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We present an exploratory lattice study Bf- 7 semileptonic decay form factors using nonrelativistic
lattice QCD for a heavy quark with a Wilson light quark on & %682 quenched lattice @=5.8. The matrix
elements are calculated at eight values of the heavy quark mass in the range of 1.5—-8 GeV and with three

values of light quark mass. Thenig corrections to the

matrix elements are found to be fairly small except for

the spatial component proportional to tBemeson momentum. We find that t@ dependence of the form

factorf " (g?) nearg?,, becomes much stronger for a

larger heavy quark mass, which may suggest an increase

in the pole contribution. We perform a model independent fit of the form factors and study whethgr the
dependence is consistent with the pole contribution. Although the soft pion theorem préffints,,)
=fg/f, in the chiral limit, we observe a significant violation of this relatipB0556-282(198)00413-3

PACS numbsgps): 12.38.Gc, 13.26-v

I. INTRODUCTION sz_me
(m(K|V,[B(p)=| ptk—qg——=—| f"(d?)
The exclusive semileptonic deca— 7 (p)lv will be- q #
come an important process to determine the Cabibbo- m2— m?
Kobayashi-MaskawaCKM) matrix element|V,, when +qMTWf°(q2), (2)

high statistics experimental data become available through

future B factories, since lattice QCD simulation enables us to

compute the relevant form factors from first principles. Ther
was, however, a difficulty in treating a heavy quark with

e\NhereqM= p.—Kk, . The covariant normalization of the me-

son fields is employed in this paper:

massmg on the lattice, because possible systematic errors of
orderamg could become unacceptably large for the typical
lattice spacinga accessible in present simulations. Thus pre- (M(p")|M(p))=2pg(2m)38%(p—p’). (2)

vious lattice calculations of thB meson semileptonic decay
form factors[1-3] involved an extrapolation in the heavy

quark mass from the charm quark mass regime to th&rom the condition that the matrix element is not singular at
' i 2=0, the form factors satisf§* (0)=1°(0), and thekine-

b-quark mass assuming a heavy quark mass scaling la¥, =Y, 1acto > )

which could introduce a potential systematic error. Nonrelaimatical end pointg’,,=(mg—m;)“ corresponds to the

tivistic lattice QCD (NRQCD) [4] is designed to remove
such a large uncertainty based on a systematig, ¥xpan-
sion, and one can simulate thequark directly at its mass
value. In this paper we describe the lattice calculation of th
B— alv form factors using NRQCD for the heavy quark.

We investigate the heavy quark mass dependence of the for

factors by taking the mass of the heavy quark to cover
range of 1.5—-8 GeV.

The hadronic matrix elements &— 7 semileptonic de-
cay are expressed in terms of two form factbrsandf® as

zero-recoil limit, where the lattice simulation works most
efficiently.

This paper is organized as follows. In the next section, the
NRQCD formulation and numerical method to calculate the
matrix elements are summarized. We describe the details of
qur numerical simulation in Sec. Ill, where we point out the
Subtleties in extracting the form factors: the definition of the
f?leavy meson energy, the choice of the two independent ma-
trix elements to determiné® and f°, and the procedure of
chiral extrapolation. We explain what we think is the best
procedure and study the uncertainty by comparing the result
with those from other procedures. Physical implications of
numerical results are discussed in Sec. IV. We study the
1/mg dependence of the matrix elements afddependence
of the form factors. The prediction from the soft pion theo-

*Permanent address: Computing Research Center, High Energgm is compared with our data. In Sec. V, we discuss the

Accelerator Research OrganizatiGREK), Tsukuba 305-0801, Ja-
pan.

systematic uncertainties contained in this work. Section VI is
devoted to our conclusion.
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Il. LATTICE NRQCD Q(x)

0

A
4 ) , (®

A. Lattice NRQCD action Y= ( 1= 2mq

Lattice NRQCD has been extensively used for the inves-
tigations of the heavy-heavy systeff§ and hadrons con- where A is the symmetric lattice covariant derivative. An
taining a single heavy quafl]. It is designed to remove the O(1/mg) correction appears in the lower component of
large mass scalmg from the theory using the i, expan-  #(x), which affects the heavy-light current.
sion and to reproduce the same results as relativistic QCD up
to a given order of g . In this work, we employ the lattice

S ; B. Correlation functions
NRQCD action including thé®(1/mg) terms

We employ the standard simulation technique to calculate
-n -n the hadronic matrix elements of the semileptonic decay. We
1- EHO Usf 1- EHO calculate the three-point correlation functions

SnroeD™ ; Q'(x)

XQ(x+3)=(1-8H)Q(X) |, @ Gkttt =2 X e Pre P

X¢ XS
where X<0|OB(Xf:tf)VL(Xs:ts)oz(oiti)|o>,
9
1
HOZ - A(Z)v (4) H :
2mg whereOg and O, are interpolating operators f& and =
mesons, respectively, ang,=qvy, ¢ is the heavy-light vec-
SH=— 1 o B (5) tor current. In this work, we use the Wilson quark to describe
2mq ' the light quarkg(x). Here we denote the heavy-light and the

_ _ _ _ ~light-light pseudoscalar mesons & and =, respectively,
andQ(x) is the effective two-component spinor field, which regardiess of their mass parameterandmg, for simplicity.
describes the heavy quarkA®® denotes the three- Fort,>t>t; the correlation function, E¢9), becomes
dimensional Laplacian, aril is the standard cloverleaf-type
chromomagnetic field. Zs(p) Z.(K)

This action generates the following evolution equations:  C'3(p,k;ty,ts,t)— SEo(0) ZEK) ~Eqa(P(ti—ty)
N 1 n ; 1 n B Xe—Eﬂ_(k)(tsfti)<B(p)|VT|7T(k)>l "
GQ(X,t—l)— l_%HO U4 1_ZHO GQ(X,t—O), M att
(6) (10
1 n N 1 n whereEg(p) andE (k) denote the energy of thB meson
Gox,t+1)={ 1= 5 Ho| Ul 1= 5-Ho and pion, respectively. The expondgo(p) is not the total
energy but the binding energy of tfie meson, because the
X (1=0H)Gg(X,1), (7) heavy quark mass is subtracted in NRQCD. We use local

interpolating operators for botB and =, and
for which we apply the tadpole improvement procedure

U ,(x)— U ,(X)/ug with ug=(TrU ,,¢3)"*[8]. To avoid the
singular behavior of high frequency modes in the evolution
equation, the stabilizing parameteiis chosen to satisfy the
condition |1—H/2n|<1, which leads tan>3/2mg. From , .

