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The Hohenberg-Kohn theorem of the density functional théBiyT) is extended by modifying the Levy
constrained-search formulation. The theorem allows us to choose arbitrary physical quantities as basic vari-
ables which determine the ground-state properties of the system. Moreover, the theorem establishes a minimum
principle with respect to variations in chosen basic variables as well as with respect to variations in the density.
By using this theorem, self-consistent single-particle equations are dehvsihgle-particle orbitals intro-
duced reproduce not only the electron density but also arbitrary physical quantities which are chosen as basic
variables. The validity of the theory is confirmed by examples where the spin density or paramagnetic current
density is chosen as one of basic variables. The resulting single-particle equations coincide with the Kohn-
Sham equations of the spin-density functional theory or current-density functional theory, respectively. By
choosing basic variables appropriate to the system, the present theory can describe the ground-state properties
more efficiently than the conventional DFT.
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. INTRODUCTION spin-density functional theofy ° In the CDFT, the para-
magnetic current density,(r) is chosen as a basic variable
The density functional theor§DFT) (Refs. 1 and 2pro-  as well asp(r). The CDFT also has merits which are analo-
vides the most powerful method to calculate the ground-statgous to those of the SDFT. That is, not only can one get the
properties of materials. The Hohenberg-KdhtK) theorent  paramagnetic current density reproduced by the KS orbitals,
laid the foundation for DFT. The theorem states that the elecbut the simple exchange-correlation energy functional
tron densityp(r) determines the ground-state wave functionE,{ p,j,] can sufficiently describe effects that would require
and all other ground-state properties of the many-body sysa highly complicated functionaE,Jp] in the original
tem, wherebyp(r) is regarded as the basic variable in the DFT.2%%
DFT. The theorem also gives the variational principle In order to enjoy the above merits in general cases, it is
with respect to the electron density. The practical scheme fogssential to choose as basic variables the quantities which
calculating ground-state properties was provided by Kohrtharacterize the ground-state properties of the system. Such
and Shanf. They introduced the noninteracting fictitious characteristic quantities differ in individual systems. There-
system and successfully derived single-particle equationfore, we need the extended HK theorem which holds for
with the aid of the HK theorem. They are called the Kohn-arbitrarily chosen basic variables. In this paper, we shall de-
Sham (KS) equations. The electron density can be reprowvelop the generalization of the Levy constrained-search
duced correctly by means of the KS orbitals in the fictitiousformulatiorf>=?*so as to get such a theorem.
system. The constrained-search formulation provides a correspon-
The DFT has been extended to suitable density functionalence between basic variables and the wave function irre-
frameworks by treating characteristic quantities as basic varispective of external fields and potentials. So far, the
ables. For example, in the spin-density functional theoryconstrained-search formulation has been applied to several
(SDFT) (Refs. 3 and %and its relativistic theory; ®the spin  cases by some authors. Electron density and off-diagonal el-
densitym(r) and p(r) are chosen as basic variables whichements of the density matrix were treated as basic variables
determine the ground state of the spin-polarized system. Thie both works of Lev§* and Percué® Perdew and Zunger
SDFT has the following merits in comparison with the origi- have used the constrained-search procedure to construct the
nal DFT. One is that we can get the ground-state values afigorous framework of the SDF¥f. Erhard and Gross have
both the electron density and spin density, while DFT reproemployed the constrained-search approach, and derived the
duces the electron density alone. Another merit is concernesum rules of the exchange-correlation energy functional of
with the simplicity of the approximate form of the exchange-the CDFT?’ In order to overcome the symmetry dilemma of
correlation energy functiondt, [ p,m]. Due to the explicit the KS theory, the constrained-search formulation has been
treatment of the spin density as the basic variable, we caextended to the symmetrized one by Theoptfoand
construct a simpler exchange-correlation energy functionatorling,2®*°and further discussed by Theophifdand Kat-
than the conventional DFT. riel etal3? The constrained-search approaches for excited
Another simple example of the extended DFT is found instates have been developed byridg,*® Levy and Nagy*
the current-density functional theof¢DFT) (Refs. 10-1%  and Nagy and Levy® Thus, the constrained-search formula-
and its relativistic extension, the relativistic current- andtion has been pursued in the specific cases. The purpose of
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this paper is to give a theoretical framework in which arbi-

trary characteristic quantities of the system can be chosen as} oD e
basic variables, by utilizing the constrained-search proce- o e X0
dure. Due to the arbitrary choice of basic variables, the mer- : . AU
its above illustrated by the SDFT and CDFT are maintained X0
in the present theory. That is, physical quantities which are e
chosen as basic variables in compliance with electronic prop- * ° ).(B(ﬁ
erties of the system can be obtained simultaneously with the pdo pi? Py
electron density. P20

