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Quantum fluctuations and CMB anisotropies in one-bubble open inflation models
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We first develop a method to calculate a complete set of mode functions that describe the quantum fluctua-
tions generated in one-bubble open inflation models. We consider two classes of models. One is a single scalar
field model proposed by Bucher, Goldhaber, and Turok and by us as an example of the open inflation scenario,
and the other is a two-field model such as the “supernatural” inflation proposed by Linde and Mezhlumian. In
both cases we assume the difference in the vacuum energy density between inside and outside the bubble is
negligible. There are two kinds of mode functions. One kind has the usual continuous spectrum and the other
has a discrete spectrum with characteristic wavelengths exceeding the spatial curvature scale. The latter can be
further divided into two classes in terms of its origin. One is called the de Sitter supercurvature mode, which
arises due to the global spacetime structure of de Sitter space, and the other is due to fluctuations of the bubble
wall. We calculate the spectrum of quantum fluctuations in these models and evaluate the resulting large
angular scale CMB anisotropies. We find there are ranges of model parameters that are consistent with
observed CMB anisotropiepS0556-282196)05320-9

PACS numbeps): 04.62+v, 98.80.Cq

I. INTRODUCTION two scalar field6,7], but the essential feature of the sce-

nario is the same as the former.
Motivated by observations that we may live in a low-  The interesting problem is the origin of fluctuations in this
density universd1—3], several authors have considered a®Pen mflatlonary_scenarlo. Followmg the usual picture th_at
possible scenario that realizes an open univefg<(1) in quantum fluctuations of the scalar field generate the initial

: : ; density perturbations, we need to investigate the quantum
B o A e of e sl il e bbbl s, Aot
, . , , , previous investigations, the open inflation scenario shows in-
verse ()o=1), this scenario predicts a universe with Spa-ieresting varieties of the fluctuations. The bubble nucleation
tially negative curvature. In this scenario, the nucleation of 8yrgcess can excite fluctuations of the scalar field and may
vacuum bubble plays an essential role. In general, the bubbigcrease the power of density fluctuations on the scale of
nucleation process is described by the bounce solution witspatial curvaturg¢10,11]. Also, it has been shown that pecu-
O(4) symmetry, which is a nontrivial classical solution of the liar discrete modes of fluctuations on the supercurvature
field equation in Euclidean spacetini8,9]. Then the ex- scale may exis{12] and contribute to cosmic microwave
panding bubble after nucleation is described by the classicdiackgroundCMB) anisotropies in an open univerg 13].
solution obtained by analytic continuation of the bounce soYery recently, generation of another type of supercurvature
lution to Lorentzian spacetime. Owing to thé4Dsymmetry perturbations that originate from the bubble wall perturba-
of the bounce solution, the expanding bubble has tf&1p tions hqs been discussgtll, 14,13,
L . In this paper, we develop a method to calculate these
symmetry. This implies that the system is homogeneous and_ . .. : ; - . .
varieties of fluctuations in the open inflationary universe and

isotropic on the hyperbolic time slicing inside the bubble andevaluate the power spectrum of the resulting CMB anisotro-

thfat the creation of one bubble can be regarded as the Crﬁies. In order to perform a detailed analysis of the power
ation of an open universe. , spectrum, it is necessary to specify the model to some extent.
To obtain a realistic model of an open universe, the flatyjere we consider two classes of models. One is a single
ness{},~1 and the homogeneity and isotropy of the uni-gcgjar field modelmodel A proposed by Bucher, Gold-
verse should be realized inside the bubble. This requirememMaper, and Turok4] and by ourselve$5]. The other is a
can be satisfied by assuming, for example, a scalar field withyo-field model(model B in which the false vacuum decay
a potential such as in the new inflation scenario but with aand inflation inside the bubble are governed by two different
high potential barrier before the slow-rolling inflationary scalar fields, such as the supernatural inflation proposed by
phase[4,5]. In addition, the high potential barrier keeps the Linde and Mezhlumiari7]. For simplicity, we assume the
bubble collision rate small; hence, the homogeneity and isotdifference in the vacuum energy density between inside and
ropy of the one-bubble universe is not disturbed by the otheoutside the bubble is negligible in both models. Our method
nucleated bubbles. Then the second inflation inside thés based on the formalism we developed previously for com-
bubble inflates the universe and explains the flatnesputing the mode functions during and after bubble nucleation
Qo~1. Linde and Mezhlumian have proposed anoffper- [16,17,13.
haps more naturpimodel of open inflation by introducing This paper is organized as follows. In Sec. Il we describe
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our method of calculating quantum fluctuations of the infla-
ton field. We assume that the reaction to the geometry can be V(O')
neglected; i.e., the nucleation occurs in the de Sitter space-
time background. Then, in Sec. Ill, we investigate the evo-
lution of fluctuations inside the bubble in an open inflation-
ary stage and derive the formulas for calculating the initial
perturbation spectrum of the open universe and the resulting
CMB anisotropies. In Sec. IV we evaluate the CMB
anisotropies in two simple models and examine their viabil-
ity. Section V is devoted to conclusions. We adopt the units
c=h=1.

II. FORMALISM

In this section, we describe our formalism for investigat-
ing quantum field fluctuations inside a bubble. Pioneering
work on the quantum state of a nucleating bubble was done
by Rubakov{18], Kandrup[19], and Vachaspati and Vilen-
kin [20]. Recently, we have developed a formalism to inves-
tigate the quantum state of a scalar field after false vacuum
decay based on the WKB wave function of a multidimen-
sional tunneling systeri6,21]. The formalism has been ap-
plied to the bubble nucleation that occurs on the Minkowski
background, and the spectrum of field fluctuations after the
decay has been studidd0,11. The basic formalism has
been extended to the case in which the bubble nucleation
occurs on the de Sitter spacetifdd’]. There the effect of the
nontrivial geometry of the instanton with gravity, i.e., the i
Coleman—De Luccia instantg@] was taken into account. At : >
that time, however, the appropriate set of the mode functions  (b) Or o]
for describing the initial vacuum state, which is expected to
be the Bunch-Davies vacuum due to the sufficient inflation FiG. 1. A schematic picture of the tunneling potential for the
before the tunneling, was not known. Thus there was a tectbne-bubble open inflationary scenari@) for a single field model
nical difficulty in applying our formalism. Recently, we have and (b) for a two-field model.
succeeded in describing the Bunch-Davies vacuum state in
the spatially open chaiftl2]. Thus this problem has been sical, spatially homogeneous part of the field andepre-
overcome. Combining the results in these two papersents the quantum fluctuations around this background. We
[17,12, we now have a tool to handle the quantum fluctua-neglect the quantum fluctuations of and denote its @)-
tions after tunneling that includes the effect of the geometrysymmetric background by . Because of the @) symme-
of the Coleman—De Luccia instanton similar to the case inry of the instantongyg is a function of only one coordinate,
the Minkowski backgroundi10]. say 7. In addition, we assumebg also respects the (@)

In the present paper, we consider simple open inflatiolsymmetry. Thus the model we have in mind is a two-field
models in which the geometry of the Coleman—De Lucciaone, with ¢z being constant atrz= o . Note that we can
instanton can be approximated by the pure de Sitter spaceonsider a single field model by identifyirgwith the quan-
time. That is, we consider the case in which the potentiatym fluctuations ofr and lettingU (o, ¢) = V" (o) ¢2/2.

energy difference between the two vacua of the tunneling wjith these assumptions, the action foreduces to
filed is small. We consider the action

1 1
1 S<p:f __gﬂyaugoav@__Mz(T)@z V_gd4X,

— MV _ _ 4 2 2

S J'{ 2g d,0d,0—=V(o)|J—gd'x 2.2
1 h
+ f ~ 59" 0,40,6-U(o,¢) |V-gd'x, 2 T

, . U .
where the potentiaV(o) is assumed to have the form as MAn)= (9¢2[UB(T)’¢B(T)]' 23

shown in Figs. (a), 1(b) to realize the false vacuum decay.

As we mentioned above, we take account of the effect oAs noted above, in the case of a single field moggj,and
gravity only as a curved background that is assumed to be d&1%(7) in the following discussion should be replaced by
Sitter space. We denote the valueooét the false vacuum by oy and (9?V/do?)[ og(7)], respectively.

o . The field ¢ is the inflaton in the nucleated bubble. We  Our formalism is summarized in the following. It is based
divide them into two parts a= g+ ¢. ¢y is the semiclas- on the WKB wave function that describes the tunneling de-
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cay in a multidimensional systefi6,17. The construction

of the wave function was originally developed by Gervais f

and Sakitg22]. The wave functional is written in terms of
the bounce solutiorg, which gives the semiclassical pic-
ture of the nucleation and expanding bubble, and a set of L
mode functions that describe the quantum fluctuatigren

the bounce solutiofl6]. The boundary condition for these
mode functions is determined from the fact that the wave
function describes the false vacuum statergt o . It then
turned out that the procedure to obtain the appropriate set of
mode functions is equivalent to finding out a complete set of
those that are regular in one hemisphere of the Euclideanized
de Sitter spacg¢17,12. That is, to find a complete set of
mode functiong that obey

(false vacuum)

[VAV ,— M?]uy(t,x) =0, (2.9 g

FIG. 2. Penrose diagram of the de Sitter space. The coordinates

in the Lorentzian region, and that are regular on thethat cover the regionR, L, andC are shown, respectively.

