

corresponding tompg/my=0.8 and 0.7 on a reasonably apolynom|aIPNp0|y[z] of (_)rdeero,y that converges_ tas
large lattice. This observation is encouraging, as it sugges®poly— - The non-Hermitian Chebyshev polynomial

that the polynomial approximation is useful for future simu- Nooly
lations of (2+1)-flavor QCD. R U
The rest of the paper is organized as follows. In Sec. Il we Phpail 21= Z’o ci(1=2), )

outline the algorithms we consider in this paper. the polyno-

mial hybrid Monte Carlo(PHMC) algorithm and its gener- with ¢,=(—1)' is an example of such a polynomial, when
alization to an odd number of flavors is described. In Sec. ll|1—z|<1. Supposing that all eigenvalues bf, fall inside
we test the efficiency of the even-odd preconditioning for thethe complex domaihl—z|<1, we have

O(a)-improved Wilson fermion action using the usual HMC

algorithm with two-flavor of quarks. We then investigate the de{D,Py o [D, ]V

efficiency of the PHMC algorithm for two-flavor QCD in (defD;)N= detP . [yD 1

Sec. IV. Section V describes details of our algorithm for an Npoyt — 1

odd number of flavors, and presents some numerical tests

with which the consistency and the applicability is investi- =(def{D,Py | [Dl]])Nflf D¢ID¢1
gated. Our conclusion is given in Sec. VI. Our algorithm and Poy

simulation code have already been used for a study of the Xexq_|(prO|y[D1])Nf1/2¢1|z]_ (4)

phase structure of three-flavor QCD with the Wilson-type

fermion actionq 13} We notice that the inversion of the fermion matEb{Nfl/2 is

replaced by a calculation of the polynomial
Il. OUTLINE OF THE ALGORITHM (PNpoly[Dl])Nfl’Z.
i : . Following the original proposal of the multiboson algo-
We first present the outl|r1e of our algorithm f(_)N‘(l rithm by Ltlgcher[15]g,] Frezpzotﬁ)i and JansdB,6] considere(gj
+Ng,)-flavor QCD, whereN;, is an even number whilble, 5 Hermitian operatof=cy,ysD; with ¢y, a normalization
is odd. The details of the algorithm will be explained sepa<actor and used a polynomial approximation of [d&t]?
rately in later sections. =def Q]? rather than the non-Hermitian @&, ], using the
In this section we consider the Wilson gauge and fermiony, Hermiticity propertyDI= vsD 1 vs of the Wilson-type lat-
actions, but the algorithm can be applied to more complitice fermions. In this work, however, we consider the non-
cated lattice actions arising in the Symanzik improvemenHermitian relation Eq(4), as it is suitable for the extension
program[14]. In particular, the algorithm is suitable for the tg an odd number of flavors.
O(a)-improved Wilson actiod10] which has a clover-leaf- Since the polynomial approximation introduces a trunca-
type operator to remove the discretization errolQgg). tion error, one has to evaluate the correction factor
{det@lPNpoly[Dl])}Nfl in order to make the algorithm ex-

act. As the correction factor is close to unity when the poly-
nomial is a good approximation of the inverse, a stochastic
Let D; and D, be the Dirac operators for two different technique can be used to incorporate the correction factor.
fermion masses corresponding &, and Ny, flavors, re-  The reweighting methoffl5] and the global Metropolis test
spectively. The partition function of this fermion system is[7,16] have been proposed and used in the multiboson algo-
given by rithm. For the PHMC algorithm, the reweighting method is

A. Pseudofermion representation for even number of flavors
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applied in Refs[5,6], and the global Metropolis test in Ref. that this happens for the following reason. Under a continu-
[3]. We use the global Metropolis test developed for a multi-ous change of gauge configuration, as in the molecular dy-
boson algorithni7,16]. The details of the global Metropolis namics evolution, the eigenvalues also change continuously.
test in the case dfy =2 will be given in Sec. IV C. To change the sign of a real eigenvalue it has to cross zero,
for which the determinant ddb,] vanishes which is sup-

B. Pseudofermion representation for an odd number of flavors ~ Pressed. In addition, since the single flavor part is to be iden-
tified with strange quark in realistic applications, we expect
that the intermediate mass of strange quark behaves as an
infrared cutoff obstructing the appearance of negative eigen-
values.

In our implementation, we use the fact that the correction

For an odd number of flavorslfz, we use the method
developed by Alexandroet al.[8] to take a “square root” of
the polynomial as described below.

We consider a polynomia?Npoly[z] with an even degree

Npory and rewrite it as a product of monomials factor (de{DzPNpoly[Dz]])Nfz is close to unity. If this does
Npoly Npoly not hold, the calculation will fail to converge. We should,
Py | [z]= E ci(z—1)'=cy | H (z—z), (5 therefore, be aware of the appearance of a negative determi-
poly i=0 oy

nant. Our algorithm fails if this happens, but a negative de-

terminant should be considered as a problem of the formula-

&)n of the lattice fermion rather than the problem of the
gorithm, since it is related to the lack of chiral symmetry.

which approaches 2/as N, increases. At this point the

convergence radius is assumed to cover all eigenvalues
the Wilson-Dirac operator, which will be confirmed in Sec. V
numerically. Since, appears with its complex conjugate, we

may rewrite Eq(5) as C. Hybrid Monte Carlo algorithm

ol /2
o i‘[y (Z—Z:r(j))(Z—Zk(j)), (6) 'Once we write an effet:tive action for the fermiort Qeter-
=1 minant using pseudofermions as in E@, (4), and(8), it is

, i , L straightforward to apply the hybrid Monte Carlo algorithm
where k(j) and k'(j) are the arbitrary reorderlng indices [] {5 obtain an ensemble of gauge configurations including
defined to satisfy the r5‘|"=‘t'0nzk(,) Zogy With | the effect of the approximated fermion determinant.
=1...Npoy/2. Usmg the propertyD}= 75D275 one can Introducing a fictitious momentu conjugate to the link
show that détD,— zk (J)] defD,— zk(J)] and variable U (we suppress the site, direction, and color indi-
ce9, the partition function Eq(l) is written as

[z]=cy

PNpoly

Npoly/2

defPy,, [Da]l=cw,,, 11 defD—z;)]"

1= Z= J DU DP Dl D Db Dp, defWle M. (9)

XdetDz_Zk(j)]
_ T

=de(Ty  [D-]Ty,, [D2]] (7 If we use the usual form Eq2) for an even number of

flavors, and the polynomial representation B).for the rest

whereTN [z] \/CN poly H PO'Y (z—2j))- Then we obtain  of the fermions, the effective Hamiltonid and the correc-

a pseudofermlon representatlon for an odd number of flavoron factor detW] take the form

R L R LRI I
(def D,])Nr= defPy_, [D,]] H=%P2+S[U]+|D N2y 12
:[detszNpoly[Dz]]]NfZJ DeiDb, +|(TNp0,y[D2])Nf2¢2|2a
xext —|(Ty, [D2]) V25| 1. (8) de{W]=(de{D,Py_ [Do])Ne. (10)

As in the case of an even number of flavors, the correction

factor{det(D, PN [DZD}NTZ has to be kept to construct an The HMC algorithm consists of the following four steps, for

exact algorithm. We describe the calculation of the correctiory given gauge configuratiod.

factor for theN¢,=1 case in Sec. V B. (1) Generate moment® and pseudo-fermion fieldg,
We note that in this construction, the positivity of [d®} | and ¢, from a Gaussian distribution with unit variance and

is assumed. Since the Wilson-type lattice fermions do notero mean.

have chiral symmetry, the Wilson-Dirac operadp may (2) Integrate link variable§) according to the discretized

develop a real and negative eigenvalue, which could makenolecular dynamics evolution equation derived from the

defD,] negative. In actual simulations, we do not expectequation of motion
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4

U, (n)=iP (n)U ,(n),
g pee Mn,n/=—f<l;l {(1=y,)U ,(N) 8

P.(n)=—i[U,(NF,(n)]ta., (11 .
, +(1+7,)UL(N= )80 n}, (14
where X is the derivative of a fieldX with respect to the
fictitious time t and [---]ro means the traceless anti- While T (Tee Or Too) describes thé(a)-improvement term
Hermitian part of the matrix in the bracket. The fofég(n) (or SW term
is defined through a variation of the effective Hamiltonian 1
;glcilaer an infinitesimal chang®J ,(n) of the gauge link vari- Ton=— ECSWKO- FosM) S (15)

with the clover-leaf-type field strength,, given b
SH=2, Tr{8U ,(n)F ,(n)}+H.cl. (12) P v @ Y
n,u

1 . “
Fo(mM=—=[{U (MU, (n+x)U"(n+»)UT(n
The length in the fictitious timé is arbitrary, which we set w(M=g; {ULMU,n+ @)U, n+2)U(n)

equal to unity throughout this paper. + A oAy R -

(3) Make a Metropolis test with respect to the energy +U (MU, (n+rv=m)U,(n— )V, (n—w)
differencedH between the initial configuratiod (0) and the
trial configuration U(t). The acceptance probability is
Pacd (U(0),P(0)— (U(t),P(t))]=min[1,e 9]. If the test
is accepted go to the next stép), or else the new configu-
ration is set to(U(0),P(0)) and go back to stefl). XU, (n—»+ U (n)}—H.c] (16)

(4) Make a Metropolis test with respect to the correction . # ’
factor defW]. If the test is accepte(U(t),P(t)) is taken as  \here H.c. denotes the Hermitian conjugate of the preceding
the new configuration, or else the new configuration ispracket. The Dirac matriy, is defined such that it is Her-
(U(0),P(0)). Then return to stegl). The details to obtain mitian, ando,,=(i12)[ v, ,7,].
the acceptance probability is described in Sec. V B. Factoring out the even-even component+(I.o) from

the determinant Eq.13), we have

+UL(n=w)Uj(n=p=»)U,(n=p=7)

XU, (n—»)+Ul(n=v»)U,(n—7)

IIl. EVEN-ODD PRECONDITIONING FOR THE i
O(a)-IMPROVED WILSON FERMION ACTION defD]=def1+ T, ldefD%.], (17)

Before going to the PHMC algorithm we discuss the  hare
even-odd preconditioning of the fermion determinant. The
even-odd preconditioning is a widely used technique to ac- AA _ -1
celerate the fermion matrix inversi¢a7], but it can also be Doo=(1+T) o0 Moe(1+T)gg Meo. (18
used to reformulate the fermion determinant so that th
pseudofermion field lives only on odd sitgk3,19. For the
unimproved Wilson fermion action, no extra computational
cost is required by the reformulation, while the HMC simu- _ AS
lation bec?)mes faiter, since the phase space to be covered is de{D]=def1+Teeldef1+Too]de{Dool. (19
reduced by a factor of two. Lud 1] and Jansen and Liud2]
introduced the even-odd preconditioning for the
O(a)-improved Wilson fermion which includes the clover-
leaf-type operator. In this section we review their formula-
tion and describe our extensive numerical test to see how
improves the efficiency of the HMC algorithm.

