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Arbitrary choice of basic variables in density functional theory. Il. Illustrative applications
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Our recent extended constrained-search thg¢bty Higuchi and K. Higuchi, Phys. Rev. B9, 035113
(2004] enables us to choose arbitrary quantities as the basic variables of density functional theory. In this
paper, we apply it to several cases. In the case in which the occupation matrix of localized orbitals is chosen
as a basic variable, we can obtain the single-particle equation which is equivalent to that of thelLDA
method. The theory also leads to the Hartree-Fock-Kohn-Sham equation by letting the exchange energy be a
basic variable. Furthermore, if the quantity associated with the density of states near the Fermi level is chosen
as a basic variable, the resulting single-particle equation includes the additional potential which could mainly
modify the energy-band structures near the Fermi level.
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[. INTRODUCTION the DFT, while both the electron density and spin density are
reproduced in the reference system of the spin density func-
During past decades, the application of density functionational theory(SDFT).**~2 Of course, the spin density of the
theory (DFT)}~® has become the most effective method forground state can, in principle, be determined in the form of
the calculation of ground-state electronic properties of atm[p(r)] via the ground-state wave function of the real sys-
oms, molecules, and solidsExchange and correlation ef- tem in the DFT. However, from a practical viewpoint the
fects can, in principle, be contained in the exchangespin density should be directly calculated in the reference
correlation energy functional. The reproducibility of ground- system. The quantities that do not correspond to basic vari-
state properties via Kohn-ShafKS) orbitals and spectra is ables, even though they are considered significant in express-
dependent on the exchange-correlation energy functional déag the typical properties of the ground state, are not neces-
vised. We usually borrow the knowledge of the exchangesarily reproduced in the reference system.
correlation energy from the homogeneous electron liquid. Next we shall mention the second inconvenience. The
The knowledge is utilized not only in the local density ap-exchange-correlation energy functional of the conventional
proximation(LDA), but also in the modified schemes of the DFT is dependent on the electron density alone. It is known
LDA such as the generalized gradient approximafiofithe  that devising the approximate form of the exchange-
weighted density approximatidh;*® the averaged density correlation energy functional only by the use of electron den-
approximationt:~1*®and so on. Of course it is one of the sity cannot be easy. As an example, it has been shown that
approved ways that the exchange-correlation energy fundhe local spin density approximatiqghSDA) formulation is
tional E,J p] is improved more sophisticatedly. As an in- more effective in describing the ground-state properties of
stance, the use of the optimized effective potential methogome light atoms than the LDZ. This is caused by the
has been proposed by Gross and co-worket8. difficulty of describing the properties of the spin polarization
However, there are two kinds of inconvenience in ex-only through the electron density. The correlation is peculiar
pressing the correlation effects efficiently within the frame-to the system and the appearance of the correlation varies
work of the conventional DFT. One is that the reproduceddepending on the system too. As long as we employ the
guantity in the reference system is the electron density aloneonventional DFT, the highly complicated functiogl [ p]
Another is the difficulty in devising the exchange-correlationis required for an adequate description of the correlation
energy functional in an appropriate form only by the use ofeffects?®>%*
electron density. For the purpose of expressing the correlation effects more
Let us mention the first inconvenience. The basic variablalirectly and efficiently than the conventional DFT, we have
of the DFT, namely the electron density, is reproduced byecently proposed the extended constrained-sedS
means of the KS orbitals in the reference system. Everyormulation?® According to this theory, arbitrary observables
property of the ground state is uniquely determined by thesan be chosen as basic varialfedn other words, if the
electron density through the ground-state wave function ofround-state properties of the system are characterized by
the real system, but there is no insurance to reproduce quaseme quantities plus the electron density, we may choose
tities other than the electron density in the reference systensuch quantities as basic variables so as to describe the corre-
Now let us illustrate the case where the spin polarization idation effects efficiently. Due to the arbitrary choice of basic
representative of the ground-state properties. The spin dewnariables, the ECS theory would entirely overcome the in-
sity is not necessarily reproduced in the reference system afonveniences associated with the conventional DFT, which
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are mentioned above. In the preceding p&pére SDFT and  |l. OCCUPATION MATRIX OF LOCALIZED ORBITALS

current density functional theo®y *3have been revisited so AS A BASIC VARIABLE: REVISITING THE

as to confirm the validity of the ECS theory. SINGLE-PARTICLE EQUATION OF THE LDA +U
The ECS theor? would be promising for expressing the METHOD

correlation effects of various systems efficiently, if basic |, he DA+ U method®~3° electron interactions are
variables are chosen appropriately to systems. In this pap&fjassified into two types on the basis of the Anderson
we shall present several illustrative applications of ECSyodel?° One is the interaction between atomiclike localized
theory. The various types of correlation are described in thpitals, which is supposed to be the strong on-site Coulomb
form of the additional potentials of single-particle equations.jnteraction among them. Another is the interaction between
The organization of this paper is as follows. In Sec. II, thedelocalized electrons, which could be described by the ordi-
single-particle equation which is equivalent to that of thenary LDA method. Total energy of the LDAU method is
LDA + U method is derived if the occupation matrix of lo- given by the following fornt®

calized orbitals is chosen as a basic variable. The ECS theor R . .

