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Based on a quantum dissipation theory of open systems, we present a theoretical study of slow dynamics of
magnetization for the ordered state of the molecule-based magnetic complex �Mn�hfac�2BNOH� composed
from antiferromagnetically coupled ferrimagnetic �5/2 ,1� spin chains. Experimental investigations of the
magnetization process in pulsed fields have shown that this compound exhibits a metamagnetic AF-FI transi-
tion at a critical field in the order of the interchain coupling. A strong frequency dependence for the ac
susceptibility has been revealed in the vicinity of the AF-FI transition and was associated with an AF-FI
interface kink motion. We model these processes by a field-driven domain-wall motion along the field-
unfavorable chains correlated with a dissipation effect due to a magnetic system-bath coupling. The calculated
longitudinal magnetization has a two-step relaxation after the field is switched off and are found in good
agreement with the experiment. The relaxation time determined from the imaginary part of the model ac
susceptibility agrees qualitatively with that found from the remanent magnetization data.
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I. INTRODUCTION

Magnetic resonance effects due to switching of spins by a
time-dependent magnetic field and relaxation measurements
are widely used to study magnetic materials. They may give
information about the main mechanism of the magnetization
change in samples. When a magnetic field varies, magnetic
materials which exhibit a hysteresis present a characteristic
time dependence of the magnetization due to the multiplicity
of available metastable states. In many relaxing magnetic
systems the time dependence can be described by M =M0
−S ln t, where S is the magnetic viscosity of the system. The
viscosity is a consequence of thermal activation of irrevers-
ible domain processes such as the domain wall motion and
the nucleation of domains of the reverse magnetization. The
logarithmic change with time M � ln t is predicted if there is
a distribution of energy barriers or time-dependent activation
energies present in the material. A simple Debye relaxation
M =M0 exp�−t /�� arises from a single-barrier activation
mechanism.1,2 The barriers associated with the relaxation
process are of two types. The intrinsic barriers arising, for
example, from the magnetic anisotropy contribute to the re-
versal of magnetization, whereas the barriers due to the pin-
ning of domain walls are generally attributed to the defects
in the materials. Both types of barriers are responsible for the
pronounced metastability �hysteresis phenomena� of mag-
netic systems.

Recent efforts in synthetic chemistry provide a number of
low-dimensional magnetic systems that show the slow relax-
ation of the magnetization, for example, this effect was
found in one-dimensional �1D� anisotropic ferrimagnetic
chains named as single chain magnets �SCM�.3 The slow
magnetic relaxation in the paramagnetic phase has been ob-
served with ac susceptibility and SQUID magnetometry
measurements in the real quasi-1D ferrimagnetic compound

�Co�hfac�2NITPhOMe�.4 An Arrhenius behavior with the ac-
tivation energy ��152 K, which is of order of the intrac-
hain exchange interaction between alternating Co2+ and or-
ganic NITPhOMe spins, has been observed for 10 decades of
relaxation time and found to be consistent with the Glauber
model.5 The relaxation was also studied by monitoring the
decay of the longitudinal magnetization, which was found to
be exponential. The slow relaxation is governed by the
uniaxial anisotropy seen by each spin on the chain and mag-
netic correlations between the spins.

Recently, the ac susceptibility and magnetization in steady
and pulsed fields have been measured for the molecule-based
magnetic complexes �Mn�hfac�2BNOR� �R=H,Cl� with fer-
romagnetically �Cl� or antiferromagnetically �H� ordered fer-
rimagnetic chains composed of S=1 �biradical� and S=5/2
�Mn2+�.6 It has been found that the change in magnetization
in these compounds under application of a magnetic field
below the three-dimensional �3D� ordering temperature �TN
=5.5 K �H� and TC=4.8 K �Cl�� is a slow dynamical process
which presumably originates from their strong one-
dimensional character, i.e., because of the weakness of the
interchain exchange �J� interaction in comparison with intra-
chain �J�� one �J /J��10−3�. The thermally activated change
of the remanent magnetization in �Mn�hfac�2BNOH� after
switching off the field looks quite different from that in
�Mn�hfac�2BNOCl�. Figure 1 displays time dependence of
the remanent magnetization at 1.5 K for these compounds
for comparison. The large value of the relaxation times of
both processes and their existence well below T3D lead to the
suggestion that these relaxation processes are related to the
development and motion of magnetic domains either with a
wide distribution of energy barriers �R=Cl� or a single en-
ergy barrier height �R=H�.