§t is also possible to factor out both the even-even and odd-
odd components as

where
D5o=1—(1+T)gaMoe( 1+ T)edMeo.  (20)
iﬁ the following, we refer to Eq9417) and(19) as asymmet-

ric and symmetric preconditioning, respectively. To our
knowledge, previous simulations in the literature have exclu-

A. Description of the preconditioning sively been made with the asymmetric even-odd precondi-
The determinant of thé@(a)-improved Wilson fermion toning. _ .
operatorD is written as Using Egs.(17) and (18), the asymmetrically precondi-
tioned patrtition function for two flavor QCD can be written
q g 1+Tee Mg
efD]=de , 13
I M 14, )

Zp. =f DU DP D! Dep, e HanmclPUdol (21
when the site index is numbered such that even sites come AHME $oDebo @)
earlier than any odd site. Here, the site is eyedd), if n, 1
+ny+n,+n, is an evenfodd number. The hopping term 2 A A

y z t —
(Mg, Or M,,) represents the usual Wilson fermion matrix Hasmel P U, o] =5 P SgLUTH S4LU, dol + Seel U,
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SqA[U,qbo]z |(|5§0)—1%|2’ TABLE I. Lattice parameters.
SdAet[U]: —2logdef1+Ted. Small heavy Large heavy Large light
L _ _ Size Fx16 16x 48 16x 48
The pseudofermion fiel@, lives on odd sites, whereas the 5.0 59 59
determina_nt défl+T.e] of the local SW term is calculated 0.1415 0.1340 0.1350
on even sites. c 1 855 502 502
. . . . sw : . :
For the symmetrically preconditioned partition function, Mps/My o8 08 ~07

from Egs.(19) and(20) we have

2This number is measured on a®1232 lattice.
Zs-Hmc= f DU DP D} Depoe™ Hsmd PV al,
tion. Another important effect of the preconditioning is that it
1 lifts the lowest eigenvalue of the fermion matrix and thus the
Hsuud P,U ,¢o]=§P2+ Sg[U]+S§[U Dol + sdse,[u]. condition number is reduced. The strength of the force com-
ing from the pseudofermionic pag,;[U, ¢] of the effective

SS[U ) ]=|(f)s )L |2 (22) Hamiltonian becomes small§4], since it is propo'rtional to'
q-=re oo o the inverse of the lowest eigenvalue of the Dirac matrix.
Sget[u]: —2(log def1+T.] Ther_efore, thg err_odH accumulating in the molecular dy-

namics evolution is also expected to become smaller, result-
+logdefl+Ty])- ing in a better acceptance rate in the HMC algorithm. To

what extent the condition number is reduced depends on the

In this case the determinant of the local SW term is calcupgariiculars of preconditioning. We expect the symmetric one
lated both on even and odd sites.

The calculation of the force defined in E(L2) can be to work better, since in the hoApping parameter exparﬁiﬁp
divided into several parts corresponding to the contributiorPehaves as +O(«?) while Df, contains a term propor-
from the pure gauge action, the pseudofermion part, and théonal to x coming fromT,,,.
determinant of the local SW term. We write down the con- In the following we describe a systematic test of the effect

tribution from the quark part in the Appendix for both pre- of the preconditioning of both types. The test is performed

conditioning methods. on three lattices(i) a small lattice of size 8<16 with a
heavy quark mass, which we call the “small heavy” lattice,
B. Efficiency of the even-odd preconditioning (i) a large lattice of size £6< 48 with a heavy quark mass

The even-odd reformulation of the fermion determinantc@lléd “large heavy,” and(iii) a large I:':lttice of Sife 16
reduces the phase space to be covered by the HMC simulai48 with a light quark mass called “large light.” Here,

TABLE Il. Parameters on the small heavy lattice. MD step sizesatisfiesdtxX Ny p=1.

HMC A-HMC S-HMC C-PHMC A-PHMC
100, 50, 100, 50, 50, 40
100, 50,
Nvo 40, 30, 40, 32, 32, 25, 32
40, 30
25, 20 25, 20 20
18, 20,
22, 24,
28, 30,
Npoly - - - 18, 20,
(for Nyp=32)
22
26,
(for all Nyp)
Stopping condition 102 10-12 10-12 i )
force
Stopping condition 10-14 10-14 10-14 10-14a 10-142
Hamiltonian

&This is used to generate a pseudofermion field and global Metropolis test for the correction factor.
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10t | ' 10t | '
- . ’9 . A///,,
0 0 & ,'A/:,W/
10° } 10° | & A
PS4
107 | o 107 a4
1072 ¢ w02E 7
w2 ] 1037 HMC —6— |
S-HMC (UPVU) —<— A-HMC —a—
10~ ’ . S-HMC (PUP) —w»— 10~ g . S-HMC —=—
0.01 0.1 0.01 0.1
dt dt
FIG. 1. MD step size dependence (@H) for two integration FIG. 3. MD step size dependence @@fH) for preconditioned
methods UPU and PUP) in the MD evolution. The lines show and unpreconditioned effective actions. The lines show the fit with
the fit with (dH) = r(a-dt)*. (dH)=m(a-dt)*.

heavy and light quarks roughly correspond maps/my with the double precisio64 bit) arithmetic. In Table II, we
=0.8 and 0.7, respectively. The latticé and(iii) are rea- SNOW the number of the molecular dynami@dD) steps
sonably large to study the light hadron spectrum. They ar&mp (dt=1/Nyp) and the stopping condition for the BiCG-

actually used in our production rgo]. Details of the lattice  St@P solver in force and Hamiltonian calculations.
parameters are listed in Table . For the MD evolution of the kinematical variablesand

P, the simplest integration scheme to satisfy the reversibility
and measure preservation is the leapfrog algorithm. In this
work we first consider two options of the leapfrog algorithm,

On the small heavy lattice, we investigate the moleculai.e., UPU and PUP integrators. In th&J PU integrator, the
dynamics(MD) step sizedt dependence of the acceptancelink variable U is updated at the first half step and then the
rate P, for each algorithm: “HMC” denotes the HMC al- integration of P with a unit step sizedt follows. Thus the
gorithm without the preconditioning, “A-HMC” and “S- link variableU is assigned atr(+ 1/2)- dt with an integem,
HMC" are used for the asymmetrically or symmetrically pre- while P is assigned an-dt. The integration is performed in
conditioned HMC algorithm. the reverse order in thEUP integrator.

We employ the BiCGStab algorithfiz1] to calculate the The acceptance rate in the HMC algorithm is governed by
inverse of the Dirac matri (or DA,, D3,). The symmetri- a change of the effective Hamiltonian during the MD evolu-
cal even-odd preconditioning is applied in the solver to action (dH) asP,..=erfc((dH)*%2). With the leapfrog inte-
celerate the convergence of inversion. The stopping condigrator the change of effective Hamiltonian behaves as
tion is defined so that the solver iterates until the residua(dH)~dt* for smalldt [22-24.
defined byr=\[Dx—b|%|[b|? becomes smaller than a cer- In Fig. 1 we show the MD step sizét dependence of
tain value, whereb is a source vector and is the solution (dH) for bothUPU and PUP integrators. The dotted lines
vector. On the small heavy lattice, we use a rather strictepresent a fit with a formidH)= m(a- dt)*. The Metropolis
stopping condition to avoid systematic errors coming fromacceptance rate is plotted in Fig. 2 as a functiord bfThe
the matrix inversion. All numerical calculations are madeexpected behavior efffgw(a- dt)?/2] is also shown by dot-

ted curves. We observe that the data is described by the ex-

C. Extensive test on a small lattice

1.0 g —SHNC ([UPU) - p_ected functional form. We alsg find that thé> U in_tegrator
Vg S-HMC (PUP) —v— gives better acceptance at a fixétithan thePUP integra-
08 | ‘\IIV\ ] tor, which has been known for a long time for the staggered
“{V\ fermion action[23]. The computational cost with theé PU
L 06 ‘\.\:\\v integrator is lower by a factoNyp/(Nyp+1) than the
oS PUP integrator since the computer time in dynamical QCD
0.4 | simulations is dominated by the force calculation that in-
volves the fermion matrix inversion. Therefore the advantage
02} of the UPU integrator is very clear. We then use tbé U
integrator in the rest of this work.
0.0

Let us now discuss the effect of preconditioning. Figures
3 and 4 show the MD step size dependence difi) and
Pacc for the HMC, A-HMC and S-HMC algorithms. Thet

FIG. 2. MD step size dependence of the acceptance for tW@iependence for each algorithm is described very well by the
integration methodsWPU and PUP) in the MD evolution. The  relation(dH)edt* as shown in Fig. 3, and the value (@fH)
lines show the function erfe/7(a- dt)%/2] with a obtained from for A-HMC (S-HMC) at a fixeddt is about a factor §13)
Fig. 1. smaller than the unpreconditioned HMC. As a result, the

0.00 0.02 0.04 0.06 0.08 0.10
dt
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0.03

HMC —e—
A-HMC —A
S-HMC ——

0.02 r

Poccedt

0.01

0.00 & - - -
0.0 04 06 08
PaCC

0.2 1.0

FIG. 4. MD step size dependence of the acceptance for precon- g, 5. Efficiency P,..-dt. The lines show the function

ditioned and unpreconditioned effective actions. The dashed line

show the function erfa/=(a- dt)2/2] with a obtained from Fig. 3.
The dotted lines are approximations Exjga-dt)’>—(a-dt)*/2].

acceptance is greatly improved as shown in Fig. 4. For in
stance, atdt=0.02 P,.. is 81% (88%) for A-HMC (S-
HMC) compared to 60% for the unpreconditioned case.

