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Lattice study of B˜p semileptonic decay using nonrelativistic lattice QCD
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We present an exploratory lattice study ofB→p semileptonic decay form factors using nonrelativistic
lattice QCD for a heavy quark with a Wilson light quark on a 163332 quenched lattice atb55.8. The matrix
elements are calculated at eight values of the heavy quark mass in the range of 1.5–8 GeV and with three
values of light quark mass. The 1/mB corrections to the matrix elements are found to be fairly small except for
the spatial component proportional to theB-meson momentum. We find that theq2 dependence of the form
factor f 1(q2) nearq max

2 becomes much stronger for a larger heavy quark mass, which may suggest an increase
in the pole contribution. We perform a model independent fit of the form factors and study whether theq2

dependence is consistent with the pole contribution. Although the soft pion theorem predictsf 0(q max
2 )

5 f B / f p in the chiral limit, we observe a significant violation of this relation.@S0556-2821~98!00413-5#

PACS number~s!: 12.38.Gc, 13.20.2v
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I. INTRODUCTION

The exclusive semileptonic decayB→p(r) ln will be-
come an important process to determine the Cabib
Kobayashi-Maskawa~CKM! matrix element uVubu when
high statistics experimental data become available thro
futureB factories, since lattice QCD simulation enables us
compute the relevant form factors from first principles. The
was, however, a difficulty in treating a heavy quark w
massmQ on the lattice, because possible systematic error
orderamQ could become unacceptably large for the typic
lattice spacinga accessible in present simulations. Thus p
vious lattice calculations of theB meson semileptonic deca
form factors @1–3# involved an extrapolation in the heav
quark mass from the charm quark mass regime to
b-quark mass assuming a heavy quark mass scaling
which could introduce a potential systematic error. Nonre
tivistic lattice QCD ~NRQCD! @4# is designed to remove
such a large uncertainty based on a systematic 1/mQ expan-
sion, and one can simulate theb quark directly at its mass
value. In this paper we describe the lattice calculation of
B→p ln form factors using NRQCD for the heavy quar
We investigate the heavy quark mass dependence of the
factors by taking the mass of the heavy quark to cove
range of 1.5–8 GeV.

The hadronic matrix elements ofB→p semileptonic de-
cay are expressed in terms of two form factorsf 1 and f 0 as

*Permanent address: Computing Research Center, High En
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^p~k!uVmuB~p!&5S p1k2q
mB

22mp
2

q2 D
m

f 1~q2!

1qm

mB
22mp

2

q2
f 0~q2!, ~1!

whereqm5pm2km . The covariant normalization of the me
son fields is employed in this paper:

^M ~p8!uM ~p!&52p0~2p!3d3~p2p8!. ~2!

From the condition that the matrix element is not singular
q250, the form factors satisfyf 1(0)5 f 0(0), and thekine-
matical end pointq max

2 5(mB2mp)2 corresponds to the
zero-recoil limit, where the lattice simulation works mo
efficiently.

This paper is organized as follows. In the next section,
NRQCD formulation and numerical method to calculate t
matrix elements are summarized. We describe the detail
our numerical simulation in Sec. III, where we point out t
subtleties in extracting the form factors: the definition of t
heavy meson energy, the choice of the two independent
trix elements to determinef 1 and f 0, and the procedure o
chiral extrapolation. We explain what we think is the be
procedure and study the uncertainty by comparing the re
with those from other procedures. Physical implications
numerical results are discussed in Sec. IV. We study
1/mB dependence of the matrix elements andq2 dependence
of the form factors. The prediction from the soft pion the
rem is compared with our data. In Sec. V, we discuss
systematic uncertainties contained in this work. Section V
devoted to our conclusion.

gy
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II. LATTICE NRQCD

A. Lattice NRQCD action

Lattice NRQCD has been extensively used for the inv
tigations of the heavy-heavy systems@5# and hadrons con
taining a single heavy quark@6#. It is designed to remove th
large mass scalemQ from the theory using the 1/mQ expan-
sion and to reproduce the same results as relativistic QCD
to a given order of 1/mQ . In this work, we employ the lattice
NRQCD action including theO(1/mQ) terms1

SNRQCD5(
x

Q†~x!F S 12
1

2n
H0D 2n

U4S 12
1

2n
H0D 2n

3Q~x14̂!2~12dH !Q~x!G , ~3!

where

H052
1

2mQ
D~2!, ~4!

dH52
1

2mQ
s•B, ~5!

andQ(x) is the effective two-component spinor field, whic
describes the heavy quark.D (2) denotes the three
dimensional Laplacian, andB is the standard cloverleaf-typ
chromomagnetic field.

This action generates the following evolution equation

GQ~x,t51!5S 12
1

2n
H0D n

U4
†S 12

1

2n
H0D n

GQ~x,t50!,

~6!

GQ~x,t11!5S 12
1

2n
H0D n

U4
†S 12

1

2n
H0D n

3~12dH !GQ~x,t !, ~7!

for which we apply the tadpole improvement procedu
Um(x)→Um(x)/u0 with u05^TrU plaq/3&1/4 @8#. To avoid the
singular behavior of high frequency modes in the evolut
equation, the stabilizing parametern is chosen to satisfy the
condition u12H0/2nu,1, which leads ton.3/2mQ . From
the viewpoint of perturbation theory, a further constra
H0/2n,1 is necessary to avoid singularities in some of
vertices derived from the action~3!. This point is again dis-
cussed in the last part of this section in connection with
choice ofn in the simulation and the perturbative calcul
tion.

The four-component spinor fieldc(x) of relativistic QCD
is expressed in terms of the two-component spinor fi
Q(x) as

1This action differs from what we used in our previous study off B

@7#, which is organized to remove theO(aLQCD /mQ) error, at the
cost of simulation speed.
01450
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c~x!5S 12
g•D

2mQ
D S Q~x!

0 D , ~8!

where D is the symmetric lattice covariant derivative. A
O(1/mQ) correction appears in the lower component
c(x), which affects the heavy-light current.

B. Correlation functions

We employ the standard simulation technique to calcu
the hadronic matrix elements of the semileptonic decay.
calculate the three-point correlation functions

Cm
~3!~p,k;t f ,ts ,t i !5(

xf
(
xs

e2 ip•xfe2 i ~k2p!•xs

3^0uOB~xf ,t f !Vm
† ~xs ,ts!Op

† ~0,t i !u0&,

~9!

whereOB and Op are interpolating operators forB and p

mesons, respectively, andVm5q̄gmc is the heavy-light vec-
tor current. In this work, we use the Wilson quark to descr
the light quarkq(x). Here we denote the heavy-light and th
light-light pseudoscalar mesons asB and p, respectively,
regardless of their mass parametersk andmQ for simplicity.
For t f@ts@t i the correlation function, Eq.~9!, becomes

Cm
~3!~p,k;t f ,ts ,t i !→

ZB~p!

2EB~p!

Zp~k!

2Ep~k!
e2Eq̄Q~p!~ t f2ts!