. . : . are their matrix elements.
the viewpoint of perturbation theory, a further constraint

Ho/2n<1 is necessary to avoid singularities in some of the In calc_ulatmg Eq.(9) we varyty with fixed t; _andts in
. . ) X . - order to find out the region where the correlation functions
vertices derived from the actiof3). This point is again dis-

cussed in the last part of this section in connection with ouﬁzt?ﬁ;n"}gaeﬁwtg tgﬁ]?::%l:rnecfa?g;efuzzzJ:qx?:‘? d((:)?r?i?;?eilob
choice ofn in the simulation and the perturbative calcula- P P y

fi the ground state, as shown in Sec. Ill. To obt&gh(p),

on. E..(K), Zg(p), and Z.(K), we also calculate the two-point
The four-component spinor field(x) of relativistic QCD grrelgatian gu’nctionswwitﬁ a finite momentum: P

is expressed in terms of the two-component spinor field '

Q(x) as

Zg(p)=(0|0g(0)|B(p)), Zw(k)=<0|0w(0)|77(k)>(ll)

CE(pits,t) =2, e PX(Og(x1)OL(x)))
Xf

This action differs from what we used in our previous studygf 74 )2
[7], which is organized to remove tf@(aAqcp/mg) error, at the B(P _
— —exd—E ti—tp)], (12

cost of simulation speed. - 2Eg(p) H-EgP)(t—t)], (12
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TABLE I. The tadpole-improved one-loop coefficients for the

C(ﬂz)(k;tf 1) = 2 e_ik'xf<O,T(Xf)O;rT(Xi)> perturbative correction&o, Z,, Zy,, andZy,. Quoted errors repre-
Xf sent the numerical uncertainties in the evaluation of loop integrals.
Z.(k)2 The uncertainty of\ is less than 10%.
~ 2 1o S EAG—t)). (13
(mg,n) A B Gy, Cy,
Combining Egs(10), (12), and(13), one can easily see that (5.0, 1 0.0759 0.0124) 0.021q11) —0.079@10
the matrix element is expressed as (2.6, 2 0.0668 0.035®) 0.00049) —0.078Q7)
2.1, 2 0.0623 0.0448) —0.00689) —0.075717)
e qQﬂf ts) (15,3  0.0528 0.062@) —0.01928) —0.07346)
T ;
(B(P)V | 7(K) }1aw= V2E5(P) V2E 7(K)—z——— 0 (12,3 00446 0.075@) —0.02838) —0.07076)

(0.9, 6 0.0309 0.093@) —0.04288) —0.06875)

oo o Cu (PK 1) . o _
= (Kts 1) other possible definitiony= 1/8«. [10]. Their one-loop per-
(14)  turbative expressions are used to determine the perturbative
coefficients onV#.

for t;>t>t;, whereZ=27/\2E. As expressed in Eq14), The results for the one-loop coefficieﬁt,ﬂ in

we use the two-point correlation function itself to cancel the

exponentially decaying factor of the pion, while we use the Z, =1+g%Cy (16)
2 ®

values ofE,q obtained by fits to cancel th& meson’s. One
reason for this asymmetric procedure is that the pion two-
point function is constructed from the light quark propagato
with a point source at;=4, which is what we used to cal- values contain the leading logarithmic contribution
culate the three-point functio®), and then we expect that log(mga)/Am®. The values ofZy  with two choices of the
the statistical fluctuation mostly cancels between H§s. lattice coupling Constargv(vr/a) 2.19 andg?(1/a)=3.80
and(13), while for theB-meson exponential function, such a are plotted as a function of i, in Fig. 1. We observe that
cancellation is not expected. In addition, as we mention irthe spatial component of the vector current receives larger
the next section, the two-point correlation function of e perturbative corrections than the temporal one. On the other
meson with point sourcél2) requires a larger time separa- hand, the Ihg dependence is rather stronger Iy, than for

tion to reach the plateau than the three-point funct®nfor 7, .

which the heavy quark source is effectively “smeared” at IWhen we discuss the i, dependence of the renormal-
ts. ized matrix elements in Sec. IV, we multiply the leading
logarithmic factor

are presented in Table | for several valuesmf(n). These

C. Perturbative corrections

To relate the matrix element in the lattice theory to that in ohys ay(mg) 2
the continuum QCD, operator matching is required. We have O(mg/mg™")= W 17
calculated the perturbative renormalization fatZoL for the avillls
vector current at the one-loop level using lattice perturbation 12
theory[9]: . ' ' ' ' ' '
cont latt . 1.0 + 8 ) g
Verez, V=2, qy,, (15 ' £ ¢ o
. o o osf ©® °*°* ¢ ° 2 ]
whereq is the Wilson light quark and is defined in Eq(8). . . A A A
Zy, is the ratio of the on-shell S-matrix elements in the con- 06 | 1
tinuum theory with the modified minimal subtractioM$) N =
scheme and that in the lattice theory. In our definitigr, .

. . ! . . 04 r o Z,(q=n/a) 1
contains the leading logarithmic termlog(mgya), which o Z"f‘ (q =)
comes from the continuum renormalization factor. i A ZV] (q=1/a) 1

In calculatingZ, we use the massless Wilson quark and 0.2 R Z"“ (q=1/a)
the external momenta are taken to be zero. We did not take K
into account one-loop operator mixing with higher derivative 000 02 04 06 08 10 12 14
operators, since there are alrea@ya) errors at the tree 1/m,
level from the Wilson quark action. The one-loop coefficient
is modified with the tadpole improvemef8]. For the mean FIG. 1. Renormalization constant for the vector current with two

link variable we USEUO:<TrUpIac{3>l/4 except for the light scales for the coupling constanf;=m/a and 14. The open and
quark wave function renormalization, for which we use an-solid symbols represemty, andz\,j, respectively.
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to cancel the logarithmic divergence in the infinite heavy TABLE IIl. The values ofm;, m,, and pion decay constant

guark mass limit due to the anomalous dimension of thevithout renormalization. Fitting range ts= 14— 24.

heavy-light current.
The perturbative correction for the heavy quark self- «=0.1570 0.1585 0.1600 Ke

energy is also calculated, and tBemeson mass is given m, 0.567730) 0493333  0.411837) _

through the binding energy of the heavy-light megayy(p m, 0.674754  0.621472) 0.56711) 0.448(17)
=0) as f_  0.149646) 0.138049) 0.127G53  0.101964)

NRQCD action and the current operator with the replace-
ment of U,—U ,/u, using the average value of a single
plaquetteuy={ TrU ,,/3)**=0.867994(13).

where the energy shiff, and the mass renormalizatiay,
are obtained perturbatively:

Z.=1+9¢°B, (19) 'll'he lattice scale is determined from themeson mass as
a ~=1.716) GeV, although we expect a large(a) error
2 for m, with the unimproved Wilson fermion. The results for

the 7 and thep meson masses and the pion decay constant

The tadpole-improved coefficientsandB are also given in ~ aré summarized in Table II. .
Table I. The heavy quark masag and the stabilizing parametar

For a historical reason, the stabilizing parameter we hav&ised in our simulation are

used does not always satisfy the conditiorn 3/mg, which
is necessary to avoid divergent tree level verti((:?es, while the (mQ) :(5'0) (2'6) (2'1) (2'1> (1'5>
simulation itself is stable with the conditian>3/2m,. We n 1/ ) )22 )

therefore quote the results at the tree level in the later sec-

tions as our main results. We estimate the size of the renor- 1'2) (1'2) (0'9) (21)
malization effect with the one-loop coefficients obtained 2)/\V3)\V2)

with the combinations ofmg andn, for whichn’s are larger

than those we have used in the simulation and the perturbdthere mg=2.6 and 0.9 roughly correspond t- and
tion theory exists. Although this estimation is certainly in- C-quark masses, respectively.

correct, it gives some idea of the one-loop effect, especially For mg=2.1 and 1.2 we performed two sets of simula-
because then dependence of the simulation results is ob-tions with different values ofi, though the statistics is lower

served to be very sma(Bec. Il D). (=60) for (mg,n)=(2.1,2) and (1.2,3). Since the different
choice ofn introduces different higher order terms anin
Ill. SIMULATION DETAILS the evolution equation, the choice nfshould not affect the

physical results for sufficiently sma#l. The small depen-
In this section, we describe the numerical simulation indence of the numerical results enis also crucial for our
detail apart from discussions on the physical implications okstimation of the perturbative corrections.
the results, which will be discussed in the next section. After The spatial momentum of thB meson p) and the pion
summarizing the simulation parameters, the two-point corre(k) is taken up top|, |k|<\/§>< 27/16, which corresponds
lation functions ofr andB mesons with finite momenta are to the maximum momentum ef 1.2 GeV in physical units.
discussed. We describe how to extract the matrix elementg/e measure the three-point correlation function at 20 differ-
and the form factors from the three-point correlation func-ent momentum configuration,k) as listed in Table III.
tions. Finally, the chiral extrapolation of the matrix elementThe momentum configurations which are equivalent under
is discussed. lattice rotational symmetry are averaged, and the number of
such equivalent sets is also shown in Table IlI.
A. Simulation parameters The light quark propagator is solved with a local source at
t;=4, which is commonly used for the two-point and three-

lattice with 120 quenched aauae confiqurations enerate oint functions. The heavy-light vector current is placed at
q gaug 9 9 <= 14, which is chosen so that the pion correlation function

with the standard plaquette gauge actionBat5.8. Each . ; ; s

' o is dominated by the ground state signal. The position of the
configuration is separated by ZQOO _pseudo—heat—bath SWeeRS eson interpolating operator is varied in a range
after 20 000 sweeps for thermalization and fixed to the Cou:

