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Quantum fluctuations and CMB anisotropies in one-bubble open inflation models
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We first develop a method to calculate a complete set of mode functions that describe the quantum fluct
tions generated in one-bubble open inflation models. We consider two classes of models. One is a single sc
field model proposed by Bucher, Goldhaber, and Turok and by us as an example of the open inflation scena
and the other is a two-field model such as the ‘‘supernatural’’ inflation proposed by Linde and Mezhlumian.
both cases we assume the difference in the vacuum energy density between inside and outside the bubb
negligible. There are two kinds of mode functions. One kind has the usual continuous spectrum and the ot
has a discrete spectrum with characteristic wavelengths exceeding the spatial curvature scale. The latter ca
further divided into two classes in terms of its origin. One is called the de Sitter supercurvature mode, whi
arises due to the global spacetime structure of de Sitter space, and the other is due to fluctuations of the bu
wall. We calculate the spectrum of quantum fluctuations in these models and evaluate the resulting la
angular scale CMB anisotropies. We find there are ranges of model parameters that are consistent
observed CMB anisotropies.@S0556-2821~96!05320-9#

PACS number~s!: 04.62.1v, 98.80.Cq
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I. INTRODUCTION

Motivated by observations that we may live in a low
density universe@1–3#, several authors have considered
possible scenario that realizes an open universe (V0,1) in
the context of inflationary cosmology@4–7#. In contrast with
the standard inflation models that predict a spatially flat u
verse (V051), this scenario predicts a universe with sp
tially negative curvature. In this scenario, the nucleation o
vacuum bubble plays an essential role. In general, the bub
nucleation process is described by the bounce solution w
O~4! symmetry, which is a nontrivial classical solution of th
field equation in Euclidean spacetime@8,9#. Then the ex-
panding bubble after nucleation is described by the class
solution obtained by analytic continuation of the bounce s
lution to Lorentzian spacetime. Owing to the O~4! symmetry
of the bounce solution, the expanding bubble has the O~3,1!
symmetry. This implies that the system is homogeneous
isotropic on the hyperbolic time slicing inside the bubble a
that the creation of one bubble can be regarded as the
ation of an open universe.

To obtain a realistic model of an open universe, the fl
nessV0;1 and the homogeneity and isotropy of the un
verse should be realized inside the bubble. This requirem
can be satisfied by assuming, for example, a scalar field w
a potential such as in the new inflation scenario but with
high potential barrier before the slow-rolling inflationar
phase@4,5#. In addition, the high potential barrier keeps th
bubble collision rate small; hence, the homogeneity and is
ropy of the one-bubble universe is not disturbed by the ot
nucleated bubbles. Then the second inflation inside
bubble inflates the universe and explains the flatn
V0;1. Linde and Mezhlumian have proposed another~per-
haps more natural! model of open inflation by introducing
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two scalar fields@6,7#, but the essential feature of the sce
nario is the same as the former.

The interesting problem is the origin of fluctuations in this
open inflationary scenario. Following the usual picture tha
quantum fluctuations of the scalar field generate the initia
density perturbations, we need to investigate the quantu
state of the scalar field after bubble nucleation. According t
previous investigations, the open inflation scenario shows i
teresting varieties of the fluctuations. The bubble nucleatio
process can excite fluctuations of the scalar field and ma
increase the power of density fluctuations on the scale
spatial curvature@10,11#. Also, it has been shown that pecu-
liar discrete modes of fluctuations on the supercurvatu
scale may exist@12# and contribute to cosmic microwave
background~CMB! anisotropies in an open universe@5,13#.
Very recently, generation of another type of supercurvatu
perturbations that originate from the bubble wall perturba
tions has been discussed@11,14,15#.

In this paper, we develop a method to calculate thes
varieties of fluctuations in the open inflationary universe an
evaluate the power spectrum of the resulting CMB anisotro
pies. In order to perform a detailed analysis of the powe
spectrum, it is necessary to specify the model to some exte
Here we consider two classes of models. One is a sing
scalar field model~model A! proposed by Bucher, Gold-
haber, and Turok@4# and by ourselves@5#. The other is a
two-field model~model B! in which the false vacuum decay
and inflation inside the bubble are governed by two differen
scalar fields, such as the supernatural inflation proposed
Linde and Mezhlumian@7#. For simplicity, we assume the
difference in the vacuum energy density between inside an
outside the bubble is negligible in both models. Our metho
is based on the formalism we developed previously for com
puting the mode functions during and after bubble nucleatio
@16,17,12#.

This paper is organized as follows. In Sec. II we describ
5031 © 1996 The American Physical Society
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our method of calculating quantum fluctuations of the infl
ton field. We assume that the reaction to the geometry can
neglected; i.e., the nucleation occurs in the de Sitter spa
time background. Then, in Sec. III, we investigate the ev
lution of fluctuations inside the bubble in an open inflatio
ary stage and derive the formulas for calculating the init
perturbation spectrum of the open universe and the resul
CMB anisotropies. In Sec. IV we evaluate the CM
anisotropies in two simple models and examine their viab
ity. Section V is devoted to conclusions. We adopt the un
c5\51.

II. FORMALISM

In this section, we describe our formalism for investiga
ing quantum field fluctuations inside a bubble. Pioneeri
work on the quantum state of a nucleating bubble was do
by Rubakov@18#, Kandrup@19#, and Vachaspati and Vilen-
kin @20#. Recently, we have developed a formalism to inve
tigate the quantum state of a scalar field after false vacu
decay based on the WKB wave function of a multidime
sional tunneling system@16,21#. The formalism has been ap
plied to the bubble nucleation that occurs on the Minkows
background, and the spectrum of field fluctuations after
decay has been studied@10,11#. The basic formalism has
been extended to the case in which the bubble nuclea
occurs on the de Sitter spacetime@17#. There the effect of the
nontrivial geometry of the instanton with gravity, i.e., th
Coleman–De Luccia instanton@9# was taken into account. At
that time, however, the appropriate set of the mode functio
for describing the initial vacuum state, which is expected
be the Bunch-Davies vacuum due to the sufficient inflati
before the tunneling, was not known. Thus there was a te
nical difficulty in applying our formalism. Recently, we hav
succeeded in describing the Bunch-Davies vacuum stat
the spatially open chart@12#. Thus this problem has bee
overcome. Combining the results in these two pap
@17,12#, we now have a tool to handle the quantum fluctu
tions after tunneling that includes the effect of the geome
of the Coleman–De Luccia instanton similar to the case
the Minkowski background@10#.

In the present paper, we consider simple open inflat
models in which the geometry of the Coleman–De Lucc
instanton can be approximated by the pure de Sitter spa
time. That is, we consider the case in which the poten
energy difference between the two vacua of the tunnel
filed is small. We consider the action

S5E F2
1

2
gmn]ms]ns2V~s!GA2gd4x

1E F2
1

2
gmn]mf]nf2U~s,f!GA2gd4x, ~2.1!

where the potentialV(s) is assumed to have the form a
shown in Figs. 1~a!, 1~b! to realize the false vacuum decay
As we mentioned above, we take account of the effect
gravity only as a curved background that is assumed to be
Sitter space. We denote the value ofs at the false vacuum by
sF . The fieldf is the inflaton in the nucleated bubble. W
divide them into two parts asf5fB1w. fB is the semiclas-
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sical, spatially homogeneous part of the field andw repre-
sents the quantum fluctuations around this background. W
neglect the quantum fluctuations ofs and denote its O~4!-
symmetric background bysB . Because of the O~4! symme-
try of the instanton,sB is a function of only one coordinate,
say t. In addition, we assumefB also respects the O~4!
symmetry. Thus the model we have in mind is a two-field
one, withfB being constant atsB5sF . Note that we can
consider a single field model by identifyingw with the quan-
tum fluctuations ofs and lettingU(s,f)5V9(s)f2/2.

With these assumptions, the action forw reduces to

Sw5E F2
1

2
gmn]mw]nw2

1

2
M2~t!w2GA2gd4x,

~2.2!

where

M2~t!5
]2U

]f2@sB~t!,fB~t!#. ~2.3!

As noted above, in the case of a single field model,fB and
M2(t) in the following discussion should be replaced by
sB and (]2V/]s2)@sB(t)#, respectively.