also gives the Hartree-Fock—Kohn-ShamHF-KS) Y ERSOAY 7 ] ESO o] + EY AT - ETA7, (D)
equatior***which is shown in Sec. Ill. In Sec. IV, we dis- wherep?(r) is the electron density of spia (c=1,]), and
cuss the cases where the quantities that are related to tE&SPA[ p”] represents the ordinary LSDA functiondi”
density of states near the Fermi level are chosen as basfe=n_ ) is the occupation matrix of localized orbitgls,},
variables. The single-particle equations derived contain addivherem is the magnetic quantum numbeghe other quan-
tional potentials which mainly modify the energy bands neatum numbers are abbreviated for conveniénde[A”]

the Fermi level. Finally, in Sec. V, we summarize and givestands for the interaction between localized electrons and is
some comments on the results of the above applications. given by

U ~ _ !
EVATl=3 > X n%lmzn%3m4[f f U:ql(rl)uﬁs(rz)vee(rl,rz)Umz(rl)Um4(r2)dr1dr2
mp.mp o’,o/
mz,My

_50'0"f f Uqu(rl)uzqs(rz)vee(rlarz)Um4(r1)Um2(r2)dr1drz ; 2

whereVe€ is the effective Coulomb interaction and can be We shall apply the ECS theory to the above exchange-
expressed in terms of the effective Slater integraf§ ] correlation energy functiondb). The basic variable chosen
in Eq. (1) is the double-counting term which correspondshere is the occupation matrix of localized orbitai€, Note
approximately to the interaction between localized electronshati” can be chosen as a basic variable since the elements
which is already included in the LSDA, of A’ are calculated from the antisymmetric wave function.
Correspondingly, the constrained-seaFglp?,1?] is defined
u J in accordance with the previous papehe reference sys-
EYTn7]= Zn(n—1)— 52 n’(n’—1), (3)  tem, which is described by the set of single Slater determi-
7 nants, is introduced so as to reproduce basic variables. The
whereU andJ are, respectively, effective Coulomb and ex- €xchange-correlation energy functional p”,n”] is also

change parameters, and given by using the effective Slatglefined as the remaining part which is given by subtracting
integrals®® In Eq. (3), n=3,n” with n”=Tr(A°) is the total  Poth the kinetic energy functional of the reference system

occupation number of localized orbitals. T4p?,77] and the Hartree term frorft[ p?,n”]. Equation
In the LDA+U method, the interaction energy which is (5) is regarded as one of the approximate forms for
not included in the LSDA scheme is E.dp?,h7]. Here we assume that the minima exist in the

definitions of F[ p?,A’] and T4 p?,A’] in a similar way to
the preceding papér.

In this case, basic variables other than the electron den-
e]s]i:[y, i.e., elements oh“ are independent of position In

This energy can be regarded as the exchange-correlation - ) . .
ergy which fails to be considered in the LSDA. Therefore order to derive the Kohn-Sham-type single-particle equation,
'some modifications to the procedure of the previous paper

the exchange-correlation energy functional is reasonablzlre needed. The derivation is shown in the Appendix. Ac-

AE[A’]=EY[A’]-EYA]. (4)

given by cording to Eq.(A6) in the Appendix, the condition under
R LSDA R which the single-particle equation is transformed into the
Exdp”.071=Ex " 1p7]+AE[A7]. (5  canonical form is
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5Exc[p 7] h2v? SE L p7,A"] on, .
P f"’k(”(fw. Fr >)dr :_ am MO O S e T S
OExd p?,NT]\* =exdu(r), (7
_2 ( on? ) f(gd,(r)) ic(r)dr, where(r) is
(6) _ po(r’) . OEx{p”,A]
(1) = veu(r) +€ T R v o a PP

0

wheren_ . denote the matrix elements éf. Derivatives whgre pO(.r) and fAig stand for the ground-state values of

_ basic variables, and(r) represents the external scalar
mm,/5q§| (r) andon; /8¢ (r) are obtained by calculat- potential.