Indeed, the change of the magnetization of
�Mn�hfac�2BNOH� with time during and after application of
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a pulsed field is controlled by the direct AF-FI and inverse
FI-AF transitions. For the applied pulse with a duration of
20 ms and amplitude of 4 T, the direct AF-FI transition is
completed within a time of less than 2 ms. The high rate of
the direct transition is due to the high value of the magnetic
field in comparison with the critical field of the AF-FI tran-
sition �0.03 T in steady fields and about 0.2 T in pulsed
fields�. The large relaxation time ��500 ms� after removal of
the pulsed field implies very slow dynamics of the magneti-
zation during the inverse transition from the field-induced FI
state to the initial AF state in zero field. The slow dynamics
of the magnetization in this material was suggested to be
controlled by the domain wall motion along the separate
field-unfavorable chains.6 The energy barrier which hampers
the reversal of the magnetization is originated by the antifer-
romagnetic interchain coupling that is reminiscent of the mo-
lecular clusters or single cluster magnet �SCM� where the
energy barrier is due to the magnetic anisotropy.

The fast relaxation during the field change and the slow
relaxation due to the transitions between the different meta-
stable states involves the release of the magnetic energy
which cause local heating. The process of energy losses in
�Mn�hfac�2BNOH� is likely due to the motion of domain
boundaries within the chains and is connected with the coer-
cetivity losses and the radiation of phonons. Finally, the en-
ergy of the magnetic system is transformed into the phonon
energy, that is, into the heat. Due to the magnetic system-

bath coupling we may explain the experiments under the
condition of isothermal relaxation, and, as a consequence, in
an assumption that self-heating in the magnetic relaxation
does not destroy 3D order.

II. PRELIMINARIES

The choice of a proper formalism of the quantum dissipa-
tion theory depends essentially on the real physical media
and real process of the energy transfer. The interaction be-
tween a quantum system and its environment is the physical
factor responsible for the relaxation process in the system.
Such a relaxation process can be provided by the environ-
ment if it acts as a bath. This arises the fundamental problem
of description of the relaxation dynamics for a system simul-
taneously interacting with a heat bath and a time-dependent
driving field.

The question now arises as to what is a nature of heat
bath. We note that the spin system in the external dc bias
field in ac-susceptibility measurements or in the pulsed field
in magnetization measurements consists of two weakly inter-
acting parts, i.e., field-favorable �S1� and field-unfavorable
�S2� chains. Then, two distinct models for the bath are as-
sumed. The first one identifies the bath with a crystal lattice
�phonon bath�. In this case, the energy levels of the bath are
populated according to the conventional Gibbs distribution.
When a rapidly varying strong pulsed field causes the AF-FI
transition the spin temperature of the S2 part becomes much
higher than the lattice and the S1 part temperatures �satura-
tion process�. After the field is off the whole spin quantum
system is driven to the thermal equilibrium characterized by
Gibbs’s density matrix owing to energy exchange between
the S1, S2 systems and the heat bath. Following the funda-
mental Bogoliubov’s procedure of the contraction of descrip-
tion with the accompanying hierarchy of relaxation times7

we may conclude that the weak interchain interactions are
related to long-time relaxation process with the characteristic
time equal to the characteristic time scale of the experiment
1–103 ms. It is assumed that another interaction, including
usual spin-phonon ones, are strong enough and have associ-
ated correlation effects with shorter relaxation times, i.e.,
much smaller than the duration of the experiment. We should
eliminate them as irrelevant information to characterize the
macrostate. Apparently, a possible approach to this irrevers-
ible process may be performed within the nonequilibrium
statistical operator �NSO� method largely elaborated by
Zubarev and co-workers,8,9 which is a large generalization of
the Gibbs’s theory. The results of the NSO analyses will be
given by us elsewhere.

The second model of the bath is based on the suggestion
that the relaxation process is related with the development
and motion of magnetic domains in the field-unfavorable
chains S2 in a driving field. The recent study of the behavior
of domain walls in Ising ferromagnetic chains yields the fol-
lowing picture.10 In zero field the interface between two do-
mains of oppositely oriented spins, a kink, moves left or
right with the probability p=1/2, which may be interpreted
as a random walk. Two such kinks can meet via diffusive
motion. Once there is only one spin left between two kinks

FIG. 1. Time dependence of the magnetization of
�Mn�hfac�2BNOCl� �a� and �Mn�hfac�2BNOH� �b� compounds at
1.5 K after application of the 5 T pulsed field. The logarithmic
curve in the first case results from a relaxation mechanism that
involves a distribution of energy barriers. The exponential decrease
for the second case arises from a single-barrier activation
mechanism.
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they annihilate with probability p�1 in the next time step
and the two domains merge. Switching on the external driv-
ing field causes domains with spins parallel to the field to
start growing. The kinks at the end of such a cluster move
outwards one step during each time step where the field re-
mains favorable. If the field switches into an unfavorable
direction, the cluster shrinks again �breathing behavior�. In
this process the small domains and the kinks associated with
them will be eliminated rapidly. In the Ising model a domain
wall width is simply the lattice constant. On the contrary, the
domain walls in the Heisenberg chains are much wider due
to the strong exchange interactions involved. The closest
analog of such a wall is the soliton in a magnetic chain.11

Therefore another model, appropriate for this domain wall
relaxation dynamics, may be applied for the bath. In this
model a quantum system �the field-unfavorable chain with a
kink� interacts weakly with the environment, i.e., with the
nearest surrounding field-favorable chains and the lattice
�Fig. 2�. The bath is again considered as a quantum statistical
system being at equilibrium. The domain walls oscillate
around their equilibrium position under a varying ac field
�the process far from a saturation� or move reversibly under
a time-dependent pulsed field �the saturation process�. The
bath provides an existence of random fields �Langevin
forces� created by the environment which interacts with vari-
ables of the quantum system �Langevin dissipative modes�.
Due to the system-bath interactions the domain wall dynam-
ics become irreversible and the system relaxes from its initial
nonequilibrium state to the equilibrium one when the field is
off.