The efficiency of the algorithm may be defined as
P.cc- dt following Ref. [25]. In order to plot the efficiency
Paccdt as a function ofP,.., we make use of an approxi-
mation of P ¢!

Pacczex;a(—(a-dt)z—%(a-dt)4 . (23

This approximation is valid for smatlt [up to O(dt®)] and
(dH)=m(a-dt)*. The validity can be ascertained in Fig. 4,
where the approximation E¢RJ) is plotted(dotted curve¢ as
well as the exact one eff¢m(a-dt)%/2] (dashed curve
Solving Eq.(23) for dt, we obtain the explicit functional
form for the efficiencyP,..- dt as

Pacc

a (29)

Pace dt= ——\\V1=2 log(Poeo) — 1,

where the only parameter is defined through({dH)
=m(a-dt)* In Fig. 5 we plot the efficiencyP,..-dt as a
function of P,.., and Eq.(24) is plotted as a dotted line. It is

remarkable that the optimal efficiency is reached when
P.c.c= 0.65 irrespective of details of the algorithm as far as
we use the simplest leapfrog integrator for the MD evolution
[25].1 The efficiency of the algorithm can be measured by the

parametera. We therefore conclude that the efficiency of the
A-HMC is a factor 1.5 better than the unpreconditioned
HMC on the “small heavy” lattice, and that of S-HMC by a
factor of 1.9 which is even better.

YIn Ref. [25] the maximum efficiency is reached Bt,..~0.61
rather than 0.65. This difference comes from the expansioriZ3y.
of the erfc function: the author of Ref25] considered the lowest
order only, while we include the second order.

P.cVV1—2 logP,.—1/a with a obtained in Fig. 3.

D. Reversibility

Before we extend the comparison of the preconditioning
to the large (18x 48) lattice, we describe our choice of the
stopping condition for the Wilson-Dirac operator inverter on
the large lattice, since it is computationally not realistic to
keep the very strict conditions of Sec. IlIC for the large
lattice size. The stopping condition in the calculation of the
force may be relaxed as far as the reversibility condition is
maintained, which is tested in the following. In this section
we employ the “S-HMC” preconditioning to investigate the
reversibility.

As a measure of how far one may loosen the stopping
condition, we use the violation of the reversibility condition
for the effective Hamiltonian defined by

|AH[=[H(t,—t;) —H(0)], (25
whereH(t,—t,) means the effective Hamiltonian calculated
for the reversed configuration which is obtained from the
initial configuration att=0 by integrating the equation of
motion tot=t, and then integrating back te=0. The length
of trajectory ist,=1. For the S-HMC effective action, we
measureAH| for several values of the stopping condition on
20 thermalized configurations separated by 10 trajectories.
Figures 6 and 7 show|AH|/H) measured on the “large
heavy” and “large light” lattices, respectively. While the

" {JAHYH) —<—
10712} (JAU|NOxAxXN, ) —— 1
g <|AP|/ 9X4><[Vvol> —a—
S
T oM ‘f
o A
; ? A A N
g0 @ S e e
%
[] -16
> 10 3
8 Pooroox gy
10—17 |
0% 107 10° 10" 10"
Stopping condition

FIG. 6. The violation of the reversibility as a function of the
stopping condition on the large heavy lattice.
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107 b " " ' ] TABLE lll. Simulation with the HMC algorithm on the large
0 10—2 a ] heavy lattice.
10° &
f00f 4 $ ? 1 HMC AHMC  S-HMC
o &
£ Ul B 1 N 160 100 80
2 102 ) oMb
£ 10 ol T a 1 Stopping condition 10 182 1078 1078
91077 ¢ 1
X ®
g 107§ T X 1 (_force) B
é 1075 Al ] Stopping condition 10 202 104 104
10| —o— <|AU|/99x4xN,d> x (Hamiltonian)
1077 e <|4P|/‘19X4>,<Nvol> L3
107 1077 107 o o™ Trajectories 3000 1200 1200
Stopping condition (dH) 0.14415  0.18217)  0.18729
HMC acceptance 0.799 0.76412) 0.75923)
FIG. 7. Same as Fig. 6 but for the large light lattice. Plaquette 0.528010) 0.528039) 0.5282713

violation stays around the limit of the double precision arith-"1"e residual is defnined byAx—b] in the HMC case.
metic for the heavy dynamical quaftKig. 6), it depends on o ) o )
the stopping condition for the light dynamical quaFig. 7). precondltlonmg with _sm_ular Ia_t_tlce parameters. They con-

The behavior for the light quark mass can be understoofffmed the exponential instability when the stopping condi-
as follows. If the initial vector in the BiCGStab solver is tion is too loose[28]. The stopping condition we adopt
reversible k=b is adopted in this work the only source of <108 s strict enough an_d no such problem emerges in our
the reversibility violation is the round-off error in the nu- case. We also note that in R¢28| most of the numerical
merical computation. Therefore, the error accumulates as thedlculation is made with the single precisi@2 bitg arith-
BiCGStab solver iterates and thus the violation increases d&etic, while we use double precision throughout this work.
the stopping condition is tightened. This can be seen in Fig. For the stopping condition in the Hamiltonian calculation,
7 fromr=10"5to 10" 7. As we further decrease the stopping We keep a strict condition<10"*, since there is a large
condition, the BICGStab solver gives a solution vector withc@ncellation in the differenogH="H(t;) —H(0), and the ac-
better accuracy, and the value @AH|/H) is governed by ~curacy ofdH is essential for the Metropolis test to be cor-
the accuracy of the solution vector. It decreases as we tightei§Ct:
the stopping condition from=10""to 10 %%

As criteria to choose the stopping condition, we demand E. Efficiency on large lattices
that the solver iterates to the region where ¢heH|/H) is
governed by the accuracy of the solution vector and that th%_
variation of the Hamiltonian over the trajectodH is not
distorted by the error of the solution vector. These criteria ar
satisfied forr <10/, and we choose 18 in the following
simulations in this work.

For completeness, we also calculate the violation of re
versibility in the link variabled) and the conjugate momenta
P

We list the simulation parameters used for A-HMC and

HMC algorithms in Tables lli(“large heavy”) and IV
“large light”). HMC means without preconditioning. We
bserve that the number of MD steps is much reduced for the

preconditioned HMC algorithm compared to the unprecondi-

tioned one at the almost same acceptance rate. More pre-

cisely, using the relatiodH)=m(adt)*, we can compare

the best efficiency of the algorithm which depends onlyaon

as in EqQ.(24). The gain is 1.5 from HMC to A-HMC (1.9

from HMC to S-HMQ on the large heavy lattice. For the

|AU[= \/ > [(Uab(M(t—t) = (U,)an(n)(0)?
np.ab TABLE IV. Same as in Table Ill but for the large light lattice.

|AP|= \/ S 1(PWas(M(t—t) = (P,)ap(M(0)[2, ve  AhMe  SHwe
npab 26 Nuo 200 125 100
Stopping condition 10 182 1078 1078
where the sum runs over all sites color indicesa,b, and (force)
vector indexyu. The results folAU| and|AP| normalized  giopping condition ~ 10-202 10-14 10-14

by V99X 4 XN, with N, the total number of lattice site are
also plotted in Figs. 6 and 7, where we observe the same
pattern of the stopping condition dependence as that of Trgjectories 3000 1200 850
(JAH|/H). o _ o (dH) 031323 018217  0.21822)
Since the MD evolution is chaotic, the violation of revers- ¢ acceptance 0.7021) 0.72413) 0.76116)

ibility due to the rounding error may grow exponentially Plaquette 0.53418)  0.534049)  0.5339%11)
[26,27]. The UKQCD Collaboration studied the reversibility
for the same lattice action as ouitsut with the asymmetric  2The residual is defnined byAx—b| in the HMC case.

(Hamiltonian)
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large light lattice it is 1.8 from HMC to A-HMC (2.2 from shev[7], least-squarel34], and adoptedwith or without the
HMC to S-HMQ). The effect of even-odd preconditioning UV filtering) [35,36 polynomials. We consider the Cheby-
becomes more significant for lighter quark massexte that shev and adopted polynomials in this work.

for infinite quark mass there is no choice for even-odd pre- The Chebyshev polynomial with unit circle convergence
conditioning and is no improvemenfrom our tests we con- domain in the complex plane is defined by=(—1)'. This
clude that the symmetrically even-odd preconditioning isis the same as the Taylor expansion with respect to the hop-
again the best choice within the simple even-odd precondiping matrix. We call the PHMC algorithm with the Cheby-
tioning. Further improvement of the HMC algorithm may be shev polynomial as C-PHMC. In this case, the accuracy of
achieved by preconditioning the partition function with in- the polynomial is characterized byz PN [z]—1|=
complete LU factorization type preconditionifg,19,29,30. —1)Npoiy ™1,