ing the density matrix with the use of orbitais(r). For The third term on the left-hand side of EG7) is the

example, we can see the explicit expressions for the derivaadditional potential to the ordinary LSDA potential. The de-

tives in Ref. 41, which are calculated on the basis of theivative sn;, /8¢5 (r) can be obtained by using the explicit

linear augmented-plane-wave method. It is easily confirme@xpression fo?,** which already appeared in the evalua-

by using such explicit expressions that Ef) is satisfied. tion of Eq. (6). Concerning the derivative

After the unitary transformation, we finally get single- SE,Jp?,A"]/on’._,, we can rewrite it as the following ex-

mm/ L
particle equations, pression by utilizing Eqs(1)—(5):
s OBEdp?
Vi = BT U f UR(FDUR (1) VO 1,1 2) Uy (T 1) Ug(ro)dr g
5nmm, [ -

! 1 1
—50(,,j f uﬁ(rl)ug(rz)Vee(rl,rz)uq(rl)um,(rg)drldrzlngq—émmru<n—§ +5mm,J(n”—§). (9)

Substituting these results into E¢¢), we get the single- whereV is the ground-state wave function, agid) and
particle equation which is completely equivalent to they™ (r) are the field operators of electrons. Let us consider the

LDA + U method®®4! following functional of the antisymmetric wave functioh:
2 ’
e W(r)p[W](r
lll. EXCHANGE ENERGY AS A BASIC E)’(C[\p]z_j j pLYI( )p[, 1)
VARIABLE: RECONSIDERATION OF THE HARTREE- 2 |r—r |
FOCK-KOHN-SHAM EQUATION X{g[\lf](r,r’)— 1}dr dr’ (13

In this section, we shall revisit the HF-KS scheme byith
means of ECS theof. The exchange-correlation energy,

which is not the exchange-correlation energy functional of p[W1(r)=(¥|p(r)| V), (14
the Kohn-Sham scheme but the exact exchange-correlation
energy, is given in Sec. 7.2 of Ref. 7 by ) = (W[p(r)p(r")|W)—a(r—r")p[W](r)
i) J PPN p[¥I(r)
(r 15
Exc= % J’ J’ Pol pO( {go(r,r')—1}drdr’, (10 9

Substituting Eqs(12), (14), and(15) into Eq. (13), E; [ V]

ily transformed in lain form
where pg(r) and gq(r,r’) denote the ground-state electron can be easily transformed into a plain form,

density and pair correlation function, respectively. The pair , _ 2 _
correlation function is defined by EdW]=(VIW¥)=Unlp[ V] (16)

with
(Wolp(Np(r)[Wo)=8(r—r")po(r) L
Go(r.r')= oD pol) (1D :_f f dr dr Y )wlr(r )¢|r(r )w(r)’ 1
e [‘I’]() [W](r)
, rNp r
p= " (D), (12 UH“’”’”“H" o = @9
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It should be noted that the function&l [ ] coincides with —#2V?
£yc in the case of =V, as we are defining it. T p,Ex]= Min <<I> E om CI>> . (24
By usingE, [ ¥], we shall choose the following quantity ©—(p.Ex) =1
as one of the basic variables: Again, we assume that the minimum exists in E2g). Us-
ing this functional, the exchange-correlation energy func-
EdV]=Ex{V]—econ (19 tional is defined as the remaining part®fp,E,]. Namely,
we have
with &, given by
Exdp.ExX]=F[p.Ex]-Tdp.Ex]=Unlpl. (25
Econ™ M\I',”<\I’|H|‘P>_ Enrs (20 Taking care of the fact that the basic variab®) is inde-

pendent of, single-particle equations can be derived such as
Egs. (A3a) and (A3b). From Eq.(A6), the condition under

Hartree-Fock approximation, Equatié20) denotes the exact \t/)v;uch the single-particle Hamiltonian is Hermitian is given
correlation energy, so that E¢L9) coincides with the ex-
change energy i is equal toW. This means that the exact SE,e OE,
exchange energy can be obtained by using the present ECS f ¢f§(r)f S
theory because ECS theory reproduces the ground-state val- x O¢r (1)
ues of basic variables. SE,o\*( OE,
The exchange energy depends on the exchange hole :f ( SE ) <5¢ "
which is defined as the spatial region where electrons having X !
the same spin orientation avoid each other. Furthermore, thi¢ is easily confirmed by using Eq22) that the above con-
exchange hole cannot be expressed by using the electrdition is satisfied. Therefore, the single-particle equation can
density alone in general cases, with the exception of the hdse transformed into a canonical form after the unitary trans-
mogeneous electron liquid model. Therefore, we may asformation. We get
sume thatE, is chosen as the basic variable simultaneously

where E, ¢ is the total energy of the systeﬁi within the

dr

) o (r)dr.