A quantum dissipative theory �QDT� with the system-bath
interaction being treated rigorously at the second-order cu-
mulant level for reduced dynamics has been recently con-
structed for open quantum systems.12 The theory belongs to a
class of widely used quantum master equations, such as the
Bloch-Redfield theory13,14 and a class of Fokker-Plank �FP�
equations,9,15 and is valid for arbitrary bath correlation func-
tions and time-dependent external driving fields. The
QDT-FP formulation constitutes a theoretical framework for
the present study of dissipative processes in the molecule-
based magnetic complexes �Mn�hfac�2BNOH�.

III. QUANTUM DISSIPATION THEORY

The key theoretical quantity in a quantum dissipation is
the reduced density operator ��t��TrB�T�t�, i.e., the partial

trace of the total system and bath composite �T�t� over all the
bath degrees of freedom. For a system dynamical variable A,
its expectation value

�A�t�� = Tr�A�T�t�� = Tr�A��t��

can be evaluated with the substantially reduced system de-
grees of freedom. Quantum dissipation theory governs the
evolution of the reduced density operator ��t�, where the
effects of bath are treated in a quantum statistical manner.

The total composite Hamiltonian in the presence of clas-
sical external field can be written as

HT = H�t� + HB − 	
a

QaFa. �1�

Here H�t� is the deterministic Hamiltonian that governs
the coherent motion of the reduced system density matrix
and involves interaction with an arbitrary external classical
field h�t�. The system is embedded in a dissipative bath �HB�
and the last term in Eq. �1� describes the system-bath cou-
plings, in which 
Qa� are Hermite operators of the primary
system and can be called the generalized dissipative modes.
The generalized Langevin forces

Fa�t� = eiHBtFae−iHBt

are Hermite bath operators in the stochastic bath subspace
assuming Gaussian statistics. Without loss of generality, their
stochastic mean values are set to �Fa�t��B=0, where �. . .�B

denote the ensemble average over the initially stationary bath
density matrix �̂B�0�. The effects of Langevin forces on the
reduced primary system are therefore completely character-
ized by their correlation functions C̃ab�t�= �Fa�t�Fb�0��B.

They satisfy the boundary conditions C̃ab�±��=0, and the
detailed-balance and the symmetry relations C̃ab

* �t�= C̃ab�t
− i��= C̃ba�−t�, where �=1/kT. This admits the Meier-
Tannor parametrization C̃ab�t� in terms of exponential
functions16

C̃ab�t � 0� � 	
m

�m
abe−�m

abt

with the adjustable parameters �m
ab, �m

ab. These parameters are
in general complex but, for simplicity, we take �m

ab to be real
and positive.

The frequency-domain symmetry relation reads as
Cab

* �	�=Cba�	�, and the detailed-balance relation in terms of
spectral functions is Cba�−	�=e�	Cab�	�. Using the gener-
alized bath interaction spectral density function Jab�	�
=Cba�−	�−Cab�	� obeying the symmetry relations Jab�	�
=−Jba�−	�=Jba

* �	� we have Cab�	�=Jab�	� / �e�	−1�.
We will use the reduced Liouville equation, i.e., the equa-

tion of motion for the reduced density matrix ��t�, in the
partial ordering prescription17

�̇�t� = − iL�t���t� − R�t���t� , �2�

which is characterized by the local-time kernel R�t�. The
Liouvillian L is the commutator of the reduced system
Hamiltonian H�t� in the presence of external classical field

FIG. 2. In an external positive field the system consists of field-
favorable �white� and field-unfavorable �shaded� chains. Interface
kinks �domain walls� in the second-type chains can move only
along the dotted arrows.
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L�t�Â � �H�t�,Â� , �3�

and the superoperator R�t� can be formulated in terms of the
system-bath interaction. In the standard approximation of the
weak-coupling limit in which the system-bath interaction is
considered only up to second order the dissipation term is

R�t���t� � 	
a

�Qa,Q̃a�t���t� − ��t�Q̃a
†�t�� , �4�

where Q̃a�t� is the non-Hermitian relaxation operator in the
Hilbert space

Q̃a�t� = 	
b
�

−�

t

d�C̃ab�t − ��G�t,��Qb. �5�

The Liouville-space propagator G�t ,�� associated with L�t�
is defined via

i
�

�t
G�t,�� = L�t�G�t,�� .

