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Arbitrary choice of basic variables in density functional theory. II. Illustrative applications
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Our recent extended constrained-search theory@M. Higuchi and K. Higuchi, Phys. Rev. B69, 035113
~2004!# enables us to choose arbitrary quantities as the basic variables of density functional theory. In this
paper, we apply it to several cases. In the case in which the occupation matrix of localized orbitals is chosen
as a basic variable, we can obtain the single-particle equation which is equivalent to that of the LDA1U
method. The theory also leads to the Hartree-Fock-Kohn-Sham equation by letting the exchange energy be a
basic variable. Furthermore, if the quantity associated with the density of states near the Fermi level is chosen
as a basic variable, the resulting single-particle equation includes the additional potential which could mainly
modify the energy-band structures near the Fermi level.
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I. INTRODUCTION

During past decades, the application of density functio
theory ~DFT!1–6 has become the most effective method
the calculation of ground-state electronic properties of
oms, molecules, and solids.7 Exchange and correlation e
fects can, in principle, be contained in the exchan
correlation energy functional. The reproducibility of groun
state properties via Kohn-Sham~KS! orbitals and spectra is
dependent on the exchange-correlation energy functiona
vised. We usually borrow the knowledge of the exchan
correlation energy from the homogeneous electron liqu
The knowledge is utilized not only in the local density a
proximation~LDA !, but also in the modified schemes of th
LDA such as the generalized gradient approximation,8–10 the
weighted density approximation,11–15 the averaged densit
approximation,11–13,16and so on. Of course it is one of th
approved ways that the exchange-correlation energy fu
tional Exc@r# is improved more sophisticatedly. As an in
stance, the use of the optimized effective potential met
has been proposed by Gross and co-workers.17,18

However, there are two kinds of inconvenience in e
pressing the correlation effects efficiently within the fram
work of the conventional DFT. One is that the reproduc
quantity in the reference system is the electron density alo
Another is the difficulty in devising the exchange-correlati
energy functional in an appropriate form only by the use
electron density.

Let us mention the first inconvenience. The basic varia
of the DFT, namely the electron density, is reproduced
means of the KS orbitals in the reference system. Ev
property of the ground state is uniquely determined by
electron density through the ground-state wave function
the real system, but there is no insurance to reproduce q
tities other than the electron density in the reference syst
Now let us illustrate the case where the spin polarization
representative of the ground-state properties. The spin
sity is not necessarily reproduced in the reference system
0163-1829/2004/69~16!/165118~10!/$22.50 69 1651
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the DFT, while both the electron density and spin density
reproduced in the reference system of the spin density fu
tional theory~SDFT!.19–21Of course, the spin density of th
ground state can, in principle, be determined in the form
m@r(r )# via the ground-state wave function of the real sy
tem in the DFT. However, from a practical viewpoint th
spin density should be directly calculated in the referen
system. The quantities that do not correspond to basic v
ables, even though they are considered significant in expr
ing the typical properties of the ground state, are not nec
sarily reproduced in the reference system.

Next we shall mention the second inconvenience. T
exchange-correlation energy functional of the conventio
DFT is dependent on the electron density alone. It is kno
that devising the approximate form of the exchang
correlation energy functional only by the use of electron d
sity cannot be easy. As an example, it has been shown
the local spin density approximation~LSDA! formulation is
more effective in describing the ground-state properties
some light atoms than the LDA.22 This is caused by the
difficulty of describing the properties of the spin polarizatio
only through the electron density. The correlation is pecu
to the system and the appearance of the correlation va
depending on the system too. As long as we employ
conventional DFT, the highly complicated functionalExc@r#
is required for an adequate description of the correlat
effects.23,24

For the purpose of expressing the correlation effects m
directly and efficiently than the conventional DFT, we ha
recently proposed the extended constrained-search~ECS!
formulation.25 According to this theory, arbitrary observable
can be chosen as basic variables.25 In other words, if the
ground-state properties of the system are characterized
some quantities plus the electron density, we may cho
such quantities as basic variables so as to describe the c
lation effects efficiently. Due to the arbitrary choice of bas
variables, the ECS theory would entirely overcome the
conveniences associated with the conventional DFT, wh
©2004 The American Physical Society18-1
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are mentioned above. In the preceding paper,25 the SDFT and
current density functional theory26–33 have been revisited s
as to confirm the validity of the ECS theory.