with the electron density. By using the expressions of Egs. 3 2v? “ N OBy p,Ex] SE{bu}]
(14) and(19), the constrained-searéH p,E, | can be explic- 2m (1) [ (1) OE, S (1)
itly defined under the assumption that the minimum exists, in
accordance with the preceding paper.e., = exdi(r), (26)
2 ’
Flp,Ex]= Min (¥[T+W[WV). (21) )\(r)=vext(r)+f © p(r, ) grr 4 25d P Exd 27)
W (p,Ey) [r—r’| Sp(r)

The additional potential is the third term of E@6). Substi-

Next, we shall reproduce basic variables in the reference sinn of Eq. (22) into the derivative SE 1 5% (r
system, which is described by the set of single Slater deterl-eads to a- (22 A1 A1/ 61 (r)

minants. If we put the single Slater determindnin place of

W, then Eqs(14) and(19) are reduced to SE, *(r' !
ety [ e,
e G (1) B} (r2) (ry) i(ra) ' 28
=053 | | [y 29

Here note that,, is a constant value from E@20). Equa-

X dr,dr,— o (22) tion (28) is identical to the exchange potential of the ordinary
HF equation. The exchange-correlation energy is formally
decomposed into

p(r)=2 Gi(D)* $i(r), (23 Eofp.E]=E, +Edp]. (29

where ¢;(r) are the constituent KS orbitals of the single Here the functionalE:[p] means the correlation energy,
Slater determinant. The first term on the right-hand side ivhich also includes the difference between the kinetic en-
Eqg. (22) has a form identical to that of the HF exchange®'dy of the reference system and the real kinetic energy. By
energy. However, this term does not mean the exchange eHsing Eqs(28) and(29), the additional potential of Eq26)
ergy as we are defining it, because it consists of the K$S written as

orbitals, which are generally different from the HF orbitals.

On the other hand, the left-hand side of E22) stands for SE«d p.Ex] SEL{4i}]
the real exchange energy which should be reproduced. 1= Sy (1)
In order to decompose the functiorigdlp,E,] into a more o ,
tractable form, the kinetic energy of the reference system is _ _ezE G (1) dilr )dr’qi(r) (30)
introduced in the same way as the preceding p&per, 1 [r—r’| e
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On the other hand, the potentilr) contains the correlation lated to the density of states near the Fermi level are chosen
part SE,J p,E,1/8p(r)=SE [ p]/Sp(r). Therefore, the re- as basic variables. In the first half of this section, we deal
sulting single-particle equation has the Hartree-Fock-typevith the case in which the sum of the electron density within
exchange potential plus the correlation potential of the ordithe restricted energy region is chosen as a basic variable.
nary DFT. It is sometimes called the Hartree-Fock—Kohn-Later this section, the local density of states at the Fermi
Sham equatiof*® Of course, if the correlation energy is level is chosen as a basic variable.
neglected in Eq(29), then we get the single-particle equa-
tion which is equal to the Hartree-Fock equation. A. Sum of the electron density within the restricted energy
Goring, Levy, and co-workers have derived the HF-KS region

equation in a manner different from the present sch&m¥. .

In order to reflect the above features of the correlation

. . . S . . .
They first introduced the function& p], which is defined energy explicitly, we shall choose as the basic variable the

as the expectation value of kinetic and electron-electron in-Sum of the local density of states over the enerav redion
teraction operators with respect to the minimizing single Y 9y reg

Slater determinant yielding the ground-state value of th cgntered at the Fermi leve:. Suppose that the energy re-

electron density. By employing the arbitrariness concerningg'on IS

the decompo.sition of the function&l[p] in the reference er—A<s<sp+A, (32)
system,F[p] is decomposed into two parts, i.&p] and ) )

the remaining part. If the remaining part is supposed to bavhereA is the appropriate energy parameter. The local den-
the correlation energy functional, then the HF-KS equatiorsity of states at some energyis defined as the imaginary

can be derived?—%4 part of the retarded Green’s function, i.e.,

In deriving the HF-KS equation, @ing et al. utilize the 1
arbitrariness on the decomposition of functiok@p], while d(r,o)=——=ImGR(r,r;w), (33
we utilize the arbitrariness on the choice of basic variables. ™

The merit of our theory is to get the ground-state valugof | hare . =c/7. Note that the local density of state¢r,w)
or E, + ecor through Eq/(22), together with the electron den- ragits in the density of states atby integrating it with
sity. respect ta. Combining Eqs(32) and(33), the basic variable
chosen here is
IV. BASIC VARIABLES ASSOCIATED WITH THE