Our formalism is summarized in the following. It is based
on the WKB wave function that describes the tunneling de

FIG. 1. A schematic picture of the tunneling potential for the
one-bubble open inflationary scenario,~a! for a single field model
and ~b! for a two-field model.
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54 5033QUANTUM FLUCTUATIONS AND CMB ANISOTROPIES . . .
cay in a multidimensional system@16,17#. The construction
of the wave function was originally developed by Gerva
and Sakita@22#. The wave functional is written in terms o
the bounce solutionsB , which gives the semiclassical pic
ture of the nucleation and expanding bubble, and a se
mode functions that describe the quantum fluctuationsw on
the bounce solution@16#. The boundary condition for these
mode functions is determined from the fact that the wa
function describes the false vacuum state atsB5sF . It then
turned out that the procedure to obtain the appropriate se
mode functions is equivalent to finding out a complete set
those that are regular in one hemisphere of the Euclidean
de Sitter space@17,12#. That is, to find a complete set o
mode functionsvk that obey

@¹m¹m2M2#vk~ t,x!50, ~2.4!

in the Lorentzian region, and that are regular on t
Im t,0 hemisphere. Here, it is important to note that ‘
complete set’’ means a set of all modes that are prope
normalized by the Klein-Gordon norms on a Cauchy surfa
S of spacetime:

^vk ,vk8&:52 i E
S
dSmg

mn$vk]nv̄k82~]nvk!v̄k8%5dkk8 ,

~2.5!

where the bar denotes the complex conjugate. Once they
obtained, the quantum fluctuations of the field are describ
by the ‘‘vacuum state’’uC&, such thatâkuC&50 for anyk
where the fluctuating field is expressed as

ŵH5(
k

~vkâk1 v̄kâk
†!, ~2.6!

in the Heisenberg representation, withâk and âk
† being the

annihilation and creation operators, respectively. Thus
mode functionsvk play the role of the positive frequency
functions.

To write down the equation for the mode functions, w
introduce the coordinates in the de Sitter spacetime follo
ing Ref. @12#. The four-dimensional Euclidean de Sitte
space is a four-sphere. The metric is represented as

dsE
25H22dt21aE

2~t!@dr21sin2rdV2!], ~2.7!

where2p/2<t<p/2, 0<r<p, andaE(t)5H21cost. The
mode functions are required to be regular on t
0<r<p/2 hemisphere.

The coordinate systems in the Lorentzian de Sitter sp
are obtained by analytic continuation as
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tR5 i ~t2p/2! ~ tR>0!,

r R5 ir ~r R>0!,

tC5t ~p/2>tC>2p/2!,

~2.8!

r C5 i ~r2p/2! ~`.r C.2`!,

tL5 i ~2t2p/2! ~ tL>0!,

r L5 ir ~r L>0!.

We find that each set of these coordinates covers three d
tinct parts of the Lorentzian de Sitter spacetime, which w
call the regionsR, C, andL ~see Fig. 2!. The metrics in these
three regions are given by

dsR
252H22dtR

21a2~ tR!~drR
21sinh2r RdV2!,

dsC
25H22dtC

21aE
2~ tC!~2drC

21cosh2r CdV2!, ~2.9!

dsL
252H22dtL

21a2~ tL!~drL
21sinh2r LdV2!,

respectively, wherea(t)5H21sinht. We assign the region
L to be in the false vacuum sea and the regionR to describe
the open universe inside the bubble.

The equation for the bounce in the Euclidean region
given by

H2

aE
3

d

dtS aE3 dsB

dt D2V8~sB!50. ~2.10!

The equation in the Lorentzian region is given by the an
lytic continuation of the coordinates as specified in Eq
~2.8!. The fluctuation fieldw obeys, in the Euclidean region,

F 1aE3 ]

]~H21t!
aE
3 ]

]~H21t!
2

1

aE
2 L

22M2~t!Gw50,

~2.11!

FIG. 2. Penrose diagram of the de Sitter space. The coordina
that cover the regionsR, L, andC are shown, respectively.
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where

L252
1

sin2r

]

]r S sin2r ]

]r D2
LV
2

sin2r
, ~2.12!

andLV
2 is the Laplacian on a unit two-sphere.

Setting w5aE(t)
21xp(t) f pl(r)Ylm(V), the equations

for xp and f pl become, respectively,

F ~12x2!
d2

dx2
22x

d

dx
1

p2

12x2
122

M2

H2 Gxp50,

~2.13!

wherex5sint, and

F2
1

sin2r

]

]r S sin2r ]

]r D1
l ~ l11!

sin2r
1~p211!G f pl50.

~2.14!

The requirement that the mode functions be regular
r5r L5r R50 fixes the form off pl to be @12#

f pl~r !5
G~ ip1 l11!

G~ ip11!

p

Asinhr
Pip21/2

2 l21/2~coshr !

5~21! lA2

p

G~2 ip11!

G~2 ip1 l11!
sinhl r

dl

d~coshr ! l

3S sin prsinh r D , ~2.15!

wherer5 ir in the Euclidean region. TheG-function factor
in front is attached so that the functionsYplm(r ,V)
:5 f pl(r )Ylm(V) become properly normalized harmonics o
the hyperbolic slices in the regionR or L:

E
0

`

drsinh2r E dVYplm~r ,V!Ȳp8 l 8m8~r ,V!

5d~p2p8!d l l 8dmm8. ~2.16!

As we have noted before, a complete set of mode fu
tions should be properly normalized on a Cauchy surfa
Therefore we consider the mode functions in the regionC,
since it is the region in which complete Cauchy surfac
exist. It should be noted thatf pl play the role of the positive
frequency functions there. Then the remaining tasks are~1!
to find the possible spectrum ofp that may give finite Klein-
Gordon norms and~2! to properly normalize the mode func
tions if they are normalizable.

To accomplish the first task, we now consider the equ
tion for xp ~2.13!. In the regionC, the equation forxp re-
mains the same becausetC5t. Introducing the conformal
coordinatej by the relationx5sint5tanhj, the metric in the
regionC becomes

ds25aE
2~j!~2drC

21dj21cosh2r CdV2!, ~2.17!

whereaE5(H coshj)21 and Eq.~2.13! is rewritten as

F2
d2

dj2
1U~j!Gxp5p2xp , ~2.18!
at

n

nc-
ce.

es

-

a-

where

U~j!5
M2/H222

cosh2j
. ~2.19!

This resembles the Schro¨dinger equation with the potentia
U(j) and the energyE5p2. Thus finding possible values o
p is equivalent to solving the eigenvalue problem of th
above equation. SinceU(j)→0 at j→6`, the spectrum of
modes is continuous forp2>0. On the other hand, if
M2,2H2 for some interval ofj, the potential has a valley
and some discrete modes that correspond to bound st
may appear forp252L2,0. In fact, it has been shown tha
there exists a discrete eigenvalue ofL2 in two different
simple cases. One is a mode that appears when we cons
a scalar field with a constant small mass (,A2H2) on the de
Sitter spacetime@12#. Its origin is intrinsic to the spacetime
structure of the de Sitter universe. As long as the volum
with M2,2H2 is large enough, an analogous mode is e
pected to exist in general. Let us call it the de Sitter sup
curvature mode.1 The other is the mode that appears whe
we consider the fluctuations of the tunneling field itself@11#.
It describes the fluctuation of the wall. Since it turns out th
the analysis of the wall fluctuation mode can be simplifie
compared with the other discrete modes, below we consi
the continuous modes, the de Sitter supercurvature mo
and the wall fluctuation mode separately in sequence.
simplicity, we assume thatM is constant in the regionsR
andL and set

M25Hm2 in R,

M2 in L,
~2.20!

in the following discussion.

A. Continuous modes

We first consider the continuous spectrum mode functio
of p2.0. For these modes, it has been shown that the Kle
Gordon norms can be evaluated by the sum of those on
hyperbolic slices on the regionsR andL @12#. Since in the
regionsR andL,M2 is supposed to be constant,xp is given
by an associated Legendre functionPn21/2

ip (z) or Pn21/2
2 ip (z)

with n5A9/42M2/H2. To construct the normalized mod
functions, we begin with the following mode functions in th
regionsR andL:

uplm
~R! 5

1

a~ tR!
xp

~R!~ tR!Yplm~r R ,V!,

uplm
~L ! 5

1

a~ tL!
xp

~L !~ tL!Yplm~r L ,V!, ~2.21!

where

1The spatial harmonics behave asYplm(r )}e
2r for p2.0. As

r51 corresponds to the scale of spatial curvature, fluctuations
scribed by the harmonics withp2.0 represent those that deca
exponentially on scales larger than the curvature scale. In contr
harmonics withp252L2,0 behave asYL lm}e(L21)r and, hence,
describe fluctuations over scales larger than the curvature s
@23,24#. The name ‘‘supercurvature’’ originates from this fact.
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xp
~R!~ tR!5Pn8

ip
~zR!, zR5coshtR ,

xp
~L !~ tL!5Pm8

ip
~zL!, zL5coshtL , ~2.22!

with n85A9/42m2/H221/2 andm85A9/42M2/H221/2.
The norms of these functions are given by

@~xp
~R! ,xp

~R!!#~R!:5 i ~zR
221!H dxp

~R!

dzR
x̄p

~R!2xp
~R!

dx̄p
~R!

dzR
J

5
2

p
sinhpp,

@~xp
~L ! ,xp

~L !!#~L !:5 i ~zL
221!H dxp

~L !

dzL
x̄p

~L !2xp
~L !

dx̄p
~L !

dzL
J

5
2

p
sinhpp. ~2.23!

If we analytically continuexp
(R) to the regionL by solving

Eq. ~2.18! in the regionC, xp
(R) will be expressed in terms of

a linear combination ofxp
(L) andx2p

(L) . Hence we consider the
mode function

xp5xp
~R!5apx2p

~L !1bpxp
~L ! . ~2.24!