3e2Ep~k!~ ts2t i !^B~p!uVm
† up~k!& latt ,

~10!

whereEB(p) and Ep(k) denote the energy of theB meson
and pion, respectively. The exponentEq̄Q(p) is not the total
energy but the binding energy of theB meson, because th
heavy quark massmQ is subtracted in NRQCD. We use loca
interpolating operators for bothB andp, and

ZB~p!5^0uOB~0!uB~p!&, Zp~k!5^0uOp~0!up~k!&
~11!

are their matrix elements.
In calculating Eq.~9! we vary t f with fixed t i and ts in

order to find out the region where the correlation functio
are dominated by the ground state. The fixedts is chosen so
that the pion two-point correlation function is dominated
the ground state, as shown in Sec. III. To obtainEq̄Q(p),
Ep(k), ZB(p), and Zp(k), we also calculate the two-poin
correlation functions with a finite momentum:

CB
~2!~p;t f ,t i !5(

xf

e2 ip•xf^OB~xf !OB
†~xi !&

→
ZB~p!2

2EB~p!
exp@2Eq̄Q~p!~ t f2t i !#, ~12!
2-2
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Cp
~2!~k;t f ,t i !5(

xf

e2 ik•xf^Op~xf !Op
† ~xi !&

→
Zp~k!2

2Ep~k!
exp@2Ep~k!~ t f2t i !#. ~13!

Combining Eqs.~10!, ~12!, and~13!, one can easily see tha
the matrix element is expressed as

^B~p!uVm
† up~k!& latt5A2EB~p!A2Ep~k!

eEq̄Q~ t f2ts!

Z̃B~p!

3
Z̃p~k!

Cp
~2!~k;ts ,t i !

Cm
~3!~p,k;t f ,ts ,t i !

~14!

for t f@ts@t i , whereZ̃5Z/A2E. As expressed in Eq.~14!,
we use the two-point correlation function itself to cancel t
exponentially decaying factor of the pion, while we use t
values ofEq̄Q obtained by fits to cancel theB meson’s. One
reason for this asymmetric procedure is that the pion tw
point function is constructed from the light quark propaga
with a point source att i54, which is what we used to cal
culate the three-point function~9!, and then we expect tha
the statistical fluctuation mostly cancels between Eqs.~9!
and~13!, while for theB-meson exponential function, such
cancellation is not expected. In addition, as we mention
the next section, the two-point correlation function of theB
meson with point source~12! requires a larger time separa
tion to reach the plateau than the three-point function~9!, for
which the heavy quark source is effectively ‘‘smeared’’
ts .

C. Perturbative corrections

To relate the matrix element in the lattice theory to that
the continuum QCD, operator matching is required. We h
calculated the perturbative renormalization factorZVm

for the
vector current at the one-loop level using lattice perturbat
theory @9#:

Vm
cont5ZVm

Vm
latt5ZVm

q̄gmc, ~15!

whereq is the Wilson light quark andc is defined in Eq.~8!.
ZV is the ratio of the on-shell S-matrix elements in the co
tinuum theory with the modified minimal subtraction (MS!
scheme and that in the lattice theory. In our definition,ZV
contains the leading logarithmic terma log(mQa), which
comes from the continuum renormalization factor.

In calculatingZV we use the massless Wilson quark a
the external momenta are taken to be zero. We did not
into account one-loop operator mixing with higher derivati
operators, since there are alreadyO(a) errors at the tree
level from the Wilson quark action. The one-loop coefficie
is modified with the tadpole improvement@8#. For the mean
link variable we useu05^TrUplaq/3&1/4 except for the light
quark wave function renormalization, for which we use a
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other possible definitionu051/8kc @10#. Their one-loop per-
turbative expressions are used to determine the perturba
coefficients ofZVm

.

The results for the one-loop coefficientCVm
in

ZVm
511g2CVm

~16!

are presented in Table I for several values of (mQ ,n). These
values contain the leading logarithmic contributio
log(mQa)/4p2. The values ofZVm

with two choices of the

lattice coupling constantgV
2(p/a)52.19 andgV

2(1/a)53.80
are plotted as a function of 1/mQ in Fig. 1. We observe tha
the spatial component of the vector current receives lar
perturbative corrections than the temporal one. On the o
hand, the 1/mQ dependence is rather stronger forZV4

than for

ZVi
.

When we discuss the 1/mB dependence of the renorma
ized matrix elements in Sec. IV, we multiply the leadin
logarithmic factor

Q~mB /mB
~phys!!5S aV~mB!

aV~mB
~phys!!

D 2/11

~17!

TABLE I. The tadpole-improved one-loop coefficients for th
perturbative correctionsE0, Zm , ZV4

, andZVi
. Quoted errors repre-

sent the numerical uncertainties in the evaluation of loop integr
The uncertainty ofA is less than 1024.

(mQ ,n) A B CV4
CVi

~5.0, 1! 0.0759 0.0124~4! 0.0210~11! 20.0790~10!

~2.6, 2! 0.0668 0.0353~3! 0.0004~9! 20.0780~7!

~2.1, 2! 0.0623 0.0449~3! 20.0068~9! 20.0757~7!

~1.5, 3! 0.0528 0.0623~2! 20.0192~8! 20.0734~6!

~1.2, 3! 0.0446 0.0757~1! 20.0283~8! 20.0707~6!

~0.9, 6! 0.0309 0.0933~1! 20.0428~8! 20.0687~5!

FIG. 1. Renormalization constant for the vector current with t
scales for the coupling constant,q!5p/a and 1/a. The open and
solid symbols representZV4

andZVj
, respectively.
2-3
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to cancel the logarithmic divergence in the infinite hea
quark mass limit due to the anomalous dimension of
heavy-light current.

The perturbative correction for the heavy quark se
energy is also calculated, and theB-meson mass is given
through the binding energy of the heavy-light mesonEqQ̄(p
50) as

mB5ZmmQ2E01Eq̄Q~p50!, ~18!

where the energy shiftE0 and the mass renormalizationZm
are obtained perturbatively:

Zm511g2B, ~19!

E05g2A. ~20!

The tadpole-improved coefficientsA andB are also given in
Table I.

For a historical reason, the stabilizing parameter we h
used does not always satisfy the conditionn.3/mQ , which
is necessary to avoid divergent tree level vertices, while
simulation itself is stable with the conditionn.3/2mQ . We
therefore quote the results at the tree level in the later
tions as our main results. We estimate the size of the re
malization effect with the one-loop coefficients obtain
with the combinations ofmQ andn, for which n’s are larger
than those we have used in the simulation and the pertu
tion theory exists. Although this estimation is certainly i
correct, it gives some idea of the one-loop effect, especi
because then dependence of the simulation results is o
served to be very small~Sec. III D!.

III. SIMULATION DETAILS

In this section, we describe the numerical simulation
detail apart from discussions on the physical implications
the results, which will be discussed in the next section. A
summarizing the simulation parameters, the two-point co
lation functions ofp andB mesons with finite momenta ar
discussed. We describe how to extract the matrix elem
and the form factors from the three-point correlation fun
tions. Finally, the chiral extrapolation of the matrix eleme
is discussed.