DENSITY OF STATES NEAR THE FERMI LEVEL _ J£F+A
D(r,wp)= d(r,w)de
It is hard to ignore the correlation effects in systems er—A
where the density of states near the Fermi level shows the 1 [ep+d
high value. This can be reasonably understood if one recalls =— ;f N ImGR(r,r;w)de, (39
EFT

the correlation energy ., Of the configuration interaction

(Ch method®~*8The doubly excited Cl is often used for the WhereszgF/ﬁ_ According to the preceding pap?é:‘rthe F
estimation ofe ., because the contributions of single exci- functional, i.e.,F[p,D], can be defined under the assump-
tations toe,,, are the fourth- and higher-order perturbationtion that the set of antisymmetric wave functions yielding

terms?®*’ The approximate form of ¢ is given by?® p(r) and D(r,wg) is weak closed and not empty. The ex-
tended Hohenberg-Kohn theor&hholds for basic variables
occ  unocc a ab ab| [
O el H| D3PV DA H| D p(r) andD(r, wg).
scorrs—Z E (®rrlH] A” X L A HF>, (31 In order to reproduce basic variables by using single-
hiooab (DF°|H — Epe D3 particle wave functions and spectra, we shall adopt as the

) ~_reference system the set of wave functions which are in the
where @y denotes the Hartree-Fock determinant which isform of simple products oN single-particle wave functions.
formed from N lowest-energy orbitalsE,r stands for the  Namely, the element of the set is written by

ground-state energy of the Hartree-Fock approximation,

which is given byEue=(® e H|®ye).  ®F°is the doubly El{eit]l=en (rDen,(r) e (ra) ey (fn). (35
excited determinant, which differs from® e in replacing
occupied orbitalsy; and x; by unoccupied orbitalg, and
Xb, respectively.

For the purpose of decomposirfg[p,D], the following
functional is newly introduced:

One of the important features of this correlation energy is N 22
that it prompts the orbital mixing between occupied and un- T [p D]=  Min <E[{(Pi}] > - ! E[{¢i}]>
occupied states near the Fermi level. The gain of the corre- E[{ei}]—(p,D) j=1 2m
lation energy increases with the density of states near the \

. . . N thZ
Fermi level. In other words, the correlation energy increases .
. . = Mn > (el-He). @9
as occupied and unoccupied states come close to each other. o] (p.D) M 2m
(=1 irl— ,

Thus, the correlation energy is dependent on the density of
states in the vicinity of the Fermi level. In this section, we where Z[{¢;}]—(p,D) indicates that the search is con-
shall consider two cases where the quantities which are restrained among aE[{¢;}], which yield the prescribegd(r)

165118-5



K. HIGUCHI AND M. HIGUCHI PHYSICAL REVIEW B 69, 165118 (2004

andD(r,wg). Here we assume again that the set of &) The derivation procedure of the single-particle equation is
yielding p(r) and D(r,wg) is weak closed and not empty. @ little different from the previous or{&gs.(4.5), (4.6), and
The functionaﬁ's[p,D] corresponds to the kinetic energy of (4.9 in Ref. 23, since the orthogonality is not imposed kin
the peculiar reference system which is mentioned above'Pitals{ei} in Eq. (36). Correspondingly, we do not need

Note that the orthogonality dfl orbitals {¢;} is not neces- the unitary transformation of the single-particle equation.
sarily demanded. Taking care of the above points, we obtain self-consistent

Basic variables should be reproduced by taking the expecindle-particle equations,

tation values of their operators with respec&@{ ¢;}]. The 2y2 SD(r', wg)
electron density is given b - + +f n_—~ 7
yisg y ( >m A(r)]cpk(r) p(r’) St (1)
p(N=2 lei(n]2. (37) =o0ul1), (40
here\(r) and u(r) are given, respectively, b
On the other hand, we shall assume the reproduced form c\>/¥ ) w1 g P ¥, by
D(r,wg). The retarded Green’s function is generally written po(r’) 5Exc[p,D]|
by using quasiparticle wave functions and spettré.qua- N(r)=ver)+e |r r] dr’ 5o(1) | pry '
siparticle wave functions and spectra are replaced with the p ’,;",;’0
KS orbitals and spectra, respectively, and if the imaginary (42)
parts of quasiparticle spectra are supposed to be corstant
then the local density of states is written as an
0Exd p,D]
1 o ma? _ TP
d(r,w)=2 ¢j(1)*¢;(r) —=e (@-#/M7a" (3g) w1 D o=py 42
] a\/; D=D,
Utilizing Eq. (38), we suppose that the reproduced expresin Eqs. (41) and (42), po(r) and Do(r,wg) stand for the
sion for D(r,wg) is given by ground-state values of basic variables.