The organization of this paper is as follows. In Sec. Il,
we present the extension of the HK theorem. The extended
theorem guarantees that the ground-state wave function is FG. 1. TheN-electron Hilbert space divided into subsets).
determined by basic variables which are chosen appropriach subset consists of wave functions which integrate to a particu-
ately to the system. It is also shown that there exists gar p(r). The conventional constrained-seaf@h?) is performed in
minimum principle with respect to variations in chosenthe subset. A minimizing wave function is denoted by a dot in each
basic variables as well as with respect to variations in theubset.(b) The set in(a) is further divided into smaller subsets.
density. In Secs. lll and IV, self-consistent single-particleEach subset consists of wave functions which yield not quty
equations are derived on the basis of the extended HK thedput alsoX(r). A minimizing wave function is denoted by a dot in
rem. In order to confirm the validity of the present theory, iteach subset.

is shown in Sec. V that the present theory can reproduce the . . .
SDFT and CDFT formulations. Finally in Sec VI, we sum- ing wave function for a particulap(r) is denoted by a dot
' in the subset! Since the constrained-search formulation

marize results and give some comments on the presem

(a)

theory. guarantees the equality"Vo|H|¥o)=(¥[po]| A [ o)),
the first theorem of Hohenberg and Kohn is immediately
22
i proven:
Il EXTENSION OF THE HOHENBERG-KOHN THEOREM For the purpose of the extension of the HK theorem, we
A. Basic variables consider the constrained-search
Let us _co_n5|der _the _many-body system described by the Flp.X]= Min (\P|‘T’+\7V|\If), 2.3
nonrelativistic Hamiltonian Y (pX)
o whereX(r) is an arbitrary physical quantity which is defined
H=T+W+ f P(r)ve(r)dr, (2.1 uniquely, for example, the spin density(r) or the paramag-

netic current densityj,(r). Again, the minimum exists in Eq.

wherevg,(r) is an external electromagnetic potentia). W (2.3, if {\I'|\I'H(P’>.<)’”q’”:1} is weakly closed and is not
and p(r) are operators of the kinetic energy, electron-8MPY. In the following we assume that(r),X(r)] is of that
electron interaction energy, and electron density, respedYP€- This constrained-search gives a minimum expectation
tively. In this system, the HK theorem holds for the basicvalue of T+W among antisymmetric wave functions that
variable po(r) which is defined as the expectation value ofyield both p(r) and X(r). In this case,N-electron Hilbert
p(r) with respect to the ground stafeVy), i.e., po(r)  space is divided into smaller subsgsge Fig. 1b)], in each
=(Vo|p(n)|¥q 12 1n the conventional constrained-search Of which all wave functions integrate to a particular pair of

formulation?>~?*the functional defined by p(r) and X(r). A minimizing wave function for a particular
pair of p(r) and X(r) is denoted in Fig. (b) by a dot in the
Flp]= Min(‘l’|‘T’+\7v|\If) (2.2) smaller subset. Since the minimum value is determined by
Vop p(r) andX(r), we can express it as the functionalgf) and

X(r) on the left-hand side of Eq2.3). A minimizing wave
is introduced so as to eliminate the-representability function is denoted by¥[p,X].
problem of the original HK theorem and to generalize the  gyppose that a ground statefbfexists, ancp(r) andX (r)
theory to degeneracies. Concerning the existence of the minjy, the ground state are denoted y(r) andX(r), respec-
mum in Eq. (2.2, the essential property is weak lower jyely. From the definition of'[ po,X,] we have
semicontinuity o W|T+W/|W¥) in the Hilbert space of the . )
W. Then, sincg V|| ¥||=1} is weakly compact® the mini- Eo=(Vo|H|Wo)=(¥[po,Xol|H|¥[pg,X0]). (2.9
mum exists, if{¥|V—p,|¥|=1} is weakly closed(see
Theorem 3.3 in Ref. 23 Searching over all antisymmetric
wave functions that yield a particulaftr), which is denoted
by ¥ —p in Eq. (2.2), F[p] gives the minimum expectation
value of T+W. The procedure is illustrated in Fig.(a.
The N-electron Hilbert space is divided into subsets, in
each of which all wave functions integrate to a particular
p(r). Following the diagram on p. 59 in Ref. 37, a minimiz- Y[ po,Xo]=Yy. (2.5