A. Simulation parameters

The numerical simulations are performed on a 163332
lattice with 120 quenched gauge configurations genera
with the standard plaquette gauge action atb55.8. Each
configuration is separated by 2000 pseudo-heat-bath sw
after 20 000 sweeps for thermalization and fixed to the C
lomb gauge. The Wilson quark action is used for the lig
quark at threek values 0.1570, 0.1585, and 0.1600, whi
roughly lie in the range@ms,2ms#, and the critical hopping
parameter iskc50.16346~7!. The boundary condition for the
light quark is periodic and Dirichlet for spatial and tempo
directions, respectively. The light quark field is normaliz
with the tadpole-improved formA123k/4kc according to
@10#. The tadpole improvement is also applied for both t
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NRQCD action and the current operator with the repla
ment of Um→Um /u0 using the average value of a sing
plaquetteu05^ TrU plaq/3&1/450.867994(13).

The lattice scale is determined from ther-meson mass as
a2151.71~6! GeV, although we expect a largeO(a) error
for mr with the unimproved Wilson fermion. The results fo
the p and ther meson masses and the pion decay cons
are summarized in Table II.

The heavy quark massmQ and the stabilizing parametern
used in our simulation are

S mQ

n D 5S 5.0

1 D ,S 2.6

1 D ,S 2.1

1 D ,S 2.1

2 D ,S 1.5

2 D ,

S 1.2

2 D ,S 1.2

3 D ,S 0.9

2 D , ~21!

where mQ52.6 and 0.9 roughly correspond tob- and
c-quark masses, respectively.

For mQ52.1 and 1.2 we performed two sets of simul
tions with different values ofn, though the statistics is lowe
~560! for (mQ ,n)5(2.1,2) and (1.2,3). Since the differen
choice ofn introduces different higher order terms ina in
the evolution equation, the choice ofn should not affect the
physical results for sufficiently smalla. The small depen-
dence of the numerical results onn is also crucial for our
estimation of the perturbative corrections.

The spatial momentum of theB meson (p) and the pion
(k) is taken up toupu, uku<A332p/16, which corresponds
to the maximum momentum of; 1.2 GeV in physical units.
We measure the three-point correlation function at 20 diff
ent momentum configurations (p,k) as listed in Table III.
The momentum configurations which are equivalent un
lattice rotational symmetry are averaged, and the numbe
such equivalent sets is also shown in Table III.

The light quark propagator is solved with a local source
t i54, which is commonly used for the two-point and thre
point functions. The heavy-light vector current is placed
ts514, which is chosen so that the pion correlation functi
is dominated by the ground state signal. The position of
B-meson interpolating operator is varied in a ran
t f523–28, where we observe a good plateau as shown l

B. Light-light meson

In order to obtain the form factors reliably, it is crucial t
extract the ground state of theB meson and the pion involv
ing finite momentum properly. In Fig. 2 we show the effe
tive mass plot of pions with finite momentum atk50.1570
and 0.1600. The spatial momentumk5(kx ,ky ,kz) is under-

TABLE II. The values ofmp , mr , and pion decay constan
without renormalization. Fitting range ist514224.

k50.1570 0.1585 0.1600 kc

mp 0.5677~30! 0.4933~33! 0.4118~37! -
mr 0.6747~54! 0.6214~72! 0.567~11! 0.448~17!

f p 0.1496~46! 0.1380~49! 0.1270~53! 0.1019~64!
2-4
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TABLE III. The momentum combinations (p,k) used in the simulation. In this table, the values ofp, k,
andq are expressed in units of 2p/16. The set which is equivalent with another under the lattice rotatio
symmetry is identified with the samei q number, and a representative is shown in the fifth through sev
columns. The last column shows the numbers of equivalent combinations. The symbols in the third c
denote the direction ofk againstp as follows:', orthogonal;↑↑, parallel;↑↓, antiparallel; and oblique for
others. The seti q512 gives the minimumq2 value among the sets in this table.

i q p2 k2 q2 p k 2q5k2p ] (p,k)

1 0 0 0 ~ 0, 0, 0! ~ 0, 0, 0! ~ 0, 0, 0! 1
2 1 1 ~ 0, 0, 1! ~ 0, 0, 1! 6
3 2 2 ~ 0, 1, 1! ~ 0, 1, 1! 12
4 3 3 ~ 1, 1, 1! ~ 1, 1, 1! 8

5 1 0 1 ~ 0, 0, 1! ~ 0, 0, 0! ~ 0, 0, 21! 6
6 1(') 2 ~ 0, 1, 0! ~ 0, 0, 1! ~ 0, 21, 1! 24
7 1(↑↑) 0 ~ 0, 0, 1! ~ 0, 0, 1! ~ 0, 0, 0! 6
8 1(↑↓) 4 ~ 0, 0, 21! ~ 0, 0, 1! ~ 0, 0, 2! 2
9 2(') 3 ~ 1, 0, 0! ~ 0, 1, 1! (21, 1, 1! 24

10 2 1 ~ 0, 0, 1! ~ 0, 1, 1! ~ 0, 1, 0! 24
11 3 2 ~ 0, 0, 1! ~ 1, 1, 1! ~ 1, 1, 0! 24
12 3 6 ~ 0, 0, 21! ~ 1, 1, 1! ~ 1, 1, 2! 8

13 2 0 2 ~ 0, 1, 1! ~ 0, 0, 0! ~ 0, 21, 21! 12
14 1(') 3 ~ 1, 1, 0! ~ 0, 0, 1! (21, 21, 1! 24
15 1 1 ~ 0, 1, 1! ~ 0, 0, 1! ~ 0, 21, 0! 24
16 2(') 4 ~ 0, 1, 21! ~ 0, 1, 1! ~ 0, 0, 2! 4
17 2(↑↑) 0 ~ 0, 1, 1! ~ 0, 1, 1! ~ 0, 0, 0! 12
18 2 2 ~ 1, 1, 0! ~ 0, 1, 1! (21, 0, 1! 48
19 2 6 ~ 1, 21, 0! ~ 0, 1, 1! (21, 2, 1! 16

20 3 0 3 ~ 1, 1, 1! ~ 0, 0, 0! (21, 21, 21! 8
a
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s the
stood with units of 2p/16. This notation will be used
throughout this paper. Although higher momentum states
rather noisy, we can observe a plateau beyondt514. We fit
the data with the single exponential function to obtain
energyEp(k) shown by the horizontal solid lines in Fig. 2

Figure 3 shows the energy momentum dispersion rela
of the pion, where the solid lines represent the relation in
continuumEp(k)25mp

2 1k2. We observe a small discrep
ancy between the above relation and the data, which i
cates the discretization error. However, the disagreeme
about a 1–1.5 standard deviation and only a few percen

C. Heavy-light meson

To compute theB-meson two-point correlation functions
we employ the smeared source for heavy quark as well as
local source, with the local sink for both cases. The smea
function for the heavy quark is obtained with a prior me
surement of the wave function with the local source. In F
4 we plot the effective mass for both the local-local and
smeared-local correlation functions atmQ52.6 and k
50.1570, 0.1600. The plateau is reached beyondt516 for
the local-local function, while the smeared-local function e
hibits a clear plateau from even earlier time slices. We ob
the binding energy with a fit range of@16,24# for both types
of correlation functions and for all momenta, and the resu
01450
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e
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e
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g
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e
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are consistent in all cases. The binding energy averaged
the results fitted from the local and the smeared sources
listed in Table IV together with the values in the chiral lim
In Table IV, we also listed the binding energies for the vec
mesonB* measured with the local-local correlation functio
which are used in later discussions on theB* pole contribu-
tion to the form factors. It is also worth noting that the valu
of Eq̄Q obtained with a different stabilizing parametern are
consistent with each other within their statistical errors.