Im t<O0 hemisphere. Here, it is important to note that “a
complete set” means a set of all modes that are properly
normalized by the Klein-Gordon norms on a Cauchy surface
>, of spacetime:

te=i(r—m2) (tg=0),
rr=ip (rg=0),

te=7 (w2=tc=—7l2),
(2.9
<Ukvvk’>::_iszzugw}{vkavvk’_(&Vvk)vk’}:5kk’v re=i(p—ml2) (®>rg>—),

(2.5 _
t =i(—r—=/2) (1,=0),

where the bar denotes the complex conjugate. Once they are re=ip (r.=0).

obtained, the quantum fluctuations of the field are described i )
by the “vacuum state’|'¥'), such thati,|¥)=0 for anyk We find that each set of these coordinates covers three dis-

S e 1 tinct parts of the Lorentzian de Sitter spacetime, which we
where the fluctuating field is expressed as ) . .
g P call the regionR, C, andL (see Fig. 2 The metrics in these
three regions are given by

o= (v +oal), (2.6) dsi= —H2dt3+a?(tg)(dri+ sinkrgdQ?),
k
dsi=H 2dt2+aZ(tc)(—dré+costr.dQ?), (2.9

in the Heisenberg representation, wip and él being the dsf: —H*Zdtf+az(tL)(drf+sinr?rLdQZ),

annihilation and creation operators, respectively. Thus the

mode functionsv, play the role of the positive frequency respectively, where(t)=H ~!sinht. We assign the region

functions. L to be in the false vacuum sea and the redito describe
To write down the equation for the mode functions, wethe open universe inside the bubble.

introduce the coordinates in the de Sitter spacetime follow- The equation for the bounce in the Euclidean region is

ing Ref. [12]. The four-dimensional Euclidean de Sitter given by

space is a four-sphere. The metric is represented as )
H* d

a?é dr

do
aﬁd—f> —V'(0g)=0. (2.10

dst=H 2d72+aZ(7)[dp?+sirtpdQ?)], (2.7
The equation in the Lorentzian region is given by the ana-
Iytic continuation of the coordinates as specified in Egs.
where— 7/2<r<m/2, 0<p<r, andag(7)=H 'cosr. The (2.8). The fluctuation fieldp obeys, in the Euclidean region,
mode functions are required to be regular on the
0=<p=m/2 hemisphere. 1 J ad J _ 1 L2— M2(7) |@=0
The coordinate systems in the Lorentzian de Sitter space 53; IH 1) "Eg(H 17 EE e
are obtained by analytic continuation as (2.11
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where where
2 2
1 J ) J |_(2) _ M H=2
e S el | e 212 V(o= "gostrE @19

This resembles the Schiimger equation with the potential
U(&) and the energf = p?. Thus finding possible values of
p is equivalent to solving the eigenvalue problem of the
above equation. Sindd(¢) —0 at é— *«, the spectrum of

and Lfl is the Laplacian on a unit two-sphere.
Setting (,D=aE(T)_l)(p(T)fp|(p)Y|m(Q), the equations
for x, andf, become, respectively,

2 d p2 M2 modes is continuous fop?=0. On the other hand, if
1—x2 2 gt T2 T2 iz Xe=0 M?<2H? for some interval of, the potential has a valley
( ) d 1 H2 Xp 1 .
X and some discrete modes that correspond to bound states

(213 may appear fop2= — A2<0. In fact, it has been shown that
wherex=sinr and there exists a discrete eigenvalue &f in two different
' simple cases. One is a mode that appears when we consider

1 9/ . d I(1+ a scalar field with a constant small mass\(2H?) on the de
" Sidp 9p sinfp — p + TI +(p?+1) |fp=0 Sitter spacetimg12]. Its origin is intrinsic to the spacetime

(2.14 structure of the de Sitter universe. As long as the volume

with M2<2H? is large enough, an analogous mode is ex-

The requirement that the mode functions be regular apected to exist in general. Let us call it the de Sitter super-

p=r_=rg=0 fixes the form off ,, to be[12] curvature modeé.The other is the mode that appears when
we consider the fluctuations of the tunneling field it$&l].

I'ip+I+1) p 1 It describes the fluctuation of the wall. Since it turns out that
foi(r)= ——Pj,_1jz(cosir) the analysis of the wall fluctuation mode can be simplified
F(ip+1) /sintr . . .
compared with the other discrete modes, below we consider
2 T(-ip+1) d the continuous modes, the de Sitter supercurvature mode,
=(-1) (=i +I+l)°erd(coshr)' and the wall fluctuation mode separately in sequence. For
P simplicity, we assume that is constant in the regionR
sinpr andL and set
(sinhr)’ e m? in R,
MP={ (2.20
wherer =ip in the Euclidean region. ThE-function factor M“ in L,
in front is attached so that the fun_ction‘rémm(r,(_l) in the following discussion.
:=Tfpi(r)Yim(£2) become properly normalized harmonics on
the hyperbolic slices in the regidR or L: A. Continuous modes
o — We first consider the continuous spectrum mode functions
JO drsmher dQYpim(r, Q)Y (r,Q) of p?>0. For these modes, it has been shown that the Klein-
Gordon norms can be evaluated by the sum of those on the
=8(p—p') S Sy - (2.16 hyperbolic slices on the regio®® andL [12]. Since in the

regionsR andL, M? is supposed to be constagt, is given
As we have noted before, a complete set of mode funchy an associated Legendre funct@{f 12) or P, 1/2(2)
tions should be properly normalized on a Cauchy surfaceyijth »=/9/4— M?/H2. To construct the normalized mode

Therefore we consider the mode functions in the redion  functions, we begin with the following mode functions in the
since it is the region in which complete Cauchy surfacesegionsR andL:

exist. It should be noted thd, play the role of the positive
frequency functions there. Then the remaining tasks(&re R) _ R)
to find the possible spectrum pfthat may give finite Klein- uplm m (tR)Ypim(rr, 1),
Gordon norms an@?) to properly normalize the mode func-
tions if they are normalizable. L) _ w

To accomplish the first task, we now consider the equa- uplm a(t, a(t,) Xp (t)Ypim(rL, ), (2.23)
tion for x, (2.13. In the regionC, the equation fory, re-
mains the same becausg=r. Introducing the conformal where
coordinatet by the relationx= sinT=tank¢, the metric in the
regionC becomes

The spatial harmonics behave }i(g,m(r)oce’r for p2>0. As
ds’= aé(f)(—dré+d§2+ costrcdQ?), (2.1 r=1 corresponds to the scale of spatial curvature, fluctuations de-
scribed by the harmonics with?>>0 represent those that decay

whereag= (H cosh¥) ™ and Eq.(2.13 is rewritten as exponentially on scales larger than the curvature scale. In contrast,
P harmonics withp?= — A2<0 behave a¥ ,;,<e* "V and, hence,
describe fluctuations over scales larger than the curvature scale
——+U =pxp, 2.1
Ez (f)}Xp P"Xp (2.18 [23,24]. The name “supercurvature” originates from this fact.
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(R)(t) Plp(ZR) Zg=Cosltg, [(x1x2) 1 =[(x1.x2) 1P +[(x1. 21", (2.32

(2.22 which gives the contribution of the functiog, to the total

X ip _
(t)=P,(z), 2z =cosh, Klein-Gordon norm. Then we have

with v’ = /9/4—m?/H?—1/2 andu’'=9/4—M 2[HZ-1/2.