This means that under the conditions given the ground-state
wave function can be obtained by finding the wave function
that minimizes the expectation value ®f+W and vyields
both po(r) and Xy(r). Thus, there is a correspondence be-
tween the ground-state wave functidty and a pair ofpg(r)
andXg(r). We get
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The wave function does not equltly if p(r) and/orX(r) are  The above variational search among all antisymmetric wave
incorrect. functions is divided into two steps. First, we consider the

It should be mentioned that the degeneracy of the groundubset ofN-electron Hilbert space, in which all wave func-
state does not affect the above discussion as well as in th@ns yield a given pair ofp(r) and X(r). We minimize
case of the conventional constrained-search formul&tidi. <\p||2||q/> in the subset,

the ground state is degenerate, all of the ground-state wave
functions may be obtained by the above-mentioned proce-

dure repeatedly.

B. Variational principle

Suppose again that has anN-particle ground state. The

Min (¥|A|¥)= Min (‘P|'T'+\7V|\I’)+Jp(r)vext(r)dr
Y—(p,X) Y—(p,X)

ZF[P,X]JFJ p(r) vex(r)dr, 2.7

Rayleigh-Ritz principle is given by the variational search of

minimum energy among all antisymmetric wave functions,

i.e.,

Eo=Min(¥|AH|¥). (2.6)
0

Eo=Min(¥|H|¥)
v

where we use the fact that all wave functions in the subset
yield the samep(r). As the second step, we minimize Eq.
(2.7) over all pairs ofp(r) andX(r), and obtain the minimum

value of (¥|H|W¥) in the N-electron Hilbert space:

=Min[ Min <‘I’||:||\P>’fpdr=N,f |Vp1/2|2dr<00J
p.X | W—(p,X)

= Min: Flp,X]+ f p(r)vey(r)dr
p,X

Here we use the convention that NIijC} means taking the
minimum value ofA under the conditiorC. We define the
energy functionak[ p,X] by

E[p.X]EF[p,X]JrJ p(I) vex(r)dr;
then Eq.(2.8) is rewritten as
E0=Min[E[p,X]U pdr=N,f |Vp1’2|2dr<oo].
" (2.10

(2.9

We have

Eo=Elpo.Xol. (2.1

o

where the notatiodi¢;} means the set dfl orthonormal or-
bitals which construct the single Slater determindntand

|
#2V?
2m

Tdp]= Min {E

{g}—pli=1

{¢i}—p indicates that the search is constrained among all

{¢;} which yield the prescribed electron density). p(r) is

y

(2.9

fpder,f|Vp1’2|2dr<oo].

Therefore, the energy functional defined by E2.9) takes
the minimum valueg, for the correct ground-state values of
basic variablespy(r) andXy(r). In other words, we obtain
the variational principle with respect to basic variabiés)

and X(r). This principle can also be regarded as the exten-
sion of the conventional HK theorem which states the varia-
tional principle forp(r).

IIl. KINETIC ENERGY FUNCTIONAL

In the conventional DFT the kinetic energy functional of
the noninteracting fictitious system is defined as

fpdr=N,f |Vp1/2|2dr<oc], (3.0

N
p<r>=<<1>|/3<r>|<1>>=p[{¢i<r>}]=i§l & (Ngi(r). (3.2

In the present framework we shall adopt the common expres-

given by the expectation value with respect to the singlesion for the kinetic energy of the noninteracting fictitious

Slater determinant:

system,
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y

N 2y2
Tfp,X]= Min ’2< ’ Y

(6} —(pX) 2m.

fde‘:N,f |Vp1’2|2dr<oo}, 3.3

where the notations have the same meanings as a(8Hy;.  search variational, we introduce Lagrange multiplier func-
Basic variableg(r) andX(r) are also given by the expecta- tions\(r) and u(r) for the conditions that the minimizinty
tion values with respect to the single Slater determinant. Ibrbitals yieldp(r) andX(r), respectively. Lagrange multipli-

