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We show that the redshift-space quadrupole will be a powerful tool for constraining dark energy even if
the baryon oscillations are missing from the monopole power spectrum and bias is scale and time
dependent. We calculate the accuracy with which next-generation galaxy surveys such as KAOS will
measure the quadrupole power spectrum, which gives the leading anisotropies in the power spectrum in
redshift space due to linear velocity, and the so-called ‘“Finger of God” and Alcock-Paczynski effects.
Combining the monopole and quadrupole power spectra, in the complete absence of baryon oscillations
(Q, = 0), leads to a roughly 500% improvement in constraints on dark energy compared with those from

the monopole spectrum alone.
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Introduction.—The promise of next-generation galaxy
surveys such as the Kilo-Aperture Optical Spectrograph
(KAOS [1]) is to map the distribution of about one million
galaxies in the redshift range z = 0.5-3.5. This redshift
coverage will allow the baryon oscillations in the matter
power spectrum to be followed as they were stretched by
the cosmic expansion, thus providing us with a standard
ruler with which to precisely measure the extragalactic
distance scale and expansion rate [2-7].

However, this technique relies crucially on the assump-
tion that the baryon oscillations will be detected. Although
there are tentative indications for this at low z in the two-
degree field (2df) data [8,9] the jury is still out on their
existence. If bias turns out to be much more complicated
than we think or (), is unexpectedly low, we may face an
essentially featureless galaxy power spectrum that is too
slippery to supply a standard ruler. In that case it is natural
to ask whether surveys such as KAOS will yield any
constraints on dark energy at all.

The aim of this Letter is to show that even in this worst
case scenario, next-generation surveys will be able to
deliver good constraints on dark energy through a very
different route: redshift-space anisotropies and the Alcock-
Paczynski (AP) effect [9-14].

In general the power spectrum in redshift space is not
isotropic; an effect already seen in the 2df survey [15].
There is a linear distortion due to the bulk motion of the
sources within the linear theory of density perturbation
[16], while the so-called “finger of God” effect causes
radial elongations due to the motion of galaxies in the
nonlinear regime [17]. In addition there is a geometric
distortion due to the AP effect related to the distance-
redshift relation of the Universe. As a result the redshift-
space power spectrum depends on the angle 6 between the
line-of-sight direction y and the wave number vector k
(see, e.g., [18]).
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In general the redshift-space power spectrum can be
expanded as [19]

P(k,2) =Pk w2 = > Pilk2)Lw), 1)

1=0,2,4, -

where L;(u) is the Legendre polynomial, u = cos#, and
k = |k|. The odd moments vanish by symmetry.

The monopole P(k, z) represents the angular averaged
power spectrum and is usually what we mean by the power
spectrum. At low z it has been investigated in great depth in
the 2df and Sloan Digital Sky Survey surveys. P,(k, z) is
the quadrupole spectrum and gives the leading anisotropic
contribution. As can be seen in Fig. 1 it will be well
constrained even by just the z < 1.5 sample, which we
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FIG. 1. KAOSI constraints (z < 1.5) on the multipole mo-
ments of the power spectrum, (P,(k)) and (P,(k)) for linear
(dotted lines) and nonlinear (solid lines) spectra, respectively.
The nonlinear (P,(k)) prediction changes sign at large k. We
have fixed n =1, h = 0.7, Q, = 0.045, Q,, = 0.28, and w =
—1. For the bias we adopted by = 1.35, p, = 1 for the linear
model, p; = 1, by = 0.1, v = 1 for the nonlinear spectrum [see
Eq. (7)]. The higher moments P,, £ =4 are not well con-
strained, even by KAOS.
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label KAOSTI (see Table I for definitions). The higher-order
multipoles are not well constrained however.

Crucially, the multipole moments reflect different as-
pects of the redshift distortions in the power spectrum
which can therefore aid in breaking degeneracies between
the cosmological parameters bias and dark energy. The
purpose of this Letter is to consider the extent to which
the anisotropic component of the power spectrum, Py, € =
2, gives new information about dark energy via the non-
linear effects and the geometric (AP) distortion.