From the property of the analytic continuation@12# and
the reality of the Eq.~2.18!, there exists a symmetry

x̄p
~R!5e2ppx2p

~R! ,

x̄p
~L !5e2ppx2p

~L ! , ~2.25!

in the regionC. Then we obtain

āp5e22ppa2p , b̄p5b2p . ~2.26!

Further, defining the Wronskian by

„~u,v !…:5u
dv
dj

2
du

dj
v, ~2.27!

ap andbp are expressed as

ap5
„~xp

~L ! ,xp
~R!!…

„~xp
~L ! ,x2p

~L ! !…
, bp5

„~xp
~R! ,x2p

~L ! !…

„~xp
~L ! ,x2p

~L ! !…
, ~2.28!

and we have

„~xp,x̄p!…5„~xp
~R!,x̄p

~R!!…

5~e2ppuapu22ubpu2!„~ x̄p
~L !,xp

~L !!…. ~2.29!

Also from the analytic continuation of Eq.~2.23! we obtain

„~xp
~R! ,x̄p

~R!!…5„~ x̄p
~L ! ,xp

~L !!…. ~2.30!

Thus we find

X:5ubpu25e2ppuapu221. ~2.31!

Now we define
@~x1 ,x2!#:5@~x1 ,x2!#
~R!1@~x1 ,x2!#

~L !, ~2.32!

which gives the contribution of the functionxp to the total
Klein-Gordon norm. Then we have

K11 :5@~xp ,xp!#5
4

p
e2ppsinh2pp~11X!,

K12 :5@~xp ,x2p!#5
4

p
eppsinh2ppapbp ,

~2.33!

K21 :5@~x2p ,xp!#5
4

p
eppsinh2ppāpb̄p ,

K22 :5@~x2p ,x2p!#5
4

p
eppsinh2pp~11X!,

and

uK12u25S 4psinh2ppD
2

X~11X!. ~2.34!

To find the orthonormalized mode functions, we must fin
a matrix Mss8 that diagonalizes the matrix2 Kss8 (s,s8
51,2). It can be chosen as

Mss8

5S 2K21

AuK12u21~K112l1!2
K112l1

AuK12u21~K112l1!2

2K21

AuK12u21~K112l2!2
K112l2

AuK12u21~K112l2!2
D ,

~2.35!

wherel6 are the eigenvalues ofKss8,

l65
1

2
@~K111K22!6A~K112K22!214uK12u2 #.

~2.36!

Note that the matrixKss8 is Hermitian with positive eigen-
values, as it should be. Then the orthonormalized mode fun
tions are given by

vps lm5VpsYplm ,

Vps5
1

a~ t !Als

~Ms1xp1Ms2x2p!. ~2.37!

B. de Sitter supercurvature mode

Next we consider the discrete mode that arises due to t
spacetime structure of de Sitter space. As mentioned abo
we consider the wall perturbation mode separately later. F

2Instead of allowingp to have the range2`,p,`, we restrict it
in the range 0,p,` but double the degrees of freedom with
s561.
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convenience, we setp5 iL and look for a possible value of
L. When there is no bubble wall, it has been shown th
there arises a mode withL5n8 (n85A9/42m2/H221/2)
when n8.0 (m2,2H2) @12#. In the present case, becaus
the wall is present and the mass changes fromM tom, such
a mode may or may not exist, depending on the functi
M2 even ifm2,2H2.

In the regionC, we consider the solution of the form
at

e

on

uL lm~r C ,tC ,V!

5
1

aE~ tC!
xL~ tC!

P2L21/2
2 l21/2 ~ i sinh r C!

Ai coshr C
Ylm~V!,

~2.38!

where we set the form ofxL as
xL5H aLPm8
L

~sin tC2 i0!1bLPm8
2L

~sin tC2 i0! ~ tC→2p/2!,

Pn8
2L

~sin tC2 i0!1gLPn8
L

~sin tC2 i0! ~ tC→p/2!,
~2.39!
de

the

s of
ld

te
is

he
va-

e

e
the

,
e

near both boundaries of the regionC. The regularity condi-
tion at tC52p/2 is that the mode function should be les
singular than (tC1p/2)21, hencexL→0. Using the asymp-
totic behavior ofPn

m(z) atz→21 @25#, this requires the ratio
of bL to aL to be

bL5
sinpm8

p
G~11L1m8!G~L2m8!aL . ~2.40!

Similarly, the regularity condition attC5p/2 demands that
gL should vanish:

gL50. ~2.41!

Then we need to solve the Eq.~2.18! with the above bound-
ary conditions in both ends. Thus the problem is to find t
eigenvalueL and the corresponding normalized eigenmod
This eigenvalue problem will be solved for a simple mod
in Sec. IV.

Now let us consider the normalization of the supercurv
ture mode. The Klein-Gordon inner products of the mo
functionsuL lm are calculated in the regionC as

^uL lm~r C ,tC ,V!,uL l 8m8~r C ,tC ,V!&

52 icosh2r CE
2`

`

djaE
2E dV

3H uL lm

] uL l 8m8
]r C

2
]uL lm

]r C
uL l 8m8J

5
2NL

G~L1 l11!G~2L1 l11!
d l l 8dmm8, ~2.42!

where

NL :5E
2`

`

djuxLu2. ~2.43!

Thus, the normalized mode functionsvL lm are given by

vL lm5AG~L1 l11!G~2L1 l11!

2NL
uL lm . ~2.44!
s

he
e.
el

a-
de

In particular, by analytic continuation to the regionR ~inside
the bubble!, we obtain the de Sitter supercurvature mo
functions in the open universe as

vL lm~ tR ,r R ,V!5
1

ANL

P1
2L~coshtR!

H21sinh tR
YL lm~r R ,V!,

~2.45!

where

YL lm :5AG~L1 l11!G~2L1 l11!

2

3
PL21/2

2 l21/2~coshr R!

Asinh r R
Ylm~V!. ~2.46!

C. Wall fluctuation mode

Recently, several authors have discussed the effect of
bubble wall fluctuations@11,14,15#. The wall fluctuation
mode appears when we consider the quantum flucuation
the tunneling field itself, which is the case of a single fie
model. As mentioned before,M2 should be regarded as
V9(sB) in this case.

Since the wall fluctuation mode is one of the discre
modes, the formula obtained in the previous subsection
applicable. However, besides the fact that the origin of t
discrete spectrum is different from the de Sitter supercur
ture mode, the corresponding solution of Eq.~2.18!, xW , can
be written down formally in this special case. Hence w
consider this mode separately in this subsection.

It is well known that the time derivative of the bounc
solution satisfies the equation of fluctuations, related to
zero mode problem@26#. In fact, we can derive the following
equation directly from Eq.~2.10!:

FH2

aE
3

d

dtC
aE
3 d

dtC
2

3

aE
2 2V9~sB!GdsB

dtC
50. ~2.47!

This is just the equation of fluctuations, i.e., Eq.~2.11! with
the eigenvalue of 2L2 given by 11p2523, or
L252p254. Then if they have finite Klein-Gordon norms
they will contribute to the quantum fluctuations inside th
bubble.
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Therefore let us consider the mode functions

uW,lm5
dsB

d~H21tC!

P3/2
2 l21/2~ i sinh r C!

Ai coshr C
Yl
m~V!. ~2.48!

Calculating the Klein-Gordon norms, we obtain

^uW,lm ,uW,l 8m8&5
2NW

G~ l13!G~ l21!
d l l 8dmm8, ~2.49!

where

NW :5HE
2p/2

1p/2

dtC aEU dsB

dtC
U25E

2`

1`

djU dsB

dj U2.
~2.50!

Note thatNW has the dimension of (mass)2. As one can
readily see, the Klein-Gordon norms vanish forl50 and 1.
One may think that they give a divergent contribution to th
fluctuations. However, they simply represent the tempo
and spatial translations of the origin of the bounce solutio
i.e., they are the zero modes. Hence we do not have to t
these modes into account@26#. On the other hand, the mode
with l>2 do have finite Klein-Gordon norms and they con
tribute to the fluctuations@11#. We note that in the exact
thin-wall limit, the amplitude of these modes are nonze
only on the bubble wall and they do not contribute to th
fluctuations in the open universe~regionR). It is crucially
important thatṡB is not exactly zero off the wall, however
small it may be. Then the normalized mode functions a
given by

vW,lm5AG~ l13!G~ l21!

2NW
uW,lm . ~2.51!

Analytically continuing the mode functions into the regio
R, we have in the open universe

vW,lm~r R ,tR ,V!5
1

ANW

dsB

d~H21tR!
YL52,lm~r R ,V!,

~2.52!

whereYL lm has been defined in Eq.~2.46!. An important
property of this mode is that the second-rank tensor co
structed from the spatial harmonic function happens to
transverse traceless@11#. Furthermore, the gauge-invarian
density perturbationD, which represents the density pertur
bation on the comoving hypersurface, vanishes identica
Thus it may be viewed as a kind of gravitational wave mod
@14#. However, in order to treat all the modes on an equ
footing, we do not take that view here.