It can be defined in terms of the Hilbert-space Green’s func-

tion G̃�t ,�� via the relation for an arbitrary operator Â,

G�t,��Â � G̃�t,��ÂG̃†�t,�� ,

where we treat Â on the left-hand side as a vector in Liou-
ville space.

The reduced system Hamiltonian in the presence of exter-
nal classical field can be written as

H�t� = Hs + Hsf�t� ,

where Hs is the time-independent, field-free Hamiltonian,
whereas Hsf�t� is the interaction between the system and the
external classical field h�t�. We further define similarly to Eq.
�3� the Liouville superoperators Ls and Lsf�t� corresponding
to the reference Hamiltonians. The identity

G�t,�� = Gs�t,�� − i�
�

t

d��G�t,���Lsf����Gs���,�� �6�

obtained from the definitions

G�t,�� � T̂ exp
− i�
�

t

�Ls + Lsf�����d��� ,

where the symbol T̂ implies a time ordering, and

Gs�t,�� = Gs�t − �� = e−iLs�t−��

allows us to separate the dissipation effects in Eq. �5� into the
field-free part and the correlated driving-dissipation part.
This yields

Q̃a�t� = Q̃a
s − i	

b
�

−�

t

d��
�

t

d��C̃ab�t − ��G�t,���Lsf����


Gs��� − ��Qb, �7�

where the field-free contribution Q̃a
s is time independent and

given explicitly by

Q̃a
s = 	

b
�

−�

t

d�C̃ab�t − ��Gs�t − ��Qb

= 	
b
�

0

�

d�C̃ab���e−iLS�Qb = 	
b

Cab�LS�Qb. �8�

Equation �2� together with Eqs. �4�, �7�, and �8� provide a
prescription for obtaining the reduced density operator up to
the second order in system-bath interaction. The underlying
assumption is that the system-bath coupling is not strong
enough, which makes the second order cumulant expression
reasonable. It is known that this approximation applies well
to most dissipative systems in quantum optics, and in trans-
port in mesoscopic systems.18 In the strong system-bath re-
gime a special technique is required, which goes beyond the
second order approximation.19,20

One of the traditional approaches to treat the problem is
based on the associated quantum master equations. It focuses
on the relation among various matrix elements of the density
operator in the time-independent H-eigenstate representation
and is well suitable for the finite systems. For larger systems
�spin chains, for example� the number of many-particle states
increases dramatically and we cannot generally solve all the
microscopic equations. However, we can describe the system
by macroscopic variables �domain wall position, total mag-
netization of a chain� which fluctuate in a stochastic way.
The Fokker-Plank �FP� equation arises as an equation of mo-
tion for the distribution function of the fluctuating macro-
scopic variables.21 Equations �2�, �4�, �7�, and �8� will serve
as starting formulations for deriving FP equations for observ-
ables of the reference system.

IV. PROCESS FAR FROM A SATURATION:
DYNAMIC ac SUSCEPTIBILITY

Magnetic systems exhibiting relaxation phenomena can
be characterized by the complex ac susceptibility, ��	�=��
− i��, where the dispersion �� and the absorption �� are fre-
quently dependent. Before moving on to the technical details
of the calculation, we mention briefly some of the experi-
mental results in the ac-susceptibility measurements for the
�Mn�hfac�2BNOH� compound that support the domain-wall
motion picture.

A strong frequency dependence both for ���	� and ���	�
has been revealed in the bias dc fields of 0.025–0.03 T. The
magnetization process in the field range 0.02–0.05 T is ac-
companied by a remarkable hysteresis �of about 0.012 T�,
and, in addition, a small remanent magnetization was de-
tected after removal of the field. These features are indicative
of a magnetic phase transition of the first order, which occurs
through a mixed phase state, from antiferromagnetic order-
ing of the chain magnetic moments to their parallel align-
ment in the field-induced state.22 In the region of the meta-
magnetic transition, where the AF and FI phase coexist, the
amplitude of a maximum of both �� and �� decreases sig-
nificantly with increasing frequency, especially in the fre-
quency region from 1 to 50 Hz. From the large values of
��	� for 	�1 Hz in the vicinity of the AF-FI transition, we
may suggest that excitation of domain wall motion by a
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small oscillating field occurs more effectively at low fre-
quencies.

The complex magnetic ac susceptibility can be explained
within approach, where the magnetization M is controlled by
the field-induced sideways motion of domain walls. In this
case, the contribution of one domain wall to the susceptibil-
ity is

� =
�M

�h
=

�M

�x

�x

�h
,

and taking approximately M �x as the magnetization in-
creases due to a wall displacement along the x axis, one finds
���x /�h.