Hereafter we employ the symmetrically even-odd precondi- The coefficients; for the adapted polynomial are deter-
tioned form for theO(a)-improved Wilson-Dirac operator L AAS AS 2 i
o - P D - h
and the QCD partition function to develop the PHMC algo-mmed _SO as_ o m|n|m|z@oo ’_“poly[_ o0l 70~ 70| Wit _a
Gaussian noise vectay, with unit variance on a thermalized

fithm. background gauge configurati¢B85]. The coefficients thus
obtained do neither show a strong dependence on the back-
ground gauge configuration nor on the noise vector. We call
The use of the polynomial hybrid Monte CaflBHMC)  this choice as A-PHMC. We note that the adapted polyno-
algorithm is essential for the construction of an exact algomial with the UV filtering is simple and proven to be more
rithm for odd number of flavors. Before going to the PHMC efficient for the unimproved Wilson fermion in the multibo-
algorithm with odd number of quarks, we investigate andson algorithm[35,36. For the O(a)-improved Wilson fer-
develop the PHMC algorithm with two-flavors of quarks. mion, on the other hand, the UV filtering requires an addi-
The PHMC algorithm in two-flavor QCD was first proposed tional term in the effective Hamiltonian, and to our
by Frezzotti and Jansd®,6]. Some numerical tests of its knowledge its efficiency has not been tested yet. We leave it
performance were madé,31] on small lattices and used for as a future subject to study the efficiency of the UV filtering
the determination otg, [32] or the running coupling con- for the PHMC algorithm with theO(a)-improved Wilson
stant[33] with the Schrdinger functional method. In this fermion action.
section we perform further tests to explore the most effective
choice of the polynomial and its degree with the PHMC
algorithm in two-flavor QCD. The numerical simulation and
its comparison to the HMC algorithm are carried out with the ~ The molecular dynamics step in the PHMC algorithm re-

IV. PHMC ALGORITHM FOR TWO-FLAVOR QCD

B. Force calculation

same lattice parameters employed in Sec. Il quires a calculation of the forc@S;y,[U,¢,1/dU ,(n).
Frezzotti and Jans€lb,6] proposed to use a product repre-
A. Partition function sentation of the pOlynomial
The partition function of two-flavor QCD with the sym- Npoly Npoly

metrical preconditioning in the PHMC algorithm is given by

= > c(z—1)=cy H1 (z-2z), (29

poly i=o poly p=

Z =fDUDPDTD def W,,])? _ .
PHMC o Dbol del Wool) with z the roots ofPy  [2]=0. The computational cost

X e~ Hprmd P.U. vl can be reduced by holding the intermediate vectors obtained
by multiplying monomials on the pseudofermion field.

In the product representation with a naive ordering of mo-
nomials, however, there is a problem of numerical instability
1 and accumulatioln of round-off errors due to the fact that the

=_p2 S S partial productll,_,(z—z/) fluctuates by several orders of

Henmc oL, o] 2P S UIFSponlU. o)+ Sied Ul magnitude for intermediaté [37]. The problem becomes
more severe for smalt and for large order of the polyno-

go] bol?, (270 mial. Bunket al. proposed some ordering schemes to mini-
mize the problen}37]. In this work, instead of the product

andSg.{ U] is the same as in EG22). The difference from  representation, we consider the Clenshaw'’s recursive relation

Eq. (22) is in the pseudo-fermion acuofBﬁoly[U #]andin [38]

the insertion of the correction factor (P, ])2.

The ponnom|aIPNpoly[z] 2 po'Vc i(z—1)' approximates
1/z for a complexz placed in the convergence region as Npoly [z]=co
Npoiy—°, and the coefficients; are chosen so as to make
the correction factor (dg#V,,])? as close to unity as pos-
sible for smallN,, . For this purpose, several polynomials X[
have been investigated in the literature. They include Cheby-

Woo= f)goPNpow[f)go]a

o|y[U #ol=|Py

poly

1+—(z 1)

CNpoly
o= l(z—1)l~-H

poly

1+—(z 1)

. (29
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for which the numerical instability is suppressed, because we 0.30 CPAMC ——o
add from the term giving the smallest contribution to the A-PHMC —&—
terms with larger contributions. We assume that the polyno- 0.28 | S-HMC —v— |
mial is converging and the higher order terms are smaller;
otherwise the algorithm does not work efficiently. 026}
Adopting this representation, we expect that the calcula- 5
tion of the pseudofermion acticﬁﬁoly in Eq. (27) before and 024 | ]
after the MD evolution become stable numerically. The force
from 8S5,,,[U, ¢,] is given by 0.22 ¢
Npoly _ _ _ _ oo b .. . . .
6§poly: 12—:1 [XPO) T sMYPD) 4+ XPO) T 5TZPT +Hec., 12 14 16 18 20 25] 24 26 28 30 32 34
= volv
(30)

FIG. 8. Np,y dependence ofdH) on the small heavy lattice.
where (dH) with the S-HMC algorithm is also plotted on the most right
side in the figure for comparison.

(31 The pseudofermion fieleb, is generated from the Gauss-
ian noise vecton, at the beginning of the molecular dynam-
ics step through

— t SP(j
XP(0) = ~ (14 Do MagXo
B X2 ’

YP(J’)_( _(1+T)gelMeo?§(j))

P0) (32 $o=Pn,, [D5] " 70=D5eWog 70- (36)

poly
SinceW,, is a matrix close to the identity matrix, the inver-
sion of W,, is easily performed by any iterative solver
within a few iterations. We use the BiCGStab solver in our
(33) implementation.

—(1+T) oM Y
(1+T)gaMoe( 1+ T)ge Mg Y50

e

ZP(J):(

XPO=(1+T) H(D5,— 1) ~1yP@, (34 C. Noisy Metropolis test for the correction factor

In order to construct an exact algorithm, we have to take
account of the correction factor (fi#¥,,])2. We use the
noisy Metropolis test method of Kennedy and K{&9],
which was previously applied to make the multiboson algo-

C N
(DS~ 1)

1+

& P(i j+1 4 Ci+2
V=g 1+ =~ (D3—1)| 17

Ci+1

Ciig » rithm exact in Refs[7,16).
X1+ J_—(Dgo— 1)x|--- After a trial configurationU’ is accepted by the HMC
i+2 Metropolis test, we make another Metropolis test for the cor-

rection factor. Generating a Gaussian vect@r with unit
bo. (35) variance and zero mean, the probabil®y,, [U—U’] to
accept the trial configuration is given by

. . . . . I — i —ds
In our implementation of the simulation code, we first calcu- PeorrlU—U"]=min[1e" "], 37
Iate\?('?(') from j =Ny, to O and store them on memory. We
then calculateX}") and the force fromj =1 to N, using

CNpon S
X[ 1+ (D5,—1)

Np0|yfl

where

the storedvP) . We do not need to store"") . The require- dS=[(Woo[U' )™ *Woo[ UTxol2= | xol2 (39)
ment for memory is therefore the same as in the product
representation used in Ref$,6]. The inverse W,[U’]) ! is calculated using the BiCGStab

A potential source of the round-off errors in the calcula-solver as in the generation of the pseudofermion figld
tion of the force is the sum ovgrin Eq. (30), because the

sum runs from the highest order to the lowest ordek,ithe
jth term being of ordew?(~Y). The numerical problem in
the calculation of the force may be checked by looking at the The total acceptance ralg,, of the PHMC algorithm is
violation of reversibility. We expect that the reversibility vio- a product of that of the HMC Metropolis teB{.. and of the
lation is small compared to HMC because the MD evolutionnoisy Metropolis tesP.,,,. In this section we present sev-
involves no iterative processes and is completely determineral numerical tests on how,.. and P.,,, depend on pa-
istic. Numerical stability of the summation representation oframeters of the algorithm, such as the order of polynomial,
polynomial and the reversibility of the molecular dynamicsand the MD step size. The simulations are made on the small
will be discussed in Sec. IV E. heavy lattice, whose parameters are summarized in Table I.

D. Numerical test of the efficiency

094507-10
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1.0

~ EI ,Er G- &
- . "~ P /@/‘
10° F gx"’/ 08| A
/g‘,/ ﬂ?
0 | o osf B
~ 2 e - h 04 r |E/ @/
10 . e - 7
S /
¥
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/’/ C-PHMC(26) —o— C-PHMC —o—
ot b . S-HMC —v— oo bl oo APHMC B
0.01 04 12 14 16 18 20 22 24 26 28 30 32 34

Nvolv
FIG. 11. P, as a function ofN,,,. The lines represent
Peorr=erfd ma exp(—bNye,)/2] with a andb are obtained from a
fit in Fig. 10.

dt
FIG. 9. (dH) versusdt with C-PHMC(26) and S-HMC algo-
rithms.

For the choice of polynomial type, we test tligon-
Hermitian Chebyshev polynomial(C-PHMC) and the
adapted polynomial35,36 (A-PHMC). The order of the
polynomial tested is listed in Table II.

We first study theN,,;, dependence d?,... In Fig. 8 we
show(dH) as a function oN,, on the small heavy lattice
at a fixeddt=1/32 (Npo,=32) for both C-PHMC and
A-PHMC algorithms. We find thatdH) is almost indepen- demonstrates the efficiency of the adapted polynomial.
dent of Ny, and agrees with the same quantity for the The acceptance rate in the noisy Metropolis $8gp;, is
S-HMC algorithm. This is expected if the effective action of related to(dS) as P,,,=erfc((dS)¥42). We then obtain a
the PHMC algorithm approximates the original action well, plot of P, as a function ofN,, in Fig. 11. The dotted

because the PHMC replacd®3,] * by a polynomial curves represent
PNpoly[f)go] and the two are equivalent if the polynomial is a

good approximation of the inverse. The MD step size depen-
dence of(dH) is plotted in Fig. 9 for the usual S-HMC and
for the C-PHMC with N,,,=26 [which we call
C-PHM(Q(26)], where we find good agreement among differ-
ent algorithms. This means that the acceptafgg. in
PHMC is almost the same as that in the usual HMC.

In contrast,P,,, is expected to be sensitive 19, .
Since the acceptance ra,,, is directly related to the ex-
pectation value ofl S as defined in Eq(38), we measure the
dependence ofdS) on N, . Figure 10 shows the plot for
C-PHMC and A-PHMC at a fixedlt=1/32 (N,oy=32).
The dotted lines represent a fit with an exponential fpi6]

The exponential form is expected because the error of the
polynomial approximation behaves ézsPNpoly[z]—1|=(z
—1)Neoiy* 1 in the Chebyshev polynomial case. We find that
the data are well described by the exponential form and that
(dS) is much smaller for the adapted polynomial A-PHMC
than that for the Chebyshev polynomial C-PHMC, which

Jma

5 (40)

Pcorr=erfc exp—bNpory) |

with a andb the parameters in Eq39). We clearly see that
A-PHMC requires a smaller polynomial ordét,, than
C-PHMC to achieve the same acceptance rate. For instance,
to obtainP.,,=0.8 we need\,= 24 for C-PHMC while
A-PHMC requires onlyN,,,=18.