Formalism.—Here we employ the Fisher matrix ap-
proach in order to estimate the accuracy with which we
can constrain the equation of state, w = p/p, of the dark

energy with a measurement of the power spectrum. In
general the Fisher matrix is defined by F;; =
—(9? InL/36,;00;), where L is the likelihood of a data set
given the model parameters 6;. Assuming a Gaussian
probability distribution function for the errors of a mea-
surement of the multipole power spectrum P,(k), the
Fisher matrix for each multipole spectrum is

o max <9<'P1(k)> P, (k))
Fij =~ f 50

Kdlnk, (2)

where k;(k) is the effective volume of the survey available
for measuring the €th power spectrum at wave number k:

|
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where (s, k, u) is a weight factor that we can choose freely, 7(s) is the mean number density, and s denotes the three
dimensional coordinate in redshift space. This formula can be derived in a similar way to obtain the optimal weighting
scheme (see, e.g., [12,20]). Minimizing the variance on the power spectrum yields (s, k, u) = [1 + 7i(s)P(k, u, z)]" !, the
same as used in [5].

Next we explain our theoretical modeling of the power spectrum. In a redshift survey, the redshift z is the indicator of the
distance. Therefore we need to assume a distance-redshift relation s = |s| = s[z] to plot a map of objects. The power
spectrum depends on this choice of the radial coordinate of the map s = s[z] due to the geometric distortion (AP) effect.
For our fiducial background we adopt a flat universe with €),, = 0.3. We consider a cosmological model with the dark
energy component with constant equation of state, w = p/p, since estimates for the nonlinear power spectrum in more
general cases do not yet exist. We then have

(&)

d !/
r(Zer! W):Ff < .
0o Jo \/Qm(l +P+(1-0,)01 + 7/)730+w)
Here H, = 100k km/s/Mpc is the Hubble parameter.

Our fiducial model thus has s(z) = r(z, 0.3, —1). The geometric distortion in the power spectrum depends on r(z, £),,, w)
and the power spectrum at redshift z is described by scaling the wave numbers from real space to redshift space via g —

ku/cpand g — kyJ1 — u?/c, with ¢)(z) = dr(z)/ds(z) and ¢, (z) = r(z)/s(z).

We write the galaxy power spectrum in nonlinear theory as

) 4
Pyalg), 41,2) = (1 + b{ e bz, 2PN, DLy (2] (6)
|
with f(z) = dInD,(z)/d1na(z), where ¢°> = q|2 + 47, For PNL (g, z) we adopt the fitting formula for the
b(z, q) is a scale-dependent bias factor, P\L. (g, Zﬁ is the  quintessence cosmological model [24] and use the fitting

nonlinear mass power spectrum normalized by og = 0.9,
D,(z) is the linear growth rate, and a(z) is the scale factor.
The term in proportion to f(z) describes the linear distor-
tion [16]. D[ g o p(z)] represents the damping factor due to
the “finger of God” effect.

Assuming an exponential distribution function for the
pairwise peculiar velocity [21-23] gives D[g op(z)] =
1/[1 + (qyop(2))?/2], where op(z) is the redshift-
dependent one-dimensional pairwise peculiar velocity dis-
persion as in [21] and Eq. (3.26) in [18]. This form is in
excellent agreement with N-body simulations [18].

formula for f(z) developed in [25].

For the nonlinear modeling, we assume a scale-
dependent bias model with time dependence controlled
by D(z) (via the parameters by, b,) and three parameters
(b1, py, v) to allow for almost any reasonable scale depen-

dence, viz.
-1 D,(z)? v
+ o 1+ b1<—1(1) qu1> G
D (z) 0.12 Mpc

b(z,q) = (1
In the linear case the bias is taken to be scale independent
and given by b(z) = 1 + (by — 1)D;(z)"P0 where p, is a
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constant. The precise form of (7) is not crucial: our aim is
to understand the impact of multiple bias parameters on
dark energy reconstruction.

Results. —Figure 1 shows the monopole and quadrupole
power spectra (P (k)) and (P, (k)) for the linear and non-
linear models described above, assuming the KAOS1 sam-
ple described in Table 1. (Py(k)) is positive while the
nonlinear effects cause (P,(k)) to change sign at large k .
For (P, (k)), the linear power spectrum agrees well with the
nonlinear power spectrum because the two nonlinear con-
tributions to it cancel out: the ‘““finger of God” effect
decreases the amplitude while P\L. (k) increases the am-
plitude due to the nonlinearity at large k. By comparison, it
is very clear that the linear theory is not good for the higher
multipole moments on small scales, k = 0.1h Mpc~!.

The precision with which w can be recovered is shown
in Fig. 2. We consider separately the low-redshift (KAOS1)
and high-redshift (KAOS2) samples; see Table 1.

To produce these estimates we quote Aw = (F~1/2) |
marginalizing over (), and all the bias parameters, viz. b,
po (linear case) and by, p;, by, and v (nonlinear case).
Since the bias may be constrained by other methods (e.g.,
lensing or by higher-order correlation functions) our re-
sults are conservative.