The dispersion relation for theB meson takes the follow-
ing nonrelativistic form:

Eq̄Q~p!5Eq̄Q~0!1
1

2m kin
p21O~1/mB

3 !, ~22!

where the kinetic massm kin should agree with the rest mas
mB , Eq. ~18!, in the continuum limit. Since we use th
NRQCD action correct up toO(1/mQ), including higher or-
der terms in 1/mB in Eq. ~22! does not make sense. In Fig.
Eq̄Q(p) is shown as a function ofp2 at mQ52.6. The solid
lines represent the relation~22! with m kin5mB determined
through the tree level relationmB5mQ1Eq̄Q(0), which re-
produces the data quite well. With the one-loop correct
~18! the agreement becomes even better as presented a
dashed lines in the figure.
2-5
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D. Three-point function and matrix elements

Figure 6 is the effective mass plot of the three-point fun
tion at mQ52.6 andk50.1570, 0.1600. The horizontal ax
represents the time slice on which theB-meson interpolating
operator is put, and the vertical axis corresponds to the b
ing energy of theB meson. The horizontal solid lines repr
sent the binding energyEq̄Q(p) determined from the two-
point correlation functions. The figures display that the thr
point correlation functions are dominated by the grou
states beyondt523, and there they give values forEq̄Q(p)
consistent with ones extracted from the two-point functio
Therefore, in this region we can use Eq.~14! together with
the results of the two-point correlation functions to extra
the matrix elements.

It is useful to define the quantityV̂m as

V̂m~p,k!5
^B~p!uVm

† up~k!& latt

A2EB~p!A2Ep~k!
, ~23!

FIG. 2. Effective mass plot of pion atk50.1570 and 0.1600
The horizontal solid lines represent the fitted values and the fit
range with the statistical errors~dotted lines!.
01450
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because it is defined only through the residue of the two-
three-point correlation functions without knowledge of ho
one defines the meson energies. Since there are uncerta
in the light-light and heavy-light meson dispersion relation
it is better to deal with the quantity which is free from am
biguity. Moreover,V̂m is the quantity which has the infinite
mass limit in the heavy quark effective theory. When t
perturbative correction is incorporated,Q(mB /mB

~phys!),

given by Eq.~17!, is multiplied by V̂m . ThereforeV̂m is a
suitable quantity to study the 1/mQ dependence.

For the spatial components ofV̂m , we also define the
scalar products

Ûp~p,k!5
p•V̂~p,k!

p2
, Ûk~p,k!5

k•V̂~p,k!

k2
. ~24!

In Table V we list the values ofV̂4, Ûp , and Ûk for all
momentum configurations (p,k) at mQ52.6 andk50.1570.
In this table, we also list the values ofq2 determined with the
tree level mass relation~18! for the B meson.

We have investigated then dependence ofV̂m at mQ
52.1 with n51 and 2 and atmQ51.2 with n52 and 3,
using the first 60 configurations on which (mQ ,n)5(2.1,2)
and (1.2,3) data are measured.2 For both heavy quark masse
we observed a small dependence onn, which is at most 1%,

2We note that then dependence should be studied on the sa
configurations. In some of the figures, there appear large deviat
for the data with differentn but the samemQ . However, in these
graphs only the results for (mQ ,n)5(2.1,2),(1.2,3) are obtained
from the first 60 configurations and the results for the other com
nations of (mQ ,n) are obtained from the entire 120 configuration
It seems that these large deviations seem to arise from the stati
fluctuation caused by the remaining 60 configurations for wh
there are no data with (mQ ,n)5(2.1,2),(1.2,3).

g

FIG. 3. Dispersion relation for the pion. The solid lines repr
sent the relationEp

2 (k)5mp
2 1k2 with mp the rest mass obtained i

the simulation. Fork50.1585 and 0.1600, symbols are slight
shifted in the horizontal direction for clarity.
2-6
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8%, and 2% forV̂4, Ûp , andÛk , respectively, and smalle
than their statistical error. In the present work, therefore,
regard them to be sufficiently small to estimate the size
the renormalization effect in the manner described in S
II C.

E. Form factors

To convertV̂4, Ûp , andÛk to the form factors, we need
to assume certain dispersion relations forEB(p) andEp(k).
One method is to use the values obtained from the disper
relation measured in the simulation. This, however, suff
from a large statistical error for finite spatial momenta. A
ternatively, we adopt the following relativistic dispersion r
lations for both theB meson and the pion:

EB~p!5AmB
21p2, Ep~k!5Amp

2 1k2, ~25!

FIG. 4. Effective mass plot ofB meson atmQ52.6 and k
50.1570, 0.1600. Results with the smeared source~solid symbols!
are shown forupu250,1 as well as results with the local sourc
~open symbols!. The horizontal solid lines express the average v
ues over the results of a single exponential fit of the local-local
the smeared-local correlation functions. The statistical errors of
fitted values are displayed at the right end of the lines. For allmQ ,
k, and momentum, the fit ranges are set tot516–24.
01450
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where the measured rest mass is used formp andmB . These
relations are almost satisfied as shown in Figs. 3 and 5
light-light and heavy-light mesons, respectively.

Using the relations~25!, the form factors are easily con
structed fromV̂m . First, we calculatef 0(q2) with

f 0~q2!5
A2EB~p!A2Ep~k!

mB
22mp

2
qmV̂m , ~26!

and f 1(q2) is similarly obtained from (p1k)mV̂m substitut-
ing the value off 0 determined above.

For pÞ0 and kÞ0, f 0 and f 1 are not uniquely deter-
mined fromV̂4, Ûp , and Ûk . In this case there is an add
tional relation amongV̂m’s, which should be satisfied whe
Lorentz symmetry is restored. Forp'k this relation reads

EB~p!Ûp1Ep~k!Ûk5V̂4 . ~27!

We examine this condition fori q56,9,14 and 16 (i q is re-
ferred in Table III!. Figure 7 compares the left-hand sid
~LHS! and right-hand side~RHS! of Eq. ~27! at k50.1570
for i q56, with the tree level dispersion relation forEB . This
figure exhibits a difference of about 15%. In other cases
i q , a similar amount of the discrepancy is observed. The s
of this systematic effect is consistent with the naive exp
tation for O(a) error.

F. Chiral extrapolation

To obtain the form factors at the physical pion a
B-meson masses, it is necessary to extrapolate the resu
the chiral limit. There is, however, still a subtlety in th
chiral extrapolation, because the light quark mass dep
dence of the matrix elements or the form factors is not w
understood. In principle, the chiral limit of the matrix ele
ments or the form factors must be taken using the resul
the chiral effective theory as a guide for its functional form
For theB→p semileptonic decay the heavy meson effect
theory with a chiral Lagrangian gives such an example@11–
13#.