4
The norms of these functions are given by Ky =[(xp.xp)]= ~ e~ ™sinitrp(1+X),
o
dX(R) d
LY xR =i(ZZ= D) x5 = X 4
p > =[] eTsintPmpayBy,
2
= —sinhmrp, (2.33
m . B
X X Ko i=[(x-p.xp)l= ;e”"sinhzwpap,ep,
[ X1 B =iz - )( R S H
4 .
2 = —pox-pl= ;eWpSInhzﬂ'p(l—l-X),
= ;sinhrrp. (2.23

and
If we analytically continueX(R) to the regionL by solving 4 2
Eq.(2.18 in the regionC, x,, (R) will be expressed in terms of K, _|?= (—sinhzwp) X(1+X). (2.39
a linear combination of{" andX(L) Hence we consider the m

mode function To find the orthonormalized mode functions, we must find

a matrix M, that diagonalizes the matfix,, (oo’

(R) — (L) (L)
Xp=Xp =Xt BpXp - .24 =+,-). It can be chosen as
From the property of the analytic continuatiph2] and M,
the reality of the Eq(2.18), there exists a symmetry i
;(';R):e X(RF))’ —K_4 Kis—=Ns
—)_ W) (2 23 _ \/|K+7|2+(K++_)\+)2 \/|K+7|2+(K++_)\+)2
Xp e X p’ . K K ’
TR T
in the regionC. Then we obtain UK P+ (K s —n)2 Ko P+ (Kas—n_)2
ap=e2a_,, B,=B_,. (2.26 (2.39

- : where\ . are the eigenvalues &€,
Further, defining the Wronskian by

1
dv du No=z[(Ki i +K_ )= (Ko —K__)?+4|K, _|?].
((up)):= (227 2
Yae  agv (2.39
a, and B, are expressed as Note that the matriX . is Hermitian with positive eigen-
R R (L values, as it should be. Then the orthonormalized mode func-
(X X)) (X)) tions are given by

=— —, 2.2
DT GU AT PTGy 2

and we have
Xprxa)) = (X X)) Vpg=m(M0+Xp+Ma—X—p)- (2.37

= (€™~ B (XS X)) (2.29

Upolm™ V Yplmv

B. de Sitter supercurvature mode

Also from the analytic continuation of E¢2.23 we obtain Next we consider the discrete mode that arises due to the

—R) (L) 23 spacetime structure of de Sitter space. As mentioned above
((Xp Xp )= (( ’Xp ). (2:39 we consider the wall perturbation mode separately later. For

Thus we find
= |,3p|2: eZWP| ap|2— 1. (2.3) 2Instead of allowing to have the range »<p<, we restrict it

in the range &p< but double the degrees of freedom with
Now we define o==*1.
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convenience, we sgt=iA and look for a possible value of y,,.(rc,tc,Q)
A. When there is no bubble wall, it has been shown that

there arises a mode with=1v’" (v'=/9/4—m?/H?-1/2) 1 t )PilAilﬁz(i sinhrc) @)
when v’ >0 (m?<2H?) [12]. In the present case, because T ag(to)¥ate i coshre Im{22)
the wall is present and the mass changes fMrto m, such e c

a mode may or may not exist, depending on the function (2.38

M? even ifm?<2H?2.
In the regionC, we consider the solution of the form where we set the form of, as

ayPL,(sintc—i0)+ B\P, \(sintc—i0)  (tc——m/2),

N 2.3
P (sintc—i0)+ y,P)(sintc—i0) (tc—m/2), 239

XA—

near both boundaries of the regi@n The regularity condi- In particular, by analytic continuation to the regiBn(inside
tion att.=— /2 is that the mode function should be lessthe bubbl¢, we obtain the de Sitter supercurvature mode
singular than {c+ 7/2) 1, hencey,— 0. Using the asymp- functions in the open universe as

totic behavior ofP%(z) atz— — 1 [25], this requires the ratio

of B, to a, to be 1 P;*(coshtg)

vAlm(tR!rR!Q): \/N_A H—lsinhtR yAlm(rRiQ)l

STA 1+ A+ ) T(A—p')a,. (2.40 (249

AT p
where
Similarly, the regularity condition at-= 7/2 demands that AT+ DI (—A+I+1)
v, should vanish: Vaim:= \/ 5
=0. 2.4
A (247 y P74 coshrg) () (2.6
Then we need to solve the E.18 with the above bound- Jsinhrg Imi=e '

ary conditions in both ends. Thus the problem is to find the
eigenvalueA and the corresponding normalized eigenmode.
This eigenvalue problem will be solved for a simple model
in Sec. IV. Recently, several authors have discussed the effect of the
Now let us consider the normalization of the supercurvabubble wall fluctuationg11,14,13. The wall fluctuation
ture mode. The Klein-Gordon inner products of the modemode appears when we consider the quantum flucuations of

C. Wall fluctuation mode

functionsu,,,, are calculated in the regio@ as the tunneling field itself, which is the case of a single field
model. As mentioned beforeM? should be regarded as
(Uaim(re te, Q) Uup (e te, ) V*(ag) in this case.
Since the wall fluctuation mode is one of the discrete
i - 2 modes, the formula obtained in the previous subsection is
B |cosﬁrcﬁxd§aEf df applicable. However, besides the fact that the origin of the
discrete spectrum is different from the de Sitter supercurva-
<1y J Upirme dUpim u ture mode, the corresponding solution of E218), x\, can
AIM e e are A be written down formally in this special case. Hence we
consider this mode separately in this subsection.
2Ny It is well known that the time derivative of the bounce

= O 0, ’y 2.4 . . e . .
FA+I+D)I(—A+I1+1) I “mm (2.42 solution satisfies the equation of fluctuations, related to the
zero mode problerf26]. In fact, we can derive the following

where equation directly from Eq(2.10:
NA'ZJ,wd§|XA| : (2.43 ggE_EaEd_tc_gé_ (os) a0 (2.47

This is just the equation of fluctuations, i.e., E8.11) with

the eigenvalue of —L? given by 1+p?=-3, or

A?=—p?=4. Then if they have finite Klein-Gordon norms,

U AIm= \/F(A+| DI A+I+1)UA| . (2.44  they will contribute to the quantum fluctuations inside the
" 2Nj " bubble.

Thus, the normalized mode functiong,,, are given by
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Therefore let us consider the mode functions I1. INITIAL FLUCTUATIONS IN OPEN UNIVERSE AND
LARGE-ANGLE CMB ANISOTROPIES
dog  Pap Y4isinhre) . .
_ B 312 c YO 24 Once we have the mode functions that describe the quan-
Uw,im d(H T - (). (2.48 . . o .

(H™"tc) Vi coshr¢ tum state of the inflaton field inside the bubble, we can in-

vestigate the evolution of resulting cosmological perturba-
Calculating the Klein-Gordon norms, we obtain tions in the open inflationary stage and the subsequent stage
of the open Friedmann universe, which can be compared

2Nw with observational data. In this section, we first consider the

(Uw,im »Uw, |7 m’) = m%ﬁmmu (2.49

initial condition of the cosmological perturbations generated
during the open inflationary stage, based on the results ob-
where tained in the previous section. Since the inflaton is almost
massless during the open inflationary stage inside the bubble,

2_ += |dog we setm?=0. Then we relate it to the spectrum of large-

N J_m dg dé angular scale CMB anisotropies. Below, we work in the re-
(2.50  gion R that describes the open universe inside the bubble.

We write the line element as

+ /2 2

d(TB
dtc ag
/2

dtc

NW:HJ

Note that Ny, has the dimension of (mags)As one can o o
readily see, the Klein-Gordon norms vanish fer0 and 1. ds°=—dt*+a*(t) y;dxdx =a(7)[ - dp?+ y;dx dx],
One may think that they give a divergent contribution to the CHY
fluctuations. However, they simply represent the tempora\INherea is the scale factort is the cosmological proper
and spatial translations of the origin of the bounce solution,. ~3" —. .

i.e., they are the zero modes. Hence we do not have to ta&gne, 7 is the conformal time, and

these modes into accou#6]. On the other hand, the modes yiidxXdxi =dr2+ sintrd Q2 (3.2

with 1=2 do have finite Klein-Gordon norms and they con- ! ' '

tribute to the fluctuationg11]. We note that in the exact At the open inflationary stage, the scale factor is assumed to
thin-wall limit, the amplitude of these modes are nonzerope given by

only on the bubble wall and they do not contribute to the

fluctuations in the open univergesgion R). It is crucially sinh Ht 1
important thatog is not exactly zero off the wall, however a= H Hsinh(—7)’ 3.3
small it may be. Then the normalized mode functions are
given by whereH is sufficiently slowly varying in time.
Just after the bubble is formed, or in the spacetime region
_ rd+3)ra-1) close to the boundary light cone of the regRnthe universe
Uw,im= 2Ny Uw,im - (2.59) is dominated by the curvature term, or the matter energy

density can be neglected. Hence the metric perturbations in-
Analytically continuing the mode functions into the region duced by the quantum fluctuations of the scalar field are

R, we have in the open universe negligible. On the other hand, there exists a time slicing on
which the effect of metric perturbations is minimal, called

o dog o the flat hypersurfaces. This implies that the fluctuations de-

v rp,tr, Q) =— = Vr=2m(rr,Q), i i i i .
w.im(rr:tr, ) N, d(H 1tR)yA 2im(r'r,(}) scribed by the mode functions we have obtained in the pre