. o - 1;=23-28, where we observe a good plateau as shown later.

lomb gauge. The Wilson quark action is used for the light
guark at threex values 0.1570, 0.1585, and 0.1600, which
roughly lie in the rangg mg,2ms], and the critical hopping
parameter isc.=0.163467). The boundary condition for the In order to obtain the form factors reliably, it is crucial to
light quark is periodic and Dirichlet for spatial and temporal extract the ground state of tl&2meson and the pion involv-
directions, respectively. The light quark field is normalizeding finite momentum properly. In Fig. 2 we show the effec-
with the tadpole-improved form/1—3«/4x. according to tive mass plot of pions with finite momentum at=0.1570
[10]. The tadpole improvement is also applied for both theand 0.1600. The spatial momentuew (k, Ky k) is under-

The numerical simulations are performed on &382

B. Light-light meson
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TABLE lll. The momentum combinationg(k) used in the simulation. In this table, the valuegpk,
andq are expressed in units ofid16. The set which is equivalent with another under the lattice rotational
symmetry is identified with the sanig number, and a representative is shown in the fifth through seventh
columns. The last column shows the numbers of equivalent combinations. The symbols in the third column
denote the direction df againstp as follows: L, orthogonal;] T, parallel; 1|, antiparallel, and oblique for
others. The seit;=12 gives the minimung? value among the sets in this table.

iq P k? oq p k —q=k—p # (p.K)
1 0 0 0 (0,0,0 (0,0,0 (0,0,0 1
2 1 1 (0,0, (0,0, 6
3 2 2 (0,1, (0,1,1 12
4 3 3 (1,1, (1,12 8
5 1 0 1 (0,0, (0,0,0 (0,0,—-1) 6
6 1(L) 2 (0,1,0 (0,0, (0,-1, 1) 24
7 1(11) 0 (0,0,2 (0,0, (0,0,0 6
8 1(11) 4 (0,0,-1) (0,0, (0,0,2 2
9 2(L) 3 (1,0,0 (0,1, 2 (-1,1, 9 24
10 2 1 (0,0, (0,1, (0,1,0 24
11 3 2 (0,0, (1,1, 0 (1,1,0 24
12 3 6 (0,0,-1) (1,1, (1,1,2 8
13 2 0 2 (0,1, (0,0,0 (0,-1,-1) 12
14 1(L) 3 (1, 1,0 (0,0, (-1,-1, 1 24
15 1 1 (0,1, (0,0, (0,-1,0 24
16 2(1) 4 (0,1,-1) (0,1,0 (0,0,2 4
17 2011) 0 (0,1, 2 (0,1,0 (0,0,0 12
18 2 2 (1,1,0 (0,1,0 (-1,0, 48
19 2 6 (1,-1,0 (0,1,0 (-1,2,0 16
20 3 0 3 (1,1,0 (0,0,0 (-1,-1,-1) 8

stood with units of 2r/16. This notation will be used are consistentin all cases. The binding energy averaged over
throughout this paper. Although higher momentum states arthe results fitted from the local and the smeared sources are
rather noisy, we can observe a plateau beyoad4. We fit  listed in Table IV together with the values in the chiral limit.
the data with the single exponential function to obtain theln Table 1V, we also listed the binding energies for the vector
energyE (k) shown by the horizontal solid lines in Fig. 2. mesonB* measured with the local-local correlation function,
Figure 3 shows the energy momentum dispersion relatiomvhich are used in later discussions on Bie pole contribu-
of the pion, where the solid lines represent the relation in théion to the form factors. It is also worth noting that the values
continuumE.(k)2=m?2+k2. We observe a small discrep- of Eqo obtained with a different stabilizing parameteiare
ancy between the above relation and the data, which indiconsistent with each other within their statistical errors.
cates the discretization error. However, the disagreement is The dispersion relation for thB meson takes the follow-
about a 1-1.5 standard deviation and only a few percent. ing nonrelativistic form:

. 1
C. Heavy-light meson EEQ(p) — EEQ(O)+ 2m—-p2+ O(l/m%), (22)
To compute thé8-meson two-point correlation functions, kin
we employ the smeared source for heavy quark as well as the
local source, with the local sink for both cases. The smearingvhere the kinetic mass ;, should agree with the rest mass
function for the heavy quark is obtained with a prior mea-mg, Eq. (18), in the continuum limit. Since we use the
surement of the wave function with the local source. In Fig.NRQCD action correct up t@(1/mg), including higher or-
4 we plot the effective mass for both the local-local and theder terms in Ithg in Eq. (22) does not make sense. In Fig. 5,
smeared-local correlation functions abh,=2.6 and « Eqo(p) is shown as a function qf® at Mg =2.6. The solid
=0.1570, 0.1600. The plateau is reached beybnd6 for  lines represent the relatio22) with m;,=mg determined
the local-local function, while the smeared-local function ex-through the tree level relatiomg=mg+ Eo(0), which re-
hibits a clear plateau from even earlier time slices. We obtaimproduces the data quite well. With the one-loop correction
the binding energy with a fit range 16,24 for both types (18) the agreement becomes even better as presented as the
of correlation functions and for all momenta, and the resultslashed lines in the figure.
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x = 0.1600 [ ' ' ' ' ' ‘
o0 x=0.1570
T T T 0-8 B =
0 - - " 01585
sy, A 0.1600
0.9 ] ] !
. [ i % T ¢ 0.6 )
- 3 i L. e T ] i
3 O Ferde g bl ] = |
o x yeby I 04 ¢ .
Qo7t " %a g Lo td T ]
= S 5 St § I
O S Y R Y
go.e—mmmgmﬂ ~ ] 0.2_— ]
o k=(0,0,0) l :
05 a (001) 1 I |
a (07 1,1 ) 0_0 : | | 1 1 1
e G 01 00 01 02 03 04 05
0.4 ' b 2
8 12 16 20 24 k
t FIG. 3. Dispersion relation for the pion. The solid lines repre-
% = 0.1570 sent the relatiofE2 (k) =m?+ k? with m_, the rest mass obtained in
the simulation. Fork=0.1585 and 0.1600, symbols are slightly
1.0 . ' ' ' o shifted in the horizontal direction for clarity.
[} . ) .
09 1 L 3 1 because it is defined only through the residue of the two- and
— T three-point correlation functions without knowledge of how
= 08 | T a - : one defines the meson energies. Since there are uncertainties
&£ . in the light-light and heavy-light meson dispersion relations,
Qo771 = a4 . ] it is better to deal with the quantity which is free from am-
1) 'y biguity. Moreover,\A/M is the quantity which has the infinite
S 06 [ o ] mass limit in the heavy quark effective theory. When the
= ?oeo e perturbative correction is incorporatedd (mg/mP™s),
o k=(0,0,0 . . .- ~ A~
05 a ((o, 0,1,) ] given by Eq.(17), is multiplied byV,,. ThereforeV,, is a
0 5‘1) } }; suitable quantity to study therb4 dependence.
04 L0, — e — For the spatial components &I‘ﬂ, we also define the
8 12 16 20 24 scalar products
t
- ion at= - p-Vipk . k-V(p.k)
FIG. 2. Effective mass plot of pion at=0.1570 and 0.1600. Up(p,k): : . Oupk)= _ (24)

The horizontal solid lines represent the fitted values and the fitting k2

range with the statistical errofglotted lines.