A periodic domain wall motion caused by the external
ac-field h�t�=h0 cos 	t is modeled by a well studied system,
a driven Brownian oscillator �DBO�, with the Hamiltonian

Hs = 
�a†a + 1
2� ,

where the number of oscillator excitations a†a corresponds
to an instant magnetization. The dissipation coupling mode

Q̂,

Q̂ =
1
�2

�q+â† + q−â�

interacts with a stochastic bath force. Here, q+=q−
* are com-

plex numbers, and â�â†� are the annihilation �creation� op-
erators of the oscillator with the frequency 
 determined by
the interchain coupling in an applied bias field, i.e., in the
vicinity of the AF-FI transition, and we hold only a single
Langevin mode Q in study. The operator �̂= 1

�2
�â†+ â� inter-

acts with the ac field and describes periodic domain wall
movement caused by h�t�. After introducing these defini-
tions, Eq. �7� can be transformed as follows:

Q̃�t� = Q̃s −
i

2
�

0

�

d�����h�t − �� , �9�

where the system-bath coupling response

���� = �
�

�

d��C̃�����q+ei
���−�� − q−e−i
���−���

is given explicitly as

���� =
q+�m

�m − i

e−�m� −

q−�m

�m + i

e−�m� �10�

with the aid of Meier-Tannor parametrization. As usual, a
summation is to be made for the repeated index m. In the
following calculation we choose q±=1 for simplicity, i.e., the
dissipation is the same both for left and right domain-wall
displacements.

Substituting �10� into Eq. �9�, followed by some minor
algebra, we get

Q̃�t� = Q̃s +
h0
�m

��m
2 + 
2���m

2 + 	2�
��m cos 	t + 	 sin 	t� .

The time-local dissipation superoperator is

R�t���t� � �Q,Q̃�t���t� − ��t�Q̃†�t�� = Rs��t� + i��t��Q,��t�� ,

where Rs is the field-free dissipation

Rs��t� � �Q,Q̃s��t� − ��t��Q̃s�†� .

The effective local-field correction, acting on the system via
Q is

��t� =
2h0
�m�

��m
2 + 
2���m

2 + 	2�
��m cos 	t + 	 sin 	t�

and determined by the imaginary part of the bath correlation

function C̃�t�. Hence, the final QDT formulation is

�̇�t� = − i�Hs − �̂h�t� + Q̂��t�,��t�� − Rs��t� . �11�

The static superoperator Rs is

Rs��t� = �Q,Qs� − ��Qs�†� ,

where the field-free time-independent dissipation coupling
mode Qs is

Qs = C�L̂s�Q =
1
�2

�C�− 
�a + C�
�a†� =
1
�2

�k+a + k−a†� ,

where k+=C�−
� and k−=C�
� are defined by the bath in-
teraction spectrum C�
�. Using the results of Sec. III we
have C�
�=J�
�n�
� and C�−
�=J�
��n�
�+1�, where
n�
�= �exp��
�−1�−1. Then the dissipation superoperator
Rs has the conventional formulation

Rs��t� =
k−

2
aa†� −

1

2
�k− + k−

*�a†�a +
k−

*

2
�aa†

+
k+

2
a†a� −

1

2
�k+ + k+

*�a�a† +
k+

*

2
�a†a .

After some simple algebra, we obtain

Rs��t� = J�
��n�
� + 1�� 1
2 
a†a,�� − a�a†�

+ J�
�n�
�� 1
2 
aa†,�� − a†�a� .

Using the differential representation for the Bose super-
operator, one can convert master equation �11� into Fokker-
Plank equations �see the Appendix for details� for the Wigner
function f ,

ḟ = 
i
 +
�

2
� �

�z
�zf� + 
− i
 +

�

2
� �

�z* �z*f�

+ �
n�
� +
1

2
� �2f

�z�z* −
ih̃�t�
�2


 �f

�z
−

�f

�z*� , �12�

where z, z* are the complex variables, h̃�t�=h�t�−��t� and
�=J�
�. To derive differential equations for Weyl symbols
�a�W, �a�W

† of the boson operators a and a† we multiply Eq.
�12� by z or z*, respectively, and integrate over the complex
plane. Supposing that f →0 at �z�2→�, we obtain the system

��a�W

�t
= − 
i
 +

�

2
��a�W +

ih̃�t�
�2

, �13�
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��a†�W

�t
= − 
− i
 +

�

2
��a†�W −

ih̃�t�
�2

. �14�

Using the coordinate x= �a+a†�W /�2 and the conjugated mo-
mentum px=−i�a−a†�W /�2 we get the equation of the
damped harmonic oscillator,

�2x

�t2 + �
�x

�t
+ 	0

2x = 
h̃�t� �15�

with 	0
2=
2+�2 /4, which is the dynamic equation for the

Bloch wall.23

The magnetic ac susceptibility was measured within the
frequency range from 1 Hz up to 1 kHz �slow varying ac
field�. In assumption that the characteristic time scale of the
experiment of order 10−3–1 s is much greater than the char-
acteristic relaxation times �−1 of the bath �	���, we obtain

��t� �
2
�m�

��m
2 + 
2��m

h�t� = �h�t� ,

i.e., the effective local-field correction ��t� depends on the
incident field.