(2.5 vious section may be regarded as those on the flat hypersur-
' faces. It is easy to show that the curvature perturbation on the

where Y,,, has been defined in Eq2.46. An important comoving hypersurfac&, is related to the scalar field per-

property of this mode is that the second-rank tensor conturbation ¢ on the flat hypersurface aR.=—a/(adg)¢
structed from the spatial harmonic function happens to bé27]. Assuming the perturbation is adiabatfe, completely
transverse tracele§d1]. Furthermore, the gauge-invariant determines the metric and matter perturbations of scalar type
density perturbatiom\, which represents the density pertur- (i-€., those that can be expanded in terms of scalar harmonics
bation on the comoving hypersurface, vanishes identicallyon the three-spageAn important property ofR. is that it
Thus it may be viewed as a kind of gravitational wave mode'emains constant on superhorizon scales as long as the per-
[14]. However, in order to treat all the modes on an equafurbation is adiabatic, irrespective of the background spatial
footing, we do not take that view here. curvature of the universgsee Appendix A Hence what we

To summarize this section, we have discussed the thre@eed to evaluate is the amplitude®f for each mode when
distinct kinds of mode functions that describe quantum flucthe mode passes the horizon scale. AssungiggandH are
tuations in open inflation models. The first one is the usuakufficiently slowly varying at the inflationary stage, we may
modes having continuous spectrum. The other two are modeéken evaluatéR, at the limit »—0 (a—=). Thus we have
with discrete spectra: the de Sitter supercurvature mode and
the wall fluctuation mode. These quantum fluctuations give
rise to cosmological metric perturbations that will be re- 3Up to now we have used the nondimensional time normalized by
flected in observational quantities. We will discuss this asthe Hubble parameter. From now on, we recover the dimension of
pect of the quantum fluctuations in the next section. time int.
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H The amplitude of the wall fluctuation mode is given from
Re=——¢, n—0. (3.9 Eq. (2.52. We identify o with ¢g and note that
b8 dog/dtg=H"1og. Then
The spectrum of the curvature perturbation on the comov- H2
ing hypersurfaces is given as follows. Expanding the curva- |Rwl?=-—. (3.12
ture perturbation by modes Nw

o One sees that it is quite different from those of the other
Re=2, f dpRpeYpim(r, )+ > RaVam(r,Q) modes; it contains no information of how the field evolves at
olm JO Im . . . .
the open inflationary stage but is completely determined by
the part of the potential that governs the false vacuum decay.
+|E Rwdaim(r,€2), (3.9 Now we consider the CMB anisotropies predicted in our
m open inflation models using the initial conditions obtained in

the power spectrum of the curvature perturbation is given byhe above. The power spectra of CMB anisotropies in open
|Rp|21=20|73p0|2 for continuous modes, bR, |2 for de models have been well investigated in the case where the

Sitter supercurvature mode, and |2 for wall fluctua- scalar field is in the conformal vacuuf27-3Q or in the

tion mode. Bunch-Davies vacuurfb,13]. Since we expect the difference
First we consider the continuous modes. From E287) between the present models and the previously investigated
and (3.4), we find after some algebra, models arises only on large angular scales, we focus on low
multipoles (<20) of the spectrum. Concerning the wall
H2\ 2 cothmp fluctuation mode, as we have mentioned, it has a very inter-
IRp|2= —) 21ﬁ(l—Y), (3.6 esting property that the perturbation in the spatial curvature
b8 P(1+p7) induced by it is transverse tracelggdl]. Hence it may be
Where regarded as a tensor mod_e perturb_ation. Garriga_l has_ investi-
gated the evolution of this mode in the open inflationary
T'(2—ip) e ™8 universe from this point of viewl14]. On the other hand,
= - P _+cec.. (3.7  Garcia-Bellido has analyzed the wall fluctuation mode by
I'(2+ip) 2 coshrpa, regarding it as a scalar perturbatipts]. In this paper, in

of the Bunch-Davies vacuum stdt&,13] and the conformal

usual scalar perturbation except for the fact that —4.
vacuum stat¢27,28. In these case we have P P p

For completeness, a proof that both approaches are equiva-

H2\ 2 thor lent is given in Appendix B.
IR |ED: — CO—pz, (3.9 From the perturbed Einstein equations, the evolution
P ¢g) 2P(1+p7) equation ofR, becomes
,_(H) 1 R4 2RI KR.=S 3.1
Rele=| =) ZpaTp (3.9 CH2 T REKR=S, (3.13
B

respectively. The result of our mod.6) differs from that wrlere the prime denotes the conformal time derivative
of the Bunch-Davies one in the last factor<Y), which ~K=—1 for an open universe and the source tefroan be
represents the effect of the mass difference outside the waff€9l€cted if the universe is matter dominatede Appendix
However, asY—0 for p—, the spectra in all the three - SiNCER.=const at the very early stage of the hot Fried-
cases behave 4&,|21/p for p>1, which shows the per- Mmann universe, the relevant solution of it is the so-called
p 1 . . . . .
turbations have the Harrison-Zel'dovich spectrum on scale§roWing mode solution. Here we considgg on sufficiently
smaller than the curvature scale, irrespective of the choice of"9€ Scales that it reenters the horizon after the universe
vacuum. The difference appears on and above the curvatuRgcomes matter dominated. In this case, the line element is
scale, and it may become important when considering largedescribed by Eq.(3.1) with the scale factora(z)

angular scale CMB anisotropies. «coshy —1 (>0). Then we obtain
As for the de Sitter supercurvature mode, the spectral am- .
plitude is given from Eq(2.45 as R.= _3(77 sinhy—2 costy+2) (3.14)
¢ el (coshy—1)? ' '
H2\? 1
| RAI?= ¢— N T2+ A2 (3.10  whereR.; is the initial amplitude determined at the infla-
B

tionary stage of the universe, the spectrum of which is given
by Egs.(3.6), (3.10, and(3.12.

Given the solution(3.14), we can compute the tempera-
ture fluctuations in the open universe in the gauge-invariant

We note that, in the Bunch-Davies vacuum limit, we have
A—1 andN,—1/2, which gives

H2\ 21 formalism [31]. For this purpose, we consider the gauge-
|RA|§D=(.— —. (3.1 invariant variablest and ® that describe the gravitational
bs) 2 potential perturbation and the curvature perturbation, respec-



54

tively, on Newtonian slicing32]. We have¥ +® =0 in the
present case. Theh is related toR, as(see Appendix A

!

a
©=Re+ —Re, (3.15
which gives
O(7)=R,iF(n), (3.16
where
3(sintt— 37 sinhy+4 coshy—4)
F(p)= . (3.17

(coshyp—1)3

Note that we haved = R, in the limit —0. In the case of
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FIG. 3. A schematic picture of? as a function ofr (=t¢) in

p’=—4, the same result has been obtained by Garciate case of a single field model.

Bellido [15]. The potential perturbation gives rise to CMB

anisotropies on large angular scales. Writing the temperaturig the Hubble constant normalized by 100 km/sec Mpc and

autocorrelation function in the form
1
C(0)=EZ (214+1)C,P,(cosh), (3.18
|

the multipole momen€, is given by a sum of contributions

from the continuous modes and the two supercurvaturg .o < of—10%

modes:

c,=CcO+c®+cW, (3.19

h=1 from observations. In addition, coa,_rg5=1+((251
—1)/(1+z g9 wherez_gsis the redshift of the last scatter-
ing surface (-1000). Therefore the above formula f@y
becomes inaccurate fd2y<0.1. We should also note that
we have puty <=0 for simplicity in actual calculations.
Hence our results presented in the next section may have
for (,~0.1.

Before closing this section, we mention that the formal-
ism developed in the previous two sections can be extended
to more general cases. Namely, as long as the redroasd

Assuming that the conformal time of the last scattering surt- &€ described by de Sitter space, it is not necessary to have

face is sufficiently smally s<<1, but the universe is well
matter dominated by that time, we obtdBi]

o 1
c{¢= fo dp|Ry|? §F(77Lss)fp|(770— 7Ls9

0 dF(7n") L 2
2[ a7 Teilmo—n)dy (3.20
7Lss 7’
(S) 2 1 3
& :|RA| §F(7ILss)fA|(7lo_77Lss)
n dF(7')~ , , 2
ZJ ?fm(ﬂo—ﬂ)dﬂ , (3.2))
nss 97
(W) 2 1 3
Ci :|RW| §F(ULs§f2|(ﬂo_ﬁLs§
70 dF(7')~ , ) 2
2 [ S (o= |, (322
7LSs 77

where 7, is the conformal time at preserft,, is the function
given in Eq.(2.15 and

~ \/F(A+I+1)F(—A+I+1) P! b (coshrg)

A 2 Vsinhrg
(3.23

the same Hubble parameter for these two regions.H gt
andH, denote the Hubble parameters in the regioandL,
respectively. Then it is easily recognized thattdls appear-

ing in the formulas in the present section should be identified
with Hr . Further, in this case, as the scale factor is different
from that of de Sitter space in the regi@ but the formulas
written in terms of the conformal coordinagedo not contain

H explicitly except for Eq(2.18), what we need to do is to
replace the potential in E¢2.18 by

1 d2a
U(f)—>a—E¥2E—1+a§M2,

(3.29
whereé is now defined in such a way that the metric in the
region C takes the form2.17) with ag(£) being a general
function of &.