X(r) has an operator denoted ﬁjr), thenx(r) is genera”y erSsiJ— have also introduced for the condition that the mini-

written as mizing N orbitals are orthonormal. Defin@[{¢;}] by
R N 292
X(r)=(@X(r)|®)=X[{i(r)}]. (3.4 Q{1 1= ngi*(r)(—W) #i(r)dr
=1
The minimizing sef{¢;} in Eq. (3.3 is determined by the N
pair of p(r) andX(r). Thus, the minimizind\N orbitals are the
functional of p(r) and X(r). It should be noted that the exis- +f )\(r)[;l ¢i+(r)¢i(r)—p(r)]dr

tence of the minimum in Eq(3.1) has been proved by

Lieb.?®> We again assume that the minimum exists in Eq.
(3.3 in the similar way to Eq.2.3), i.e., [p(r),X(r)] is +f p(r) - X[{@i(r)}] = X(r)ydr
supposed to be of that type. N
The minimizingN orbitals can be obtained by searching _ ) f + _ o
the minimum value oB N ;(¢;(r)| —%2V?/2m| ¢;(r)) under iljzzl 8”[ ¢ (N(ndr=a1. (3.9

the conditions that orbitals are orthonormal and yield the
given p(r) and X(r). In order to perform this constrained- Then the minimizing condition is given by

2f5¢. ()

Se¢i(r)dr= (3.6

57T ))dr E ”(w(r

Substitution of Eq(3.5) into Eq.(3.6) leads to a pair of equations which are necessary conditions on the minimizing orbitals:

2v2

T ¢k<r>+x<r>¢k<r>+fu<r'>-(

XU N ., <
W) —2 exj;(r), (3.79

i=

2v2

p ¢k+(r)+)\(r)¢;(r)+jp(r’)-(

5X[{¢i<r'>}]>dr,_§ o gt
- ik @i

(D) 3.75

The Lagrange multiplier functions(r) and u(r) should be  IV. SELF-CONSISTENT SINGLE-PARTICLE EQUATIONS

determined by requiring orbitals to yield a given pairpof) Equations3.79 and(3.7b are satisfied for any values of
and X(r). That is, Ar) and u(r) are written as\(r)  pasic variables. In this section, we consider the single-
=A[p(r),X(r)] and u(r) = pu[p(r),X(r)], respectively. Ifa particle equation in the case where the given basic variables
given pair ofp(r) and X(r) corresponds to the true ground- coincide with the ground-state values. The variational prin-
state, then Eqs3.78 and (3.7b coincide with the single- ciple which is mentioned in Sec. 11.B has to be applied to this
particle equation of the fictitious system which gives theproblem because it provides the prescription of getting the
ground state basic variables correctly. Let us consider theorrect ground-state values of basic variables. First, we de-
simplest case as an example. If we chopé® alone as a fine the exchange-correlation energy functioBgl p,X] by
basic variable, Eqs3.79 and (3.7b are reduced to equa- _

tions with a potential\(r) which producesp(r). Further if Flp.X]1=Telp.X]+ULp]*Exd p. X1, 4.0
p(r) is the ground-state valua(r) is equal to the KS effec- whereF[p,X] and T p,X] are respectively given by Egs.
tive potential of the DFT. The details will be discussed in(2.3) and (3.3), andU[p] is the Hartree term. Substituting
Sec. IV. Eqg. (4.2) into Eq. (2.9, we obtain
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The variational principle guarantees thafp,X] has the
minimum value ifp(r) andX(r) are respectively equal to the
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STd po. X1+ UL gl + BBl po. Xo1+ | et (1)

=0. 4.3

ground-state valueg,(r) andXy(r). Thus, the minimizing Taking the variation with respect to basic variables in each

condition 8E[ pg,Xp]=0 is rewritten by

term, we get

e po(r') SE.d p.X
5Elpo Xol=- | {x[pou),xo(r)]—vem(r)—f A 5,3[(’;) ]ppo] Sp(r)dr
X=X,
OB p,X] _
—f {M[po(r),xo(r)]——5x(r) ;z:;O] - 6X(r)dr=0, (4.4)
|

In the calculation of the first term of Ed4.3), we utilize A N
Egs.(3.7a and(3.7b via the following relation X(r)=>, X(r;7,). 4.7

n=1

0¢i(r)= il po+ 0p,Xo+ 6X] = il po, Xo]-
Equation(4.4) leads to final expressions af po(r),Xg(r)]
and uf po(r), Xo(r)]:

e2 rr
A[po(l’),xo(l’)]ZVext(r)-i-j|rp+(r,|)dr/
OExd p.X]
- op(r) [ “49
=Xo
OE,d p,X
Hpo X012 s
X=X