In Table V we list the values of/,, U,, and U, for all
D. Three-point function and matrix elements momentum configurationgp(k) at mg=2.6 andx=0.1570.

Figure 6 is the effective mass plot of the three-point func" this table, we also list the values gf determined with the

tion atmg=2.6 andk=0.1570, 0.1600. The horizontal axis C¢ Vel mass relatio) for the 8 meson.
represents the time slice on which tBemeson interpolating 2V\ie he;]velnlvestldgazted (tjhe deEelngen.cE OE/IZL at (;n%
operator is put, and the vertical axis corresponds to the bind- with n=1 an and amg=1.2 with n=2 and 3,

. . - using the first 60 configurations on whicimg ,n)=(2.1,2)
ing energy of théB meson. The horizontal solid lines repre-
sent the binding energfo(p) determined from the two- and (1.2,3) data are measureor both heavy quark masses

i i 0,
point correlation functions. The figures display that the threeyve observed a small dependencerpwhich is at most 1%,

point correlation functions are dominated by the ground
states beyond=23, and there they give values f&g(p) 2 _
consistent with ones extracted from the two-point functions. W_e nOt? that they dependen_ce should be studied on the same
Therefore, in this region we can use E@4) together with configurations. In some of the figures, there appear large deviations

the results of the two-point correlation functions to extract/®" (e data with different but the sameng . However, in these
the matrix elements. graphs only the results fomiy,n)=(2.12),(1.2,3) are obtained

. . A from the first 60 configurations and the results for the other combi-
It is useful to define the quant'fyu as nations of (g ,n) are obtained from the entire 120 configurations.
_(BPIVU7K) jan

It seems that these large deviations seem to arise from the statistical
V (pi )_ 1
a V2Eg(p) V2E (k) there are no data withfg ,n)=(2.12),(1.2,3).

(23 fluctuation caused by the remaining 60 configurations for which
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mg = 2.6, £ = 0.1570 where the measured rest mass is usedrfprandmg . These
relations are almost satisfied as shown in Figs. 3 and 5 for

@ % ' o p=(0, 0’,0) | light-light and heavy-light mesons, respectively.
0.75 1 a Eg ?}; 1 Using the relationg25), the form factors are easily con-
. s ] ¥ % VoL structed fromV,, . First, we calculaté®(q?) with
T ¢ 5 ¢ %WH;L e
< 070 4 % % £9(q?) = 2Eg(p) V2E (k) q“\7 26
=4 A b T TYY LY m2—m? ”
S 100, bR o
p=; 0.65 - b1 ‘f i ‘% % kA h I i L 4] andf*(q?) is similarly obtained from §+k)“V,, substitut-
- P $ (% 5 TITYIT LR i ing the value off® determined above.
t ey IR ) <k WW s -For p#OAandAkaﬁO, fOAand fr .are not umqugly deter-
mined fromV,, U,, andU,. In this case there is an addi-
0.60 o 12 16 20 24 tional relation among/,,'s, which should be satisfied when
t Lorentz symmetry is restored. Fpt Kk this relation reads
mq = 2.6, £ = 0.1600 Es(PU,+E (K0 =V,. (27)
s " ope-000) | | We examine this condition for,=6,9,14 and 16 is re-
0.70 {; @ % A (0,0,1) ] ferred in Table Il). Figure 7 compares the left-hand side
% o o + (LHS) and right-hand sidéRHS) of Eq. (27) at k=0.1570
o~ ¢ 4 % % % =T T @« for i4=6, with the tree level dispersion relation g . This
= % y T b figure exhibits a difference of about 15%. In other cases of
£ 065 {& v +T+Y+1ta 1 ig, @ similar amount of the discrepancy is observed. The size
Q q ; . )
= 4 L % T of this systematic effect is consistent with the naive expec-
o LI ? j 1 ¥y % 4 tation for O(a) error.
(o)) ;3
© 0.60 1 4 41 !
F * ' L —f b | F. Chiral extrapolation
L B
! To obtain the form factors at the physical pion and
0.55 . . : : B-meson masses, it is necessary to extrapolate the results to
12 16 20 24 the chiral limit. There is, however, still a subtlety in the
t chiral extrapolation, because the light quark mass depen-

FIG. 4. Effective mass plot 0B meson atmo=2.6 and « dence of the matrix elements or the form factors is not well
~0.1570, 0.1600. Results with the smeared sotsoéid symbols understood. In principle, the chiral limit of the matrix ele-
are shown for| p|2=0,1 as well as results with the local source ments_or the fo,rm factors must b? taken_ using t,he result of
(open symbols The horizontal solid lines express the average val-the chiral effecuvg theory as a guide for its functional form.
ues over the results of a single exponential fit of the local-local and=0r theB— 7 semileptonic decay_the heavy meson effective
the smeared-local correlation functions. The statistical errors of théheory with a chiral Lagrangian gives such an exanffe-
fitted values are displayed at the right end of the lines. Famal) 13].

«, and momentum, the fit ranges are set+al6—24. At least the heavy meson effective theories tell us that the
matrix elements or the form factors dependwrk, where

8%, and 2% forV,, U,, andU,, respectively, and smaller v* is the four-velocity of the8 meson. At zero pion momen-

than their statistical error. In the present work, therefore, wéum, the quantity - k could potentially give a linear depen-

regard them to be sufficiently small to estimate the size oflence orm,., which could result in a/ﬁq dependence. The

the renormalization effect in the manner described in Seczero-recoil limit in the heavy meson effective theory gives

IIcC. the following relations for the matrix element and the form
factor:

E. Form factors

f
To convertV,, U,, andU, to the form factors, we need ~ (7(k=0)|V4[B(p=0))=(mg+ mw)fo(qzmax):me_B-

to assume certain dispersion relations Ey(p) andE (k). W(28)
One method is to use the values obtained from the dispersion
relation measured in the simulation. This, however, sufferg\ssuming a linear dependencefef, f.., andmg onm,, at
from a large statistical error for finite spatial momenta. Al-least in the zero-recoil limit the matrix element should have
ternatively, we adopt the following relativistic dispersion re- a linear dependence ang. In the following analysis, we
lations for both theB meson and the pion: take the chiral limit of the matrix elements assuming a linear

dependence om, in any case of §§,k), although there is no

Eg(p)=Vm2+p?, E (k=ym2+K, (25 proof.
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TABLE IV. The binding energy of the pseudoscalar and vector heavy-light mesons. The single exponen-
tial fit is applied with the fitting rangé=16—-24. For the pseudoscalar we average the values obtained from
the local-local and the smeared-local correlation functions. For the vector mesons we use the local-local
function only, and there are no data available for(,n)=(2.1,2) and (1.2,3).