At least the heavy meson effective theories tell us that
matrix elements or the form factors depend onv•k, where
vm is the four-velocity of theB meson. At zero pion momen
tum, the quantityv•k could potentially give a linear depen
dence onmp , which could result in aAmq dependence. The
zero-recoil limit in the heavy meson effective theory giv
the following relations for the matrix element and the for
factor:

^p~k50!uV4uB~p50!&5~mB1mp! f 0~q max
2 !5mB

f B

f p
.

~28!

Assuming a linear dependence off B , f p , andmB on mq , at
least in the zero-recoil limit the matrix element should ha
a linear dependence onmq . In the following analysis, we
take the chiral limit of the matrix elements assuming a line
dependence onmq in any case of (p,k), although there is no
proof.

-
d
e
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TABLE IV. The binding energy of the pseudoscalar and vector heavy-light mesons. The single exp
tial fit is applied with the fitting ranget516–24. For the pseudoscalar we average the values obtained
the local-local and the smeared-local correlation functions. For the vector mesons we use the loc
function only, and there are no data available for (mQ ,n)5(2.1,2) and (1.2,3).

Pseudoscalar meson binding energyEq̄Q(p50)
(mQ ,n) k50.1570 0.1585 0.1600 kc

~5.0, 1! 0.6304~69! 0.6084~83! 0.585 ~11! 0.535 ~15!

~2.6, 1! 0.6268~48! 0.6041~56! 0.5809~71! 0.530 ~10!

~2.1, 1! 0.6247~45! 0.6014~52! 0.5777~65! 0.5260~91!

~2.1, 2! 0.6279~53! 0.6056~62! 0.5834~80! 0.534 ~11!

~1.5, 2! 0.6180~42! 0.5940~48! 0.5696~59! 0.5162~81!

~1.2, 2! 0.6135~40! 0.5889~46! 0.5640~56! 0.5095~75!

~1.2, 3! 0.6142~51! 0.5899~56! 0.5655~68! 0.5117~92!

~0.9, 2! 0.6058~39! 0.5805~43! 0.5551~51! 0.4991~68!

Vector meson binding energyEq̄Q* (p50)
(mQ ,n) k50.1570 0.1585 0.1600 kc

~5.0, 1! 0.649 ~12! 0.628 ~14! 0.604 ~19! 0.555 ~27!

~2.6, 1! 0.6502~62! 0.6287~76! 0.6065~99! 0.559 ~14!

~2.1, 1! 0.6501~56! 0.6279~68! 0.6047~88! 0.555 ~13!

~1.5, 2! 0.6488~52! 0.6257~61! 0.6014~79! 0.550 ~11!

~1.2, 2! 0.6484~51! 0.6249~59! 0.6002~76! 0.547 ~11!

~0.9, 2! 0.6470~50! 0.6231~57! 0.5982~73! 0.545 ~10!
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Figure 8 shows the chiral extrapolation of the matrix e
ment with the form

^p~k!uVmuB~p!&5aV1bVmq , ~29!

wheremq51/2k21/2kc . The data itself does not show an
sign of nonlinear behavior at least around the strange qu
mass. The form factorsf 1(q2) and f 0(q2) at the physical

FIG. 5. Dispersion relation for theB meson atmQ52.6 andk
50.1570, 0.1600. The solid lines represent the relationEq̄Q(p)
5Eq̄Q(0)1p2/2mB , for whichmB is determined with the tree leve
formula mB5mQ1Eq̄Q(0). Dashed lines represent the same re
tion with the renormalizedmB at the scaleq!51/a.
01450
-

rk

pion mass are extracted after extrapolating the matrix
ments to the chiral limit using Eq.~29!.

IV. PHYSICAL IMPLICATIONS

In this section we discuss the physical implications of o
results, which include the 1/mB dependence of theB→p
matrix elements and theq2 dependence of the form factors
The prediction from the soft pion theorem is compared w
our data.

A. 1/mB dependence

The heavy quark effective theory predicts that the pro
erly normalizedB→p matrix element has a static limit
hence it can be described by an expansion in the inve
heavy meson mass 1/mB whose leading order is a function o
the heavy meson velocityvm5pm /mB ,

^p~k!uVm
† uB~p!&

AmpmB

5u1~v•k!vm1u2~v•k!
km

v•k
. ~30!

Similar arguments for the heavy-light decay constant s
gested that the quantityf BAmB has the static limit while
numerical simulations have shown that the 1/mB correction
is very large. On the other hand, the 1/mB dependence of the
form factors has been studied only in theD-meson region
@1–3#. Therefore it is important to study the 1/mB depen-
dence of the matrix elements at fixed values ofv•k.

Except forp50, fixing p is not quite identical to fixing
v•k, since the velocityvm changes depending on the hea
meson mass. Thus it is awkward to use matrix elements w

-

2-8
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FIG. 6. Effective mass plot for the three-point functions atmQ52.6 andk50.1570, 0.1600. The horizontal lines express the val
obtained from the two-point correlation functions with the statistical errors indicated at the right end of the lines. Top two figures
C4

(3) , the third is fork•C(3) at k50.1570, and the bottom figure is forC4
(3) at k50.1600.
m

a nonzerop. In the special case ofp50, the LHS of Eq.~30!

is nothing but the matrix elementsV̂4, Ûp , andÛk , defined
in Eqs.~23! and~24!, multiplied by themB independent fac-
tor.

In the following analysis, we confine ourselves to exa
ining the following quantities for the sake of simplicity:

V̂4~p50,k!5V̂4
~0!S 11

c4
~1!

mB
1

c4
~2!

mB
2

1••• D , ~31!

Ûk~p50,k!5Ûk
~0!S 11

ck
~1!

mB
1

ck
~2!

mB
2

1••• D ,

~32!

Ûp~p50,k![ lim
p2→0

Ûp~p,k! ~33!
01450
-

FIG. 7. Comparison ofV̂4 to (EBÛp1EpÛk) for i q56 at k
50.1570.
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TABLE V. V̂4, Ûp , andÛk in lattice units atmQ52.6 andk50.1570.i q denotes the set of momentum
(q,k) summarized in Table III. In the evaluation ofq2, theB-meson mass is determined through the tree le
relationmB5mQ1Eq̄Q(0).

i q q2
V̂4 Ûp Ûk

1 7.071 ~20! 1.014 ~34! - -
2 6.280 ~19! 0.844 ~26! - 0.878~41!

3 5.609 ~19! 0.754 ~50! - 0.695~61!

4 5.017 ~18! 0.612 ~87! - 0.57 ~10!

5 7.044 ~20! 0.999 ~36! 0.0475~28! -
6 6.247 ~19! 0.832 ~28! 0.0366~47! 0.860~41!

7 6.555 ~19! 0.930 ~30! 1.009 ~46! 1.009~46!

8 5.938 ~19! 0.750 ~34! 20.702 ~48! 0.702~48!

9 5.571 ~19! 0.742 ~49! 0.040 ~12! 0.674~59!

10 5.880 ~19! 0.827 ~55! 0.790 ~68! 0.767~66!

11 5.283 ~18! 0.66 ~10! 0.65 ~12! 0.63 ~11!

12 4.666 ~18! 0.544 ~68! 20.39 ~12! 0.477~82!

13 7.017 ~20! 0.992 ~42! 0.0467~30! -
14 6.214 ~19! 0.825 ~34! 0.0360~48! 0.848~45!