i 1 In order to investigate the features of the single-particle
D(f,wF)=2 f F ds@j(r)*qu(r)_e—(w—sj/fl)zlaz. eqL_Jation, let us consider thg derivatiﬁ@(r’,wp)m(p;(r)_
j ayJm which appears in Eq40). Using Eq.(39), the derivative is
(39  written as

oD(r’ wF) 1 [erta 2,2 1 ) eptA _—
— (r_r ) (r ) e*(sk*S) /a de + ?k(r/) .(rl) f ef(sifg) /a de.
PG) S T e > ayar 0 sk () o
(43)
By means of the chain rule for functional derivatives, the second term 4By is
S sp+A 2 2 ée; 0 f‘#*A 2,2
- —(g;—¢e)°/a _ J . —(gj—¢e)°/a
e ' de= e ‘@i de. 44
567 (1) LFA 2 St () 79 Jeps 9

Here the functional derivative with respectdpis replaced by the ordinary derivative in E¢4), because the integral of Eq.
(44) is the ordinary function of; . We take the ordinary derivative in E@4), giving attention to the fact that is a constant
value which is identical with the highest occupied KS spectrum. Then(Zqis

+A -
° st e (ei-e)alyy = 5*8' {e—(si—eF—A)zlaz_e—(ei—sFJrA)Z/az}_ (45)
Sy (1) Sy (1)

The derivativede; / S¢i (r) can be approximated in a more simplified form. The third term on the left-hand side ¢4@iq.
explicitly includes the state,(r), which is the solution of the equation. Correspondingly, the single-particle Hamiltonian of
Eq. (40) depends directly on the solutian(r), so that the predominant effect 6¢;/5¢j (r) would be caused from the case

of i =k. Under this approximation, E¢45) is written as

e (ei—ep—A)%a? _ (si—sF+A)2/a2}_ (46)

5 J€F+Ae—(5ifg)2/a2d8%_ 58
Sy (1)

e A “oer(n)
Substituting Eq(46) into Eq. (43), the single-particle equatio@0) is simplified into
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hZVZ 1 sptA (e 78)2/a2
- 2m +)\(r) (Pk(r)+ﬂ(r)a\/; Ae k ds(Pk(r)
EE—
1 Oey (e — s A)2/52 e 2.2
+fu(r'>so:<r'>sok<r'>dr'—a —agrnle T e A = (n). (47)

Let us consider the features of the above single-particle We suppose that the reproduced form of the local density
equation. Compared to the KS equation of the conventionadf states at the Fermi level is given by EH§3),

DFT, additional potentials are the third and fourth terms on
the left-hand side. The integrand of the third term is the 1

Stype function, which is centered af. The third term is me

proportional to the area under thistype function between ) ) )

ee—A andes+A. As the states, comes close to the Fermi Under the choice ofi(r,wg) and p(r) as basic variables,
level s, the area increases. Therefore, the third term chieflyp€!f-consistent single-particle equations can be derived simi-
modifies the states which are located in the vicinity of thel@'y to the preceding subsection. The additional potential

Fermi level. Also, the fourth term has an effect on the stated/nich does not exist in the KS equation of the conventional
only in the vicinity of the Fermi level. The energy term in the PFT IS given by

parentheses of the fourth term has a positive or negative sd(r’ wp)

value depending on the position af,. Namely, if g is f w(r! T’Fdr’ (49
located below the Fermi level it takes the positive value, and oey (1)

conversely ifey is located above the Fermi level it takes the iy

negative value. The fourth term would enlarge or reduce the

d(r,wp) =2 @;(1)*¢;(r) (e /)%1a% - (4g)
]

width of energy-band structures near the Fermi level. The SE,J p,d]
potential whose sign depends on whether the statis oc- ’“(r):T _ (50
cupied or unoccupied can also be seen in the HDA d—d

method and th&W approximatiorr®>* Of course, according

to the derivation processes of the above effective potential/Nerepo(r) anddo(r,we) represent the ground-state values
and the single-particle equatidhEq. (47) is valid only for of basic varlables._ Let us (_:onS|der the _denvatlve
the occupied states in the same way as the KS equation ®d(r’,@g)/8eic (r) which appears in E¢49). Applying the
the conventional DFT. However, it is interesting that theSame approximation which was employed in the derivation
fourth term has the possibility of modifying the width of the of Eq. (46), 6d(r’,wg)/ ¢y (r) is written as