To summarize this section, we have discussed the th
distinct kinds of mode functions that describe quantum flu
tuations in open inflation models. The first one is the usu
modes having continuous spectrum. The other two are mo
with discrete spectra: the de Sitter supercurvature mode
the wall fluctuation mode. These quantum fluctuations gi
rise to cosmological metric perturbations that will be re
flected in observational quantities. We will discuss this a
pect of the quantum fluctuations in the next section.
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III. INITIAL FLUCTUATIONS IN OPEN UNIVERSE AND
LARGE-ANGLE CMB ANISOTROPIES

Once we have the mode functions that describe the qua
tum state of the inflaton field inside the bubble, we can in
vestigate the evolution of resulting cosmological perturb
tions in the open inflationary stage and the subsequent st
of the open Friedmann universe, which can be compar
with observational data. In this section, we first consider th
initial condition of the cosmological perturbations generate
during the open inflationary stage, based on the results o
tained in the previous section. Since the inflaton is almo
massless during the open inflationary stage inside the bubb
we setm250. Then we relate it to the spectrum of large
angular scale CMB anisotropies. Below, we work in the re
gion R that describes the open universe inside the bubb
We write the line element as

ds252dt21a2~ t !g i j dx
idxj5a2~h!@2dh21g i j dx

idxj #,
~3.1!

where a is the scale factor,t is the cosmological proper
time,3 h is the conformal time, and

g i j dx
idxj5dr21sinh2rdV2. ~3.2!

At the open inflationary stage, the scale factor is assumed
be given by

a5
sinhHt

H
5

1

Hsinh~2h!
, ~3.3!

whereH is sufficiently slowly varying in time.
Just after the bubble is formed, or in the spacetime regi

close to the boundary light cone of the regionR, the universe
is dominated by the curvature term, or the matter ener
density can be neglected. Hence the metric perturbations
duced by the quantum fluctuations of the scalar field a
negligible. On the other hand, there exists a time slicing o
which the effect of metric perturbations is minimal, called
the flat hypersurfaces. This implies that the fluctuations d
scribed by the mode functions we have obtained in the pr
vious section may be regarded as those on the flat hypers
faces. It is easy to show that the curvature perturbation on t
comoving hypersurfaceRc is related to the scalar field per-
turbation w on the flat hypersurface asRc52ȧ/(aḟB)w
@27#. Assuming the perturbation is adiabatic,Rc completely
determines the metric and matter perturbations of scalar ty
~i.e., those that can be expanded in terms of scalar harmon
on the three-space!. An important property ofRc is that it
remains constant on superhorizon scales as long as the
turbation is adiabatic, irrespective of the background spat
curvature of the universe~see Appendix A!. Hence what we
need to evaluate is the amplitude ofRc for each mode when
the mode passes the horizon scale. AssumingḟB andH are
sufficiently slowly varying at the inflationary stage, we ma
then evaluateRc at the limith→0 (a→`). Thus we have

3Up to now we have used the nondimensional time normalized
the Hubble parameter. From now on, we recover the dimension
time in t.
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Rc52
H

ḟB

w, h→0 . ~3.4!

The spectrum of the curvature perturbation on the com
ing hypersurfaces is given as follows. Expanding the cur
ture perturbation by modes

Rc5(
s lm

E
0

`

dpRpsYplm~r ,V!1(
lm
RLYL lm~r ,V!

1(
lm
RWY2lm~r ,V!, ~3.5!

the power spectrum of the curvature perturbation is given
uRpu2:5(suRpsu2 for continuous modes, byuRLu2 for de
Sitter supercurvature mode, and byuRWu2 for wall fluctua-
tion mode.

First we consider the continuous modes. From Eqs.~2.37!
and ~3.4!, we find after some algebra,

uRpu25S H2

ḟB
D 2 cothpp

2p~11p2!
~12Y!, ~3.6!

where

Y5
G~22 ip !

G~21 ip !

e2ppbp

2 coshppāp

1c.c. . ~3.7!

It may be worthwhile to compare this result with the spec
of the Bunch-Davies vacuum state@5,13# and the conformal
vacuum state@27,28#. In these case we have

uRpuBD
2 5S H2

ḟB
D 2 cothpp

2p~11p2!
, ~3.8!

uRpuC
25S H2

ḟB
D 2 1

2p~11p2!
, ~3.9!

respectively. The result of our model~3.6! differs from that
of the Bunch-Davies one in the last factor (12Y), which
represents the effect of the mass difference outside the w
However, asY→0 for p→`, the spectra in all the three
cases behave asuRpu2}1/p3 for p@1, which shows the per-
turbations have the Harrison-Zel’dovich spectrum on sca
smaller than the curvature scale, irrespective of the choice
vacuum. The difference appears on and above the curva
scale, and it may become important when considering lar
angular scale CMB anisotropies.

As for the de Sitter supercurvature mode, the spectral a
plitude is given from Eq.~2.45! as

uRLu25S H2

ḟB
D 2 1

NLG~21L!2
. ~3.10!

We note that, in the Bunch-Davies vacuum limit, we ha
L→1 andNL→1/2, which gives

uRLuBD
2 5S H2

ḟB
D 2 12 . ~3.11!
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The amplitude of the wall fluctuation mode is given from
Eq. ~2.52!. We identify sB with fB and note that
dsB /dtR5H21ṡB . Then

uRWu25
H2

NW
. ~3.12!

One sees that it is quite different from those of the othe
modes; it contains no information of how the field evolves a
the open inflationary stage but is completely determined b
the part of the potential that governs the false vacuum deca

Now we consider the CMB anisotropies predicted in ou
open inflation models using the initial conditions obtained in
the above. The power spectra of CMB anisotropies in ope
models have been well investigated in the case where t
scalar field is in the conformal vacuum@27–30# or in the
Bunch-Davies vacuum@5,13#. Since we expect the difference
between the present models and the previously investigat
models arises only on large angular scales, we focus on lo
multipoles (l,20) of the spectrum. Concerning the wall
fluctuation mode, as we have mentioned, it has a very inte
esting property that the perturbation in the spatial curvatu
induced by it is transverse traceless@11#. Hence it may be
regarded as a tensor mode perturbation. Garriga has inve
gated the evolution of this mode in the open inflationar
universe from this point of view@14#. On the other hand,
Garcia-Bellido has analyzed the wall fluctuation mode b
regarding it as a scalar perturbation@15#. In this paper, in
order to treat all the modes in a unified manner, we take th
latter approach, i.e, we regard the wall fluctuation mode as
usual scalar perturbation except for the fact thatp2524.
For completeness, a proof that both approaches are equi
lent is given in Appendix B.

From the perturbed Einstein equations, the evolutio
equation ofRc becomes

Rc912
a8

a
Rc92KRc5S, ~3.13!

where the prime denotes the conformal time derivativ
K521 for an open universe and the source termS can be
neglected if the universe is matter dominated~see Appendix
A!. SinceRc5const at the very early stage of the hot Fried
mann universe, the relevant solution of it is the so-calle
growing mode solution. Here we considerRc on sufficiently
large scales that it reenters the horizon after the univer
becomes matter dominated. In this case, the line element
described by Eq. ~3.1! with the scale factor a(h)
}coshh 21 (h.0). Then we obtain

Rc5Rc,i

3~h sinhh22 coshh12!

~coshh21!2
, ~3.14!

whereRc,i is the initial amplitude determined at the infla-
tionary stage of the universe, the spectrum of which is give
by Eqs.~3.6!, ~3.10!, and~3.12!.

Given the solution~3.14!, we can compute the tempera-
ture fluctuations in the open universe in the gauge-invaria
formalism @31#. For this purpose, we consider the gauge
invariant variablesC andF that describe the gravitational
potential perturbation and the curvature perturbation, respe
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tively, on Newtonian slicing@32#. We haveC1F50 in the
present case. ThenF is related toRc as ~see Appendix A!

F5Rc1
a8

a
Rc8, ~3.15!

which gives

F~h!5Rc,iF~h!, ~3.16!

where

F~h!5
3~sinh2h23h sinhh14 coshh24!

~coshh21!3
. ~3.17!

Note that we haveF5 3
5Rc in the limit h→0. In the case of

p2524, the same result has been obtained by Garc
Bellido @15#. The potential perturbation gives rise to CMB
anisotropies on large angular scales. Writing the temperat
autocorrelation function in the form

C~u!5
1

4p(
l

~2l11!ClPl~cosu!, ~3.18!

the multipole momentCl is given by a sum of contributions
from the continuous modes and the two supercurvatu
modes:

Cl5Cl
~C!1Cl

~S!1Cl
~W! . ~3.19!

Assuming that the conformal time of the last scattering su
face is sufficiently small,hLSS!1, but the universe is well
matter dominated by that time, we obtain@31#

Cl
~C!5E

0

`

dpuRpu2F13F~hLSS! f pl~h02hLSS!

12E
hLSS

h0 dF~h8!

dh8
f pl~h02h8!dh8G2, ~3.20!

Cl
~S!5uRLu2F13F~hLSS! f̃L l~h02hLSS!

12E
hLSS

h0 dF~h8!

dh8
f̃L l~h02h8!dh8G2, ~3.21!

Cl
~W!5uRWu2F13F~hLSS! f̃ 2l~h02hLSS!