IV. SPECTRUM OF THE CMB ANISOTROPIES
PREDICTED BY SOME MODELS

In this section, we apply our formulas obtained in Secs. Il
and Ill to simple models of the open inflation scenario.

A. Single field model

We first consider a model with a single scalar field with
the potential as shown in Fig(d. The tunneling field be-
comes the inflaton field after the tunneling. Thus the mass
square of the fluctuation fieldp is given by M?(7)

Here a word of caution is appropriate. The redshift of the=V"(og). Its typical shape is rather complicated, as shown

matter-radiation equal time &,~4.2x 10*Qh? whereh

in Fig. 3.
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Because of the complexity 0¥1%(7), the analysis of this gionsR andL are exponentially suppressed as long as we
model is difficult in general. However, the mass of the infla-consider the modes with?<M?/H?, which is the case of
ton in the false vacuunM must be large compared with ~ OUr present interest. So one of the two modes corresponding

in order that the tunneling is not dominated by the Hawking-to the samep can be set to vanish gt~ —< and the other at

. . : &—+o, Then automatically they are orthogonal to each
Moss instantori33] as explamed In R_e[.?].ZFurt?ermore, a5 Gther. Since the field equatiof2.18 is real in the region
there are many subtletiéim models withM?~H?, we leave C, we can choose the mode that vanishes in the regitm

it as a future problem. Here we assué>H?. ~ bereal in the regio€. Then analytically continuing it to the
Then the potential barrier between the two asymptotic reregion R, the normalized mode that does not vanish in the
gions at{— * is so high that the coherence between re- regionR can be written as

Jr Zzt+ 1)

V;)R): 2a(tg)sinhmp zg—1
0 (in L),

Zrt1

—ip
Tpl2+i 6, in R),
1 } (in R)

e

p
+e 2719 (zo+ip)

p(zZg—ip) Zn— 4.1

where we set=0 andd,, is a real constant that depends on now assuming that12>H?2, it will not be too crude to adopt
the detail of the potential. Using this mode function, thethe thin-wall approximation. Then one can evaluafg as
amplitude ofR, is evaluated as

d(TB 2
, [H? ? coshrp+ 0523, 42 NW:HdeaE(T)(F) ~RS,
[Rel*=| — 2p(1+p?)sinhap’ 4.2
dog)?
Comparing this result with the spectra for the Bunch-Davies Sl:=Hf dr d—TB) ' 4.3

vacuum(3.8) and the conformal vacuur8.9), we find that
the difference between the present spectrummq,dﬁD is no

. whereR is the radius of the wall an8, is the tension of the
greater than the difference betwefR,|3p and |R,|%. As +

larified in5]. the eff ¢ the diff b h wall. If one uses the reduced Euclidean action written in
was clarified in[5], the effect of the difference etwewerj the terms ofR, S,, the potential energy density inside the bubble
Bunch-Davies vacuum and the conformal vacuunO(ﬁ IS vy (true vacuumand outside the bubbM, (false vacuur

always negligibly small independent 6f,. Thus as far as R is determined in terms of the other parameters by mini-
the continuous modes are concerned, we do not have t0 pefizing the action a§37,15

form further calculations.
Next we consider the discrete mode. As mentioned above, 3s
the wall fluctuation mode is always present when we con- R= 1 , (4.4
sider the flucuations of the tunneling field itself. Then the \/(AV+ 6wGS§)2+ 24wGVRS§
guestion is whether there exists another discrete mode like
the de Sitter supercurvature mode. The answer is no as longhereAV =V, —Vg. Then the final result for the amplitude
asM?>H?2. The reason why is explained in Appendix C. In of the wall fluctuation mode is
the general case, we do not have an answer to this quéstion,

but we do not discuss the de Sitter supercurvature mode anﬁ/ , 8mGVg 5 .

further. We focus on the wall fluctuation mode below. Rwl|*= 9 V(AV+67GS))%+ 247G VRS
The wall thickness is roughly evaluated by the inverse of !

the curvature scale of the potential & *. Since we are H2

= gnog (HE—H&+ (47GS))7+ (87GSHR),

4For example, the formalism developed[it7] that we used as a (4.9
given result in the present paper is not applicable to the case in
which the wall is spreading so broadly that we cannot approximatdvhereH; andHg are the Hubble parameters in the regions
og(7) by o for 7<0. WhenM2~H?2, the wall necessarily be- L and R, respectively. Note that although we assumed

comes broad. (H_—Hg)/Hg<1, the differenceH, —Hgr may not be neg-
SWe note an issue related to this problem. One can show that thégible in the determination of the amplitude of the wall fluc-
nonexistence of another discrete mode in the rangecp?<0isa  tuation mode.
sufficient condition for the uniqueness of the negative eigenvalue Now we consider the CMB power spectrum due to the
mode in the one-loop order calculation of the tunneling rate in thewvall fluctuation mode. Figure 4 shows the power spectrum of
path integral approacf84—36. But the uniqueness has not been CMB anisotropiesl (| +1)C|(W) for various values of(},.
proved for the tunneling on the de Sitter background as far as w@he curves are normalized B?/RS;. As discussed before,
know. the amplitude of the CMB anisotropies due to the wall fluc-
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0.1 : We assume requiremefit) is satisfied and investigate the
conditions on the potential parameters derived from require-
ments(2) and (3).
_IQ;__QQ From the slow roll equation of motion, we have
(H*/RS)) IH2/&rg| =8 HRVR/|V' (o) | =87 ¢HR/Mp;, Where 7=1.
Therefore
0.01

RW®> AV \? Hg |2
CERTe: 1+ewes§ + 2GS, - 4.9

Since the left-hand side of this must be smaller than unity,

0.001 . we should have
10 20
] AV 5 Hg 5
= <
67TG§~§ and 27r681~§ . (4.10

FIG. 4. The power spectrum of CMB anisotropies due to the

wall fluctuation mode for various values 6,. The curves are  sjng the factS;~V,/M and AV<V, , we find the first
normalized byH?/(S;R) and they show, from the top right to the jnequality is automatically satisfied if the second one is,
bottom left, the cases d®,=0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. which is reexpressed as

tuation mode are determined by the nature of the bubble 2

S ! . . . V, HgRMMp5, 4 [Hi\ M
wall. This gives an independent constraint on open inflation R = | — | —. (4.1
models. In particular, the spectrum of CMB anisotropies Voo 2ad®Ve 37 H HL

rises sharply towards lower multipoles for open models with o o i ) )

Q,=0.2. Hence if this mode dominates over the other modaf this condition is satisfied, we also find requiremet is

contributions, such single field models will be severely ex-ulfilled. Thus if the potential barrier is high enough, ap-

cluded by the Cosmic Background Exploré€OBE) data proximately of O(M/H )XV, , the wall fluctuation mode

[38]. This issue has been recently investigated by Garrigé("i” become harmless. Apart from the intrinsic unnaturalness

[14] and Garcia-Bellidd15). of a single field model, it is not difficult to construct models
To carry on with further analysis, we have to specify thethat satisfy the above constraint. Hence we conclude that a

model in more details. Let us parametrize the potentiafingle field model remains sitill viable.

V(o) by M2, V,, V, and AV as shown in Fig. (8). We

assum(a\/(a)«M‘,l,,, M <M p, whereMy, is the Planck mass, B. Two-field model

A!/,VL<1 and the potential has the unique curvature scale eyt we consider a two-field model in which the tunnel-

M< in the regionC. Then, as the wall thickness is essentlallying| field o and the inflaton in the nucleated bubhjeare

given byM ™%, we have different. The supernatural inflation model proposed by
v Linde and Mezhlumianh7] is included in this category. We
_b_ (4.6) consider the following situation. Before tunneling is at the

M minimum of the potentialp; with massM. During the tun-
neling, the potential of¢ changes to an almost flat but
slightly declined one, i.eY;#0 andVy~0. Thus¢, is no
longer the minimum of the potential in the nucleated bubble.

tion. . . L
There are three requirements to be satisfigiiThe tun- Therefore<_ﬁ begins the slow rolling to the new minimum of
neling must be dominated not by the Hawking-Moss instan:[he potential. : : .
In the following calculation, we assume that the gradient

ton but by the Coleman-De Luccia instanton. This requires o . .
thatM2>4H2. (2) The tunneling ratd’ must be suppressed of t.he potenual is s0 small that we can neglect its effect in
enough in order to avoid the fluctuations caused by theestlmatmg the amplitude of the fluctuations though the
bubble collisions. This implies thés,9] condition under which this neglection is justified is not clear.