The ECS theory25 would be promising for expressing th
correlation effects of various systems efficiently, if bas
variables are chosen appropriately to systems. In this pa
we shall present several illustrative applications of E
theory. The various types of correlation are described in
form of the additional potentials of single-particle equatio
The organization of this paper is as follows. In Sec. II, t
single-particle equation which is equivalent to that of t
LDA1U method is derived if the occupation matrix of lo
calized orbitals is chosen as a basic variable. The ECS th
also gives the Hartree-Fock–Kohn-Sham~HF-KS!
equation,34,35 which is shown in Sec. III. In Sec. IV, we dis
cuss the cases where the quantities that are related to
density of states near the Fermi level are chosen as b
variables. The single-particle equations derived contain a
tional potentials which mainly modify the energy bands n
the Fermi level. Finally, in Sec. V, we summarize and g
some comments on the results of the above applications
be
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II. OCCUPATION MATRIX OF LOCALIZED ORBITALS
AS A BASIC VARIABLE: REVISITING THE

SINGLE-PARTICLE EQUATION OF THE LDA ¿U
METHOD

In the LDA1U method,36–39 electron interactions are
classified into two types on the basis of the Anders
model.40 One is the interaction between atomiclike localiz
orbitals, which is supposed to be the strong on-site Coulo
interaction among them. Another is the interaction betwe
delocalized electrons, which could be described by the o
nary LDA method. Total energy of the LDA1U method is
given by the following form:36

ELSDA1U@rs,n̂s#5ELSDA@rs#1EU@ n̂s#2Edc@ n̂s#, ~1!

wherers(r ) is the electron density of spins (s5↑,↓), and
ELSDA@rs# represents the ordinary LSDA functional.n̂s

(5nmm8
s ) is the occupation matrix of localized orbitals$um%,

wherem is the magnetic quantum number~the other quan-
tum numbers are abbreviated for convenience!. EU@ n̂s#
stands for the interaction between localized electrons an
given by
EU@ n̂s#5 1
2 (

m1 ,m2
m3 ,m4

(
s,s8

nm1m2

s nm3m4

s8 H E E um1
* ~r1!um3

* ~r2!Vee~r1 ,r2!um2
~r1!um4

~r2!dr1dr2

2dss8E E um1
* ~r1!um3

* ~r2!Vee~r1 ,r2!um4
~r1!um2

~r2!dr1dr2J , ~2!
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whereVee is the effective Coulomb interaction and can
expressed in terms of the effective Slater integrals.Edc@ n̂s#
in Eq. ~1! is the double-counting term which correspon
approximately to the interaction between localized electro
which is already included in the LSDA,

Edc@ n̂s#5
U

2
n~n21!2

J

2 (
s

ns~ns21!, ~3!

whereU andJ are, respectively, effective Coulomb and e
change parameters, and given by using the effective S
integrals.36 In Eq. ~3!, n5(sns with ns5Tr(n̂s) is the total
occupation number of localized orbitals.

In the LDA1U method, the interaction energy which
not included in the LSDA scheme is

DE@ n̂s#5EU@ n̂s#2Edc@ n̂s#. ~4!

This energy can be regarded as the exchange-correlation
ergy which fails to be considered in the LSDA. Therefo
the exchange-correlation energy functional is reasona
given by

Exc@rs,n̂s#5Exc
LSDA@rs#1DE@ n̂s#. ~5!
s,

ter

en-
,
ly

We shall apply the ECS theory to the above exchan
correlation energy functional~5!. The basic variable chose
here is the occupation matrix of localized orbitals,n̂s. Note
that n̂s can be chosen as a basic variable since the elem
of n̂s are calculated from the antisymmetric wave functio
Correspondingly, the constrained-searchF@rs,n̂s# is defined
in accordance with the previous paper.25 The reference sys
tem, which is described by the set of single Slater deter
nants, is introduced so as to reproduce basic variables.
exchange-correlation energy functionalExc@rs,n̂s# is also
defined as the remaining part which is given by subtract
both the kinetic energy functional of the reference syst
Ts@rs,n̂s# and the Hartree term fromF@rs,n̂s#. Equation
~5! is regarded as one of the approximate forms
Exc@rs,n̂s#. Here we assume that the minima exist in t
definitions ofF@rs,n̂s# and Ts@rs,n̂s# in a similar way to
the preceding paper.25

In this case, basic variables other than the electron d
sity, i.e., elements ofn̂s are independent of positionr . In
order to derive the Kohn-Sham-type single-particle equati
some modifications to the procedure of the previous pa
are needed. The derivation is shown in the Appendix. A
cording to Eq.~A6! in the Appendix, the condition unde
which the single-particle equation is transformed into t
canonical form is
8-2
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(
m,m8

dExc@rs,n̂s#

dnmm8
s E fk* ~r !S dnmm8

s

df l* ~r !
D dr

5 (
m,m8

S dExc@rs,n̂s#

dnmm8
s D * E S dnmm8

s

df l~r !
D *

fk* ~r !dr ,

~6!

wherenmm8
s denote the matrix elements ofn̂s. Derivatives

dnmm8
s /df l* (r ) anddnmm8

s /df l(r ) are obtained by calculat
ing the density matrix with the use of orbitalsf l(r ). For
example, we can see the explicit expressions for the der
tives in Ref. 41, which are calculated on the basis of
linear augmented-plane-wave method. It is easily confirm
by using such explicit expressions that Eq.~6! is satisfied.
After the unitary transformation, we finally get single
particle equations,
he

by
y,
o
ti

n
a
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H 2
\2¹2

2m
1l~r !J fk~r !1 (

m,m8

dExc@rs,n̂s#

dnmm8
s

dnmm8
s

dfk* ~r !