energy bands near the Fermi level, like the LBDA andGW

!
methods. 5d(r*""F) = S(r—1")e(r") 1 e~ (ek—sp)%a°
S (1) a\/;
B. Local density of states at the Fermi level 2(er—ey)
. ) ) +<p*(r’)<p (r/) F k e—(sk—a,:)zlaz
As already mentioned, the correlation ener@®i) in- k K PEN
creases with the density of states near the Fermi level. On the
basis of this expression, the approximate model for the cor- Sey
relation energy functional can be discussed. As an example, X Sor (1) (51)

we shall consider the model where occupied and unoccupied

energies in the denominator are approximated into the repré-he resulting potential has similar properties to those of the
sentative energies that are the centers of gravity for occupieadditional potentials of Eq47). The first term of Eq(51)

and unoccupied bands, respectiv&l{rhis model maintains affects only energy bands in the vicinity of the Fermi level,
the above feature of the correlation energy. In such a modeWwhich corresponds to the third term of E4.7). The second
the representative energies for occupied and unoccupig@rm also influences the modification of states near the Fermi
bands become closer to the Fermi level as the density deével. Furthermore, the sign of the second term varies de-
states at the Fermi level increases. Namely, the correlatiopending on the position af, in a way similar to the fourth
energy increases with the density of states at the Fermi levelerm of Eq.(47).

Therefore, the density of states at the Fermi level seems to be From the viewpoint of practical calculations, it is difficult
one of the significant candidates of basic variables. In thigo deal with the derivativée, / S¢j (r) which appears in the
subsection, we shall choose the local density of states at treecond term of Eq51). However, if we neglect the orbital
Fermi level as one of the basic variables and derive th@ependency of the effective potential of the single-particle
single-particle equation with the aid of the results of the pre-equation, we can utilize the approximate expression which is
ceding papef® based on the first-order perturbation theory, i.e.,
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Sy (1)

pounds for the Ce-based heavy fermion compaotintdf. In
these materialsf electrons have been successfully treated
X (1) @(r')dr’. (52)  Wwith the models which presuppose the strong on-site Cou-
lomb interaction among thefi>® In Sec. Il, the single-
particle equation of the LDA U method was revisited by
V. SUMMARY AND DISCUSSIONS ECS theory. This fact not only implies the validity of ECS
theory, but also leads to the following significant applica-

In this paper, we give several types of single-particleong” |t electron correlations of the system may be recog-
equations as applications of ECS theory. Validity of thepi;aq well on the basis of some model Hamiltonian, we may

theory is confirmed by revisiting the single-particle equationyerive the single-particle equation by taking as one of the
of the LDA+U method and Hartree-Fock-Kohn-Sham equa+yasic variables the quantity which is included in such a
tion in Secs. Il and I, respectlvely, just as the SDFT andmodel. Namely, ECS theory allows us to incorporate the
CDFT formulations have been derived on the basis of EC$yrgperties of the model Hamiltonian into the single-particle

theory in the preceding pap&t. . _problem. In Sec. II, we illustrate the LDAU scheme as one
The ECS theory seems to be promising for the electroniG ihe cases offering the above possibility.

structure of f-electron materials. Thd-electron materials
which belong to the heavy fermion system show peculiar
electronic characteristics:>* For instance, they exhibit the
extremely large electronic specific-heat coefficient, the mag-
nitude of which is two to three orders larger than that of ~The authors are grateful to Akira Hasegawa for continual
usual metals. This means that the effective mass becomes faiscussions on energy-band theory. One of the authors
heavier than the free-electron mass. Such peculiar featur¢m.H.) would like to express his thanks to the Alexander von
are sure to be caused by the electron correlations in whichlumboldt Foundation for facilitating both the stay and the

f-electrons play a vital part. research in Dresden.
The density of states at the Fermi level is comparatively

high for thef-electron materials which belong to the valence

fluctuation r_egimé_’:r’ It is due to the concentration ébands APPENDIX: SELF-CONSISTENT SINGLE-PARTICLE

in the \{|C|n|ty pf the Fermi level. The valence fluctua.tl'on EQUATIONS WITH CONSTANT BASIC VARIABLES

regime is considered to be smoothly connected to the itiner-

ant f-band modef®>” The f bands near the Fermi level In this appendix, self-consistent single-particle equations

would determine the peculiar behaviors of the valence flucare derived in the case in which basic variables chosen are

tuation regime. In Sec. 1V, single-particle equations are deindependent of. This is the simple extension of Ref. 25, in

rived by choosing the quantities related to the density ofwhich self-consistent single-particle equations are derived

states near the Fermi level as basic variables. The resultirfgr r-dependent basic variables.