The efficiency of the PHMC algorithm for the noisy Me-
tropolis test step can be quantified By, /Ny, , because
the number of arithmetic operations is roughly proportional
to Npory- In Fig. 12 we plotP ., /Ny y againstPe,,,, and

(dS)=ma? exp(—2bNg)y). (399 find that the A-PHMC is about 30% more efficient than
10" P - C-PHMC —o— | 005 = pAmg —o—
O A-PHMC —&— A-PHMC —8— gy
ol w e 0.04 | Py
N . ® . P - RPN
. Y $ 003} & e - %,
3 10_1 i E\ \@\ gﬂ / P
m, B < 002 | A
o ® S
qy\ 0.01 |
0% b 0.00 L : : '
12 14 16 18 20 22 24 26 28 30 32 34 00 02 0.4 0.6 0.8 1.0
Npolv Peorr

FIG. 10. (dS) versusN,, in the PHMC algorithm. The lines
show a fit functior{d S) = ma“exp(— 2bN,q,).

FIG. 12. Efficiency of the noisy Metropolis test.,, /Np)y -
See the text for details.
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FIG. 13. N,y dependence of the residl(eﬁPNpoly[lﬁgo]f)gono
- 7/o|/| 7/o|>'

C-PHMC. We also find that the efficiency peaks around

Pcorr=0.85. From Eq(40) we obtain

Peorr 1 Pcorr
= (4D

=5 1
poly —Iog a[ 1-2 |0§XPcorr)_1]

using an expansion erfef=exp{—(2/\m)[x+ (x*/\m)]}
+0(x3). The efficiency is proportional to i/ which con-
trols the exponential fall off ofdS) as in Eq.(39), and the
position of the maximum efficiency depends anWhena

~0(10), as we observe in these tests, the maximum appears \wnen the order of polynomial is |

aroundP.,,,=0.85 and it moves to larger valuesBf,,, as
a becomes larger. Sinaeis expected to scale a8 «/«.)
[16], the maximum efficiency is obtained fd?.,,,>0.85

PHYSICAL REVIEW D 65 094507

60 80 100 120 140 160 180 200
NDolv

FIG. 14. Ny, iy dependence of the reversibility violation on the
large heavy lattice.

[f)go]bsono_ 770|

|770|

|Pn

poly

, (42)

with a Gaussian noise vectey, . We expect that the residual
becomes exponentially smaller &%, increases, if the
polynomial provides a good approximation of the inverse
Dirac matrix. We measure this quantity on 20 thermalized
configurations of large heavy and large light lattices and plot
it as a function o\, in Fig. 13. For both heavy and light
dynamical quarks, we find a clear exponential decrease,
while the slope significantly depends on the sea quark mass.
We also note that the polynomial approximation is not dis-
torted by the round-off error even foi,,;,~100-200.

arge, another important
test is the check of the reversibility in the MD steps. As we
mentioned in Sec. IV B, our implementation of the force
calculation may cause round-off errors. As in Sec. Ill D we

when the lattice volume becomes larger or when the segestigate the violation of reversibility in(|AH|/H),

quark becomes lighter.

E. PHMC on large lattices

The PHMC algorithm works well with a reasonable order
of the polynomial on the small heavy lattice. It is not trivial,

(JAU[), and {|AP|) by measuring these quantities on the
same 20 configurations. The results are plotted in Figs. 14
and 15, for large heavy and large light, as a function of
Npory- We observe no dependence Np,,, for both lattices
and the violation of reversibility remains close to the limit of
the double precision arithmetic. This implies that the

however, whether it really works on larger lattices, becausgjenshaw-type representation of the polynomial E2g)

we expect that a polynomial with much larger order is
needed.

For a numerical test on the “large heavy” and “large
light” lattices (Table ) we consider the Chebyshev polyno-
mial (C-PHMOQ) only, since we were not able to obtain an
optimized polynomial for the A-PHMC. The reason is that

the minimization 0f||5§0PNpO|y[I5§0] 70— 7o|? With respect
to the coefficients of polynomial failed to converge for poly-
nomials of a large 100) order which are needed for these

large lattices. This is likely a problem of the steepest descent
algorithm used in the minimization, and not a fundamental

difficulty of the adapted polynomial. We leave a resolution of
this problem to future studies.

We first consider the question of how the polynomial ap-
proximation 0f[ﬁ§0]‘1 works for reasonably large lattices.
To investigate this we define a residual

adopted in our implementation of the PHMC algorithm does
not accumulate round-off errors even for laryg,, . We

1078 {AUIND ffN’H? +
L ™ ]
] {AP|INOX4XN ) —2—
[«]
T 10
o
> A A A A A A
£ 105t © o 0 0 0 o,
%
[} —16
= 10 3 ]
£ x *Fox % ox
10717 ¢ 1

60 80 100 120 140 160 180 200
Npoty

FIG. 15. Same as Fig. 14 but for the large light lattice.
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TABLE V. Simulation with the C-PHMC algorithm on the large - T CPHMC LR —&
heavy lattice. o \ . C-PHMCLL —o— ]
®\\
C-PHMC(70) C-PHM(C(80) C-PHMC(90) \‘\m
Nyo 80 80 80 g 107 AN "
Stopping conditiof 10 10 10 e L
Trajectories 1300 1000 1000 10
(dH) 0.15121) 0.187122) 0.15431)
HMC acceptance 0.77%7) 0.76323) 0.787121) 1072 L . A . . .
(ds) 0.24432) 0.06924) 0.0137) 60 80 100 120 140 160 180 200
Correction acceptance 0.7120) 0.851(21) 0.93013) Npoly
Total acceptance 0.5687) 0.65827) 0.73230)

PHYSICAL REVIEW D 65 094507

FIG. 16.(dS) versusNy,,, for the large heavypentagonsand
large light(diamonds lattices.

&This is used for the generation of the pseudofermion field and the The efficiency of the noisy Metropolis st /N
calculation of the correction factor. o

Plaquette 0.528@31) 0.5280910) 0.5280910

oly IS

plotted in Fig. 18. The maximum efficiency is pac%ieved
aroundP.,,,=0.9, and the height at the maximum is lower

also emphasize that the violation is much smaller than in théor the lighter quark mass than that for the heavier one by
usual HMC plotted in Figs. 6 and 7. In the HMC algorithm about a factor of two, as we expected from the ratib fdind
the number of arithmetic operations can be different betweefrom Eq. (41)].
forward and backward steps, because the convergence of the Finally, we compare the total efficiency of the PHMC
BiCGStab solver is controlled by the condition that the re-algorithm with that of the usual HMC. The efficiency is pa-
sidual is smaller than a certain value. We suspect that theametrized a5 /[ Ny /traj], which is plotted in Fig. 19
reversibility becomes better if the number of iteratigtisis ~ against the total acceptance raffig, . The total acceptance
the number of arithmetic operationis fixed in the solver. ratio Py, of the PHMC algorithm is defined by,
Even if this is the case, the numerical stability is not opti- = PaccPcorr; for the HMC algorithm it isPyoa)=Pacc. The
mized in the BiCGStab solver, and the PHMC is still ex- tumber of hopping matrix multiplications to cover a unit
pected to perform better regarding the reversibility. trajectory,[ Ny /traj], is counted in the program. The effi-

We then measure the actual efficiency on large latticesSiency of PHMC is slightly better than the usual HMC for

The simulation parameters and some results are summariz89th heavy and light dynamical quarks. We note that the

in Tables V and VI for heavy and light dynamical quarks. weéfficiency of HMC depends substantially on the stopping
plot (dS) andP.,,, = erfc((dS)¥4/2) as functions oN .y, in condition imposed. As we discussed in Sec. Il D, we care-

Figs. 16 and 17. Compared to the small lattice, substantialljt!ly chose the stopping condition for HMC, but the remain-

larger N, are needed to keep the acceptance rate at re ng violation of the reversibility is still large compared to the
sonablypla)r/ge values. PHMC. Therefore, in order to guarantee the exactness of the

Furthermore{dS) and the acceptance depends Substanz_algorithm st_ri_ctly, a strict stopping condition is required and
tially on the sea quark mass. As discussed in ke8] the  then the efficiency of HMC becomes much lower.
parameter, which parametrizes the slope 0dS), is ex-
pected to be proportional to the quark mass. This expectation
is confirmed in our simulations: the ratio of the quark masses
in the two simulations is 2.@8), while the ratio ofb is
2.1515).

V. PHMC ALGORITHM FOR AN ODD NUMBER
OF FLAVORS

In this section we describe an extension of the PHMC
algorithm to the case of odd number of flavors. As we al-

TABLE VI. Same as Table V but for the large light lattice.