5«kfk~r !, ~7!

wherel~r ! is

l~r !5next~r !1e2E r0~r 8!

ur2r 8u
dr 81

dExc@rs,n̂s#

drs~r !
U

n̂s5n̂0
s

rs5r0
s , ~8!

where r0(r ) and n̂0
s stand for the ground-state values

basic variables, andnext(r ) represents the external scal
potential.

The third term on the left-hand side of Eq.~7! is the
additional potential to the ordinary LSDA potential. The d
rivative dnmm8

s /dfk* (r ) can be obtained by using the explic
expression forn̂s,41 which already appeared in the evalu
tion of Eq. ~6!. Concerning the derivative
dExc@rs,n̂s#/dnmm8

s , we can rewrite it as the following ex
pression by utilizing Eqs.~1!–~5!:
Vmm8
s

5
dExc@rs,n̂s#

dnmm8
s 5(

p,q
(
s8

H E E um* ~r1!up* ~r2!Vee~r1 ,r2!um8~r1!uq~r2!dr1dr2

2dss8E E um* ~r1!up* ~r2!Vee~r1 ,r2!uq~r1!um8~r2!dr1dr2J npq
s82dmm8US n2

1

2D1dmm8JS ns2
1

2D . ~9!
the

Substituting these results into Eq.~7!, we get the single-
particle equation which is completely equivalent to t
LDA1U method.36,41

III. EXCHANGE ENERGY AS A BASIC
VARIABLE: RECONSIDERATION OF THE HARTREE-

FOCK-KOHN-SHAM EQUATION

In this section, we shall revisit the HF-KS scheme
means of ECS theory.25 The exchange-correlation energ
which is not the exchange-correlation energy functional
the Kohn-Sham scheme but the exact exchange-correla
energy, is given in Sec. 7.2 of Ref. 7 by

«xc5
e2

2 E E r0~r !r0~r 8!

ur2r 8u $g0~r ,r 8!21%dr dr 8, ~10!

wherer0(r ) and g0(r ,r 8) denote the ground-state electro
density and pair correlation function, respectively. The p
correlation function is defined by

g0~r ,r 8!5
^C0ur̂~r !r̂~r 8!uC0&2d~r2r 8!r0~r !

r0~r !r0~r 8!
~11!

with

r̂~r !5c1~r !c~r !, ~12!
f
on

ir

whereC0 is the ground-state wave function, andc~r ! and
c1(r ) are the field operators of electrons. Let us consider
following functional of the antisymmetric wave functionC:

Exc8 @C#5
e2

2 E E r@C#~r !r@C#~r 8!

ur2r 8u

3$g@C#~r ,r 8!21%dr dr 8 ~13!

with

r@C#~r !5^Cur̂~r !uC&, ~14!

g@C#~r ,r 8!5
^Cur̂~r !r̂~r 8!uC&2d~r2r 8!r@C#~r !

r@C#~r !r@C#~r 8!
.

~15!

Substituting Eqs.~12!, ~14!, and~15! into Eq. ~13!, Exc8 @C#
can be easily transformed into a plain form,

Exc8 @C#5^CuŴuC&2UH@r@C## ~16!

with

Ŵ5
e2

2 E E dr dr 8
c1~r !c1~r 8!c~r 8!c~r !

ur2r 8u
, ~17!

UH@r@C##5
e2

2 E E dr dr 8
r@C#~r !r@C#~r 8!

ur2r 8u
. ~18!
8-3
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It should be noted that the functionalExc8 @C# coincides with
«xc in the case ofC5C0 as we are defining it.

By usingExc8 @C#, we shall choose the following quantit
as one of the basic variables:

Ex@C#5Exc8 @C#2«corr ~19!

with «corr given by

«corr5Min
C

^CuĤuC&2EHF, ~20!

where EHF is the total energy of the systemĤ within the
Hartree-Fock approximation. Equation~20! denotes the exac
correlation energy, so that Eq.~19! coincides with the ex-
change energy ifC is equal toC0 . This means that the exac
exchange energy can be obtained by using the present
theory because ECS theory reproduces the ground-state
ues of basic variables.

The exchange energy depends on the exchange
which is defined as the spatial region where electrons ha
the same spin orientation avoid each other. Furthermore
exchange hole cannot be expressed by using the elec
density alone in general cases, with the exception of the
mogeneous electron liquid model. Therefore, we may
sume thatEx is chosen as the basic variable simultaneou
with the electron density. By using the expressions of E
~14! and~19!, the constrained-searchF@r,Ex# can be explic-
itly defined under the assumption that the minimum exists
accordance with the preceding paper,25 i.e.,

F@r,Ex#5 Min
C→~r,Ex!

^CuT̂1ŴuC&. ~21!