12E
hLSS

h0 dF~h8!

dh8
f̃ 2l~h02h8!dh8G2, ~3.22!

whereh0 is the conformal time at present,f pl is the function
given in Eq.~2.15! and

f̃L l5AG~L1 l11!G~2L1 l11!

2

PL21/2
2 l21/2~coshr R!

Asinh r R
.

~3.23!

Here a word of caution is appropriate. The redshift of th
matter-radiation equal time iszeq'4.23104V0h

2, whereh
ia-

ure

re

r-

e

is the Hubble constant normalized by 100 km/sec Mpc an
h&1 from observations. In addition, coshhLSS511(V0

21

21)/(11zLSS) wherezLSS is the redshift of the last scatter-
ing surface (;1000). Therefore the above formula forCl
becomes inaccurate forV0!0.1. We should also note that
we have puthLSS50 for simplicity in actual calculations.
Hence our results presented in the next section may ha
errors of;10% forV0;0.1.

Before closing this section, we mention that the forma
ism developed in the previous two sections can be extend
to more general cases. Namely, as long as the regionsR and
L are described by de Sitter space, it is not necessary to h
the same Hubble parameter for these two regions. LetHR
andHL denote the Hubble parameters in the regionR andL,
respectively. Then it is easily recognized that allH ’s appear-
ing in the formulas in the present section should be identifie
with HR . Further, in this case, as the scale factor is differe
from that of de Sitter space in the regionC, but the formulas
written in terms of the conformal coordinatej do not contain
H explicitly except for Eq.~2.18!, what we need to do is to
replace the potential in Eq.~2.18! by

U~j!→
1

aE

d2aE
dj2

211aE
2M2, ~3.24!

wherej is now defined in such a way that the metric in th
regionC takes the form~2.17! with aE(j) being a general
function of j.

IV. SPECTRUM OF THE CMB ANISOTROPIES
PREDICTED BY SOME MODELS

In this section, we apply our formulas obtained in Secs.
and III to simple models of the open inflation scenario.

A. Single field model

We first consider a model with a single scalar field wit
the potential as shown in Fig. 1~a!. The tunneling field be-
comes the inflaton field after the tunneling. Thus the ma
square of the fluctuation fieldw is given by M2(t)
5V9(sB). Its typical shape is rather complicated, as show
in Fig. 3.

FIG. 3. A schematic picture ofM2 as a function oft (5tC) in
the case of a single field model.
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Because of the complexity ofM2(t), the analysis of this
model is difficult in general. However, the mass of the infl
ton in the false vacuumM must be large compared withH
in order that the tunneling is not dominated by the Hawki
Moss instanton@33# as explained in Ref.@7#. Furthermore, as
there are many subtleties4 in models withM2;H2, we leave
it as a future problem. Here we assumeM2@H2.

Then the potential barrier between the two asymptotic
gions atj→6` is so high that the coherence between re
a-

ng-

re-
-

gionsR and L are exponentially suppressed as long as we
consider the modes withp2!M2/H2, which is the case of
our present interest. So one of the two modes corresponding
to the samep can be set to vanish atj→2` and the other at
j→1`. Then automatically they are orthogonal to each
other. Since the field equation~2.18! is real in the region
C, we can choose the mode that vanishes in the regionL to
be real in the regionC. Then analytically continuing it to the
regionR, the normalized mode that does not vanish in the
regionR can be written as
Vp
~R!5H Ap

2a~ tR!sinhpp Fepp/21 idp~zR2 ip !S zR11

zR21D
ip

1e2pp/22 idp~zR1 ip !S zR11

zR21D
2 ipG ~ in R!,

0 ~ in L !,

~4.1!
-

f

where we setm50 anddp is a real constant that depends o
the detail of the potential. Using this mode function, th
amplitude ofRp is evaluated as

uRpu25S H2

ṡB
D 2 coshpp1cos2dp

2p~11p2!sinhpp
. ~4.2!

Comparing this result with the spectra for the Bunch-Davi
vacuum~3.8! and the conformal vacuum~3.9!, we find that
the difference between the present spectrum anduRpuBD

2 is no
greater than the difference betweenuRpuBD

2 and uRpuC
2 . As

was clarified in@5#, the effect of the difference between th
Bunch-Davies vacuum and the conformal vacuum onCl

(C) is
always negligibly small independent ofV0. Thus as far as
the continuous modes are concerned, we do not have to p
form further calculations.

Next we consider the discrete mode. As mentioned abo
the wall fluctuation mode is always present when we co
sider the flucuations of the tunneling field itself. Then th
question is whether there exists another discrete mode
the de Sitter supercurvature mode. The answer is no as l
asM2@H2. The reason why is explained in Appendix C. In
the general case, we do not have an answer to this questi5

but we do not discuss the de Sitter supercurvature mode
further. We focus on the wall fluctuation mode below.

The wall thickness is roughly evaluated by the inverse
the curvature scale of the potential asM21. Since we are

4For example, the formalism developed in@17# that we used as a
given result in the present paper is not applicable to the case
which the wall is spreading so broadly that we cannot approxima
sB(t) by sF for t,0. WhenM2;H2, the wall necessarily be-
comes broad.
5We note an issue related to this problem. One can show that

nonexistence of another discrete mode in the range24,p2,0 is a
sufficient condition for the uniqueness of the negative eigenva
mode in the one-loop order calculation of the tunneling rate in t
path integral approach@34–36#. But the uniqueness has not bee
proved for the tunneling on the de Sitter background as far as
know.
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now assuming thatM2@H2, it will not be too crude to adopt
the thin-wall approximation. Then one can evaluateNW as

NW5HE dtaE~t!S dsB

dt D 2'RS1 ,

S1 :5HE dtS dsB

dt D 2, ~4.3!

whereR is the radius of the wall andS1 is the tension of the
wall. If one uses the reduced Euclidean action written in
terms ofR, S1, the potential energy density inside the bubble
VR ~true vacuum! and outside the bubbleVL ~false vacuum!,
R is determined in terms of the other parameters by mini
mizing the action as@37,15#

R5
3S1

A~DV16pGS1
2!2124pGVRS1

2
, ~4.4!

whereDV5VL2VR . Then the final result for the amplitude
of the wall fluctuation mode is

uRWu25
8pGVR
9S1

2 A~DV16pGS1
2!2124pGVRS1

2

5
HR
2

8pGS1
2A~HL

22HR
21~4pGS1!

2!21~8pGS1HR!2,

~4.5!

whereHL andHR are the Hubble parameters in the regions
L and R, respectively. Note that although we assumed
(HL2HR)/HR!1, the differenceHL2HR may not be neg-
ligible in the determination of the amplitude of the wall fluc-
tuation mode.

Now we consider the CMB power spectrum due to the
wall fluctuation mode. Figure 4 shows the power spectrum o
CMB anisotropiesl ( l11)Cl

(W) for various values ofV0.
The curves are normalized byH2/RS1. As discussed before,
the amplitude of the CMB anisotropies due to the wall fluc-
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tuation mode are determined by the nature of the bub
wall. This gives an independent constraint on open inflat
models. In particular, the spectrum of CMB anisotropi
rises sharply towards lower multipoles for open models w
V0*0.2. Hence if this mode dominates over the other mo
contributions, such single field models will be severely e
cluded by the Cosmic Background Explorer~COBE! data
@38#. This issue has been recently investigated by Garr
@14# and Garcia-Bellido@15#.

To carry on with further analysis, we have to specify th
model in more details. Let us parametrize the poten
V(s) by M2, VL , Vb and DV as shown in Fig. 1~a!. We
assumeV(s)!MPl

4 , M!MPl whereMPl is the Planck mass,
DV/VL!1 and the potential has the unique curvature sc
M2 in the regionC. Then, as the wall thickness is essential
given byM21, we have

S1;
Vb

M
. ~4.6!

Further we assumeV(s);lMPl
4 (s/MPl)

2n (n51,2, . . . ) on
the right of the barrier, wherel!1 as in the chaotic infla-
tion.

There are three requirements to be satisfied.~1! The tun-
neling must be dominated not by the Hawking-Moss insta
ton but by the Coleman-De Luccia instanton. This requir
thatM2.4H2. ~2! The tunneling rateG must be suppressed
enough in order to avoid the fluctuations caused by
bubble collisions. This implies that@8,9#

2 ln~G/H4!;
27p2S1

4

2DV3 @1. ~4.7!

~3! Finally, the wall fluctuation mode must not domina
Rc . Noting that the contribution of the continuous modes
its power in the logarithmic interval ofp at p@1 is
^Rc

2&:5 limp→`uRpu2p3/(2p2), this requires

uRWu2&^Rc
2&5S HR

2

2pṡB
D 2. ~4.8!

FIG. 4. The power spectrum of CMB anisotropies due to t
wall fluctuation mode for various values ofV0. The curves are
normalized byH2/(S1R) and they show, from the top right to the
bottom left, the cases ofV050.1, 0.2, 0.3, 0.4, 0.5, and 0.6.
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We assume requirement~1! is satisfied and investigate the
conditions on the potential parameters derived from requi
ments~2! and ~3!.