Pseudoscalar meson binding enekgy,(p=0)

(Mg ,n) xk=0.1570 0.1585 0.1600 Ke
(5.0, ) 0.630469) 0.608483) 0.585 (11) 0.535 (15)
2.6, 1 0.626848) 0.604156) 0.580971) 0.530 (10)
2.1, 0.624745) 0.601452) 0.577765) 0.526491)
21,2 0.627953) 0.605662) 0.583480) 0.534 (11)
(1.5, 2 0.61842) 0.594G48) 0.569659) 0.516281)
1.2, 2 0.613540) 0.588946) 0.564056) 0.509575)
12,3 0.614251) 0.589956) 0.565568) 0.511792)
0.9, 2 0.605839) 0.580543) 0.555151) 0.499169)

Vector meson binding energyq o« (p=0)

(Mg ,n) x=0.1570 0.1585 0.1600 Ke
(5.0, 1 0.649 (12 0.628 (14) 0.604 (19) 0.555 (27)
(2.6, 1 0.650262) 0.628776) 0.606599) 0.559 (14)
21,1 0.650156) 0.627969) 0.604789) 0.555 (13)
(15,2 0.648852) 0.625761) 0.601479) 0.550 (11)
(1.2, 2 0.648451) 0.624959) 0.600276) 0.547 (11)
0.9, 2 0.647G50) 0.623157) 0.598273) 0.545 (10)

Figure 8 shows the chiral extrapolation of the matrix ele-pion mass are extracted after extrapolating the matrix ele-
ment with the form ments to the chiral limit using Ed29).

(m(k)|V,|B(p)=ay+bym,, (29 IV. PHYSICAL IMPLICATIONS

In this section we discuss the physical implications of our
sults, which include the i dependence of th8—
atrix elements and th@® dependence of the form factors.
The prediction from the soft pion theorem is compared with

wherem,=1/2k— 1/2«.. The data itself does not show any re
sign of nonlinear behavior at least around the strange quar#]
mass. The form factor§*(q?) and f°(g?) at the physical

our data.
0_75 T T T T T T ]
0 mg=2.6, x=0.1570 1 A. 1/mg dependence
0.70 | B Mg=2.6, k=0.1600 ] The heavy quark effective theory predicts that the prop-
) erly normalizedB— 7= matrix element has a static limit;
hence it can be described by an expansion in the inverse
= ] heavy meson massriif whose leading order is a function of
;m 0.65 - 1 the heavy meson velocity,=p, /mg,
] (m(K|VLIB(P) k
] L " =9,(v-Kv,+6,(v-k)—. (30
0.60 | ] Vmmg : v-k
Similar arguments for the heavy-light decay constant sug-
055 gested that the quantitfzymg has the static limit while

numerical simulations have shown that thend/correction
is very large. On the other hand, thenk/dependence of the
form factors has been studied only in tBemeson region

FIG. 5. Dispersion relation for thB meson amy=2.6 andx [ 1—3]. Therefore it is important to study then depen-
=0.1570, 0.1600. The solid lines represent the relatige(p) ~ dence of the matrix elements at fixed valuesok.
=E5Q(O)+p2/2mB, for which mg is determined with the tree level Except forp=0, fixing p is not quite identical to fixing
formula mg=mg+ Eqo(0). Dashed lines represent the same rela-v - K, since the velocity , changes depending on the heavy
tion with the renormalizedng at the scaley*=1/a. meson mass. Thus it is awkward to use matrix elements with
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mq = 2.6, = 0.1570, k-C®

T

p=(0,0,0), k=(0,0,0)

T

T

k=(0,0,1)

e} c® O p=(0,0,0),
0.70 | & p=(0,0,1), k=(0,0,0) 4 1 0.70 - & p=(0,0,-1), k=(0,0,1) 1
O p=(0,1,1), k=(0,0,0) 0 p=(1,1,0), k=(0,0,1) i
21
—~ o —~ @) i T
= . = kC 1137
& 065 f m s £ 065 | % % T
8] s * 0 @ 1
é m * é i 6 T g
o * s @ o O il o Tt
s o o} @ ) $
2 060 } o] : 2 060 | + ]
i [0)
®* O
[0)
m
o +
0.55 1 1 L 1 1 1 0.55 i 1 1 1 1 1 1
14 16 18 20 22 24 26 28 14 16 18 20 22 24 26 28
t t
mq = 2.6, k = 0.1570, C®) mg = 2.6, x = 0.1600, C\¥
O p=(0,0,0), k=(0,0,1) c @ 0O p=(0,0,0), k=(0,0,0) c @
0.70 | & p=(0,0,-1), k=(0,0,1) 4 T 0.65 | & p=(0,0,1), k=(0,0,0) 4 1
O p=(1,1,0), k=(0,0,1) 0 p=O11), k=000 7 i
= iy
— —_ ]
= gagdl b7 = m
n i X L m 3
£ 065 i < 0.60
S ERR R 5 st
= % + = s s
o o o)
S > il
Soe0l ¢ O ] S 055 | o .
¢ .
] Yo
0.55 1 1 1 1 1 1 ! 0-50 1 " L 1 L 1 1
14 16 18 20 22 24 26 28 14 16 18 20 22 24 26 28

t

FIG. 6. Effective mass plot for the three-point functionsngj=2.6 andx=0.1570, 0.1600. The horizontal lines express the values
obtained from the two-point correlation functions with the statistical errors indicated at the right end of the lines. Top two figures are for

C$¥, the third is fork-C®® at k=0.1570, and the bottom figure is f&@® at x=0.1600.

a nonzer. In the special case @f=0, the LHS of Eq(30)

t

is nothing but the matrix elements;, Up, andU,, defined 107 '
in Egs.(23) and(24), multiplied by themg independent fac- I
tor. 08 L ) o B 0)
In the following analysis, we confine ourselves to exam- [ I y g
ining the following quantities for the sake of simplicity: . A
< 06
. . ¢ ¢ g |
V4(p:0,k)zvg‘0) 1+_+_2+... , (31) > 04 ¥=0.1570, Tree
M ma [ p=(0,1,0), k=(0,0,1)
02 oV,
1 &2 I
- - c c A E;U +EU
Ok(p=0k) =0 1+ + 2 4. |, B “
Mg mg 0.0 ' '
(32 0.0 0.2 04 0.6
1/mg
U,(p=0k)= lim U,(p,k) (33 FIG. 7. Comparison oW/, to (EgU,+E,U,) for i;=6 at«
p2—0 =0.1570.
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TABLE V. V,, U,, andU, in lattice units atno=2.6 andx=0.1570.i, denotes the set of momentum
(a,k) summarized in Table lIl. In the evaluation gf, theB-meson mass is determined through the tree level
relationmg=mg+ Eqo(0).

2

iq q v, Up Uy

1 7.071(20) 1.014 (34) - -

2 6.280 (19) 0.844 (26) - 0.87841)

3 5.609 (19 0.754 (50) - 0.69561)

4 5.017 (19 0.612 (87) - 0.57 (10

5 7.044 (20 0.999 (36) 0.047528) -

6 6.247 (19 0.832 (28) 0.036647) 0.86041)

7 6.555 (19 0.930 (30 1.009 (46) 1.00946)

8 5.938 (19 0.750 (39 —0.702 (48 0.70248)

9 5.571(19 0.742 (49 0.040 (12 0.67459)
10 5.880(19 0.827 (55 0.790 (68) 0.76766)
11 5.283(18) 0.66 (10) 0.65 (12 0.63 (11)
12 4.666(18) 0.544 (68) -0.39 (12 0.477182)
13 7.017 (20 0.992 (42 0.046730) -
14 6.214 (19 0.825 (349) 0.036@48) 0.84845)
15 6.523(19) 0.923 (38 0.517 (26) 0.99151)
16 5.534(19) 0.757 (76) 0.052 (53 0.67082)
17 6.151(19) 0.920 (67) 0.863 (77) 0.86377)
18 5.842(19) 0.820 (58) 0.412 (36) 0.75868)
19 5.225(19) 0.669 (52 —0.266 (41 0.58761)
20 6.990 (20 0.968 (58 0.045433) -

1o cé,” cff) In. Figs. 9 and 10 we show thera dependence oY/,
- mBUp 1+ Mg + mé T ] (34) andU,, respectively, akk=0.1570. The Thg correction is

not significant for these quantities and almost negligible
. o around theB-meson mass. This result exhibits a sharp con-
for which we explicitly show the form of the g expan-  trast to the mass dependence of the heavy-light decay con-

;ion. All of the coefficients in these expansions are a fU”C'stanth [mg, for which the large Thg correction to the static
tion of k. limit is observed. Results of the linear and quadratic fit in

1/mg are listed in Table VI foi/, and in Table VII forU,.