Next, we shall reproduce basic variables in the refere
system, which is described by the set of single Slater de
minants. If we put the single Slater determinantF in place of
C, then Eqs.~14! and ~19! are reduced to

Ex@F#52
e2

2 (
i , j

E E f i* ~r1!f j* ~r2!f j~r1!f i~r2!

ur12r2u

3dr1dr22«corr, ~22!

r~r !5(
i

f i~r !* f i~r !, ~23!

where f i(r ) are the constituent KS orbitals of the sing
Slater determinant. The first term on the right-hand side
Eq. ~22! has a form identical to that of the HF exchan
energy. However, this term does not mean the exchange
ergy as we are defining it, because it consists of the
orbitals, which are generally different from the HF orbita
On the other hand, the left-hand side of Eq.~22! stands for
the real exchange energy which should be reproduced.

In order to decompose the functionalF@r,Ex# into a more
tractable form, the kinetic energy of the reference system
introduced in the same way as the preceding paper,25
16511
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Ts@r,Ex#[ Min
F→~r,Ex!

K FU(
i 51

N
2\2¹ i

2

2m UFL . ~24!

Again, we assume that the minimum exists in Eq.~24!. Us-
ing this functional, the exchange-correlation energy fun
tional is defined as the remaining part ofF@r,Ex#. Namely,
we have

Exc@r,Ex#[F@r,Ex#2Ts@r,Ex#2UH@r#. ~25!

Taking care of the fact that the basic variable~22! is inde-
pendent ofr , single-particle equations can be derived such
Eqs. ~A3a! and ~A3b!. From Eq.~A6!, the condition under
which the single-particle Hamiltonian is Hermitian is give
by

E fk* ~r !
dExc

dEx

dEx

df l* ~r !
dr

5E S dExc

dEx
D * S dEx

df l~r ! D *
fk* ~r !dr .

It is easily confirmed by using Eq.~22! that the above con-
dition is satisfied. Therefore, the single-particle equation
be transformed into a canonical form after the unitary tra
formation. We get

H 2
\2¹2

2m
1l~r !J fk~r !1

dExc@r,Ex#

dEx

dEx@$fk%#

dfk* ~r !

5«kfk~r !, ~26!

l~r !5next~r !1E e2r~r 8!

ur2r 8u
dr 81

dExc@r,Ex#

dr~r !
. ~27!

The additional potential is the third term of Eq.~26!. Substi-
tution of Eq. ~22! into the derivativedEx@$fk%#/dfk* (r )
leads to

dEx@$fk%#

dfk* ~r !
52e2(

i↑↑
E f i* ~r 8!fk~r 8!

ur2r 8u
dr 8f i~r !.

~28!

Here note that«corr is a constant value from Eq.~20!. Equa-
tion ~28! is identical to the exchange potential of the ordina
HF equation. The exchange-correlation energy is forma
decomposed into

Exc@r,Ex#5Ex1Ec@r#. ~29!

Here the functionalEc@r# means the correlation energ
which also includes the difference between the kinetic
ergy of the reference system and the real kinetic energy.
using Eqs.~28! and~29!, the additional potential of Eq.~26!
is written as

dExc@r,Ex#

dEx

dEx@$fk%#

dfk* ~r !

52e2(
i↑↑

E f i* ~r 8!fk~r 8!

ur2r 8u
dr 8f i~r !. ~30!
8-4
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ARBITRARY CHOICE OF BASIC . . . .II. . . . PHYSICAL REVIEW B 69, 165118 ~2004!
On the other hand, the potentiall~r ! contains the correlation
part dExc@r,Ex#/dr(r )5dEc@r#/dr(r ). Therefore, the re-
sulting single-particle equation has the Hartree-Fock-t
exchange potential plus the correlation potential of the o
nary DFT. It is sometimes called the Hartree-Fock–Koh
Sham equation.34,35 Of course, if the correlation energy i
neglected in Eq.~29!, then we get the single-particle equ
tion which is equal to the Hartree-Fock equation.

Göring, Levy, and co-workers have derived the HF-K
equation in a manner different from the present scheme.42–44

They first introduced the functionalFS@r#, which is defined
as the expectation value of kinetic and electron-electron
teraction operators with respect to the minimizing sin
Slater determinant yielding the ground-state value of
electron density. By employing the arbitrariness concern
the decomposition of the functionalF@r# in the reference
system,F@r# is decomposed into two parts, i.e.,FS@r# and
the remaining part. If the remaining part is supposed to
the correlation energy functional, then the HF-KS equat
can be derived.42–44

In deriving the HF-KS equation, Go¨ring et al. utilize the
arbitrariness on the decomposition of functionalF@r#, while
we utilize the arbitrariness on the choice of basic variab
The merit of our theory is to get the ground-state value ofEx
or Ex1«corr through Eq.~22!, together with the electron den
sity.