From the slow roll equation of motion, we hav
uHR

2/ṡBu58pHRVR /uV8(sB)u58pzHR /MPl , where z*1.
Therefore

uRWu2

^Rc
2&

5
p

8z2
AS 11

DV

6pGS1
2D 21S HR

2pGS1
D 2. ~4.9!

Since the left-hand side of this must be smaller than un
we should have

DV

6pGS1
2 &z2 and

HR

2pGS1
&z2. ~4.10!

Using the factS1;Vb /M and DV!VL , we find the first
inequality is automatically satisfied if the second one
which is reexpressed as

Vb

VL
*
HRMMPl

2

2pz2VL
5

4

3z2 SHR

HL
D MHL

. ~4.11!

If this condition is satisfied, we also find requirement~2! is
fulfilled. Thus if the potential barrier is high enough, ap
proximately ofO(M /HL)3VL , the wall fluctuation mode
will become harmless. Apart from the intrinsic unnaturalne
of a single field model, it is not difficult to construct mode
that satisfy the above constraint. Hence we conclude tha
single field model remains still viable.

B. Two-field model

Next we consider a two-field model in which the tunne
ing field s and the inflaton in the nucleated bubblef are
different. The supernatural inflation model proposed
Linde and Mezhlumian@7# is included in this category. We
consider the following situation. Before tunneling,f is at the
minimum of the potentialfL with massM . During the tun-
neling, the potential off changes to an almost flat bu
slightly declined one, i.e.,Vf8 Þ0 andVf9 ;0. ThusfL is no
longer the minimum of the potential in the nucleated bubb
Thereforef begins the slow rolling to the new minimum o
the potential.

In the following calculation, we assume that the gradie
of the potential is so small that we can neglect its effect
estimating the amplitude of the fluctuationsw, though the
condition under which this neglection is justified is not clea
Then our present formalism can be applied. For simplici
we also assume that the thin wall approximation is valid. W
denote the radius of bubble wall byR5aE(t0)5H21cost0.
Then the bubble wall trajectory in the Lorentzian region
described by the hypersurfacetC5t05const in the region
C.

Under these assumptions, we can evaluate the fluctua
spectrum inside the bubble by applying the formulas o
tained in Sec. III withM2 given by

M25H 0 ~t0,tC,p/2!,

M2 ~2p/2,tC,t0!.
~4.12!

he
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The form of the potentialU(j) in Eq. ~2.18! in this case is
illustrated in Fig. 5. Thus the parameters of the present op
inflationary model are the mass of the inflaton field in th
false vacuumM , the wall radiusR, and the Hubble param-
eterH.

First we consider the continuous spectrum. As the mas
constant both outside and inside the wall, we find that t
solution of the Eq.~2.18! becomes

xp
~R!~ tC!5Pn8

ip
~sintC2 i0! ~t0,tC,p/2!,

xp
~L !~ tL!5Pm8

ip
~sintC2 i0! ~2p/2,tC,t0!.

~4.13!

The coefficientsap andbp are determined by the junction
condition at the wall in the regionC:

S xp
~R!

dxp
~R!

dj

D 5S x2p
~L ! xp

~L !

dx2p
~L !

dj

dxp
~L !

dj

D S ap

bp

D . ~4.14!

Then ap and bp given by Eqs.~2.28! can be now easily
evaluated on the wall.

We have numerically evaluated the spectrum of the co
tinuous modes. Figure 6 shows the power spectra ofuRpu2
for various values ofM andR, normalized by the Bunch-
Davies vacuum spectrum. Figure 6~a! shows the case when
the mass outside the bubble isM /H52. The lines are the
power spectra for the wall radiiHR50.1, 0.5, 0.7, and 0.9.
One sees the spectra for all the wall radii are almost the sa
and they coincide with that of the Bunch-Davies vacuu
except for the small range of very smallp. On the other
hand, Fig. 6~b! is the caseM /H510 with the lines showing
the power spectra forHR50.1, 0.5, 0.7, and 0.9. For
M /H@1, we can apply the discussion given in Sec. IV A
around Eq.~4.2!. There we have seen that the spectrum do
not differ much from the case of the Bunch-Davies vacuu
Thus the increase in the amplitude atp&1 will saturate as
M /H→`. In both Figs. 6~a! and 6~b!, all the lines rapidly
approaches unity atp@1, which corresponds to the
Harrison-Zel’dovich spectrum, in accordance with our e
pectation.

FIG. 5. A schematic picture ofU(j) in Eq. ~2.19! for a two-field
model with thin-wall approximation.
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Next we turn to the discrete spectrum. Again the mode
function is readily solved by means of the associated Leg
endre function. Thus eigenvalue probem reduces to Eq
~2.40! with aL andbL given in terms of the junction condi-
tion at tC5t0 as

aL5
„~Pm8

2L ,Pn8
2L

!…

„~Pm8
2L ,Pm8

L
!…
U tC5t0

, bL5
„~Pn8

2L ,Pm8
L

!…

„~Pm8
2L ,Pm8

L
!…
U tC5t0

.

~4.15!

It is instructive to show an analytically solvable example
of this eigenvalue problem. Let us consider the cas
M252H2 (m850) andm250 (n851). In this case, the
associated Legendre functions are expressed in terms of
ementary functions:

P0
6L~z!5

1

G~17L!S z11

z21D
6L/2

,

P1
6L~z!5

z7L

G~27L!S z11

z21D
6L/2

, ~4.16!

Also, Eq. ~2.40! reduces simply tobL50; hence, from Eq.
~4.15!,

„~P1
2L ,P0

L!…50. ~4.17!

FIG. 6. The power spectra of curvature perturbations due to th
continuous modes. The real line, the long dashed line, the sho
dashed line, and the dotted line are, respectively, forHR50.1,
0.5, 0.7, and 0.9, for~a! M /H52 and~b! M /H510.
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This is easily solved to give

L5
2x01A22x0

2

2
, ~4.18!

wherex05sint05A12(HR)2. This result shows thatL be-
comes larger as the wall radius increases.

For generalM2, we need numerical evaluation. Sinc
0,L<1 in the exact de Sitter case with the upper lim
attained whenm2→0, we expect any introduction of finite
mass outside the wall will reduceL to a value less than
unity. Hence we look for an eigenvalue in the rang
0,L,1. Figure 7 showsL as a function ofHR for several
values ofM2 whenm250. One seesL becomes smaller as
M2 becomes larger or as the wall radius becomes smal
But the de Sitter supercurvature mode exists for any w
radius as long asM2,2H2. On the other hand, for
M2.2H2, the de Sitter supercurvature mode ceases to e
when the wall radius becomes smaller than a critical valu
Figure 8 shows the critical line on the (M /H,HR) plane on

FIG. 7. The eigenvalueL of the de Sitter supercurvature mod
as a function ofHR whereR is the wall radius. The three lines
from top to bottom, show the cases forM2/H255/4, 2, and 9/4,
whereM is the mass outside the bubble.

FIG. 8. The critical line on which the de Sitter supercurvatu
mode disappears on the (M /H,HR) plane. The supercurvature
mode exists in the region below the line.
e
it

e

ler.
all

xist
e.

which the supercurvature mode disappears. The de Sitter
percurvature mode exists below the line.

This property of the supercurvature mode can be unde
stood in analogy with the quantum mechanics described b
fore. As the wall radius decreases, the position of the bubb
wall j0 moves right in Fig. 5 of the potentialU(j). Also, as
the massM increases, the potential barrier outside the bubb
wall j,j0 becomes higher. These make it difficult to form a
bound state. We note thatU(j) has the deepest valley when
the massM is zero. This situation corresponds to the cas
when we assume the Bunch-Davies vacuum state inside
bubble and when the supercurvature mode contributes e
tremely @5#.

Now we show the results of numerical calculations of th
CMB anisotropy power spectruml ( l11)Cl in Fig. 9 for the
V050.1 universe withM2/H252 and the wall radii
HR50.3, 0.5, 0.7, and 0.9. The curves are normalized b
(3H2/5ḟB)

2. Here both continuous and discrete modes a
included. To compare the results with the previous ones@27–
30,5,13#, we plotted two dashed lines in the figure. The to
dashed curve is the result when the scalar field is in th
Bunch-Davies vacuum@5,13#, and the bottom dashed curve
is the one in the conformal vacuum@27–30#. All of the
curves lie between these two curves. We see the amplitu
becomes large as the wall radius increases, approaching
in the case of the Bunch-Davies vacuum. As described b
fore, the contribution of the supercurvature mode is most f
the Bunch-Davies vacuum and is least for the conform
vacuum. When the wall radius becomes large and the ma
becomes small, the contribution from the supercurvatu
mode becomes large, which explains the behavior of th
CMB power spectra in Fig. 9. We have also calculated th
CMB spectra for theV050.3 universe. The results have
turned out to be almost independent of the model paramete
In fact, if only Cl

(C) is taken into account, the difference
between the Bunch-Davies vacuum and the conform
vacuum is only a few percent even forV050.1 @5#. Thus the
differences are dominantly due to the de Sitter supercurv

e
,

re

FIG. 9. The CMB anisotropy power spectra in the open univers
with V050.1 predicted in two-field models. The lines are normal
ized by (3H2/5ḟB)

2. The top and the bottom curves are the result
when the scalar field is in the Bunch-Davies vacuum and the co
formal vacuum, respectively. For the other lines, the model param
eters areM2/H252 andHR50.9, 0.7, 0.5, and 0.3, from top to
bottom.
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ture modeCl
(S) , but its contribution rapidly becomes negli

gible as one increasesV0.