=70

Equations(3.7a and(3.7b with Egs. (4.5 and(4.6) repro-

Herer, comprises the space coordinate, momentum operator
and vector of Pauli matrix for the particle andX(r,7,,) is

the single-particle Hermitian operator. For example, the spin-
density and paramagnetic current-density operators are given
in this form as seen in the next section. By using Eq7),

the single-particle equatiof8.73 is reduced to

2v2

hei(r) = +X[po(r), Xo(N)]

2m

+J,u[po(r’),xo(r’)]->‘<(r';7)dr’ Pi(r)

N

:E ejp;(r).

j=1

4.9

duce the correct ground-state values of basic variables Vig[ po(r),Xq(r)] and u[po(r),Xe(r)] are real number and

Egs.(3.2) and(3.4).
Let us consider the case whex¢r) is generally denoted
by

2v2

2m

Equation (3.7b
form which is equivalent to Eq(4.9. Note that Egs.

+)\[Po(r),xo(f)]+JM[po(f'),xo(f')]'?(F’;T)df' Pu(r) =g Pi(T).

vector, respectively. Since the single-particle Hamiltorfign
is a Hermitian operator, the above equation can be changed
to the canonical form by a unitary transformation:

4.9

is also converted to the canonical present theory is that one can choose arbitrary quantities

as basic variables in compliance with electronic properties

(3.2 and (3.4) are left invariant under the unitary transfor- of a given many-body system. Not only the electron

mation. Therefore, Egs(4.9, (4.5, (4.6), (3.2, and

(3.4 can be regarded as self-consistent single-particlef

density but also such quantities can be obtained by means
self-consistent  single-particle  equations  derived

equations of the fictitious system. The advantage of thebove.
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If we choosep(r) alone as a basic variable, it is easily quently, by means of the variational principgl.3), we get
shown that Eq(4.9) coincides with that of the conventional the following variational principle with respect to the single
KS theory. The third term on the left-hand side of E4.9) Slater determinant:
does not appear in this case. The equation has only the local
potential \(r) which accords with the effective potential of

the KS equation. Min E[®]= Min[TS[p,X]-i- U[p]+Edp,X]
At the end of this section, we have a discussion concern- @ p.X
ing the variational principlé4.3). As mentioned in Sec. lll,
pl{¢i(r)}] andX[{¢i(r)}] are given by the expectation val- +J Vext(r)P(r)dr]
ues with respect to the single Slater determin@ntThere-
fore, U[p], Exd p,X] and [ve,(r)p(r)dr in Eq. (4.2 are =Min E[ p,X]
also regarded as functionals ®f Here, define the following p.X
functional of ®:
=Ey. (4.12
E[®]=(®|T|®)+U[p]+E,dp.X]+ J Vex(I)p(r)dr. This means that the variational principle with respect to basic

(4.10 variables(4.3) is equivalent to that with respect to the single
o o ~ Slater determinant. In the original DFT, the variational prin-
The description that follows refers to the variational prin-ciple with respect to the single Slater determinant has been
Clple OT the above fun?t!onal.- The set of the S|ng|e Slat.erdiscussed by Hajisaavs and Theopl‘ﬁ%w overcome the
determinants can be divided into SubsetS, in each of Wh|Cm_representabi|ity prob'em_ The variational pr|nc|p4b12 is

the single Slater determinants yield a particular sep@f  recognized as the generalization of their formulation.
and X(r) via Egs.(3.2) and (3.4). The variational search
among all single Slater determinants is divided into two V. EXAMPLES
steps. We get '
In this section, we apply the present theory to the typical
N case where the spin density or paramagnetic current density
Min E[®]=M£n(<d>|T|<I>)+U[p]+Exc[p,X] is reasonably chosen as one of basic variables. Each case

completely reproduces the SDFT or CDFT formulation.

+f Vext(r)P(r)dr) A. Spin-density functional theory

For describing the ground state of the spin-polarized sys-
= Min[ Min (<<p|1‘-|<p>+ Ulp]+Ep.X] tem, the spin density is considered reasonable as one of basic
p.X | ®—(p,X) variables, i.e., we choog#r) andm(r) as basic variables in
the present theory. When this is the case, the set of single-
+J vext(r)p(r)dr)]. (4.11) particle equations can be obtained by lettidg) equal to
m(r) in the above-mentioned discussion. The spin-density
operatorm(r) is given by
The single Slater determinants in a particular subset yield the
sameU|[ p], Exd p,X] and [ ve(r)p(r)dr due to the defini- N
tion of the subset. Thus, E¢4.1]) is rewritten by M(r)= _,362 s(r—r)) o, (5.1
=1