IV. BASIC VARIABLES ASSOCIATED WITH THE
DENSITY OF STATES NEAR THE FERMI LEVEL

It is hard to ignore the correlation effects in system
where the density of states near the Fermi level shows
high value. This can be reasonably understood if one rec
the correlation energy«corr of the configuration interaction
~CI! method.45–48The doubly excited Cl is often used for th
estimation of«corr, because the contributions of single exc
tations to«corr are the fourth- and higher-order perturbati
terms.46,47 The approximate form of«corr is given by46

«corr>2(
i , j

occ

(
a,b

unocc
^FHFuĤuF i j

ab&^F i j
abuĤuFHF&

^F i j
abuĤ2EHFuF i j

ab&
, ~31!

whereFHF denotes the Hartree-Fock determinant which
formed from N lowest-energy orbitals.EHF stands for the
ground-state energy of the Hartree-Fock approximati
which is given byEHF5^FHFuĤuFHF&. F i j

ab is the doubly
excited determinant, which differs fromFHF in replacing
occupied orbitalsx i and x j by unoccupied orbitalsxa and
xb , respectively.46

One of the important features of this correlation energy
that it prompts the orbital mixing between occupied and
occupied states near the Fermi level. The gain of the co
lation energy increases with the density of states near
Fermi level. In other words, the correlation energy increa
as occupied and unoccupied states come close to each o
Thus, the correlation energy is dependent on the densit
states in the vicinity of the Fermi level. In this section, w
shall consider two cases where the quantities which are
16511
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lated to the density of states near the Fermi level are cho
as basic variables. In the first half of this section, we d
with the case in which the sum of the electron density with
the restricted energy region is chosen as a basic varia
Later this section, the local density of states at the Fe
level is chosen as a basic variable.

A. Sum of the electron density within the restricted energy
region

In order to reflect the above features of the correlat
energy explicitly, we shall choose as the basic variable
sum of the local density of states over the energy reg
centered at the Fermi level«F . Suppose that the energy re
gion is

«F2D,«,«F1D, ~32!

whereD is the appropriate energy parameter. The local d
sity of states at some energy« is defined as the imaginar
part of the retarded Green’s function, i.e.,

d~r ,v!52
1

p
Im GR~r ,r ;v!, ~33!

wherev5«/\. Note that the local density of statesd(r ,v)
results in the density of states at« by integrating it with
respect tor . Combining Eqs.~32! and~33!, the basic variable
chosen here is

D~r ,vF!5E
«F2D

«F1D

d~r ,v!d«

52
1

p E
«F2D

«F1D

Im GR~r ,r ;v!d«, ~34!

wherevF5«F /\. According to the preceding paper,25 theF
functional, i.e.,F@r,D#, can be defined under the assum
tion that the set of antisymmetric wave functions yieldi
r~r ! and D(r ,vF) is weak closed and not empty. The e
tended Hohenberg-Kohn theorem25 holds for basic variables
r~r ! andD(r ,vF).

In order to reproduce basic variables by using sing
particle wave functions and spectra, we shall adopt as
reference system the set of wave functions which are in
form of simple products ofN single-particle wave functions
Namely, the element of the set is written by

J@$w i%#5wl1
~r1!wl2

~r2!wl3
~r3!¯wlN

~rN!. ~35!

For the purpose of decomposingF@r,D#, the following
functional is newly introduced:

T̃s@r,D#5 Min
J@$w i %#→~r,D !

K J@$w i%#U(
j 51

N

2
\2¹ j

2

2m UJ@$w i%#L
5 Min

J@$w i %#→~r,D !
(

i 5l1

lN K w iU2 \2¹2

2m Uw i L , ~36!

where J@$w i%#→(r,D) indicates that the search is con
strained among allJ@$w i%#, which yield the prescribedr~r !
8-5
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andD(r ,vF). Here we assume again that the set of Eq.~35!
yielding r~r ! and D(r ,vF) is weak closed and not empty
The functionalT̃s@r,D# corresponds to the kinetic energy
the peculiar reference system which is mentioned abo
Note that the orthogonality ofN orbitals $w i% is not neces-
sarily demanded.

Basic variables should be reproduced by taking the exp
tation values of their operators with respect toJ@$w i%#. The
electron density is given by

r~r !5(
i

uw i~r !u2. ~37!

On the other hand, we shall assume the reproduced form
D(r ,vF). The retarded Green’s function is generally writt
by using quasiparticle wave functions and spectra.49 If qua-
siparticle wave functions and spectra are replaced with
KS orbitals and spectra, respectively, and if the imagin
parts of quasiparticle spectra are supposed to be constaa,
then the local density of states is written as

d~r ,v!5(
j

w j~r !* w j~r !
1

aAp
e2~v2« j /\!2/a2

. ~38!

Utilizing Eq. ~38!, we suppose that the reproduced expr
sion for D(r ,vF) is given by

D~r ,vF!5(
j
E

«F2D

«F1D

d«w j~r !* w j~r !
1

aAp
e2~v2« j /\!2/a2

.