V. CONCLUSION

We have investigated in detail the quantum fluctuatio
and the resultant CMB anisotropies in two simple models
one-bubble open inflationary scenario. Before going into t
analysis of the specific models, we have extended the pre
ously developed formalism to investigate the quantum st
inside the nucleated bubble, and derived formulas for t
mode functions that take account of the effect of the tunn
ing described by the Coleman-De Luccia instanton. In t
main stream, we have assumed the potential energy dif
ence between the false and true vacua is small enough so
spacetime both inside and outside the bubble can be
scribed by de Sitter space with a single Hubble parame
H, but the results can be easily extended to more gene
cases.

A complete description of a quantum state requires
complete set of mode functions that are normalizable on
Cauchy surface of the whole spacetime. This brings ab
new sets of fluctuation modes that had not been conside
in most of the previous analyses of an open inflationary u
verse. In addition to the usual modes with continuous sp
trum, there are modes with discrete spectrum correspond
to the fluctuations on supercurvature scales. For both
continuous and discrete modes, we have obtained gen
formulas of the spectrum of the CMB anisotropies on larg
angular scales that result from the quantum fluctuations.

After these preparations, we have considered two sim
classes of one-bubble open inflationary models. One is
single field model with the potential as illustrated in Fig
1~a!, assuming that the mass square in the false vacu
M2, is much larger thanH2. The other is a two-field model
in which the false vacuum decay is mediated by a scalar fi
different from the inflaton inside the bubble and the inflato
is massive in the false vacuum through the coupling with t
tunneling field.

In the case of a single field model withM2@H2, there is
one discrete mode that represents fluctuations of the bub
wall. We have shown that there is no other discrete mode
this model. Thus we have considered the CMB anisotrop
due to the continuous modes and the wall fluctuation mo
As far as the contribution of the continuous modes to t
CMB anisotropies is concerned, we have found that it
approximately the same as in the case of the Bunch-Dav
vacuum or the conformal vacuum. Hence we have focus
on the wall fluctuation mode. The curvature perturbation d
to the wall fluctuation mode is notable. It is always present
this model and its amplitude is totally determined by the pa
of the potential that governs the tunneling but has nothing
do with the scalar field dynamics inside the nucleat
bubble. Since its amplitude is independent of the amplitu
of the curvature perturbation due to the continuous mod
its contribution to the CMB anisotropies gives rise to a
independent constraint on the model, just as the gravitatio
wave perturbation does to the usual inflation models. For
nately, the constraint turns out to be relatively weak. Thus
is possible to construct a model in which the effect of th
wall fluctuation mode can be neglected.
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Here we make the following remark. The wall fluctuation
mode has a peculiar property that curvature perturbation
induced by it are transverse traceless, hence it can be r
garded as a mode of tensor-type perturbations. This mea
that the perturbation of the scalar field might couple with the
gravitational wave perturbation for this mode when the de
grees of freedom of gravity are fully taken into account. Bu
we have not incorporated them in the present analysis. Thu
there remains a possibility that the final answer change
qualitatively. We hope to come back to this issue in the nea
future.

As for a two-field model, we have adopted the thin-wall
approximation and assumed the mass of the inflaton chang
such as the step function across the wall. Thus the model c
be parametrized by the mass in the false vacuumM , the
Hubble radiusH, and the wall radiusR. In this model, the
origin of the discrete mode is different from that in the single
field model. Since it originates from the spacetime structur
of de Sitter space, we have called it the de Sitter supercu
vature mode. The existence of the de Sitter supercurvatu
mode depends on the massM of the inflaton at the false
vacuum and on the radiusR of the bubble wall. It appears
when HR is large andM /H is small. For models with
M /H@1, the supercurvature mode disappears. Differen
from the wall fluctuation mode that appeared in the single
field model, the amplitude of spatial curvature perturbation
induced by this mode is determined by the scalar field dy
namics at the open inflationary stage inside the bubble, as
the case of the continuous modes.

We have then investigated the spectrum of CMB anisotro
pies on large-angular scales in this model. Though the spe
tra of the curvature perturbations due to the continuou
modes have different shapes on the curvature scale for d
ferent model parameters, we have found the resulting CM
power spectra do not significantly depend on the paramete
for V0*0.1. On the other hand, the parameter dependenc
appears clearly in the contribution of the de Sitter supercu
vature mode to the CMB spectrum. The effect of this mode
is appreciable when the wall radius is large (HR;1) and the
mass is small (M /H!1). The effect is to raise the ampli-
tudes of low multipoles atl&10 for models withV0&0.1. If
this mode contributes significantly, the predicted CMB
power spectra will contradict with COBE observations@13#.
However, for an open universe ofV0*0.3 as well as for
models with smallHR and largeM /H, the effect of the
supercurvature mode on the CMB anisotropies is practicall
negligible.

We comment on implications of our results to the large
scale structure formation. As all our open models predict th
Harrison-Zel’dovich spectrum on small scales, the differenc
can appear only from the normalization of the density per
turbations. However, the difference will be negligible if we
adopt the normalization scheme in terms of the likelihood
analysis using the COBE result@38#. This is because all the
models predict practically the same CMB power spectrum a
l*10.

In summary, we have presented a detailed analysis of th
quantum fluctuations in open universe in simple models o
the one-bubble inflationary scenario and the resulting CMB
anisotropies on large angular scales. We have found the
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exist ranges of model parameters that are consistent w
CMB observations. Thus the one-bubble inflationary sc
nario is a viable one for explaining the large-scale structu
of the universe and it certainly deserves further study. Th
are of course many issues left to be clarified in the futu
For example, consideration of the continuous gravitation
wave modes is definitely necessary. Analyses of more
phisticated models, such as several other two-field mod
proposed by Linde and Mezhlumian@6,7# are of particular
interest. Inclusion of the degrees of freedom of the gravi
tional perturbation in the formalism from the beginning is
difficult issue but should be done in order to gain a more fir
picture of the false vacuum decay and the subsequent ev
tion of the quantum state.
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APPENDIX A: DERIVATION OF THE EVOLUTION
EQUATION FOR RC

Here we derive the evolution equation forRc . We follow
the notation of Ref.@32# for the perturbation variables. Con
sider the general scalar harmonics on three-space with
vature constantK, which satisfy

~ D
~3!

1k2!Y50. ~A1!

The corresponding vector and tensor harmonics are defi
as

Yi52
1

k
Yu i , Yi j5

1

k2
Yu i j1

1

3
g i j Y, ~A2!

where the vertical bar denotes the covariant derivative w
respect to the three-metricg i j . In the notation of the presen
paper, we have setK521 andk25p211. Since we do not
have to fixK in the discussion below, we leave it arbitrar
and usek to denote the eigenvalue. Also, we suppress t
eigenvalue indexk for notational simplicity. We expand all
the perturbation variables in terms of these harmonics. S
cifically, the metric is expressed as

ds25a2$2~112AY!dh222BYidx
idh

1@~112HL!g i j12HTYi j #dx
idxj%, ~A3!

and the energy-momentum tensor is expressed as

T0052r~11dY!, Ti052~r1p!vYi ,

Ti j5p@~11pLY!d j
i1pTY

i
j #. ~A4!

The background equations are

S a8

a D 21K5
8pG

3
ra2, r813

a8

a
~r1p!50 , ~A5!
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where the prime denotes the derivative with respect toh.
Then the Einstein equations for scalar-type perturbations a
written as

dG0
0528pGrdY,

dG0
i58pG~r1p!~v2B!Yi , ~A6!

dGi
j58pG~ppLYg i j1ppTYi j !,

where the explicit expressions fordGm
n can be found in

Appendix D of Ref.@32#.
For our discussion, we need the (0,i ) component and the

traceless part of the (i , j ) component of the above equations
They give, respectively,

k
a8

a
A2kR81Ksg54pG~r1p!a2~v2B!, ~A7!

k2~A1R!2
1

a2
~a2ksg!8528pGpa2pT , ~A8!

whereR5HL1 1
3 HT and sg5k21HT82B. Expressing Eq.

~A7! on the Newtonian hypersurface~defined bysg50), for
which we haveA5C, R5F, v2B5V, we find

F85
a8

a
C24pG~r1p!a2

V

k
. ~A9!

Also, from Eq.~A8!, we obtain

C1F528pG
a2

k2
pP, ~A10!

whereP5pT is the gauge-invariant anisotropic stress pe
turbation.