15 6.523 ~19! 0.923 ~38! 0.517 ~26! 0.997~51!

16 5.534 ~19! 0.757 ~76! 0.052 ~53! 0.670~82!

17 6.151 ~19! 0.920 ~67! 0.863 ~77! 0.863~77!

18 5.842 ~19! 0.820 ~58! 0.412 ~36! 0.758~68!

19 5.225 ~19! 0.669 ~52! 20.266 ~41! 0.587~61!

20 6.990 ~20! 0.968 ~58! 0.0454~33! -
nc

ble
n-

con-

in

-
e pec-
5
1

mB
Ûp8

~0!S 11
cp

~1!

mB
1

cp
~2!

mB
2

1••• D , ~34!

for which we explicitly show the form of the 1/mB expan-
sion. All of the coefficients in these expansions are a fu
tion of k.

FIG. 8. Chiral extrapolation of the matrix elements formQ

52.6. V4 and k•V/uku2 are shown for two momentum configura
tions i q51, 2. The solid and the dashed lines represent the lin
fit.
01450
-

In Figs. 9 and 10 we show the 1/mB dependence ofV̂4

and Ûk , respectively, atk50.1570. The 1/mB correction is
not significant for these quantities and almost negligi
around theB-meson mass. This result exhibits a sharp co
trast to the mass dependence of the heavy-light decay
stantf BAmB, for which the large 1/mB correction to the static
limit is observed. Results of the linear and quadratic fit
1/mB are listed in Table VI forV̂4 and in Table VII forÛk .

ar
FIG. 9. V̂4 at k50.1570. Fork50 anduku51, the solid and the

dashed lines represent the results of linear and quadratic fits, res
tively.
2-10
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TABLE VI. Parameters for the linear and quadratic fits ofV̂4(p50,k).

Linear Quadratic
k i q V̂4

(0) c4
(1)

V̂4
(0) c4

(1) c4
(2)

0.1570 1 0.965~35! 0.184~55! 1.003~47! 20.01~20! 0.21~18!

2 0.826~29! 0.080~47! 0.851~41! 20.06~17! 0.15~17!

3 0.757~51! 20.038~59! 0.799~57! 20.30~20! 0.31~22!

4 0.624~80! 20.25 ~11! 0.79 ~10! 21.29~36! 1.25~42!

0.1585 1 0.982~42! 0.165~63! 1.016~55! 20.00~23! 0.18~21!

2 0.807~35! 0.075~57! 0.830~48! 20.06~20! 0.14~19!

3 0.758~76! 20.071~73! 0.830~81! 20.51~26! 0.51~29!

4 0.62 ~12! 20.40 ~15! 0.89 ~19! 21.83~50! 1.75~60!

0.1600 1 1.003~53! 0.150~76! 1.023~66! 0.05~27! 0.10~25!

2 0.768~46! 0.088~76! 0.788~58! 20.04~26! 0.14~25!

3 0.78 ~14! 20.17 ~10! 0.96 ~17! 21.13~40! 1.13~46!

4 0.70 ~27! 20.64 ~25! 1.22 ~55! 22.45~80! 2.26~94!

TABLE VII. Parameters for the linear and quadratic fits ofÛk(p50,k).

Linear Quadratic
k i q Ûk

(0) ck
(1)

Ûk
(0) ck

(1) ck
(2)

0.1570 2 0.945~39! 20.194~44! 0.967~47! 20.30~19! 0.13~19!

3 0.762~56! 20.257~53! 0.750~54! 20.17~22! 20.10~24!

4 0.655~88! 20.364~91! 0.600~81! 0.08~43! 20.54~49!

0.1585 2 1.004~52! 20.198~50! 1.023~58! 20.28~22! 0.10~23!

3 0.808~92! 20.242~64! 0.769~80! 0.00~30! 20.29~32!

4 0.72 ~15! 20.34 ~14! 0.58 ~12! 0.77~74! 21.34~80!

0.1600 2 1.064~73! 20.214~62! 1.063~77! 20.21~29! 0.00~30!

3 0.92 ~20! 20.219~90! 0.80 ~16! 0.47~50! 20.81~53!

4 0.94 ~37! 20.23 ~26! 0.55 ~23! 3.3~2.3! 24.1~2.4!

TABLE VIII. Parameters for the linear and quadratic fits ofÛp(p50,k).

Linear Quadratic
k i q Ûp8

(0) cp
(1)

Ûp8
(0) cp

(1) cp
(2)

0.1570 1 0.0887~80! 2.61~39! 0.0717~95! 4.5~1.2! 21.55~76!

2 0.089 ~14! 1.29~38! 0.072 ~13! 2.7~1.1! 21.31~88!

0.1585 1 0.0872~94! 2.65~47! 0.066 ~11! 5.3~1.7! 22.1~1.0!
2 0.093 ~20! 0.98~42! 0.080 ~18! 2.0~1.2! 21.0~1.1!

0.1600 1 0.088~12! 2.72~59! 0.059 ~15! 6.7~2.7! 23.1~1.7!
2 0.104 ~33! 0.67~47! 0.097 ~27! 1.1~1.5! 20.4~1.5!
014502-11
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We note here thatx2/NDF is less than unity for most case
of V4, Uk , and alsoUp , which will be mentioned in the nex
paragraph, though they do not exactly judge the goodnes
the fits for such data, which are correlated for differentmQ .

In order to have the same discussion forÛp , which is
defined in thep2→0 limit, we extrapolate the finitep results
to the vanishingp point as shown in Fig. 11. There is littlep2

dependence observed and we employ a linear extrapola
in p2. In Fig. 12 we plotmBÛp as a function of 1/mB at k
50.1570. In contrast to the other matrix elements we obse
a sizable 1/mB dependence. Table VIII summarizes the r
sults of linear and quadratic fits ofmBÛp .

Here we briefly discuss the effect of the one-loop corr
tion to these quantities. Figure 13 shows the renormali
values of V̂4( i q51), Ûk( i q52), and mBÛp( i q51) at k
50.1570. As mentioned at the end of Sec. II, the lead

FIG. 10. Ûk at k50.1570. The solid and the dashed lines re
resent the results of linear and quadratic fits, respectively.

FIG. 11. Extraction ofÛp(p50,k) is shown formQ52.6 and
1.5 atk50.1570. The extrapolation is carried out linearly inp2. For

k50, i q55,13,20 are used. Fork51, Ûp(0,k) is determined using
i q56,14, for whichp andk are perpendicular.
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logarithmic factor, Eq.~17!, is multiplied by V̂m . We also
list the results of linear fits of them in Table IX. As w
discussed previously, the 1/mQ dependence of the one-loo
coefficient is significant only forV4 and almost negligible
for Vi . As a result, the 1/mB dependence ofV̂4 is largely
affected by the renormalization effect, and it even chan
the sign of the slope in 1/mB . The 1/mB dependence ofV̂4 is
still mild after the renormalization effect is included. ForÛk

andmBÛp the 1/mB dependence is not affected by the on
loop correction, while their amplitudes decrease by at m
30%.