~39!
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The derivation procedure of the single-particle equation
a little different from the previous one@Eqs.~4.5!, ~4.6!, and
~4.9! in Ref. 25#, since the orthogonality is not imposed onN
orbitals $w i% in Eq. ~36!. Correspondingly, we do not nee
the unitary transformation of the single-particle equatio
Taking care of the above points, we obtain self-consist
single-particle equations,

H 2
\2¹2

2m
1l~r !J wk~r !1E m~r 8!

dD~r 8,vF!

dwk* ~r !
dr 8

5«kwk~r !, ~40!

wherel~r ! andm~r ! are given, respectively, by

l~r !5next~r !1e2E r0~r 8!

ur2r 8u
dr 81

dExc@r,D#

dr~r !
U

D5D0

r5r0

,

~41!

and

m~r !5
dExc@r,D#

dD U
D5D0

r5r0

. ~42!

In Eqs. ~41! and ~42!, r0(r ) and D0(r ,vF) stand for the
ground-state values of basic variables.

In order to investigate the features of the single-parti
equation, let us consider the derivativedD(r 8,vF)/dwk* (r )
which appears in Eq.~40!. Using Eq.~39!, the derivative is
written as
.

.
n of
e

dD~r 8,vF!

dwk* ~r !
5d~r2r 8!wk~r 8!

1

aAp
E

«F2D

«F1D

e2~«k2«!2/a2
d«1(

i

1

aAp
w i* ~r 8!w i~r 8!

d

dwk* ~r !
E

«F2D

«F1D

e2~« i2«!2/a2
d«.

~43!

By means of the chain rule for functional derivatives, the second term in Eq.~43! is

d

dwk* ~r !
E

«F2D

«F1D

e2~« i2«!2/a2
d«5(

j

d« j

dwk* ~r !

]

]« j
E

«F2D

«F1D

e2~« i2«!2/a2
d«. ~44!

Here the functional derivative with respect to« j is replaced by the ordinary derivative in Eq.~44!, because the integral of Eq
~44! is the ordinary function of« j . We take the ordinary derivative in Eq.~44!, giving attention to the fact that«F is a constant
value which is identical with the highest occupied KS spectrum. Then, Eq.~44! is

d

dwk* ~r !
E

«F2D

«F1D

e2~« i2«!2/a2
d«52

d« i

dwk* ~r !
$e2~« i2«F2D!2/a2

2e2~« i2«F1D!2/a2
%. ~45!

The derivatived« i /dwk* (r ) can be approximated in a more simplified form. The third term on the left-hand side of Eq~40!
explicitly includes the statewk(r ), which is the solution of the equation. Correspondingly, the single-particle Hamiltonia
Eq. ~40! depends directly on the solutionwk(r ), so that the predominant effect ofd« i /dwk* (r ) would be caused from the cas
of i 5k. Under this approximation, Eq.~45! is written as

d

dwk* ~r !
E

«F2D

«F1D

e2~« i2«!2/a2
d«'2dki

d« i

dwk* ~r !
$e2~« i2«F2D!2/a2

2e2~« i2«F1D!2/a2
%. ~46!

Substituting Eq.~46! into Eq. ~43!, the single-particle equation~40! is simplified into
8-6



ARBITRARY CHOICE OF BASIC . . . .II. . . . PHYSICAL REVIEW B 69, 165118 ~2004!
H 2
\2¹2

2m
1l~r !J wk~r !1m~r !

1

aAp
E

«F2D

«F1D

e2~«k2«!2/a2
d«wk~r !

1E m~r 8!wk* ~r 8!wk~r 8!dr 8
1

aAp

d«k

dwk* ~r !
$e2~«k2«F2D!2/a2

2e2~«k2«F1D!2/a2
%5«kwk~r !. ~47!
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Let us consider the features of the above single-part
equation. Compared to the KS equation of the conventio
DFT, additional potentials are the third and fourth terms
the left-hand side. The integrand of the third term is t
d-type function, which is centered at«k . The third term is
proportional to the area under thisd-type function between
«F2D and«F1D. As the state«k comes close to the Ferm
level «F , the area increases. Therefore, the third term chi
modifies the states which are located in the vicinity of t
Fermi level. Also, the fourth term has an effect on the sta
only in the vicinity of the Fermi level. The energy term in th
parentheses of the fourth term has a positive or nega
value depending on the position of«k . Namely, if «k is
located below the Fermi level it takes the positive value, a
conversely if«k is located above the Fermi level it takes t
negative value. The fourth term would enlarge or reduce
width of energy-band structures near the Fermi level. T
potential whose sign depends on whether the state«k is oc-
cupied or unoccupied can also be seen in the LDA1U
method and theGWapproximation.50,51Of course, according
to the derivation processes of the above effective poten
and the single-particle equation,25 Eq. ~47! is valid only for
the occupied states in the same way as the KS equatio
the conventional DFT. However, it is interesting that t
fourth term has the possibility of modifying the width of th
energy bands near the Fermi level, like the LDA1U andGW
methods.