Now we use Eq. �15� to evaluate the range of relaxation
time ��1/�. We note first that without an applied bias dc
field the oscillator frequency 
 is determined by the inter-
chain coupling, whereas in the bias fields of the experiment,
approaching a critical value of the AF-FI transition, 
 is
reduced to much smaller values, when a leading contribution
to the ac-susceptibility results from the motion of domain
walls separating AF and FI phases. To reach a consistency
with the data on a time evolution of the longitudinal magne-
tization in pulsed fields �see Sec. V�, we suppose 
�� and
consider a small ac-field frequency 	�	0��. Then the so-
lution of Eq. �15� has a relaxation character that yields the
expressions for ���	� and ���	� in the usual Debye form

���	� =
�1 − ��


	0
2

1

1 + 	2�2 ,

���	� =
�1 − ��


	0
2

	�

1 + 	2�2 , �16�

where the relaxation time �=� /	0
2. The maximum of the

imaginary part of the ac susceptibility ���	� is reached at
	max=�−1=	0

2 /���. According to the available experimen-
tal data6 	max�10–100 Hz �T=3–3.5 K� that yields �
�10–100 ms for the small frequencies �1 Hz. This agrees
qualitatively with the � values found from the relaxation of
the remanent magnetization �Fig. 3�.

V. SATURATION PROCESS: STRONG MAGNETIC
FIELD PULSES

The key moment distinguishing this case from previous
consideration is the value and time dependence of the exter-
nal driving field. The ac-field being of order 10−4 T is weak
in the sense that the system remains near global equilibrium
at all times. This is not the case for a strong field ��5 T�

changing fast in comparison with relaxation to global equi-
librium. A long time scale of a driving field H�t� ��10 ms�
prohibits the normal evolution towards a Boltzmann distri-
bution of states due to dynamical non-Markovian effects.
This feature is intrinsically built into the QDT, hence we can
similarly construct a FP equation to evaluate the time evolu-
tion of a longitudinal magnetization.

We introduce the operator �̂=a†a interacting with an ex-
ternal pulsed field

h�t� = h0 sin
�

T
t����t� − ��t − T�� ,

where T is the time period of the external field and other
definitions are identical to that used for the ac field. This
choice ensures a saturation of magnetization by pulsed field
measurement performed in a half-pulse regime.

Unlike the ac case the commutator contained in the inte-
grand of Eq. �7� now becomes an operator

Lsf����Gs��� − ��Q = − h������̂,Gs��� − ��Q�

=
h����
�2

�ei
���−��a − e−i
���−��a†� .

Further simplicity arises from that

G�t,��â = exp
i�
�

t

�
 − h�����d���a

and

G�t,��â† = exp
− i�
�

t

�
 − h�����d���a†.

Thus, we have

FIG. 3. Temperature dependence of the relaxation time obtained
from the remanent magnetization Mr at the value Mr=1 A m2/kg
after application of the 4 T pulsed field. The solid line shows
Arrhenius behavior at lower temperatures.
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G�t,���Lsf����Gs��� − ��Q =
h����
�2

�ei
�t−��−ih0g�t,���a

− e−i
�t−��+ih0g�t,���a†� , �17�

where ���
t h����d���h0g�t ,���. Substituting �17� into Eq. �7�

we obtain

Q̃�t� = Q̃s −
i

�2
�

0

�

d�����h�t − �� , �18�

where the system-bath coupling response becomes an opera-
tor

���� � �
�

�

d��C̃������ei
��−ih0g�t,t−��a − e−i
��+ih0g�t,t−��a†�� .

The explicit expression for ���� can be easily carried out as

���� =
�m

�m − i

ei
�−�m�e−ih0g�t,t−��a

−
�m

�m + i

e−i
�−�m�eih0g�t,t−��a†

via Meier-Tannor parametrization.
The convolution in Eq. �18� is simplified as

�
0

�

d� ����h�t − ��

=�h0�
t−T

t

d� ����sin
�

T
�t − ��� , t � T ,

h0�
0

t

d� ����sin
�

T
�t − ��� , 0 � t � T ,

0, t � 0.
�

The dissipative mode is then defined as follows:

Q̃�t� =
1
�2

�k̃+a + k̃−a†� ,

where

k̃+ = k+ − i
h0�m

�m − i

��t�, k̃− = k− + i

h0�m

�m + i

�*�t� ,

�19�

and

��t�

=��t−T

t

d� sin
�

T
�t − ���ei
�−�m�e−ih0g�t,t−��, t � T ,

�
0

t

d� sin
�

T
�t − ���ei
�−�m�e−ih0g�t,t−��, 0 � t � T ,

0, t � 0.
�

�20�

The coefficients k+=J�
��n�
�+1� and k−=J�
�n�
� are

determined as for the ac case. The dissipation superoperator
�4� reads as

R�t���t� =
k̃−

2
aa†� −

1

2
�k̃− + k̃−

*�a†�a +
k̃−

*

2
�aa†

+
k̃+

2
a†âa −

1

2
�k̃+ + k̃+

*�a�a† +
k̃+

*

2
�a†a .