C-PHMC(120 C-PHM(C(140 C-PHM(Q(160
Nwo 100 100 100
Stopping conditiof 10744 1071 1071
Trajectories 1600 1200 1100
(dH) 0.1971198) 0.24343) 0.19420)
HMC acceptance 0.7%502) 0.76813) 0.76514)
(dS 0.71948) 0.18817) 0.05414)
Correction acceptance 0.588) 0.77012 0.88619)
Total acceptance 0.4p14) 0.597115) 0.67817)
Plaquette 0.534111) 0.5339618) 0.5341115)

&This is used for the generation of the pseudofermion field and the calculation of the correction factor.
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£ 1.0x10° |
/ & o @
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! C-PHMC LH —&—
0.0 boserconcs . L C-PHMCLL —o— 0.0x10° : : ' '
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Npoly Pioral

FIG. 17. Py, versusN,q, for the large heavypentagorisand FIG. 19. Total efficiencyPoia /[ Nmui/traj] as a function of

large light (diamond$ lattices. Ptotal -

ready outlined in Sec. II, the algorithm is almost the same adlote that here we use the summation representation for
that for even number of flavors, except for the polynomial inTNpol [Z] (TNpon[Z]) instead of the product representation as

the evaluation of the correction factor. We make a numericaj, Eq. (7). The coefficients; in TNpmy[Z] are determined as

check of the algorithm by comparing the simulation of 1 , . .
+ 1-flavor QCD with the two-flavor case simulated with the follows. First, we consider Lhe product represen_tann of
P OIy[z] as PNpo.y[Z]:CN 1, Po¥(z—z). The ordering of

HMC and PHMC algorithms. In addition we carry out a ' Np " Ny ~ “Npoly k=1 .
simulation of 2+ 1-flavor QCD and compare the results with the monomials is defined so that azg{-1) increases mono-

that obtained by th& algorithm. tonically with increasingk. Since the rootg, appear with
their complex conjugate, we findzkzz’g,polyﬂ,k (k
A. PHMC for one-flavor QCD =1...Npo,/2). We then split the polynomial into the prod-
" i . uct of two polynomial as P z]=cy_ I\Po?(z
In order to construct a real and positive definite effective poly Npoly[ ] Npoly "j=1 (

action for one-flavor of dynamical quark, we use the trick ~ Zk())(Z~ Z;)), where the reordering indéx(]) is defined
proposed by Boricand de Forcrand7] and Alexandrou bBYK(j)=2j—1.Then we obtain a "square root” of the poly-

et al.[8], which was already described in Sec. Il B. nomial aSTNpoly[Z]: \/CNpolyHP:‘"i'y/Z(Z—Zk(j)), from which
A polynomial of even degreé’Npoly[Z] can be split into  we arrive at the polynomial representation E¢4) by ex-
the product of two polynomialdy_ [z] and Ty [z] as panding the product representation. Since we do not use the
poly poly product representation dTNpo.y[z] in the numerical simula-
Py [Z]=Tn. [Z]Tn. 2], (43  tion, the problem of the ordering of mqnomials i_s_irrelevant
poly poly poly as long as one uses long enough decimal precision or com-

puter algebra systems to obtain the coefficiahts

Npoly/2 i =
Ta,, [2]= E di(z—1)", (44) We note .thatTNpoly[z] #TNpoly[zJ for complexz, but for
poly i=0 the determinant of the Wilson-Dirac operatbr one can
prove the relation
B Npoly/2
Ty JZ1= 2 df(z-1)" (45) _
poly i=0 de{Ty , [DI*=de{Ty  [D]], (46)
0010 P using theys hermiticity propertyD "= ysD vs. It follows that
2 - defPy,, [D]]=de{Ty  [D]]-defTy  [D]]
& 0.005 r S e S
P =|de{Ty , [D1]%. (47
/ C-PHMC LH —e—
0.0000 0 0'2 0'4 C'Ps":C Lt 0-8 10 For the preconditioned case, the Hermiticity is modified to
' ' C ' ' D3, T=75(1+T)ooD5o(1+ T)ogvs, for which Eq. (46)
o holds as well.
FIG. 18. EfficiencyP o /Npoly VErsusP,,, on the large heavy The partition function for one-flavor QCD can be written
(pentagonsand large light(diamonds lattices. as
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” 2k—1)!!
z= f DU DP D Deb, def Woo] Aud=1+3 (-1 (_Zk)'? %
k ..
xe*HPHMc[P’U,%], 1 3 5
:1_5500—"5550_1_6\30"' (53

1
Hppmid P.U., bo] = 5 P2+ Si[ U]+ o[ ¢o]
+Sgef U1, (48)

Sponl ¢ol=ITn , [DSal bl %

In the numerical calculation, summation from the lower or-
der to the higher should be avoided to reduce round-off er-
rors. We therefore use the followin@lenshaw’s typg ex-
pressions:

l — —
S5.{U]=—(log def 1+ T.] +log def 1+ To,]). Aoo=| 145800 1+ =800 1+ —5= 000"+

i DS 7 - 3—-2k
The ponnomlaIPNpoLy[Doo] in the two-flavor case Eq27) w14 500}‘ . m (54)
is replaced wapmy[Dgo]. The correction factor dgiV,,] is 2k
the same as that defined in EQY7), but the exponent is 1. q _3 _5

Every step of the HMC part of the simulation is the same At=|1+—6, |1+ —6. | 1+ — 6L, -

as the corresponding step in the two-flavor case, except that 2 4 6
we use the polynomieil'Npoly rather tharPNpoly. The pseudo- 1— 2k
fermion field is similarly generated by x| 1+ Tago} . H . (55

bo=Tn [6?0]_17]0=?Np0|y[|530]|550 c:o1 7o, (49

poly

A shortcoming of this method is that we have to recalculate

. ) ) o the entire expressions when we need to increase the order of
with a Gaussian noise vectay, at the beginning of each MD  truncationk in the Taylor expansion.

step. On the other hand, the noisy Metropolis step to incor- |n order to avoid systematic errors from the truncation of
porate the correction factor requires a special treatment, bghe Taylor expansion, we monitor the residual
cause the correction factor is not (0ét,,])? but defW,,].

:|A00[U](A00[U]X0)_Woo[U]Xo|

B. Noisy Metropolis test for the one-flavor case 1 [Wool Ulxol ! (56)
If the fermion determinant deb§,] is positive, dgtWoo] — in the calculation o, Uxe, and
is also positive and its square root is well defined. We calcu-
late the square root of the matri%,, by solving the equa- [Woo U 1(AgolU' D) H (A LU D) twe) —
tion A§0=W00 using the Taylor expansion r2= [wo| '
o 5
B (k=31 7
Aoo—1+§k: (2K oo in the calculation of Ay U’]) 2w, With we=AgU]xo.

We require that the residuals be smaller thanf@o keep

the exactness of the algorithm. In the simulation program we
always monitor the residuals, and when the residuals become
larger than our condition we repeat the calculation increasing
k until it becomes satisfied.

The necessary order of the Taylor expansion depends sig-
nificantly on the order of polynomidll,,, . If N,y is large
enough,W,, is very close to the identity and the Taylor
expansion may be truncated at very low orders. Therefore,
there is a complicated trade-off betwellp,, andk to the
computational cost in the algorithm. We consider briefly the
computational cost to calculate the square root of the correc-
tion matrix and the noisy Metropolis acceptance probability
as follows. In the case of the Chebyshev polynomial, the
residual of the correction matrix is estimated as

1
5§0...

1
5§0+ 1_6

:1+—500_§

5 (50

with §,,=W,,—1, because we expect thaf,, is close to
the identity matrix when the ponnomiszNpoly[Iigo] is a

good approximation off()(f‘o)*l. We obtain
def Wyo]= |de(Aoo]|21 (51

using the (preconditioned ys Hermiticity property Ago

= 75(1+T)00Aoo(1+T)(;0175-
Once we obtain the matri&,,, we can perform the noisy
Metropolis test Eq(37) replacingW,, in Eq. (38) by Ay,

ds= |(A00[U,])_1A00[U]X0|2_ |X0|2-

The only complication is the use of the Taylor expansion Eq.

(52

Woo— 1= 8oo=(D5,—1)Npoiy ™2, (58

(50) every time we need a multiplication with,,. For the
inverseA_ 2 we use another polynomial

If we take\ as the largest eigenvalue Bf,— 1, this leads
to | 80| =|\|Nroy*! where|\|<1 is assumed. To keep the

094507-15



S. AOKI et al. PHYSICAL REVIEW D 65 094507

TABLE VII. A comparison of the two- and (%1)-flavor QCD simulations a=5.0, 8x16, «
=0.1415,cg,=1.855.

S-HMC C-PHMGQ26) C-PHM(C(26)
N¢=2 N=2 Ne=1+1
Nub 32 32 32
Trajectories 5000 5000 5000
(dH) 0.2634107) 0.2236106) 0.126270)
HMC acceptance 0.717») 0.744470) 0.799478)
(dS) (quark 1) - 0.055359) 0.023436)
Correction acceptanaguark 1 - 0.859%53) 0.926454)
(dS) (quark 2 - - 0.016737)
Correction acceptanaguark 2 - - 0.937(@58)
Total acceptance 0.717®) 0.6398117) 0.695@74)
Plaquette 0.438722) 0.4383927) 0.4385720)

residual of the square root E(6) (for example lower than  with established algorithms for two-flavor QCD, we check if
a constant, we have the following inequality when the Tay- we can reproduce the results with the-{1)-flavor QCD
lor expansion is truncated at an order simulation. For (& 1) flavors, we introduce two sets of
pseudofermion fieldgl"! (f=1,2) with the effective action

Sﬁow[(ﬁg]]:ITNpoly[ﬁioMg]IZ. The correction factor

with a coefficientC. Thus k+ 1)(Npey+1) must be larger defW,,] is evaluated twice with the noisy Metropolis test
than a constant proportional to k)( When we fixe as a described in Sec. VB.

stopping condition, the truncation ordketis chosen so as to Simulation parameters and some results on our small
satisfy Eq.(59). The computational cost to calculate the heavy lattice are listed in Table VII. We employ the Cheby-
square root of the correction matrix becomes a constant b&hev polynomial of ordeN,oy=26 both in the two-flavor
cause the number of multiplication &>, is proportional to  simulation and in the (% 1)-flavor simulation with PHMC
kXNpoiy, which is roughly ~(k+1)(Npe,+1). Conse- algorithms. Note that the order of the ponnomiE:}Lpoly in

quently the total amount of the Computational cost to CaICUNf:1+ 1 is 26/2=13 by its definition for each pseudofer-

late Eq.(52) becomes almost constant. Thus we concludénion. We also have a result with the standard S-HMC.

that the choice oN,,,, does not affect the cost in the noisy e observe in Table VII that the three algorithms give a

Metropolis test, and that the efficiency of the whole algo-consistent plaquette expectation value within the statistical

rithm is governed by the cost of the molecular dynamics sterror of less than 0.1%. It is evident that the algorithm for

(proportional toN,,y) and by the acceptance rates of the odd number of flavors works as we expected. The statistical

HMC and the noisy Metropolis tests. error is evaluated with the binned jack-knife method and the
In order to evaluate the correction factor[d#t,], Takai-  bin size is increased until the error ceases to grow.

shi and de ForcranfBB] employed the idea of the unbiased |n the same table we find th&tlH), which controls the

stochastic _estimatof40] using VdefW,[U']9/W,o[UJ’]  HMC acceptanceP,.., is significantly smaller for the (1