30 | 5 : ' ' | -
I 1 1.2 | «=0.1570, Tree ]
, S [ :
S 2.5 i 7
£ —
9 [ =
[] | o
E 20| ] a8
3 [ m.=2.6, Tree | > i ]
I OV, (p=0k=0) | 0.4 o k=(0,0,0) { ]
15 L OV, (p=0k=1) ] A (0,0,1) ]
I A kVIKf (p=0,k=1) | 02F o (01,0) ]
I ! . L I L ] v (1’171)
1 2 . 4 0.0 : ' :
6.10 6.20 6.30 6.40 0.0 0.2 04 0.6 0.8
1/x
1/mg

FIG. 8. Chiral extrapolation of the matrix elements fioi, .
=2.6.V, andk-V/|k|? are shown for two momentum configura- FIG. 9.V, at «=0.1570. Fok=0 and|k| =1, the solid and the
tionsiy=1, 2. The solid and the dashed lines represent the lineadashed lines represent the results of linear and quadratic fits, respec-
fit. tively.
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TABLE VI. Parameters for the linear and quadratic fits\h’(pzo,k).

Linear Quadratic
x B o cfy R o o
0.1570 1 0.9685) 0.18455) 1.00347) —0.01(20) 0.21(18)
2 0.82629) 0.08047) 0.851(41) —0.0617) 0.1517)
3 0.75751) —0.03859) 0.79957) —0.30120) 0.31(22)
4 0.62480) —-0.25 (1)) 0.79 (10 —1.2936) 1.2542)
0.1585 1 0.9812) 0.16563) 1.01655) —0.0023) 0.1821)
2 0.80735) 0.07557) 0.83048) —0.06120) 0.1419)
3 0.75876) —0.07173) 0.83081) —0.51(26) 0.51(29)
4 0.62 (12 —0.40 (15 0.89 (19 —1.8350) 1.7560)
0.1600 1 1.00853) 0.15Q76) 1.02366) 0.0527) 0.10125)
2 0.76846) 0.08876) 0.78858) —0.04(26) 0.14125)
3 0.78 (14) —0.17 (10) 0.96 (17) —1.1340) 1.1346)
4 0.70 (27) —0.64 (25 1.22 (55 —2.4580) 2.2694)
TABLE VII. Parameters for the linear and quadratic fitsfbj(p:O,k).
Linear Quadratic
K iq 0o c 0 cM c?
0.1570 2 0.9489 —0.19444) 0.96147) —0.3019 0.1319
3 0.76256) —0.25753 0.75054) -0.1722) —0.10249)
4 0.65%88) —0.36491 0.60081) 0.0843) —0.5449)
0.1585 2 1.00662) —0.19850) 1.02358) —0.2822 0.10123)
3 0.80892) —0.24264) 0.76980) 0.00(30) —0.2932
4 0.72 (15 —0.34 (19 0.58 (12 0.7774) —1.3480)
0.1600 2 1.06473) —0.21462) 1.06377) —0.21(29) 0.00(30)
3 0.92 (20 —0.21990) 0.80 (16) 0.4750) —0.81(53
4 0.94 (37) —0.23 (26) 0.55 (23 3.32.3 —4.12.49
TABLE VIII. Parameters for the linear and quadratic fits&;(p: 0,k).
Linear Quadratic
« iq 0, g 0, g ¢
0.1570 1 0.088B0) 2.61(39) 0.071795) 4.51.2 —1.5576)
2 0.089 (14) 1.29138) 0.072 (13 2.71.1 —1.3188)
0.1585 1 0.087(®4) 2.6547) 0.066 (11) 5.31.7) -2.11.0
2 0.093 (20) 0.9842) 0.080 (18) 2.01.2 -1.01.2
0.1600 1 0.088(12) 2.7259) 0.059 (15) 6.7(2.7) -3.11.7
2 0.104 (33 0.6747) 0.097 (27) 1.1(1.5 —-0.41.5
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x=0.1570, Tree

o k=(0,0,0)
A k=(0,0,1)

mg U, (p=0,k)
o
o

0.10 |~
[ 4 k=(0,0,1) - - ]
0251 o 1 ‘. 005 ¢ ';
I v (1,1,1) 1 1
0.0 ! ' ' ' _ 0'0000 0.2 04 0.6 0.8
0.0 0.2 0.4 0.6 0.8 : : : : :

1/mg 1/mg

FIG. 12. Up multiplied by mg at k=0.1570 as a function of
1/mg . The values ofng are determined with the tree level formula.
The solid and the dashed lines represent the linear and the quadratic
fits, respectively.

FIG. 10. Uk at k=0.1570. The solid and the dashed lines rep-
resent the results of linear and quadratic fits, respectively.

We note here thay?/Npg is less than unity for most cases
of V4, Uy, and alsdJ,, which will be mentioned in the next

paragraph’ thOUgh they do not exaCtlijdge the gOOdHESS(ﬂ t the results of linear fits of them in Table IX. As we

the fits for such data, which are Forrelgted ior diffe.rmagt.. discussed previously, therti, dependence of the one-loop
In order to have the same discussion fdg, which is  coefficient is significant only foi, and almost negligible
defined in thep?—0 limit, we extrapolate the finitp results for V;. As a result, the by dependence 094 is largely
it '

Loeth:n\ézzisgigg);e’?\ig daz rf(;](\)/\\;\én(l,rr]n':ilg' 1;'"1—] relzrreei)s(tlrigt%laﬁoaffected by the renormalization effect, and it even changes
P ploy P tﬂe sign of the slope in ifg. The 1Mmg dependence o, is

. 2 . ~ .
in p°. In Fig. 12 we plotmgU,, as a function of Ihg at S o - ~
=0F?1570. Ig contrastlio theBotpher matrix elements v?/e ogservét'” mild after the renormalization effect is included. Rdg

a sizable Ithg dependence. Table VIIl summarizes the re-andmgU, the 1Mmg dependence is not affected by the one-
sults of linear and quadratic fits afig0 loop correction, while their amplitudes decrease by at most
p-

Here we briefly discuss the effect of the one-loop correc—30%'

tion to these quantities. Figure 13 shows the renormalized

values of V,(iq=1), Uy(i;=2), and mgU,(i,=1) at «

=0.1570. As mentioned at the end of Sec. Il, the leading First we study for whichg? region our present statistics
allows us to compute the form factors with reasonable statis-