Then our present formalism can be applied. For simplicity,

S].N

Further we assum\e!(o)~)\M‘F‘,|(a/M 2" (n=1,2,...) on
the right of the barrier, wher&<1 as in the chaotic infla-

277728‘1‘ we also assume that the thin wall approximation is valid. We
—In(T/H* ~ TN R (4.7  denote the radius of bubble wall By=ag(7)=H ~lcosr,.

Then the bubble wall trajectory in the Lorentzian region is

(3) Finally, the wall fluctuation mode must not dominate described by the hypersurfatg= 7o=const in the region

R.. Noting that the contribution of the continuous modes to~"
its power in the logarithmic interval op at p>1 is
(R2y:=1im, .| R,|?p*/(27?), this requires

Under these assumptions, we can evaluate the fluctuation
spectrum inside the bubble by applying the formulas ob-
tained in Sec. lll withM? given by

0 (7'0<tc< 7T/2),

M2 (= 72<tc<Tm).

2 2 _ HR ’
|Rwl*=(R¢)= . (4.8 M2= (4.12

2mog
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2 T T T
U(é:) HR=01 —
4 05—
15 0.7 i
e, 09 ———
2
‘sz‘ ’ _
T
‘RP‘BD I
50 é 0.5 l- : ,“‘;
0 L 1 I
0 0.5 1 1.5 2
@ p
FIG. 5. A schematic picture df (¢) in Eq.(2.19 for a two-field 2 T " y
model with thin-wall approximation. HR=01 —
05 —
The form of the potential(¢) in Eq. (2.18) in this case is 15 ¢ 8~; T
illustrated in Fig. 5. Thus the parameters of the present open IR |2 )
inflationary model are the mass of the inflaton field in the P2 1
false vacuumM, the wall radiusR, and the Hubble param- ‘Rp‘BD l
eterH.
First we consider the continuous spectrum. As the mass is 05 r
constant both outside and inside the wall, we find that the
solution of the Eq(2.18 becomes 0
0

XP(te)=PP(sintc—i0) (mo<tc<ml2),

X5 (1) =PP(sintc—i0) (- m/2<tc<r).
(4.13 FIG. 6. The power spectra of curvature perturbations due to the
continuous modes. The real line, the long dashed line, the short

The coefficientsa, and 3, are determined by the junction dashed line, and the dotted line are, respectively, Het=0.1,

condition at the wall in the regio@: 0.5,0.7, and 0.9, fofa) M/H=2 and(b) M/H=10.
XéR) X(fL;), X(pL) Next we turn to the discrete spectrum. Again the mode
ap function is readily solved by means of the associated Leg-
dy® [ = dy®™ dy (4.19 endre function. Thus eigenvalue probem reduces to Eg.
P L. Bp (2.40 with @, and B, given in terms of the junction condi-
d¢ d¢ d¢ tion att.= 74 as
l\r/];:;pedagg ?hpe%l/\ﬁln by EQs.(2.28 can be now easily ((P;,/\’P;A)) , ((P;A'PQ’))
o AN="T "R oAy |te=170 PAT 5K 5A Ny |te="0"
We have numerically evaluated the spectrum of the con- (P, P, |fe7™ (P, Py))|leT™
tinuous modes. Figure 6 shows the power spectriRof? (4.19

for various values oM andR, normalized by the Bunch-
Davies vacuum spectrum. Figuréabshows the case when
the mass outside the bubble N/H=2. The lines are the
power spectra for the wall raditR=0.1, 0.5, 0.7, and 0.9.
One sees the spectra for all the wall radii are almost the sa
and they coincide with that of the Bunch-Davies vacuum

It is instructive to show an analytically solvable example
of this eigenvalue problem. Let us consider the case
M2=2H? (u'=0) andm?=0 (v'=1). In this case, the

nfissociated Legendre functions are expressed in terms of el-
ementary functions:

except for the small range of very small On the other 1 241\ £AR2
hand, Fig. @) is the caséevi/H =10 with the lines showing pgA(z): S — ,
the power spectra foHR=0.1, 0.5, 0.7, and 0.9. For F(1=A)lz-1
M/H>1, we can apply the discussion given in Sec. IV A,

around Eq(4.2). There we have seen that the spectrum does FAL oy
i ; P (2)=

not differ much from the case of the Bunch-Davies vacuum.

Thus the increase in the amplitude@t 1 will saturate as _

M/H—o. In both Figs. €a) and @b), all the lines rapidly ~Also, Eq.(2.40 reduces simply tg3,=0; hence, from Eq.

approaches unity atp>1, which corresponds to the (4.19,

Harrison-Zel'dovich spectrum, in accordance with our ex- A A
pectation. (P1",Pg))=0. (4.17

ZF A [z+1)\ A2
, (4.19

T27A)\z—1
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1 ' 0.2 :

0.1

A o5 1 7+1¢

0 ' 0.02 :
0 0.5 1 2 10 20
HR /

. ) FIG. 9. The CMB anisotropy power spectra in the open universe
Fl(fz. 7.t'The f('e_:g;nvsluaRof “:E de Sllltterd_supe_lr_(;]ur\iﬁture lm"de with Q4=0.1 predicted in two-field models. The lines are normal-
farzn? tggcté)ork])o(:tom \Zhg\r; th(lasca:e\év?m;?leuzsém e2 ;Z g)js’ ized by (342/5053).2- The.top and the bottom curves are the results
whereM is the mas’s outside the bubble T ' when the scalar field is in the Bunch-Dawe_s vacuum and the con-
) formal vacuum, respectively. For the other lines, the model param-
eters areM?/H?=2 andHR=0.9, 0.7, 0.5, and 0.3, from top to

This is easily solved to give bottom.
A= —Xot\V2—Xg 41 which the supercurvature mode disappears. The de Sitter su-
N 2 k (4.18 percurvature mode exists below the line.

This property of the supercurvature mode can be under-
stood in analogy with the quantum mechanics described be-
fore. As the wall radius decreases, the position of the bubble
wall £, moves right in Fig. 5 of the potenti&dl (£). Also, as
the massdM increases, the potential barrier outside the bubble
wall £< &, becomes higher. These make it difficult to form a
bound state. We note thbk(¢) has the deepest valley when
the massM is zero. This situation corresponds to the case
when we assume the Bunch-Davies vacuum state inside the

0<A<1. Figure 7 shows\ as a function oHR for several ) ;10 ang when the supercurvature mode contributes ex-
values ofM< whenm“=0. One seed\ becomes smaller as tremely[5]

2 .
M* becomes _Iarger or as the wall radius pecomes smaller. Now we show the results of numerical calculations of the
Butl the de Sitter supercurvature mode exists for any WaleB anisotropy power spectrubgl +1)C, in Fig. 9 for the
radius as long asM?<2H?. On the other hand, for Q0=0.1 universe with M?/H2=2 and the wall radii

2 5 . .

M®>2H", the de Sitter supercurvature mode ceases to exig R=0.3, 0.5, 0.7, and 0.9. The curves are normalized by

when the wall radius becomes smaller than a critical value, =, " . )

Figure 8 shows the critical line on thé1{H,HR) plane on _(3H /S¢g)". Here both contlnuous_ and dlscrete modes are
included. To compare the results with the previous ¢8&s-

30,5,13, we plotted two dashed lines in the figure. The top

wherex,=sinm,=+/1— (HR)Z. This result shows that be-
comes larger as the wall radius increases.

For generalM?, we need numerical evaluation. Since
0<A=<1 in the exact de Sitter case with the upper limit
attained wherm?—0, we expect any introduction of finite
mass outside the wall will reduc& to a value less than
unity. Hence we look for an eigenvalue in the range

5 T dashed curve is the result when the scalar field is in the
Bunch-Davies vacuurf5,13], and the bottom dashed curve
4l i is the one in the conformal vacuuf27-3Q. All of the
No supercurvature mode curves lie between these two curves. We see the amplitude

becomes large as the wall radius increases, approaching that
in the case of the Bunch-Davies vacuum. As described be-
fore, the contribution of the supercurvature mode is most for
the Bunch-Davies vacuum and is least for the conformal
vacuum. When the wall radius becomes large and the mass

1F 1 becomes small, the contribution from the supercurvature

mode becomes large, which explains the behavior of the

0 . CMB power spectra in Fig. 9. We have also calculated the
0 0.5 1 CMB spectra for theQ),=0.3 universe. The results have

HR turned out to be almost independent of the model parameters.