B. q2 dependence of the form factors

First we study for whichq2 region our present statistic
allows us to compute the form factors with reasonable sta
tical errors. Theq2 dependence of the form factorsf 1 and f 0

is shown in Figs. 14 and 15 atmQ52.6 and 1.5, respectively
We find that fork50.1570 (mq;2ms), the range ofq2 in
which the form factors have good signal covers almost
entire kinematic region for theD meson and one-third of the
kinematic region for theB meson. Fork50.1600 (mq
;ms), the signal becomes much noisier, but still the fo
factors have a marginally good signal for one-half and o
fourth of the kinematic region for theD meson andB meson,
respectively. Although our present results are very noisy
ter the chiral extrapolation, this will be improved by futu
high statistics studies. This is encouraging in view of the f
that futureB factories can produce 108 B-B̄ pairs and the
branching fraction ofB→p ln from CLEO is (1.860.4
60.360.2)31024 @14#. It is reasonable to expect that the
is a possibility of observingB→p ln events in theq2 regime
which the present lattice calculation can cope with.

Second we study theq2 dependence to see whether t
contribution from theB* resonance to the form factor ca
actually be observed in the simulation data. At the chi
limit, unfortunately, the results are too noisy to discuss th

-
FIG. 12. Ûp multiplied by mB at k50.1570 as a function of

1/mB . The values ofmB are determined with the tree level formula
The solid and the dashed lines represent the linear and the quad
fits, respectively.
2-12
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LATTICE STUDY OF B→p SEMILEPTONIC DECAY . . . PHYSICAL REVIEW D 58 014502
q2 dependence; therefore we use the finite mass results
in the following analysis of theq2 dependence. As shown i
Figs. 14 and 15, the lattice results are available only in
largeq2 region, at which the recoil momentum of the pion
small enough. Therefore it is justified to express the fu
tional form of the form factors by an expansion around

FIG. 13. One-loop renormalizedV̂4, Ûk , andÛp as a function
of 1/mB . The solid, the dashed, and the long-dashed lines repre
the linear fits.
01450
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zero-recoil limit. For this purpose we use the inverse fo
factors 1/f 1(q2) and 1/f 0(q2):

1/f ~q2!51/f ~q max
2 !1c1~q max

2 2q2!1c2~q max
2 2q2!2.

~35!

Figure 16 shows the inverse form factors atmQ52.6 as well
as their fitted functions with this form. The numerical resu
of the fit with and without the conditionc250 are given in
Table X for mQ52.6, 1.5, and 0.9.

The pole dominance model corresponds to a special c
c250, which seems to describe the data very well as sho
in Fig. 16. The mass of the intermediate state is given
mpole

2 5qmax
2 11/@c1f 1(qmax

2 )#, which corresponds to the vec
tor (B* ) meson mass in the pole dominance model. Precis
speaking, the more consistent analysis is to impose the
dition m pole5mB* for the fit by Eq.~35!. This constrained fit
is shown with the long dashed line in Fig. 16. It is found th
now the fit does not quite agree with the data, but the de
tion is about 10%.

In Fig. 17 we also comparem pole and the measured vecto
meson mass as a function ofmB . Again we find that there is
a discrepancy betweenm pole from the unconstrained fit and
the measuredmB* , which is around few hundred MeV. Nev
ertheless, it is remarkable that the deviation remains
same order and the mass dependence ofm pole has the same
trend with mB* . We have not yet understood whether t
above discrepancies can be explained from the remain
systematic errors such as the discretization error. But at l
qualitatively, judging from the size of the uncertainty in o

nt

TABLE IX. Parameters for the linear fit of the renormalize

matrix elementsV̂4(p50,k50), Ûk(p50,uku51), and Ûp(p50,k
50).

V̂4(p50,k50) (i q51)
q* 5p/a q* 51/a

k V4
(0) c4

(1) V4
(0) c4

(1)

0.1570 1.002~36! 0.052~55! 1.088~39! 20.209~47!

0.1585 1.019~44! 0.039~63! 1.105~46! 20.216~55!

0.1600 1.039~55! 0.030~77! 1.126~58! 20.219~66!

Ûk(p50,uku51) (i q52)
q* 5p/a q* 51/a

k Ûk
(0) ck

(1)
Ûk

(0) ck
(1)

0.1570 0.732~31! 0.013~61! 0.609~27! 0.081~70!

0.1585 0.778~42! 0.005~68! 0.649~36! 0.070~78!

0.1600 0.826~59! 20.019~84! 0.689~50! 0.043~96!

Ûp(p50,k50) (i q51)
q* 5p/a q* 51/a

k Ûp
(0) cp

(1)
Ûp

(0) cp
(1)

0.1570 0.0466~66! 6.3~1.2! 0.0268~58! 11.3~30!

0.1585 0.0453~77! 6.5~1.5! 0.0256~68! 11.8~38!

0.1600 0.045~10! 6.7~1.9! 0.0248~87! 12.5~53!
2-13
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calculation, our data are not inconsistent with the picture t
there is a sizable contribution from theB* pole to the form
factor f 1 nearqmax

2 .
So far the discussion has been based on the tree

study. Let us now study how one-loop renormalizati
changes the form factors. Because the one-loop correctio
different for V4 and Vi , the shape of the form factors ma
change significantly. Figure 18 shows the form factors
mQ52.6 andk50.1570 with renormalization factors. Th
leading logarithmic factor, Eq.~17!, is not multiplied in the
present case. We find that the renormalizedf 1 has a stronger
q2 dependence than that at the tree level, whilef 0 receives
only a small change. The renormalization makes theB* pole
fit even worse. In fact, the deviation of the constrained
from our renormalizedf 1 data is as large as 25% nearqmax

2 .
This is still within the typical size ofO(a) errors. It is very
important to perform the analysis with largerb.

C. Soft pion theorem

Applying the soft pion theorem to theB→p matrix ele-
ment, f 0(qmax

2 ) is related to theB-meson decay constan
@12,13,15#,

FIG. 14. Form factors atmQ52.6 andk50.1570, 0.1600. The
solid curves represent the fit to single pole functions.
01450
at

el

is

r

t

f 0~qmax
2 !5 f B / f p , ~36!

in the massless pion limit. This relation is examined in F
19. For the values off B , we refer to our work onf B @7#,
which is obtained with an evolution equation of a slight
different form from that of the present work. We observe
large discrepancy betweenf 0 and the decay constant both fo
the 1/mB dependence and for the value itself.f B increases
rapidly toward heavier heavy quark masses, whilef 0(qmax

2 )
almost stays constant.

The discrepancy still remains significant when the ren
malization effect is incorporated. In evaluating the renorm
ized values off B , we use one-loop perturbative coefficie
obtained in the same manner as in Sec. II C@9#. The leading
logarithmic factor, Eq.~17!, is multiplied by bothf 0(qmax

2 )
and f B .

One may argue that the observed discrepancy can be
plained by the uncertainty in the extrapolation procedure.
study this possibility, we comparef 0(qmax

2 ) and f B / f p also
in finite light quark mass cases, in light of the heavy mes
effective theory which implies relation~28!. They are com-

FIG. 15. Form factors atmQ51.5 andk50.1570, 0.1600.
2-14
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pared in Fig. 20 as a function of 1/k. The differences be-
tween them are remarkable even for finite light quark m
cases.