B. Local density of states at the Fermi level

As already mentioned, the correlation energy~31! in-
creases with the density of states near the Fermi level. On
basis of this expression, the approximate model for the
relation energy functional can be discussed. As an exam
we shall consider the model where occupied and unoccu
energies in the denominator are approximated into the re
sentative energies that are the centers of gravity for occu
and unoccupied bands, respectively.52 This model maintains
the above feature of the correlation energy. In such a mo
the representative energies for occupied and unoccu
bands become closer to the Fermi level as the density
states at the Fermi level increases. Namely, the correla
energy increases with the density of states at the Fermi le
Therefore, the density of states at the Fermi level seems t
one of the significant candidates of basic variables. In
subsection, we shall choose the local density of states a
Fermi level as one of the basic variables and derive
single-particle equation with the aid of the results of the p
ceding paper.25
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We suppose that the reproduced form of the local den
of states at the Fermi level is given by Eq.~38!,

d~r ,vF!5(
j

w j~r !* w j~r !
1

aAp
e2~vF2« j /\!2/a2

. ~48!

Under the choice ofd(r ,vF) and r~r ! as basic variables
self-consistent single-particle equations can be derived s
larly to the preceding subsection. The additional poten
which does not exist in the KS equation of the conventio
DFT is given by

E m~r 8!
dd~r 8,vF!

dwk* ~r !
dr 8 ~49!

with

m~r !5
dExc@r,d#

dd U
d5d0

r5r0

, ~50!

wherer0(r ) andd0(r ,vF) represent the ground-state valu
of basic variables. Let us consider the derivati
dd(r 8,vF)/dwk* (r ) which appears in Eq.~49!. Applying the
same approximation which was employed in the derivat
of Eq. ~46!, dd(r 8,vF)/dwk* (r ) is written as

dd~r 8,vF!

dwk* ~r !
5d~r2r 8!wk~r 8!

1

aAp
e2~«k2«F!2/a2

1wk* ~r 8!wk~r 8!
2~«F2«k!

a3Ap
e2~«k2«F!2/a2

3
d«k

dwk* ~r !
. ~51!

The resulting potential has similar properties to those of
additional potentials of Eq.~47!. The first term of Eq.~51!
affects only energy bands in the vicinity of the Fermi lev
which corresponds to the third term of Eq.~47!. The second
term also influences the modification of states near the Fe
level. Furthermore, the sign of the second term varies
pending on the position of«k in a way similar to the fourth
term of Eq.~47!.

From the viewpoint of practical calculations, it is difficu
to deal with the derivatived«k /dwk* (r ) which appears in the
second term of Eq.~51!. However, if we neglect the orbita
dependency of the effective potential of the single-parti
equation, we can utilize the approximate expression whic
based on the first-order perturbation theory, i.e.,
8-7
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d«k

dwk* ~r !
5«kwk~r !1E H (

j Þk

w j~r 8!wk* ~r 8!w j* ~r !

«k2« j
J 21

3wk~r 8!wk~r 8!dr 8. ~52!

V. SUMMARY AND DISCUSSIONS

In this paper, we give several types of single-parti
equations as applications of ECS theory. Validity of t
theory is confirmed by revisiting the single-particle equat
of the LDA1U method and Hartree-Fock-Kohn-Sham equ
tion in Secs. II and III, respectively, just as the SDFT a
CDFT formulations have been derived on the basis of E
theory in the preceding paper.25

The ECS theory seems to be promising for the electro
structure of f-electron materials. Thef-electron materials
which belong to the heavy fermion system show pecu
electronic characteristics.53,54 For instance, they exhibit the
extremely large electronic specific-heat coefficient, the m
nitude of which is two to three orders larger than that
usual metals. This means that the effective mass become
heavier than the free-electron mass. Such peculiar feat
are sure to be caused by the electron correlations in w
f-electrons play a vital part.

The density of states at the Fermi level is comparativ
high for thef-electron materials which belong to the valen
fluctuation regime.55 It is due to the concentration off bands
in the vicinity of the Fermi level. The valence fluctuatio
regime is considered to be smoothly connected to the itin
ant f-band model.55–57 The f bands near the Fermi leve
would determine the peculiar behaviors of the valence fl
tuation regime. In Sec. IV, single-particle equations are
rived by choosing the quantities related to the density
states near the Fermi level as basic variables. The resu
single-particle equations include the additional potent
which mainly modify the energy bands near the Fermi lev
If such additional potentials narrow the width off bands near
the Fermi level, our scheme shown in Sec. IV has the po
bility of describing the electronic structures of the valen
fluctuation regime more appropriately than the conventio
LDA.