Figure 2 shows Aw as a function of €},. The left panels
are the results for the linear perturbation theory, while the
right panels are the nonlinear model. The upper panels
assume the KAOS1 sample, while the lower panels assume
the KAOS2 sample. In general, Aw becomes larger as the
baryon fraction becomes smaller since the baryon oscilla-
tions become less and less distinct. As (), becomes
smaller, the contribution from 7P, becomes increasingly
important. It is clear from the dashed curve that the con-
straint on w from 2 is very weak around (), = 0 because
the baryon oscillations disappear, taking with it the stan-
dard ruler. This is the same for the dotted curve which
shows the constraints from 2,.

One of the main results of this paper is the solid curve
which shows the constraint from the combination of 7P,
and P,. It is good even in the case (), = 0 when the
baryon oscillations are missing, implying that the geomet-
ric distortion (AP test) plays the central role in constraining
w. This does not depend on the bias parameters and in-
clusion of a constant parameter for stochastic bias does not
alter our results [26].

TABLE I. The parameters of the samples used in our analysis.
i1 is the average galaxy number density; k., is the maximum
wave number used in evaluating the Fisher matrix.

KAOS1 KAOS2
Redshift range 05<z<15 25<z<35
Survey area (deg?) 10° 150
ii(h* Mpc™3) 1074 107*
o (h Mpc™) 0.4 1
by 1.35 1.75

It is interesting to address why the constraint on w from
P, and P, combined is so much better than from either
one separately. For each pair of marginalized parameters
the error ellipses for P, and P, are rotated with respect to
each other, as in Fig. 3, thus breaking degeneracies in the
bias-dark energy parameter space. On marginalization
these gains are passed through to w, resulting in signifi-
cantly smaller error ellipses, a feature observed in both the
linear and nonlinear cases. This comes from the fact that
the error ellipses for P, and P, only overlap by a small
amount in the full parameter space. The power in combin-
ing P, and P, thus extends the well-known fact that P,
gives useful information about bias (e.g., [19]).

Conclusions.—We have investigated the accuracy with
which we can expect next-generation galaxy surveys such
as KAOS [1] to measure the multipole moments of the
anisotropic power spectrum in redshift space and the re-
sulting improvements in dark energy constraints.

We found a number of key results: (1) the quadrupole is
very useful in breaking degeneracies between bias and dark
energy. (2) Nonlinear effects have a substantial influence
on the quadrupole and higher multipoles at the scale k =
0.1h2 Mpc~!. The inclusion of the nonlinear power spec-
trum enhances the precision with which the dark energy
can be constrained because the nonlinear effects increase
the power at small scale which is also where constraints are
good. The nonlinear regime provides us with new infor-
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(b) Nonlinear—KAOS1
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FIG. 2. 1 — o error estimates for w as the baryon oscillations

disappear (), — 0). The left panels (a) and (c) are the results
using the linear spectrum and the right panels (b) and (d) are the
nonlinear spectrum. The dashed curves are the results utilizing
only Py (k), the dotted curves are the results with only P, (k), the
solid curves are the results obtained using both Py(k) and P, (k).
The target parameters here are same as those in Fig. 1. The low-
redshift sample, KAOSI1, is assumed in (a) and (b); the high-
redshift sample, KAOS2, is assumed in (c) and (d). The dot-
dashed curves in (a) and (b) show the constraints combining all
Py(k) to Py(k). The double dot-dashed curves in (c¢) and (d)
show the constraints obtained from the full KAOS sample
(KAOS1 + KAOS2). The key point is how flat the resulting
curve is for (), = 0.05 despite the absence of baryon oscillations
for ), — 0.
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FIG. 3 (color online). 1 — o w — by likelihood contours for
P, alone (large, vertical ellipse), P, alone (largest, lightly-
shaded ellipse), and P, + P, (small, dark ellipse). Here the
same parameters are used as in Fig. 1 except that ), = 0 so
there are no baryon oscillations, which explains the poor con-
straints from 2, alone.

mation about the dark energy, as has been discussed in
different contexts (e.g., [27]). (3) Applying these results to
dark energy and the KAOS survey we have found that
significant constraints arise by combining the monopole
and quadrupole spectra even if there are no baryon oscil-
lations in the monopole spectrum and even if we allow for
multiparameter scale-dependent or stochastic bias.

This is a key piece of insurance for large galaxy surveys
given current uncertainty about the existence of baryon
oscillations and ensures that large, next-generation, galaxy
surveys will make a significant contribution to the hunt for
dark energy irrespective of the existence of baryon
oscillations.
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