The reason why these differences occur is not clear. S
our present results suffer from various systematic uncert

FIG. 16. 1/f 0 and 1/f 1 as a function ofq2 at mQ52.6 andk
50.1570. The solid and the dotted curves represent the linear
the quadratic fits, respectively. The long-dashed line represent
linear fit with the constraintm pole5mB* , wheremB* is theB* me-
son mass obtained from the two-point correlation function.
01450
s

ce
n-

ties, as described in the next section, further study wit
better control of systematic errors is necessary to clarify
origin of the problem.

V. SYSTEMATIC ERRORS

In this section, we qualitatively discuss the systematic
certainties associated with lattice regularization. The follo

nd
he

FIG. 17. mB* obtained from the two-point correlation functio
of the B* meson and the pole mass from the linear fit of 1/f 1.
TABLE X. Parameters for the fitf 21(q2)5 f 21(qmax
2 )1c1(qmax

2 2q2)1c2(qmax
2 2q2)2, wherec2 is set to

zero for the linear fit. For each (mQ ,n) and k, numbers in upper and lower rows correspondf 0 and f 1,
respectively. In all cases,x2/NDF is less than unity.

Linear fit Quadratic fit
(mQ ,n) k f 21(qmax

2 ) c1 f 21(qmax
2 ) c1 c2

~2.6, 1! 0.1570 1.373~54! 0.126~70! 1.386~52! 0.058~64! 0.046~53!

0.480~21! 0.264~38! 0.470~20! 0.335~40! 20.051~37!

0.1585 1.436~70! 0.109~88! 1.438~64! 0.098~91! 0.007~81!

0.445~24! 0.272~47! 0.434~22! 0.366~59! 20.068~54!

0.1600 1.531~94! 0.09 ~11! 1.512~86! 0.22 ~16! 20.09 ~14!

0.407~27! 0.276~61! 0.395~26! 0.44 ~10! 20.115~86!

~1.5, 2! 0.1570 1.167~38! 0.209~81! 1.185~37! 0.086~80! 0.119~87!

0.597~25! 0.472~64! 0.587~22! 0.548~60! 20.075~78!

0.1585 1.213~50! 0.19 ~10! 1.224~47! 0.10 ~12! 0.08 ~14!

0.559~28! 0.493~78! 0.545~24! 0.623~92! 20.13 ~12!

0.1600 1.283~67! 0.17 ~14! 1.279~62! 0.21 ~20! 20.04 ~24!

0.516~32! 0.52 ~10! 0.496~29! 0.77 ~17! 20.26 ~20!

~0.9, 2! 0.1570 1.011~28! 0.360~88! 1.027~27! 0.208~85! 0.19 ~13!

0.685~28! 0.753~90! 0.690~26! 0.713~75! 0.05 ~13!

0.1585 1.041~36! 0.35 ~11! 1.056~35! 0.19 ~13! 0.20 ~21!

0.647~33! 0.79 ~11! 0.640~28! 0.86 ~12! 20.09 ~21!

0.1600 1.090~49! 0.33 ~15! 1.096~48! 0.26 ~24! 0.10 ~35!

0.599~37! 0.85 ~14! 0.577~32! 1.12 ~23! 20.36 ~36!
2-15
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ing is a list of the main sources of systematic errors.
O(a) errors: The characteristic size of theO(aLQCD)

error arising from the unimproved Wilson quark action
b55.8 is 20–30 %. This effect is large enough to explain
discrepancy betweenEB(p)Ûp1Ep(k)Ûk and V̂4, men-
tioned in Sec. III. Use of theO(a)-improved clover action
for the light quark will reduce this error to the level of 5%

O„(ap)2
… error: The systems with finite momentum ma

suffer from the discretization errors more seriously than t
at the zero-recoil point. The analytic estimate of t
momentum-dependent error@16# shows that the effect is
about 20% atupu;1 GeV even one uses theO(a)-improved
current.

Perturbative corrections: The one-loop correction co
become significant especially for smallb values. Strictly
speaking, our calculation does not treat the one-loop eff
correctly, because the stabilizing parametern does not have
correct values. This problem must be removed in future st
ies. In estimating the one-loop corrections, we did not

FIG. 18. Renormalized form factors atmQ52.6 and k
50.1570. Upper and lower figures are obtained withgV

2(p/a) and
gV

2(1/a), respectively. The solid lines represent the results of
linear fit. For f 1(q2), x2/NDF is 1.9 and 4.1 forq* 5p/a and 1/a,
respectively.x2/NDF for f 0(q2) is less than 0.5 in both cases.
01450
t
e

t

d

ts

d-
-

clude the effect of operator mixing, which was reported to
significant in the case off B @17#. This effect also should be
included to obtain reliable results.

O(1/mQ
2 ) effects: We described the heavy quark with t

NRQCD action including the order 1/mQ terms. Further pre-
cise calculations may need to includeO(1/mQ

2 ) corrections,
although the effect was shown to be small@7# for f B .

The finite volume effect may also be important.
Since all of the above systematic errors can be large, th

is no advantage of giving quantitative estimates of each e
at this stage. The use of theO(a)-improved~clover! action
for the light quark, as well as the simulation at higherb
values, will reduce most of the above systematic errors.
simulation with dynamical quarks is also of great importan
for reliable predictions of the weak matrix elements.e

FIG. 19. Comparison off 0(qmax
2 ) with f B / f p multiplying the

factor AmB in the chiral limit. Open and solid symbols are at th
tree level and at the one-loop level withgV

2(1/a), respectively.

FIG. 20. f 0(qmax
2 ) and (f B / f p)mB /(mB1mp) for light quark

masses. Two cases ofmQ , 2.6 and 1.5, are displayed at the tre
level.
2-16
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VI. CONCLUSION

In this paper, we present the results of the study oB
→p form factors using NRQCD to describe the heavy qu
with the Wilson light quark. A clear signal is observed f
the matrix element in a wide range of heavy quark m
containing the physicalb-quark mass. They are extrapolate
to the chiral limit, although the result is too noisy for a qua
titative conclusion.

The 1/mB dependence of the matrix elements is stud
and it is clarified that the temporal component and the par
the spatial component proportional to the pion moment
have fairly small dependences onmQ . On the other hand, the
part of the spatial component proportional to theB momen-
tum has a significantO(1/mB) correction.

The q2 dependence of the form factors in the finite lig
quark masses is studied. We find that theq2 dependence o
the form factorf 1(q2) nearqmax

2 becomes much stronger fo
a larger heavy quark mass. A model independent fit
1/f 1(q2) nearqmax

2 shows that the tree level results are co
sistent with the pole behavior for the largeq2 range, and the
difference of the fitted pole mass and the measuredmB* is
around a few hundred MeV for all the heavy quark mass
ur

. T

01450
k

s

-

d
f

f
-

s.

The values off 0 at the zero-recoil point are compare
with the prediction of the soft pion theorem, and a significa
discrepancy is observed.

The size of the renormalization corrections is estima
by a one-loop perturbative calculation. They almost do
affect their 1/mQ dependence, but decreaseVi much more
than V4, which drastically changes the shape off 1. Our
present result suffers from large systematic uncertainties,
the most important one is anO(a) error. It is very important
to study at higherb with improved actions.
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