= J(edeSX0 from several estimates c(fe*d%)(0 with dS +1)-flavor simulation at the same MD step site The size

defined in Eq(38) for theN;= 2. Their method is faster than of (dH) depends on the precise form of the Hamiltonian we

ours because they do not need to calculate the square root e@nsider. While the formula described in RE23] may be

the correction matrix as we did in Eq&0) and(53). Onthe  employed to examine this issue, we do not pursue it here

other hand, the stochastic estimator may produce negatieecause of the complication of the force contribution from

probabilities for the Metropolis test, which leads to system-the pseudofermion action. Note that this decreas@bf) in

atic errors in the final results. In order to avoid this problemtheN;=1+1 case does not immediately mean an increase of

they keepdS sufficiently small with a high acceptance ratio the efficiency. The reason is that we expect the duplication of

so that the negative probabilities within a desired trajectoryjthe pseudofermion field to cause an extension of the autocor-

length do not appear. In our method these problems areelation time.

avoided at the price of additional computational costs by We find that the acceptance r ér:rz in the correction

taking explicitly the square root of the correction matrix.  factor for the two-flavor case is related to those of the (1

+1)-flavor simulation a@'c\'gr:rzz(P'c\'gr:rl)z. This property

C. Numerical test with (1+1)-flavor QCD can be explained as follows: Expandid§‘=2 in Eq. (38)

The algorithm for one-flavor of dynamical fermion can be in terms of6,,=W,[U]—1 andd,,=W,[U']—1, we ob-
tested by considering (£1)-flavor QCD, which should be tain dSV1=2=2 Rd x!(8— 6")o0xo] Up to O(8?,6'2,66").

identical to two-flavor QCD. Since we already have resultsOn the other handdSYi=! in Eq. (52) is expressed as

ryoc] 855 = [N [ DMNpory V< Ce, (59)
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FIG. 22. Same as Fig. 21 but for the large light lattice.

FIG. 20. Npoy, dependence of the residual

(T, [D8al T [DS] 70— 7ol mel) (N=1+1). _ _ e _
in the calculation ofTy  [Dg,] with our choice ofN,
poly

dSVi=1=Rd x (8- 6")ooxo]. Up to higher orders insy,
and 8., we then obtaindS¥=2=2ds¥ =1 and phi=2

Nee1 corr
:(chrr )2' . .
We also test our algorithm on large heavy and large ligh

lattices. The convergence of the ponnomTaJpoly[lf)go] and g

of the Taylor expansion of the correction factor is non-trivial  Figures 23(large heavy and 24 (large light show the
on these large lattice sizes. To investigate the convergence ebnvergence behavior of the Taylor expansion of the correc-
the polynomialTy [If);f‘o] we perform the same check as tion matrix as a function of the order of the expansion. The
PV convergence is monitored with the residualsandr, de-

fined in Eqs(56) and(57), respectively. We also monitor the
convergence of the weiglitS defined in Eq.(52), by mea-
suring |dS—dS.,d, wheredS,,q is the value ofdS at the
highest order of the expansion. These figures are also plotted
with measurements on 20 configurations separated by 10 tra-
jectories. Open symbols are obtained for the smaMggf,
(70 for large heavy, 100 for large lightand filled ones are

r the largestN,, (190 for large heavy, 200 for large

(TNpoly[ﬁEO] is also evaluated with the Clenshaw’s recur-

rence formula The violation of reversibility is extremely
small as plotted in Figs. 21 and 22. Their magnitude stays
f':\round the limit of the double precision arithmetic, which
parallels our finding with the two-flavor cagEigs. 14 and

that made forPNpoly[Iﬁfo]. In Fig. 20 we show the conver-
gence behavior using

|?Np0|y[DCSJO]TNpoly[Ijgo]Dcs)oﬂo_ 770|

: (60)
| 770|

as the residual. Hereg, is a Gaussian noise vector and the
measurement is made on 20 thermalized configurations sep ; _

. . —— A g A g ight). The convergence of the residuals is almost exponen-
rated by ten trajectories. SInCé—Npoly[Doo]TNpoly[DOO] tial. The slope, however, becomes weaker near the limit of
should bePNpoly[f)go] by definition, Eq.(60) must be iden- the double precision arithmetic. In the region where the ex-

tical to Eq.(42) except for round-off errors. As shown in Fig. Ponential decay is observedx N, seems to behave as
20, Eq. (60) decreases exponentially &,  increases, roughly constant irrespective of the choiceMyfy. This is
which is the same behavior as in Fig. 13. p‘?’%us we confirn{he expected behavior discussed in Sec.V B. When the stop-

that there is no unexpected accumulation of round-off error§'"Y condition forr, andr is set to be 10, the improve-

. —_— 1072  Square
1073 (Jauy 9><4><N/H§ —e— 1 o0 . Cide :
0 APl \/WXN:Z: 0 |dS—dS.nd Triangle
1< 1
=14
% 1077 ‘—3 1078 1
2 s AAALAAALALAAAL 2 10710 1
E10°F 0000000000000 e
e b (U A& ]
2 .
o q10-16 | 1074 & ]
S 10 X
ol y "T8ee
. N . . . . . 2 4 6 8 10 12 14
60 80 100 120 140 160 180 200 Order

Npoly

large heavy latticeN;=1+1).

FIG. 23. Convergence behavior of the Taylor expansion of the
FIG. 21. Nyo1y dependence of the reversibility violation on the correction matrix on the large heavy lattice. Opé¥y,,=70;

filled: Npo;y=190.

poly™
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2 ' ' ' TABLE VIII. Simulation statistics with theN;=1+1 C-PHMC
10 r1 Square 1 . .
4 r, Circle algorithm on large lattices.
10 |dS—dS..4 Triangle !
10°° 1 Large heavy Large light
g 10° ] C-PHMC(80) C-PHMO(140)
7 10710 T ] Ne=1+1 Ne=1+1
2 -12 Z“n
T 10 oo T 1 Nuo 80 100
107 ; ﬂl@@ E Trajectories 1000 1500
10-16 ! Bogg | (dH) 0.08114) 0.04211)
10718 X . , HMC acceptance 0.8294) 0.87214)
8 10 12 14 (dS) (quark 9 0.0147) 0.04210)
Order Correction acceptandguark 1 0.94411) 0.8789)
. . . ds k 0.008461 0.04710
FIG. 24. Same as Fig. 23 but for the large light lattice. Open: .< ) (quark 2 461) 110
N1 =100: filled: N, = 200. Correction acceptandguark 2 0.9369) 0.87616)
poly poly Total acceptance 0.78%) 0.67120)
ment of|[dS—dS,,4 stops at~10 '2 SincedS itself is of Plaquette 0.527822)  0.533929)

0O(10 ?), we expect thatdS has ~10 digits of significant

figure, which we expect to be sufficient for current simula- lavors (N;=2+ 1 smal). The order of the polynomial is set
tion trajectory lengths. The negative eigenvalue problem di o N_,.,=10 for the single flavor. The second set uses’a 8

not occur in these investigations, probably because of the, 16p?e|1yt'gce B=5.0, k,4=0.1338, andk.=0.1330, anc:
[l Yy u . ) S . 1 sw

intermediate quark mass we employed. =2.08 (N;=2+1 middle, whereN,,,=58 is employed.

Table VIII shows the simulation statistics for C-PHMC : . . .
: T X : For both lattice sizes we use the Chebyshev polynomial with
with Ny=1+1 on both of the large lattices. We obtain re- L%nit circle convergence domain.

sults for the averaged plaguette value which are consisten The simulation statistics is tabulated in Tables IX and X

with those for the Ny=2 case. The relationP(! * together with the plaquette expectation value extracted from
:(Pchf)r:rl)z holds again for such large lattice sizes, and wethe R algorithm. Figures 25 and 26 show the plaquette ex-
did not encounter the negative eigenvalue problem duringectation value from the runs with tiealgorithm at several
the long trajectories 1000). We expect that the total effi- values of the MD step sizdt (open symbols Filled sym-
ciency has the same functional dependencélgy, as that  bols are from the PHMC algorithm. The plaguette values
with theN¢=2 PHMC, since the behavior d¥,,, is mostly ~ with the R algorithm extrapolated to zero step size are plot-
ruled by the molecular dynamics. The actual value of theed with dotted horizontal lines. We observe that our exact
total efficiency is slightly worse than that with tié=2  algorithm(filled symbols gives results at a finitdt (see also
PHMC algorithm due to the two pseudofermion generationsJables IX and X consistent with the extrapolated value
the Hamiltonian calculation, and monitoring of the residual(horizontal dotted ling of the R algorithm. Because of the
in the noisy Metropolis test. We note that the autocorrelatiorfinite dt dependence, the cost to obtain reliable results with
time may be extended by the increase of the dynamical varithe R algorithm is higher than that of the PHMC algorithm.
able in the path integral. Examination of this point is left for ~ For larger and realistic lattice sizes, we started a param-
future studies. With the numerical tests described here weter search in order to realize a physical voluine 1.7
conclude that our PHMC algorithm for one-flavor dynamical —2.0 fm, a lattice cutofa *~1.5-2.0 GeV, and pseudo-
qguark works well even for a moderately large lattice sizescalar to vector meson mass ratiogs/my,~0.7-0.8. Dur-
16°X 48 at intermediate quark massesngfs/my,~0.7-0.8, ing the parameter search we found an unexpected first-order
at least in theN;=1+1 case. phase transitiorj13]. Details of this search, including the
property of the PHMC algorithm with the realistic param-
eters in theN;=2+1 case on large lattice sizes, will be

D. A (24+1)-flavor QCD simulation reported elsewhere.
Combining the two-flavor HMC algorithm with the one-
flavor PHMC leads to an exact algorithm for{2)-flavor VI. CONCLUSIONS

QCD. For the two-flavor part, we may also choose the

PHMC if the usable amount of memory allows to store work In this paper, we introduced a polynomial hybrid Monte

vectors. A test of the algorithm can be performed comparingCarlo (PHMC) algorithm which is applicable to QCD with

the results with those of thR algorithm[1] after an extrapo- an odd number of flavors. The algorithm is an extension of

lation to zero step size in the latter. In this section we shovthe one by Takaishi and de ForcranB] to the

the results of such a comparison on some small lattices. O(a)-improved Wilson quark action. We also described a
The numerical test is made with the following two sets of method to remove the systematic error from the non-

lattice parameters. One set uses a lattice of size8tat3  Hermitian polynomial approximation to the invese of the