In fact, if only C(°) is taken into account, the difference
FIG. 8. The critical line on which the de Sitter supercurvaturebetween the Bunch-Davies vacuum and the conformal
mode disappears on theMi{H,HR) plane. The supercurvature vacuum is only a few percent even fQp=0.1[5]. Thus the
mode exists in the region below the line. differences are dominantly due to the de Sitter supercurva-
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ture modeC(®, but its contribution rapidly becomes negli-  Here we make the following remark. The wall fluctuation
gible as one increasds,,. mode has a peculiar property that curvature perturbations
induced by it are transverse traceless, hence it can be re-
garded as a mode of tensor-type perturbations. This means
that the perturbation of the scalar field might couple with the

We have investigated in detail the quantum fluctuationggravitational wave perturbation for this mode when the de-
and the resultant CMB anisotropies in two simple models ofrees of freedom of gravity are fully taken into account. But
one-bubble open inflationary scenario. Before going into theve have not incorporated them in the present analysis. Thus
analysis of the specific models, we have extended the previhere remains a possibility that the final answer changes
ously developed formalism to investigate the quantum statqualitatively. We hope to come back to this issue in the near
inside the nucleated bubble, and derived formulas for thduture.
mode functions that take account of the effect of the tunnel- As for a two-field model, we have adopted the thin-wall
ing described by the Coleman-De Luccia instanton. In theapproximation and assumed the mass of the inflaton changes
main stream, we have assumed the potential energy diffesuch as the step function across the wall. Thus the model can
ence between the false and true vacua is small enough so thsd parametrized by the mass in the false vacudmthe
spacetime both inside and outside the bubble can be dgy pple radiusH, and the wall radiug. In this model, the
scribed by de Sitter space with a single Hubble parameteg igin of the discrete mode is different from that in the single
H, but the results can be easily extended to more genergly|q model. Since it originates from the spacetime structure
cases. - . of de Sitter space, we have called it the de Sitter supercur-

A complete description of a quantum state requires Yature mode. The existence of the de Sitter supercurvature

complete set of mode functions that are normalizable on a ode depends on the mabs of the inflaton at the false

Cauchy surface of the whole spacetime. This brings about .
new sets of fluctuation modes that had not been considerec44™M and on the radil of the bubble wall. It appears

in most of the previous analyses of an open inflationary uni¥¥én HR is large andM/H is small. For models with
verse. In addition to the usual modes with continuous spec¥/H>1, the supercurvature mode disappears. Different
trum, there are modes with discrete spectrum correspondingem the wall fluctuation mode that appeared in the single
to the fluctuations on supercurvature scales. For both théeld model, the amplitude of spatial curvature perturbations
continuous and discrete modes, we have obtained generdduced by this mode is determined by the scalar field dy-
formulas of the spectrum of the CMB anisotropies on large-namics at the open inflationary stage inside the bubble, as in
angular scales that result from the quantum fluctuations. the case of the continuous modes.

After these preparations, we have considered two simple We have then investigated the spectrum of CMB anisotro-
classes of one-bubble open inflationary models. One is fies on large-angular scales in this model. Though the spec-
single field model with the potential as illustrated in Fig.tra of the curvature perturbations due to the continuous
1(a), assuming that the mass square in the false vacuumodes have different shapes on the curvature scale for dif-
M2, is much larger thami?. The other is a two-field model ferent model parameters, we have found the resulting CMB
in which the false vacuum decay is mediated by a scalar fielfpower spectra do not significantly depend on the parameters
different from the inflaton inside the bubble and the inflatonfor ,=0.1. On the other hand, the parameter dependence
is massive in the false vacuum through the coupling with theappears clearly in the contribution of the de Sitter supercur-
tunneling field. vature mode to the CMB spectrum. The effect of this mode

In the case of a single field model wiM?>H?2, there is is appreciable when the wall radius is larg¢R~ 1) and the
one discrete mode that represents fluctuations of the bubbl®ass is small M/H<1). The effect is to raise the ampli-
wall. We have shown that there is no other discrete mode itudes of low multipoles dt< 10 for models with(2(,=<0.1. If
this model. Thus we have considered the CMB anisotropiethis mode contributes significantly, the predicted CMB
due to the continuous modes and the wall fluctuation modepower spectra will contradict with COBE observatidis].

As far as the contribution of the continuous modes to theéHowever, for an open universe 61,=0.3 as well as for
CMB anisotropies is concerned, we have found that it ismodels with smallHR and largeM/H, the effect of the
approximately the same as in the case of the Bunch-Daviesupercurvature mode on the CMB anisotropies is practically
vacuum or the conformal vacuum. Hence we have focusedegligible.

on the wall fluctuation mode. The curvature perturbation due We comment on implications of our results to the large-
to the wall fluctuation mode is notable. It is always present inscale structure formation. As all our open models predict the
this model and its amplitude is totally determined by the pariHarrison-Zel'dovich spectrum on small scales, the difference
of the potential that governs the tunneling but has nothing t@an appear only from the normalization of the density per-
do with the scalar field dynamics inside the nucleatedurbations. However, the difference will be negligible if we
bubble. Since its amplitude is independent of the amplitudedopt the normalization scheme in terms of the likelihood
of the curvature perturbation due to the continuous modesynalysis using the COBE res{8]. This is because all the

its contribution to the CMB anisotropies gives rise to anmodels predict practically the same CMB power spectrum at
independent constraint on the model, just as the gravitationdk= 10.

wave perturbation does to the usual inflation models. Fortu- In summary, we have presented a detailed analysis of the
nately, the constraint turns out to be relatively weak. Thus iguantum fluctuations in open universe in simple models of
is possible to construct a model in which the effect of thethe one-bubble inflationary scenario and the resulting CMB
wall fluctuation mode can be neglected. anisotropies on large angular scales. We have found there

V. CONCLUSION
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exist ranges of model parameters that are consistent witivhere the prime denotes the derivative with respectyto
CMB observations. Thus the one-bubble inflationary sceThen the Einstein equations for scalar-type perturbations are
nario is a viable one for explaining the large-scale structuravritten as

of the universe and it certainly deserves further study. There

are of course many issues left to be clarified in the future. 8G%=—8mGpsY,
For example, consideration of the continuous gravitational 0
wave modes is definitely necessary. Analyses of more so- 6G"=87G(p+p)(v—B)Yi, (A6)

phisticated models, such as several other two-field models
proposed by Linde and Mezhlumid®,7] are of particular
|_nterest. Inclu5|_on (.)f the degree_s of freedom of the_gra_v'tai/vhere the explicit expressions fatG#, can be found in
tional perturbation in the formalism from the beginning is a :

. . . : > “Appendix D of Ref[32].
difficult issue but should be done in order to gain a more firm For our discussion, we need theij0component and the

?'Cturf t?]f the faltse vatcutum decay and the subsequent e\’Ol‘tﬁ:lceless part of the (j) component of the above equations.
ion ot the quantum state. They give, respectively,

8G'j=8wG(pm Y yij+p7rYi),
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where R=H + 3 H; and 4= k~1H;—B. Expressing Eq.
APPENDIX A: DERIVATION OF THE EVOLUTION (A7) on the Newtonian hypersurfa¢eefined byag=0), for
EQUATION FOR R¢ which we haveA=v¥, R=®, v—B=V, we find
Here we derive the evolution equation f&,. We follow ,a Vv
the notation of Ref[32] for the perturbation variables. Con- b'=—V-4nG(p+plasy. (A9)
sider the general scalar harmonics on three-space with cur-
vature constank, which satisfy Also, from Eq.(A8), we obtain
(3) 5 a?
(A +k%)Y=0. (A1) V+@=-87G7pll, (A10)
The corresponding vector and tensor harmonics are defined . . i ) )
as wherell= 777 is the gauge-invariant anisotropic stress per-
turbation.
1 Using the contracted Bianchi identities, which give the
Yi== Vi Y=Yt §7’in. (A2)  energy-momentum conservation laly,”.,=0, one obtains

the equations for the matter variables. Here we only need the

where the vertical bar denotes the covariant derivative witht=i component of it, i.e., the equation fof It is given by

respect to the three-metrig; . In the notation of the present Ed. (4.0)" in Chapter I of[32], which is

paper, we have sé&=—1 andk?=p?+1. Since we do not

have to fixK in the discussion below, we leave it arbitrary 1 Y =w+s s=

and usek to denote the eigenvalue. Also, we suppress the a\ K T 14w 3 K* 1+w

eigenvalue index for notational simplicity. We expand all (A11)

the perturbation variables in terms of these harmonics. Spe- 2, . : .

cifically, the metric is expressed as Wherecsf p'lp’, w= p/p, T is the gauge-.lnvarlant entropy
perturbation, and is the density perturbation on the comov-

ds?=a%{—(1+2AY)d5?—2BY,dxdy ing hypersurface that is related to that on the Newtonian

hypersurface\g as

av)’ CA+T 2Kk2-3K w

+[(1+2H|_)'yij+2H-|-Yij]dxidxj}' (A3)

!

a
and the energy-momentum tensor is expressed as A=As+3(1+wW) ¢ (A12)
T%=—p(1+8Y), To=—(p+puY, Now from the gauge transformation property Bf the
, , _ curvature perturbatioriR. on the comoving hypersurface
T'i=pl(1+m.Y) 6+ mrY]. (Ad)  (defined byv —B=0) is expressed in terms df andV as
The background equations are a'v
Rc:q)— g E (A13)
) k=8"C e, praa? ~0, (5
o) TRK=—gras P37 (pHp)=0, (A5 1o from Eqgs(A9) and (A11), we find
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a’ D o o
Ré:_K__ES' (Al14) J('Dc:_(ko'g)chj Y'Y ==3R Y vy (B4)

Taking the derivative of this equation and using Egs.Noting thatY;; in this case is transverse tracel§44], we
(A10) and(A11), we finally obtain see this is equivalent to the tensor-type perturbation with the
metric perturbatiorH;; = 6R.Y;; .