Iggarithmic factor, Eq(17), is multiplied byf/#. We also

B. g dependence of the form factors

0.12 . , : , : , tical errors. They? dependence of the form factoré andf°
I i «=0.1570 o k=(0,0,0) ] is shpwn in Figs. 14 and 15 at5=2.6 and 1.5, respecti\{ely.
010 [ | A k=(0,0,1) 1 We find that fork=0.1570 fn,~2m;), the range of? in
i 1 which the form factors have good signal covers almost the
- :EM 1 entire kinematic region for thB meson and one-third of the
0.08 | ) kinematic region for theB meson. Fork=0.1600 fm,
< [ H\%_ Mg=1.5 ~my), the signal becomes much noisier, but still the form
Q,; 0.06 [ 1 ] factors have a marginally good signal for one-half and one-
) K % 3 5— | fourth of the kinematic region for th® meson and8 meson,
0.04 - T T I 8 respectively. Although our present results are very noisy af-
[+ T T m,=2.6 ] ter the chiral extrapolation, this will be improved by future
0.02 [ i ] high statistics studies. This is encouraging in view of the fact
. ] that futureB factories can produce $@B-B pairs and the
0.00 L. T branching fraction ofB—#lv from CLEO is (1.8:0.4
0.0 0.1 0.2 0.3 04 0.5 +0.3+0.2)x 104 [14]. It is reasonable to expect that there
p2 is a possibility of observing— 7l v events in they? regime
which the present lattice calculation can cope with.
FIG. 11. Extraction ofU,(p=0k) is shown formg=2.6 and Second we study thg? dependence to see whether the

1.5 atk=0.1570. The extrapolation is carried out linearlypfa For  contribution from theB* resonance to the form factor can
k=0, i,=5,13,20 are used. Fé=1, U,(0k) is determined using actually be observed in the simulation data. At the chiral
iq=6,14, for whichp andk are perpendicular. limit, unfortunately, the results are too noisy to discuss their
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T ! T TABLE IX. Parameters for the linear fit of the renormalized
12 1 matrix elementsV,(p=0k=0), U, (p=0/k|=1), andU,(p=0k
=0).
1.0
_ Vy(p=0k=0) (iq=1)
X 0.8 ¢ ] g*=mwla g*=1/a
9 K v e v e
S081  0.1570, k=0 ]
>‘r =0 ah 1 0.1570 1.00236) 0.05455) 1.08839) —0.20947)
04 | o) T!ee . 0.1585 1.01&44) 0.03963) 1.10546) —0.21655)
A q.=n/a 0.1600 1.03&%5) 0.03077) 1.126598) —0.21966)
0.2 F a q=1/a 7
0.0 ——o : . . Uw(p=0,k|=1) (iq=2)
0.0 0.2 0.4 0.6 0.8 g*=mla g*=1/a
1/mB K o(kO) C(kl) U(kO) C(kl)
T T T 0.1570 0.73381) 0.01361) 0.60927) 0.08170)
1.0 | k=0.1570, k=(0,0,1) ] 01585 0.7782 000568  0.64936)  0.07G78)
w 0.1600 0.82669) —0.01984) 0.68950) 0.04396)
0.8 V(e k) —
________ ;51‘%% *Up(p—O,k—O)(lq—l) )
= B @__@ ______ g*=mla g*=1/a
S 06— -——Fw-F ] p 5(0) c (O et
c"). Up p Up p
5‘ 0.4 [ ] 0.1570 0.04666) 6.31.2 0.026858) 11.330)
) o Tree 0.1585 0.045@7) 6.51.5 0.025668) 11.838)
A g=n/a 0.1600  0.04510) 6.71.9  0.024887)  12.553
02 | | q=1/a 1
0.0 ' . . zero-recoil limit. For this purpose we use the inverse form
0.0 0.2 0.4 0.6 0.8 factors 1f+(q2) and ]jo(qz);
1/m,
1(0?) = 1 (020 + C1(Anac 02 + Co G 092,
T T T (35)
¥=0.1570, k=0 .
025 o Tree Figure 16 shows the inverse form factorsva{=2.6 as well
A qg=n/a as their fitted functions with this form. The numerical results

] of the fit with and without the condition,=0 are given in
Table X formy=2.6, 1.5, and 0.9.

] The pole dominance model corresponds to a special case
¢,=0, which seems to describe the data very well as shown

020 © a=la

mg U,(p=0,K)
o
o

0.10 ,//@ ] in Fig. 16. The mass of the intermediate state is given by
/ﬁv Mboie= Uimax™ 1L C1f 7 (07,40 1, which corresponds to the vec-
005 -~ ] tor (B*f) meson mass in the pole dominapce model. Precisely
’ - speaking, the more consistent analysis is to impose the con-

dition m pqe=mgs« for the fit by Eq.(35). This constrained fit
is shown with the long dashed line in Fig. 16. It is found that
now the fit does not quite agree with the data, but the devia-
tion is about 10%.

In Fig. 17 we also compan® ,, and the measured vector
fpeson mass as a functionog . Again we find that there is
a discrepancy between ., from the unconstrained fit and
the measuredg+, which is around few hundred MeV. Nev-
q? dependence; therefore we use the finite mass results ongrtheless, it is remarkable that the deviation remains the
in the following analysis of thg? dependence. As shown in same order and the mass dependence Qfie has the same
Figs. 14 and 15, the lattice results are available only in therend with mg«. We have not yet understood whether the
largeq? region, at which the recoil momentum of the pion is above discrepancies can be explained from the remaining
small enough. Therefore it is justified to express the funcsystematic errors such as the discretization error. But at least
tional form of the form factors by an expansion around thequalitatively, judging from the size of the uncertainty in our

0.00 ' '
0.0 0.2 0.4 0.6 0.8

1/mg
FIG. 13. One-loop renormalized,, U, andU, as a function

of 1/mg . The solid, the dashed, and the long-dashed lines represe
the linear fits.
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FIG. 14. Form factors aing=2.6 and«=0.1570, 0.1600. The FIG. 15. Form factors ang=1.5 andx=0.1570, 0.1600.
solid curves represent the fit to single pole functions.
calculation, our data are not inconsistent with the picture that (g2 0 ="fg/f, (36)

there is a sizable contribution from tiB¥ pole to the form
factor f* nearg?,,.

So far the discussion has been based on the tree levg| the massless pion limit. This relation is examined in Fig.
study. Let us now study how one-loop renormalizayion.lg_ For the values ofg, we refer to our work orfg [7],
changes the form factors. Because the one-loop correction {§hich is obtained with an evolution equation of a slightly
different forV, andV;, the shape of the form factors may gitferent form from that of the present work. We observe a
change significantly. Figure 18 shows the form factors fonarge discrepancy betwedf and the decay constant both for
Mgp=2.6 and«x=0.1570 with renormalization factors. The he 1ig dependence and for the value itsdlf, increases

leading logarithmic factor, Eq17), is not multiplied in the rapidly toward heavier heavy quark masses, Wmﬂ(ﬁqzmm)
present case. We find that the renormalizéchas a stronger 4imost stays constant.

q? dependence than that at the tree level, whfleeceives The discrepancy still remains significant when the renor-
only a small change. The renormalization makesBhepole  jization effect is incorporated. In evaluating the renormal-
fit even worse. In fact, the deviation of the constrained fitj;oq values offg, we use one-loop perturbative coefficient
from our renormalized * data is as large as 25% né#ff..  obtained in the same manner as in Sec. [BT The leading
This is still within the typical size 0D(a) errors. Itis very  ogarithmic factor, Eq(17), is multiplied by bothf®(q?,)
important to perform the analysis with larggr andfg.

One may argue that the observed discrepancy can be ex-
plained by the uncertainty in the extrapolation procedure. To

Applying the soft pion theorem to thB— 7 matrix ele-  study this possibility, we comparié’(qzma)) andfg/f, also
ment, fo(qéag is related to theB-meson decay constant in finite light quark mass cases, in light of the heavy meson
[12,13,15, effective theory which implies relatio(28). They are com-

C. Soft pion theorem

014502-14
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25 T T T T T i T T T T T T ]
! m=2.6, x=0.1570, Tree | 6.0 o |
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FIG. 16. 1f° and 1f" as a function ofg® at mo=2.6 andx FIG. 17. mg« obtained from the two-point correlation function

=0.1570. The solid and the dotted curves represent the linear aref the B* meson and the pole mass from the linear fit df'1/

the quadratic fits, respectively. The long-dashed line represents the

linear fit with the constrainin ,,e=Mmg«, wheremy is theB* me-  ties, as described in the next section, further study with a
son mass obtained from the two-point correlation function. better control of systematic errors is necessary to clarify the

origin of the problem.
pared in Fig. 20 as a function of 4/ The differences be-

tween them are remarkable even for finite light quark mass
cases.