single-particle equations include the additional potentials Suppose that quantiti&€s; ,C,,...,Cy, are chosen as basic

which mainly modify the energy bands near the Fermi levelvariables in addition to the electron densitfy). In Ref. 25,

If such additional potentials narrow the widthfdfands near basic variables are assumed to be chosen so that the minima

the Fermi level, our scheme shown in Sec. IV has the possexist in Egs.(2.3) and(3.3) of Ref. 25. In the following, we

bility of describing the electronic structures of the valencealso assume that the set pfr), C,,..., andCy, is of that

fluctuation regime more appropriately than the conventionatype. The extended Hohenberg-Kohn theorem can be proven

LDA. in the same way as the proof in Ref. 25. The kinetic energy
On the other hand, in thé-electron materials of the functional of the reference system is also introduced so as to

Kondo regime, nd bands are observed at the Fermi levelobtain the practical scheme for calculating ground-state

and the Fermi surface is essentially the same as that of thgroperties. The kinetic energy functional is defined by

Sey ij(r')d(w)@}*(r) -1 corresponding reference material, as for example, La com-
=g+ | | X —
J#k EkTEj

ACKNOWLEDGMENTS

N

_ 52y2

TipCoonCul=  Min |3 (a]- " [ pdr=n, flvpllezdr«c]. (A1)
{¢i}—(p.Cy,...O 1=

The notation{ ¢;} stands for a set df orbitals, and{ ¢;}—(p,C4,...,Cy) means that the minimization is performed among
the sets ofN orbitals which are orthonormal and yield a given sep@f, C,,..., andCy, . Thus, one obtains the minimizing
N orbitals by searching the minimum value Ef“zl(¢i|—(h2V2/2m)|¢i) under the conditions that the orbitals are orthonor-
mal and yield the given sep(C,,...,Cy). This problem is translated into the minimization of the following functional:
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N 2p2 e’po(r’)
Ql{gitl=2 f cbi*(r)(— T )d’i(r)dr x[po,c0,---,<:&]=vext(r>+fﬁdr
N +5Exc[p!C1!"'vCM]‘

+f Mr)ii_El ¢r<r)¢>i<r)—p(r)}dr sp(1) | o=r0

- (A4)
+ 2 Crl{i(1)}]~ Crn}

m= S5Edp,Cq,...C

| el P0,C2, ... CO = [péém iL o (A)
—ij§=:]_ gij[J ¢f(r)¢](r)dr—5h]] (AZ) Cm:C?n

whereE, p,C4,...,Cu] is the exchange-correlation energy
Here\(r), um, ande;; are Lagrange multiplier function and functional. Furthermore, Eqs(A3a) and (A3b) can be
multipliers, respectivelyC[{¢i(r)}] in Eq. (A2) indicates  changed by a unitary transformation to the canonical forms if
thatC, is given in terms oN orbitals. The minimizing con-  quantitiesC,,C,,...,Cy satisfy the following relation:
dition of Q[{¢;}] leads to necessary conditions on minimiz-

ing N orbitals. We get . o [ SCu{&i(N}]
ing N orbitals. We ge mZ:l MmJ 82(1) 5(;+(r) } )dr
12v?2 v SCw[{pi(1)}]
~ om ff’k(f)-l-)\(l')d’k(r)"‘mzzl Mm( Sy (1) ) - . anf (W)*ﬁ(r)dr'
N m=1 |
=2 egdi(n), (A3a) (AB)

=1 : L " :
: This relation is regarded as the condition under which the

5292 M 5C. ()] single-particle Hamiltonian of the left-hand side of E43a)
. r . e . . _ . _
-5 & (DN G () + E Mm< ml Pi ) is Hermitian. The canonical form of the single-particle equa
m=1

Sy (1) tion is written as
N 2w 2 M
hev 5Cm[{¢i(r)}]>
N
= ik (). A3Db - r)+A(r r)+ —_—
i=218|k¢| (r) (A3b) o PN TN Bi(r) mE:l Mm( S (1)
\(r) and u,, should be determined by using the extended =eydi(r). (A7)
Hohenberg-Kohn theorem. If the ground-state Vam%ﬁ('@f Equations(A4), (A5), and (A7) are self-consistent single-
Cy,..., andCy are denoted, respectively, (r), Ci,...,  particle equations for basic variablp§), Cy,..., andCy .
andC?, then\(r) and «,, for ground-state values are given These equations correspond to E@s5), (4.6), and(4.9) in
by Ref. 25.
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