Using the contracted Bianchi identities, which give th
energy-momentum conservation lawTm

n
;n50, one obtains

the equations for the matter variables. Here we only need t
m5 i component of it, i.e., the equation forV. It is given by
Eq. (4.7b)8 in Chapter II of@32#, which is

1

a S aVk D 8
5C1S, S:5

cs
2D1G

11w
2
2

3

k223K

k2
w

11w
P,

~A11!

wherecs
25p8/r8, w5p/r, G is the gauge-invariant entropy

perturbation, andD is the density perturbation on the comov-
ing hypersurface that is related to that on the Newtonia
hypersurfaceDs as

D5Ds13~11w!
a8

a

V

k
. ~A12!

Now from the gauge transformation property ofR, the
curvature perturbationRc on the comoving hypersurface
~defined byv2B50) is expressed in terms ofF andV as

Rc5F2
a8

a

V

k
. ~A13!

Then from Eqs.~A9! and ~A11!, we find
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Rc852K
V

k
2
a8

a
S. ~A14!

Taking the derivative of this equation and using Eq
~A10! and ~A11!, we finally obtain

Rc912
a8

a
Rc82KRc52F2S a8

a D 21K GS2S a8

a
SD 8

1
K

k2
8pGpa2P. ~A15!

We find the right-hand side of this equation vanishes if t
universe is matter dominated (p5cs

250). Furthermore, it is
known thatD5O@(ka/a8)2# on superhorizon scales@32#.
From this fact, one can easily deduce thatRc remains con-
stant on superhorizon scales ifG5P50. We also note that
from Eqs.~A13! and ~A14!, F can be expressed as

F5Rc2
1

K

a8

a SRc81
a8

a
SD . ~A16!

In particular, if S50 as in the case of a matter-dominate
universe, we have

F5Rc2
1

K

a8

a
Rc8. ~A17!

With K521, this is the relation we have used in the text

APPENDIX B: EQUIVALENCE OF TENSOR AND
SCALAR TREATMENTS FOR P2524

Here we show that the wall fluctuation mode can b
treated either as a tensor-type perturbation or a scalar-t
perturbation and prove the equivalence of the CMB anis
ropy formulas in both approaches.

In general, settingdT/T5Q, the perturbed collisionless
Boltzmann equation is written as

D

dl
Q5kAYig

i2SR82
1

3
ksgDY2ksgYi jg

ig j , ~B1!

whereD/dl denotes the Lagrange derivative along the lig
ray with l being the conformal affine parameter, andg i is
the directional cosine of the photon propagation vector. A
suming the universe is matter dominated, one hasA50 on
the comoving hypersurfacev2B50. Also, expressing Eq.
~A7! on the comoving hypersurface, one obtains

Rc85
K

k2
~ksg!c , ~B2!

where (ksg)c is ksg evaluated on the comoving hypersur
face. Using these facts, Eq.~B1! on the comoving hypersur-
face becomes

D

dl
Qc5

k223K

3k2
~ksg!cY2~ksg!cYi jg

ig j . ~B3!

In particular, for k253K that corresponds top25k2

21524 for K521, one has
s.

he

d

.

e
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s-

-

D

dl
Qc52~ksg!cYi jg

ig j523Rc8Yi jg
ig j . ~B4!

Noting thatYi j in this case is transverse traceless@11#, we
see this is equivalent to the tensor-type perturbation with th
metric perturbationHi j56RcYi j .

Now we go to the Newtonian slicing, in whichsg50, by
the transformationh→h1T. Then the gauge functionT is
determined from

05~ksg!c2k2T, ~B5!

which gives

T5
~ksg!c
k2

5
Rc8

K
. ~B6!

Let Qs denotes the temperature anisotropy on the Newtonia
hypersurface. The gauge transformation affects only th
monopole and dipole parts of the anisotropy. Then one find
Qs is related toQc as

Qs5Qc1
a8

a
TY1TYu ig

i . ~B7!

Inserting Eq.~B6! into this equation, we obtain

@Qc#hLSS

h0 5FQs2
a8

a

1

K
Rc8Y2

1

K
Rc8Yu ig

i G
hLSS

h0

, ~B8!

where@•••#hLSS

h0 denotes the difference between the quantity

evaluated ath0 andhLSS.
On the other hand, the equation forQs is obtained from

Eq. ~B1! by settingsg50 as

D

dl
Qs5FYu ig

i2F8Y5
D

dl
~FY!22F8Y, ~B9!

where we have used the factF1C50, which follows from
Eq. ~A10!. Combining Eqs.~B8! and ~B9!, we find

@Qc#hLSS

h0 5FF2
a8

a

1

K
Rc8Y2

1

K
Rc8Yu ig

i G
hLSS

h0

22E
hLSS

h0
F8Ydl. ~B10!

Noting that we have

F→
3

5
Rc ,

a8

a
Rc8→2

2

5
Rc , Rc8

→0 , ~B11!

in the limit h→0 ~with K521), the above equation reduces
to

@Qc#hLSS

h0 52
1

3
FYuLSS22E

hLSS

h0
F8Ydl

1~monopole1dipole!, ~B12!



y

-

he

s

e-

se
en-

54 5047QUANTUM FLUCTUATIONS AND CMB ANISOTROPIES . . .
for hLSS→0. This is just the formula to evaluate the CMB
anisotropies due to scalar-type perturbations@31#. Thus we
have proved the equivalence of the tensor and scalar
proaches to the CMB anisotropies whenp2524, i.e., for the
wall fluctuation mode.

APPENDIX C: ABSENCE OF THE DE SITTER
SUPERCURVATURE MODE

IN THE SINGLE FIELD MODEL

Here we show there exists no discrete mode other than
wall fluctuation mode in the single field model, provided th
wall thickness, i.e., the inverse mass scale of the potentia
much smaller than the Hubble radiusH21 as well as than the
wall radiusR. We consider the following simplified model in
which the potential in Eq.~2.18! takes the form

U~j!55
U I

cosh2j0
cosh2j

~j,j02«! ~ I!,

2U II ~j02«,j,j0! ~ II !,

U III ~j0,j,j01«! ~ III !,

2
2

cosh2j
~j01«,j,j01«! ~ IV !,

~C1!

whereU I :5(M2/H222)/cosh2j0 ~see Fig. 10!. We assume
U I , U II , U III@1, in accordance with the assumptio
M2/H2@1. We note thatj0 must be positive, sinceȧ is
negative inside the wall. We consider the solutionxp with
p5 iL, where 0,L<2. Then we may approximate the po
tential in ~I! by the constantU I . Further, for simplicity, we
setU I5U III . Then the solution takes the form,

FIG. 10. A simplified potentialU(j) for a single field model.
ap-

the
e
l, is

n

-

xL55
CIe

k~j2j0! ~ I!,

CII~e
ik~j2j0!1bIIe

2 ik~j2j0!! ~ II !,

CIII ~e
k~j2j0!1bIIIe

2k~j2j0!! ~ III !,

CIVe
2L~j2j0!~ tanhj1L! ~ IV !,

~C2!

where

k5AU I1L2, k5AU II2L2, ~C3!

andC’s andb’s are constants determined by the continuit
conditions ofxL anddxL /dj. In ~I!, we take only the grow-
ing solution (}ekj) because the contribution from the decay
ing solution (}e2kj) will be exponentially suppressed.

Solving the continuity condition ofd(lnxL)/dj at
j5j02« andj5j0, we findd(lnxL)/dj at j5j01« is cal-
culated from the left of the point to be

cL :5k
sin~2u2k«!ek«2sink«e2k«

sin~2u2k«!ek«1sink«e2k« , ~C4!

where

tanu5k/k. ~C5!

On the other hand, the same quantity is calculated from t
right of j01« to be

cR :52L1
1

cosh2~j01«!@ tanh~j01«!1L#
. ~C6!

Thus the continuity condition atj5j01« reduces to

cL5cR . ~C7!

This equation must be satisfied forL52 because we know
the wall fluctuation mode always exists. This condition give
one constraint on the model parametersU I ,U II , and «.
Therefore all of them cannot be chosen arbitrarily. This r
flects the fact thatM25V9(sB). Suppose we fixU I and
U II , or equivalently,k̃:5kuL52 and k̃:5kuL52. Then« is
determined from Eq.~C7! with L52. In order to find the
order of magnitude of«, we note that22,cR,23/2 when
L52, i.e,cR;1. Sincek@1, this implies the numerator in
cL must be small,

sin~2ũ2 k̃«!ek̃«2sink̃«e2 k̃«!1, ~C8!

where ũ5uuL52. Thus we find that«5O(1/k). Using the
above inequality, the denominator incL is evaluated for
L52 as

;2 sink̃«e2 k̃«, ~C9!

and is of order unity.
Now we show that no other discrete mode exists. Suppo

there existed another discrete mode. The next-largest eig
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value solution must have one node. Noting the constra
j0.0 andL.0, we can easily see that there would be
node in~IV !. Thus the solution must have a node in~II ! or
~III !. As we decreaseL from 2, becausexL must vanish at
j5j01« just before a node would first appear in~III !, cL
would diverge for some value ofL. However, the changes o
ints
no

f

k and k due to the variation ofL would be at most of
;(1/k̃) and ;(1/k̃), respectively, and accordingly the
change ofu would be also small. Hence there is no chance
that the denominator incL would vanish, which is a contra-
diction. Thus we conclude that there is no discrete mod
other than the wall fluctuation mode in this limiting case.
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