The Liouville equation

�̇�t� = − i�Hs − �̂h�t�,��t�� − R��t�

takes the final form

�̇�t� − i
̃��,a†a� = −
k̃−

2
aa†� +

1

2
�k̃− + k̃−

*�a†�a −
k̃−

*

2
�aa†

−
k̃+

2
a†a� +

1

2
�k̃+ + k̃+

*�a�a† −
k̃+

*

2
�a†a ,

�21�

where 
̃=
−h�t�.
Then we convert Eq. �21� into the equivalent Fokker-

Plank equation using the Wigner functions for the density
matrix � and Bose operators

�n̄

�t
= −

1
�2

�k̃+ + k̃+
* − k̃− − k̃−

*�
n̄ +
1

2
�

+
1

2�2
�k̃+ + k̃+

* + k̃− + k̃−
*� , �22�

where n̄= �a†a�t is the number of oscillator excitations corre-
sponding to the instant magnetization. In the complete ab-
sence of the external field �h0=0� Eq. �22� amounts to

�n̄

�t
= −

1

T1
�n̄ − n0� ,

and the net magnetization relaxes from an initial value to the
equilibrium one n0=n�
�= �e�
−1�−1 with the spin-lattice
relaxation rate T1

−1=�2�. In general, by using the coefficients
�19�, we can recast Eq. �22� as

�n̄

�t
= −

1

T1
�n̄ − n0� − �2n̄ f1�t� + f2�t� − f1�t� , �23�

where the time-dependent coefficients are

f1�t� =
�2h0�m�

�m
2 + 
2 ��m���t� − 
���t�� ,

f2�t� =
�2h0�m�

�m
2 + 
2 �
���t� + �m���t�� .

As can be inferred from Eq. �20�, f1,2�t� decreases exponen-
tially with time and falls to zero as t��−1.
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The differential equation �23� can be solved numerically
with the initial condition n̄�t0�=0 �t0�0�. The results for the
simplest one-exponential case m=1 are presented in Fig. 4
where the experimental data are plotted for comparison. We
can see how the magnetization, following the h�t� variation,
increases initially with time. After switching off the field, the
magnetic moment of the system has a two-step evolution.
The first, rapid stage ends when the system arrives at the
critical state due to the balance of the magnetic driving force
and the coercive force on the domain walls. The second,
slow stage of the evolution is due to backward domain wall
movement accompanied with damped oscillations around the
moving center position. The damping indicates the effect of
spin-lattice coupling. At rather low temperatures below 3D
ordering, most of the system energy is lost to the bath be-
cause of dissipation. It is obviously seen from the inset of
Fig. 4 that the damping is governed by the force fluctuation
decay � in the bath. The slower the decay rate the more
prominent domain wall oscillations.

VI. CONCLUSIONS

In conclusion, we summarize briefly the results presented
in the paper. Measurements of the magnetization in pulsed
fields for the molecule-based magnetic complex
�Mn�hfac�2BNOH� composed from antiferromagnetically or-
dered ferrimagnetic chains show that the change in the mag-
netization in this compound below 3D ordering temperature
is a slow dynamical process controlled by motion of mag-
netic domains with a single energy barrier height. As a criti-

cal field for the direct AF-FI transition is approached during
application of a pulsed field, the domain wall motion along
the separate field unfavorable chains start to develop. After
the field is switched off, the inverse transition from the field-
induced FI state to the initial AF state in zero field provides
very slow dynamics of the magnetization. The energy barrier
hampering the reversal of the magnetization is originated
from the antiferromagnetic interchain coupling. The latter
thus plays an analogous role to that of magnetic anisotropy
in a molecular cluster or a single chain magnet. The mea-
surements of the ac susceptibility in the region of the meta-
magnetic transition, where the AF and FI phase coexist,
show that a leading contribution to the ac susceptibility re-
sults from the motion of domain walls separating the AF and
FI phases.

The domain-wall motion in both the ac and pulsed fields
is accompanied by energy losses that causes a local heating
of the samples. This is because the energy of the magnetic
system transforms into the phonon energy, and, as a conse-
quence, 3D magnetic ordering holds. Thus the system-bath
coupling is crucial in the description of the relaxation dy-
namics in �Mn�hfac�2BNOH�.