’ 1\ 2 ’ ’
RZ+2a—Rg— KRe=— Z(a_ +K|s— a_S Now we go to the Newtonian slicing, in whiak,=0, by
a a a the transformatiory— 7+ T. Then the gauge functiom is
K determined from
+ 87Gpalll. Al5
Pk (A15) 0= (korg)o— k2T, (B5)
We find the right-hand side of this equation vanishes if theyhich gives
universe is matter dominateqb(zcizO). Furthermore, it is
known thatA=0O[(ka/a’)?] on superhorizon scald82]. (kog)e Re
From this fact, one can easily deduce tiat remains con- TR T K- (B6)
stant on superhorizon scalesli=I1=0. We also note that
from Egs.(A13) and(A14), ¢ can be expressed as Let © denotes the temperature anisotropy on the Newtonian
1a , hypersurface. The gauge transformation affects only the
O=R.— — hall RL+ a_S _ (A1e)  monopole and dipole parts of the anisotropy. Then one finds
Ka a 0, is related to®, as
In particular, if S=0 as in the case of a matter-dominated a’ A
universe, we have 0,=0.+ ETYJF TYiv'. (B7)
O=R.— K ERé' (A17) Inserting Eq.(B6) into this equation, we obtain
With K 1, this is the relation we have used in the text ’I 1 L | "
=-1, . 0 _— R > YAV » 14 A
[O.] s 0 a KRCY KRCYW , (B8

7ss
APPENDIX B: EQUIVALENCE OF TENSOR AND

SCALAR TREATMENTS FOR P?=—4 where][ - - ~]ZSSS denotes the difference between the quantity

Here we show that the wall fluctuation mode can beevaluated atyy and 7 ss.
treated either as a tensor-type perturbation or a scalar-type On the other hand, the equation @ is obtained from
perturbation and prove the equivalence of the CMB anisotEq. (B1) by settingoy=0 as
ropy formulas in both approaches.

In general, settinggT/T=©, the perturbed collisionless b i ., D ,
Boltzmann equation is written as JGS_QDYIW Y= ﬁ((DY)_Z(D Y, (B9

where we have used the fabt+ ¥ =0, which follows from

_ I
Y—kogYiy'yl, (B Eqg. (A10). Combining Eqs(B8) and(B9), we find

D |
a®:kAYi7_ R —§k0'g

whereD/d\ denotes the Lagrange derivative along the light . a'1l_, 1, 7o
ray with A being the conformal affine parameter, apdis [Oc]yl | P~ 5 kReY ™ ReYiY
the directional cosine of the photon propagation vector. As- Mss
suming the universe is matter dominated, one AaD on -
the comoving hypersurface—B=0. Also, expressing Eq. —Zf O'Yd\. (B10)
(A7) on the comoving hypersurface, one obtains Lss
. K Noting that we have

Re= F(kog)c , (B2)

P > a,R’ 272 RO B11
where koy). is koy evaluated on the comoving hypersur- Tglter JiteT T gt ¢ (B1D
face. Using these facts, EB1) on the comoving hypersur-
face becomes in the limit — 0 (with K= —1), the above equation reduces

to
D k?—3K

0= (kog)Y = (ko) Y'Y (B3) 1 ’
dx 3k [O:]7° :—§‘DY|LSS_2J KIZN

. 2 2 2 Lss LSS
In particular, for k*=3K that corresponds top =k

—1=—4 for K=—1, one has + (monopolet-dipole), (B12)
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U(é) C,e (¢~ %) (1),
A Cy(eké=%) 4 b, e kE%) (1), ©2
= _ k(f— C2
/‘\ XAT) cy(erE @by e E @) i,
Cye Mém&(tanke+A) (IV),
/UI(= UIII)
where
I NIV
M (I} IV) k=\U A% k=\U-A?, (C3)
cl e andC’s andb’s are constants determined by the continuity
’q‘ conditions ofy, anddy, /d¢. In (1), we take only the grow-
—— ing solution (<e*¢) because the contribution from the decay-
éo ing solution (<e™“¢) will be exponentially suppressed.
Solving the continuity condition ofd(Iny,)/d¢ at
E=¢p—¢e and &= &y, we findd(Iny,)/dé at é= &+ ¢ is cal-
culated from the left of the point to be
sin(20—ke)e"®—sinkge™ ¢
L-— K - = ’ (C4)
U sin(20—ke)e*®+sinkee™ *®
—Vn
where
FIG. 10. A simplified potential (&) for a single field model.
tand= «/k. (CH

for 5 55— 0. This is just the formula to evaluate the CMB

anisotropies due to scalar-type perturbatipds]. Thus we  On the other hand, the same quantity is calculated from the
have proved the equivalence of the tensor and scalar apight of £;+ e to be

proaches to the CMB anisotropies wheh= — 4, i.e., for the

wall fluctuation mode. 1

=—A+ . (C6
VR costt(&+e)[tanh(&p+e)+ A (Ce)
APPENDIX C: ABSENCE OF THE DE SITTER
SUPERCURVATURE MODE - .
=&+
IN THE SINGLE FIELD MODEL Thus the continuity condition &= £,+ ¢ reduces to
Here we show there exists no discrete mode other than the Y=g, (C7)

wall fluctuation mode in the single field model, provided the
wall thickness, i.e., the inverse mass scale of the potential,
much smaller than the Hubble radids * as well as than the
wall radiusR. We consider the following simplified model in
which the potential in Eq(2.18 takes the form

I‘T‘his equation must be satisfied far=2 because we know
the wall fluctuation mode always exists. This condition gives
one constraint on the model parametdig,U,, and «.
Therefore all of them cannot be chosen arbitrarily. This re-

. flects the fact thatM?=V"(og). Suppose we fixJ, and
cosltté, =

| (£<&o—e) (1), U, , or equivalently,x:=«k|,—, andk:=k|,_,. Thene is
costté determined from Eq(C7) with A=2. In order to find the
—-U, (Eo—e<E<E) (), order of magnitude of, we note that-2<yg<<—3/2 when
Ué)= A=2,i.e,yg~1. Sincex>1, this implies the numerator in
Uy (bo<é<bote) (D), I s bl P
2 - - _
~ CosHéE (ote<é<éote) (IV), sin(26—ke)e ®—sinkee™ **<1, (C8)
\

(Cy ~ . .
where 0= 6|, _,. Thus we find thatt=0(1/«). Using the

above inequality, the denominator i, is evaluated for

whereU, :=(M?/H?—2)/cosRé, (see Fig. 10 We assume A=2 as

U,, U,, U,>1, in accordance with the assumption

M?/H?>1. We note thatf, must be positive, sinca is ~2 sifkse™ <€, (C9)
negative inside the wall. We consider the solutign with

p=iA, where 6<A=<2. Then we may approximate the po- and is of order unity.

tential in (1) by the constanU,. Further, for simplicity, we Now we show that no other discrete mode exists. Suppose
setU,=U,, . Then the solution takes the form, there existed another discrete mode. The next-largest eigen-
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value solution must have one node. Noting the constraintk and « due to the variation ofA would be at most of
£0>0 andA>0, we can easily see that there would be no~(1/k) and ~(1/x), respectively, and accordingly the
node in(IV). Thus the solution must have a node(ih or  change ofg would be also small. Hence there is no chance
(). As we decreasd from 2, becauseg, must vanish at that the denominator igy, would vanish, which is a contra-
&= ¢y+ e just before a node would first appear (il ), diction. Thus we conclude that there is no discrete mode
would diverge for some value df. However, the changes of other than the wall fluctuation mode in this limiting case.
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