On the other hand, in thef-electron materials of the
Kondo regime, nof bands are observed at the Fermi lev
and the Fermi surface is essentially the same as that o
16511
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corresponding reference material, as for example, La c
pounds for the Ce-based heavy fermion compound.55–57 In
these materials,f electrons have been successfully trea
with the models which presuppose the strong on-site C
lomb interaction among them.53,55 In Sec. II, the single-
particle equation of the LDA1U method was revisited by
ECS theory. This fact not only implies the validity of EC
theory, but also leads to the following significant applic
tions. If electron correlations of the system may be rec
nized well on the basis of some model Hamiltonian, we m
derive the single-particle equation by taking as one of
basic variables the quantity which is included in such
model. Namely, ECS theory allows us to incorporate
properties of the model Hamiltonian into the single-partic
problem. In Sec. II, we illustrate the LDA1U scheme as one
of the cases offering the above possibility.
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APPENDIX: SELF-CONSISTENT SINGLE-PARTICLE
EQUATIONS WITH CONSTANT BASIC VARIABLES

In this appendix, self-consistent single-particle equatio
are derived in the case in which basic variables chosen
independent ofr . This is the simple extension of Ref. 25, i
which self-consistent single-particle equations are deri
for r -dependent basic variables.

Suppose that quantitiesC1 ,C2 ,...,CM are chosen as basi
variables in addition to the electron densityr~r !. In Ref. 25,
basic variables are assumed to be chosen so that the mi
exist in Eqs.~2.3! and~3.3! of Ref. 25. In the following, we
also assume that the set ofr~r !, C1 ,..., andCM is of that
type. The extended Hohenberg-Kohn theorem can be pro
in the same way as the proof in Ref. 25. The kinetic ene
functional of the reference system is also introduced so a
obtain the practical scheme for calculating ground-st
properties. The kinetic energy functional is defined by
ng
g
or-
Ts@r,C1 ,...,CM#[ Min
$f i %→~r,C1 ,...,CM !

H (
i 51

N

^f i u2
\2¹2

2m
uf i&U E r dr5N, E u¹r1/2u2dr,`J . ~A1!

The notation$f i% stands for a set ofN orbitals, and$f i%→(r,C1 ,...,CM) means that the minimization is performed amo
the sets ofN orbitals which are orthonormal and yield a given set ofr~r !, C1 ,..., andCM . Thus, one obtains the minimizin
N orbitals by searching the minimum value of( i 51

N ^f i u2(\2¹2/2m)uf i& under the conditions that the orbitals are orthon
mal and yield the given set (r,C1 ,...,CM). This problem is translated into the minimization of the following functional:
8-8
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V@$f i%#[(
i 51

N E f i
1~r !S 2

\2¹2

2m Df i~r !dr

1E l~r !H (
i 51

N

f i
1~r !f i~r !2r~r !J dr

1 (
m51

M

mm$Cm@$f i~r !%#2Cm%

2 (
i , j 51

N

« i j H E f i
1~r !f j~r !dr2d i , j J . ~A2!

Herel~r !, mm , and« i j are Lagrange multiplier function an
multipliers, respectively.Cm@$f i(r )%# in Eq. ~A2! indicates
thatCm is given in terms ofN orbitals. The minimizing con-
dition of V@$f i%# leads to necessary conditions on minim
ing N orbitals. We get

2
\2¹2

2m
fk~r !1l~r !fk~r !1 (

m51

M

mmS dCm@$f i~r !%#

dfk
1~r ! D

5(
j 51

N

«k jf j~r !, ~A3a!

2
\2¹2

2m
fk

1~r !1l~r !fk
1~r !1 (

m51

M

mmS dCm@$f i~r !%#

dfk~r ! D
5(

i 51

N

« ikf i
1~r !. ~A3b!

l~r ! and mm should be determined by using the extend
Hohenberg-Kohn theorem. If the ground-state values ofr~r !,
C1 ,..., andCM are denoted, respectively, byr0(r ), C1

0,...,
andCM

0 , thenl~r ! andmm for ground-state values are give
by
ry

d J

-

16511
d

l@r0 ,C1
0,...,CM

0 #5next~r !1E e2r0~r 8!

ur2r 8u
dr 8

1
dExc@r,C1 ,...,CM#

dr~r !
U

Cm5Cm
0

r5r0

,

~A4!

mm@r0 ,C1
0,...,CM

0 #5
dExc@r,C1 ,...,CM#

dCm
U

Cm5Cm
0

r5r0

, ~A5!

whereExc@r,C1 ,...,CM# is the exchange-correlation energ
functional. Furthermore, Eqs.~A3a! and ~A3b! can be
changed by a unitary transformation to the canonical form
quantitiesC1 ,C2 ,...,CM satisfy the following relation:

(
m51

M

mmE fk
1~r !S dCm@$f i~r !%#

df l
1~r ! Ddr

5 (
m51

M

mm* E S dCm@$f i~r !%#

df l~r ! D *
fk* ~r !dr .

~A6!

This relation is regarded as the condition under which
single-particle Hamiltonian of the left-hand side of Eq.~A3a!
is Hermitian. The canonical form of the single-particle equ
tion is written as

2
\2¹2

2m
fk~r !1l~r !fk~r !1 (

m51

M

mmS dCm@$f i~r !%#

dfk
1~r ! D

5«kfk~r !. ~A7!

Equations~A4!, ~A5!, and ~A7! are self-consistent single
particle equations for basic variablesr~r !, C1 ,..., andCM .
These equations correspond to Eqs.~4.5!, ~4.6!, and~4.9! in
Ref. 25.
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