On the basis of quantum dissipative theory in the standard
second-order approximation for the system-bath Hamil-
tonian, we derive Fokker-Plank equations for observables of
the reference system. It is known that this well-justified ap-
proximation makes applicable the resultant FP equation in a
large number of dissipative systems provided the system-
bath coupling is not strong. The QDT-FP formalism has ad-
vantages of application convenience and straightforward-
ness, as well as the ability to address both saturation
processes caused by strong magnetic field pulses and pro-
cesses far from a saturation by a small oscillating ac field.

The complex magnetic ac susceptibility is calculated
within an approach, where the magnetization is controlled by
the field-induced sideways motion of domain walls. The ex-
pressions for ���	� and ���	� have the usual Debye form for
small frequencies. From the maximum of the imaginary part
of the ac susceptibility we evaluate the relaxation time that
agrees qualitatively with that found from the remanent mag-
netization data.

In the case of a small oscillating field the system remains
near global equilibrium at all times, whereas a strong long-
time driving field changing fast in comparison with relax-
ation to global equilibrium prohibits the normal evolution
towards a Boltzmann distribution due to dynamical non-
Markovian effects. In order to obtain a reliable understand-
ing of the physics of the process we derive a FP equation in
the framework QDT. The study of a time relaxation of a
longitudinal magnetization shows that it experiences a two-
step evolution after the field is switched off. The first rapid
stage ends when the system arrives at the critical state where
the magnetic driving force and the coercive force acting
jointly on the domain wall are balanced. The second slow
stage of the evolution corresponds to backward domain wall
movement together with damped oscillations around the
moving domain-wall center. The damping is managed by a
decay of force-force correlations of Langevin dissipative
modes acting on the system from the bath.

FIG. 4. Model time dependence of the magnetization during and
after application of the pulsed field found from the Fokker-Plank
equation �dotted line�. The experimental magnetization curve for
�Mn�hfac�2BNOH� at T=1.61 K presented for comparison is shown
as a solid line. The profile of the pulsed field used in the measure-
ment is also plotted. The model parameters are �m� =0.3, �m� =0.95,
T=12, �=0.004, 
=1.3, �m=0.7, and h0=1.3. Inset, time depen-
dence of the longitudinal magnetization when �=0.003, �m=0.4,
and �m� =0.35. The damped domain wall oscillations are resolved
more clearly.

OVCHINNIKOV et al. PHYSICAL REVIEW B 74, 174427 �2006�

174427-8



ACKNOWLEDGMENTS

The authors would like to thank E. Z. Kuchinskii for dis-
cussions. This work was partly supported by Grant No.
NREC-005 of US CRDF �Civilian Research and Develop-
ment Foundation�. Two of the authors �V.E.S. and A.S.B.�
thank the Foundation Dynasty �Moscow� for support.

APPENDIX

As a method for expressing the density operator in terms
of c-number functions, the Wigner functions often lead to
considerable simplification of the quantum equations of mo-
tion, as for example, by transforming operator master equa-
tions into more amenable Fokker-Plank differential equa-
tions. By the Wigner function one can express quantum-
mechanical expectation values in the form of averages over
the complex plane �the classical phase space�, the Wigner
function playing the role of a c-number quasiprobability dis-
tribution

f�z,z*;t� = Tr���t��̂W�a − z�� ,

where

�̂W�a − z� =� d2x

�2 exp�ix*�a − z� + ix�a† − z*��

is the operator delta function with d2x=dx1dx2, x=x1+ ix2,
z=z1+ iz2. The Wigner function has the following property:
�f�z ,z* ; t�d2z=1, and allows to easily evaluate expectations
of symmetrically ordered products of the field operators, cor-
responding to Weyl’s quantization procedure24

� �z*�mznf�z,z*;t�d2z = ���a†�man�� ,

where

��a†�man� =
1

�m + n�!	P

P�a†�man

and the symbol P denotes a permutation of the Bose opera-
tors.

Using the last identity one obtains

� z*f�z,z*;t�d2z = �a†�t, � zf�z,z*;t�d2z = �a�t,

and

� z*zf�z,z*;t�d2z = �a†a�t + 1/2.

The Weyl symbol for any operator Ô is determined by

�Ô�W�z,z*� = � Tr�Ô�̂W�â − z�� ,

and the inversion formula is

Ô =� �Ô�W�z,z*��̂W�â − z�d2z .

The Wigner functions of multiplication of two operators
ÂB̂ can be easily obtained from those of �Â�W and �B̂�W using
the following identities:

�ÂB̂�W�z,z*� = �Â�W
z +
1

2

�

�u* ,z* −
1

2

�

�u
��B̂�W��u,u*��u=z,

�ÂB̂�W�z,z*� = �B̂�W
z −
1

2

�

�u* ,z* +
1

2

�

�u
��Â�W��u,u*��u=z

and Weyl symbols for Bose operators

�a†�W�z,z*� = z*, �a�W�z,z*� = z .

The relation between the Wigner function and the Weyl sym-
bol of the density operator is the following:

f�z,z*;t� = �−1��S�t��W�z,z*� .
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