The reason why these differences occur is not clear. Since In this section, we qualitatively discuss the systematic un-
our present results suffer from various systematic uncertaincertainties associated with lattice regularization. The follow-

V. SYSTEMATIC ERRORS

TABLE X. Parameters for the fit™2(q%) = f ~1(92,,) + C1(0Za— A% + C2(02.— 6°)2, Wherec, is set to
zero for the linear fit. For eachr(y,n) and «, numbers in upper and lower rows correspdfidand f *,
respectively. In all caseg>/Npg is less than unity.

Linear fit Quadratic fit

(mg.n) K e CCF) c L CCF) c C,
(2.6, D 0.1570  1.37%4) 0.12670)  1.38652) 0.05864) 0.04653)
0.48Q21) 0.26438)  0.47Q20) 0.33540) —0.05137)
0.1585  1.43670) 0.10988)  1.43864) 0.09891) 0.00781)
0.44524) 0.27247)  0.43422) 0.36659) —0.06854)
0.1600  1.53(94) 0.09 (11)  1.51286) 0.22 (16) —0.09 (14)
0.40727) 0.27661)  0.39526) 0.44 (10) —0.11586)
(15,2 0.1570  1.1679) 0.20981)  1.18537) 0.08680) 0.11987)
0.59725) 0.47264)  0.58722) 0.54860) —0.075798)
0.1585  1.21%0) 0.19 (10)  1.22447) 0.10 (12) 0.08 (14)
0.55928) 0.49378)  0.54524) 0.62392) -0.13 (12
0.1600  1.28%7) 0.17 (14  1.27962) 0.21 (20) —0.04 (24)
0.51632) 0.52 (10)  0.49629) 0.77 (17) —0.26 (20)
(0.9, 2 0.1570  1.01128) 0.36088)  1.02727) 0.20885) 0.19 (13
0.68528) 0.75390)  0.69026) 0.71375) 0.05 (13
0.1585  1.04(36) 0.35(11)  1.05635) 0.19 (13 0.20 (22)
0.64733) 0.79 (11)  0.64G28) 0.86 (12) —0.09 (21)
0.1600  1.09(19) 0.33 (15  1.09648) 0.26 (24) 0.10 (35)
0.59937) 0.85 (14  0.577132) 1.12 (23 —0.36 (36)
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o5 [ mMg=286, k=0.1570, q=1/a _ FIG. 19. Comparison of°(q§1a)) with fg/f_ multiplying the
) o f° (q2) ] factor ymg in the chiral limit. Open and solid symbols are at the

. s ‘ ] tree level and at the one-loop level Wi@fp(l/a), respectively.
20 | o f(q) ' 1
] clude the effect of operator mixing, which was reported to be
] significant in the case dfg [17]. This effect also should be

] included to obtain reliable results.

] O(l/mé) effects: We described the heavy quark with the

] NRQCD action including the order i, terms. Further pre-
cise calculations may need to includla(llmé) corrections,
although the effect was shown to be sni&l for fg.

The finite volume effect may also be important.

Since all of the above systematic errors can be large, there
is no advantage of giving quantitative estimates of each error
at this stage. The use of tl@(a)-improved(cloven action
for the light quark, as well as the simulation at highgr

FIG. 18. Renormalized form factors an,=2.6 and «  values, will reduce most of the above systematic errors. The
=0.1570. Upper and lower figures are obtained vgfif/a) and  simulation with dynamical quarks is also of great importance

g2(1/a), respectively. The solid lines represent the results of theror reliable predictions of the weak matrix elements.
linear fit. Forf (q?), x*/Npe is 1.9 and 4.1 fog* = 7/a and 14,

respectively x?/Npg for %(g?) is less than 0.5 in both cases.

0 5 10 15 20 25
q° [GeV?®]

2-0 T T T T T T T

ing is a list of the main sources of systematic errors. I ' O Q) : Mg=26

O(a) errors: The characteristic size of tf@(aAqcp) : ® (f.f)mg/(me+m) : m=26
error arising from the unimproved Wilson quark action at 15 i | A Q) : mg=15 ]
B=5.8is 20-30 %. This eff?ct is IargeAenough Eo explain the . % A (/) my(mgsm) s m=1.5
discrepancy betweerkg(p)U,+E (k)U, and V,, men- ,
tioned in Sec. lll. Use of th&(a)-improved clover action -~ | $ ] s
for the light quark will reduce this error to the level of 5%. S 1.0 | i i ]

O((ap)?) error: The systems with finite momentum may < 1 yiy K a
suffer from the discretization errors more seriously than that [ ) 0] o @
at the zero-recoil point. The analytic estimate of the 05 ! _
momentum-dependent errgd6] shows that the effect is I :
about 20% atp|~1 GeV even one uses ti@(a)-improved T
current. - xl

Perturbative corrections: The one-loop correction could 00 61 62 63 oa
become significant especially for small values. Strictly ' ' 1k ' '

speaking, our calculation does not treat the one-loop effects

correctly, because the stabilizing parametatoes not have FIG. 20. f%q2,,) and (fg/f,)mg/(mg+m,) for light quark
correct values. This problem must be removed in future studmasses. Two cases oy, 2.6 and 1.5, are displayed at the tree
ies. In estimating the one-loop corrections, we did not in-level.
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VI. CONCLUSION The values off° at the zero-recoil point are compared

. with the prediction of the soft pion theorem, and a significant
In this paper, we present the results of the studyBof discrepancy is observed.

—ar form factors using NRQCD 1o describe the heavy quark The size of the renormalization corrections is estimated

with the W|Ison I|ght_ quark: A clear signal is observed for by a one-loop perturbative calculation. They almost do not
the matrix element in a wide range of heavy quark mass

containing the physicad-quark mass. They are extrapolated affect their 1ing dependence, but decrea¥e much more
'g the phy q - Iney are P than V,, which drastically changes the shape fof. Our
to the chiral limit, although the result is too noisy for a quan-

titative conclusion present result suffers from large systematic uncertainties, and

The 1img dependence of the matrix elements is studieoégestmugs'[a';nﬁioﬁgg \(/)vri]t?] Iismamrg?/égr;?;;c:;? very important
and it is clarified that the temporal component and the part o y 9 P '

the spatial component proportional to the pion momentum
have fairly small dependences ow,. On the other hand, the
part of the spatial component proportional to Bienomen-
tum has a significan®(1/mg) correction. Numerical simulations were carried out on Intel Paragon

The g dependence of the form factors in the finite light Xp/S at INSAM (Institute for Numerical Simulations and
quark masses is studied. We find that tifedependence of Applied Mathematics in Hiroshima University. We are
the form factorf * (%) nearq?,, becomes much stronger for grateful to S. Hioki and O. Miyamura for kind advice. We
a larger heavy quark mass. A model independent fit othank members of the JLQCD Collaboration for useful dis-
1/f*(g?) nearq?,,, shows that the tree level results are con-cussions. H.M. would like to thank the Japan Society for the
sistent with the pole behavior for the largé range, and the Promotion of Science for Young Scientists for financial sup-
difference of the fitted pole mass and the measungd is port. S.H. is supported by the Ministry of Education, Science
around a few hundred MeV for all the heavy quark massesand Culture under Grant No. 09740226.
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