=4.8, sea quark mass af,4=0.150 for two light flavors, Wilson-Dirac operator in the single flavor case.

and «;=0.140 for the third flavor, andg,= 1.0 for all three An important technical point uncovered in our work con-
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TABLE IX. Simulation parameters for a (21)-flavor QCD simulation,3=4.8,4X 8,c¢,=1.00x 4
=0.150x4=0.140 are used. The stopping conditions are defined as folleye force calculation from the
N;=2 pseudofermion actiorih) the calculation of the Hamiltonian of tHé;=2 pseudofermion actioric)
the generation of the pseudofermion field, and the calculation of the correction factor for the single flavor

part.
Hybrid-R (extrapolated C-PHMC(10) C-PHMC(10)
Ne=2+1 Ne=2+1 Ne=2+1
Nub - 20 10
Stopping conditior(a) - 10 ¥ 10 ¥
Stopping conditior(b) - 10 ¥ 10 ¥
Stopping conditior(c) - 10 10
(dH) - 0.0555) 0.83928)
HMC acceptance ratio - 0.877) 0.521(12)
(dS) - 0.0001461) 0.0005662)
Correction acceptance ratio - 0.9823) 0.986122)
Total acceptance ratio - 0.86% 0.51412)
Plaquette 0.397G23) 0.3966938) 0.39695%32)

cerns the choice of the even-odd preconditioning to thehe Wilson-Dirac operator in the force calculation in the mo-
O(a)-improved Wilson-Dirac operator. Asymmetric and lecular dynamics stegji) for the order of the polynomial
symmetric even-odd preconditionings were introduced an@ghosen sufficiently large, the total efficiency of the PHMC
investigated in the HMC algorithm with two-flavor dynami- algorithm is almost identical to or rather better than that with
cal quarks. We found that the HMC algorithm with tegm-  the HMC algorithm. Hence the PHMC algorithm is an alter-
metrically even-odd preconditioned form of the lattice QCD native forN;=2 dynamical QCD simulations on moderately
partition function yields roughly a factor two gain in effi- large lattice size in the intermediate quark mass region
ciency over the unpreconditioned one. This performance exmpg/m, ~0.7-0.8.
ceeds the gain of about 1.5 for the asymmetrical precondi- We demonstrated the consistency and applicability of the
tioning employed in actual simulations so far. We, then,PHMC algorithm for an odd number of flavors by consider-
decided to use the symmetrically even-odd preconditionet¢hg the case of two single-flavor pseudofermiors;£ 1
form for the quark determinant for the PHMC algorithm.  +1 QCD) and comparing it with the established algorithm
We explored distinctive features of the PHMC algorithmfor the two-flavor pseudofermionN;=2 QCD). The re-
using the case of two flavors of quarks where comparisongersibility holds to almost the same degree as that with the
with the standard HMC are possible. Our findings @¢he  N,=2 PHMC algorithm. The noisy Metropolis test for
reversibility is much better with the PHMC algorithm be- single-flavor part, in which we have to take the square root
cause of the fully deterministic nature of multiplication with of the correction matrix explicitly, works well on moderately

large lattices with intermediate quark massesngfs/m,,

TABLE X. Simulation parameters for a (21)-flavor QCD  _g7_0.8.
simulation. 8=5.0,8X 164,=2.08x,4=0.1338x,=0.1330 are
used. The definition of the stopping conditi@—(c) is the same as

those in Table IX.
040
Hybrid-R (extrapolated C-PHMC(58) 00§90 ‘“5
Ni=2+1 Ni=2+1 o 039} @
Nyvo - 32 2
Stopping conditiona) - 107° T ossl @,
Stopping conditior(b) - 107 '
Stopping conditior(c) - 1014
(dH) - 0.1949) O 8= GhHmeo | 5
HMC acceptance ratio - 07@ 0.00 0.05 0.10 0.15 0.20
(ds) - 0.0193) dr
Correction acceptance ratio - 0.92p ]
Total acceptance ratio ) 0.6@3 FIG. 25. MD step sizelt dependence of the plaquette expecta-

tion value on the lattice of size®48 at 8=4.8, cs=1.00, kg4
Plaquette 0.53147T) 0.53145%11) =0.150, k,=0.140. Open circles are results of tRalgorithm, and
the filled circles are from our exact algorithm.
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0.5330 . . : . . Vo o o nty
05325 | : - - -
Qo + + + -
0.5320 | e . 1
o 05315 5 : -———- -—== -——— -——-
° ¢ Y n n+Hl n n+HL n n+HL N n+L
2 05310 f
@
o 0.5305 1 n n+e  n ntye n nHL  n n+L
0.5300 | Y ]
0.5295 | —e— C-PHMC(58) <I> : - - -
—o— Hybrid-R , « < <

0.5290 -
0.00 0.01 0.02 0.03 0.04 0.05 0.06 n-v n-v n-v n-v

dt

FIG. 27. Diagrams contributing %6 ,,(n) from the SW term.
FIG. 26. MD step sizelt dependence of the plaguette expecta-

tion value on the lattice of size®& 16 at 8=5.0, cgy=2.08, kyq 6Sq={—XT5DY}+ H.c., (A1)
=0.1338, k,=0.1330. Open circles are results of tRealgorithm,
and the filled circle is from our exact algorithm. where

Finally we constructed a PHMC algorithm for+2L fla- X=(D""'D 14, (A2)
vors of quarks by combining a two-flavored pseudofermion,
which is employed in the usual HMC algorithm, and a Y=D"'¢, (A3)
single-flavored pseudofermion described by the polynomial
approximation. Running the algorithm on two small lattice 0Tee Mg,
sizes we confirmed an agreement of plaquette values with oD = Mye 6Too)" (A4)

those from theR algorithm after an extrapolation to the zero

step size in the latter. The contribution from the derivative of the hopping matrix
We conclude that the PHMC algorithm is a viable choice M.y is the same as that in the Wilson action. The con-

for realistic simulations of lattice QCD with21 flavors.  tribution from the SW termsTq,0) is shown in Fig. 27,

Since our numerical tests show that the computational costhereX is a 3x 3 matrix defined by

for two single-flavor pseudofermions is comparable to that of

the two-flavor case, the cost for the single-flavor part of the ICquk +

(2+1)-flavor QCD is about a half of the two-flavor part. We ~ (X)w(M =) — Ttrdirat{ 0. Y(MX(N)'] +H.c.

thus expect that the simulation of the {2)-flavor QCD (A5)

may be performed with a cost of a factor 1.5—2 compared to

the two-flavor QCD simulation. trgirad - - - | Means the trace over the spinor indices.
ACKNOWLEDGMENTS 2. Asymmetric preconditioning

This work is supported by the Supercomputer Project The force frp_m t.he _pse_udofermion field with the asym-
No.66 (FY200) of High Energy Accelerator Research Orga- Metric preconditioning is given by
nization (KEK), and also in part by the Grant-in-Aid of the A_ At A
Ministry of Education (Nos. 10640246, 11640294, 08 ={=X"oDY+H.c, (A6)
12014202, 12640253, 12640279, 12740133, 13640260, anfhere
13740169. K-I.I. and N.Y. are supported by the JSPS.

—(1+T)ee1Mgei<§)
APPENDIX: FORCE CALCULATION IN THE HMC XA= oA , (A7)
ALGORITHMS X5

In this appendix we describe the explicit form of the —(1+T)2IM A
quark force in the HMC algorithms for different precondi- YA= feemen O), (A8)
tionings. Since most of the definitions and extractions of the A
quark force are common to the standard Wilson quark action,
we only show the variation of the quark action under an XA=(DA N "YDA) 1o, (A9)
infinitesimal change of the gauge link variable as defined in
Ea.(12. A= (D8 b (A10)

1. Without preconditioning Note thatlﬁﬁo T ,},5[3/;075 and M:r)e: YsMgoYs.

If we do not apply the even-odd preconditioning, the force In addition we need the force from the determinant of the
from the pseudofermion field is simply written as SW term,
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0= —2 T 6Ted 1+ T) 251 (A11)

This is calculated only for even sites. The teKnn Fig. 27
from the SW term is replaced by

IC K

(X),u,v(n) = [ - Ttrdirac[a-,uvYA(n)XA(n)T]

IC gk
——g Marad 0,,,(1+T) ()]
X 5n,evensit; +H.c. (A12)

3. Symmetric preconditioning

For the symmetric preconditioning the force is separated

into two parts as

8S;={—X5ToMYS—XS'6TZ5% +He,  (A13)
where
0 &M
SM = ( SM oeo) , (Al4)
oe
6Tee O
e A (A15)
o] 6]
—(1+T) M XS
- e ] (A16)
XO
—(1+T)2Mg VS
_ o , (A17)
YO

PHYSICAL REVIEW D 65 094507

— (14 T) oM YS
25— - ee eilo " (A18)
(1+T)ooMoe(1+T)ge MeoYs
Xo=(1+T)o5(Dgo ) ™H(DG,) "o, (A19)
Y5=(D50) 'ébo. (A20)
The ys Hermiticity is slightly different forD3,, which is

f)goT:75(1+T)00f)§o(1+-r)c;0175-
The force contribution from the determinant of the SW
term is written as

8Sqe=—2 T 6T(1+T) 1], (A21)

at every lattice site. The terxX in Fig. 27 is replaced by

ICgwK

(X),uv(n): - 8

trdil’a({ oy VZS( n)xS( n)Jr]

IC gk
— =g Warad 0,u(1+T) 7H()]

+H.c. (A22)

4. PHMC

In the PHMC algorithm, the ternX from the SW termsT
in Fig. 27 is written as

Npoly

;l {trairad 0,,ZPD (M) XPO () T}

iCqui

(%)M ={ =3

iCowk
——g tarad 0,1+ T) XM} +H.c.

(A23)
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