Min E[®]= Minl Min ((@|T|®))+U[p]+E p,X] where o’ denotes the vector of Pauli matrices gidis the
® pX (2= (p.X) Bohr magneton. The single-particle operator which corre-
sponds tak(r'; 7) in Eq. (4.9 is given by
+f vext(r)p(r)dr].
X(r',7)=—Bod(r'—r). (5.2

The first term Mir&,_,(pyx)((d)|:l'|<b>) is equal toT{p,X]  Substituting Eq.5.2) into Eqg. (4.9, self-consistent single-
because of Eq3.3), i.e., the definition ofT{ p,X]. Conse- particle equations are derived as follows:

h2v2
[— >m + N po(r),mo(r)]—Bepl po(r),Mo(r)]- o dy(r)=eyei(r), (5.3
with
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epo(r,) , oE [p!m]
N po(r),Mo(r)]=ve,r)+ f Tr=r r % p=py " (5.9
m:mo
SE,d p,m]
HLpo(r)mo(n)]=—5 5= 0 (5.5
m=mg
|
where basic variables are B. Current-density functional theory

The paramagnetic current densjifyr) is considered suit-

N N able as one of basic variables for describing the electronic
po(r)= Z by (1) Pi(r), (5.60  structure of the system, in which a spontaneous current exists
Kt like in open-shell atoms arfeelectron materiald®=*!In such
a case, the set of single-particle equations can be obtained by
makingX(r) equal toj ,(r) in Egs.(4.9), (4.5), and(4.6). The
paramagnetic current-density operajAtg(rr) is given by

N
mo<r)=—ﬂek; b (D ody(r). (5.7)

The set of these single-particle equations is completely equal

to that of the SDFT. Thus, the present theory provides the —in N
SDFT formulation ifp(r) andm(r) are chosen as basic vari- fp(r)z WE {8(r—=r)Vi+V.s(r=ry)}. (5.8
ables. =1

It should be noted that there is a difference between the
above SDFT formulation and previous developments of the
spin-density constrained-searétt’ In Ref. 26 and in Sec. In this case, the single-particle operafgr’;7) in Eq. (4.9
8.1 of Ref. 37, the minimization of the total energy is carriedis
out with respect to not basic variables but the minimizihg
orbitals of Eq.(3.3). Since the minimizingN orbitals are
given as solutions of Eq$3.79 and(3.7b), the minimization ., ) —iAvV —iav
of the total energy should be carried out under this restriction Xriin=6(r'—r — —+—_—4&r'=r. (5.9
on orbitals.sT{ p,X] in Eq. (4.3 are calculated under this
restriction as mentioned in Sec. IV, while the total energy is
minimized in Refs. 26 and 37 without imposing the restric-Substituting Eq. (5.9) into (4.9), self-consistent single-

tion on orbitals. particle equations are given by
p° . 1 _ _
ﬁ"‘?\[Po(r):lpo(r)]"' ﬁ{p'M[Po(r),lpo(r)]+M[P0(r),lpo(r)]'p} di(r)=exdi(r), (5.10
with
_ epo(r') | SEdpi
x[po<r>,1po<r>]=vext<r>+fﬁdr%% o (5.11
1p=lpo
. _ 5Exc[ijp]
M[Po(r),lpo(r)]—w b (5.12
Ip=Ipo

where basic variables are

. —it
Jpo(r)zmgl [ (NV (1) —{V by (N} i(1)].

N
po<r>=k§l b (N il(r), (5.13 (5.14
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These single-particle equatiofs.10), (5.11), (5.12), (5.13), sic variables. This seems to be a substantial progress of the
and (5.14), coincide with those of the CDFT. It should be density functional theory. The second advantage is concerned
noted that the starting Hamiltonian of the many-body systemwith the accuracy of approximate forms of the exchange-
which is given by Eq(2.1), does not contain the term asso- correlation energy functional. The basic variables reproduced
ciated with the external vector potential. In the in the fictitious system would be equal to the correct ground-
v-representable CDFT schertfe'! the starting Hamiltonian  state values if the exact exchange-correlation energy func-
includes the interaction gf,(r) with an external vector po- tional were known. It is desirable to obtain the exchange-
tential. If we apply the CDFT to the system in the absence otorrelation energy functional as accurately as possible. In the
an external magnetic field, the external vector potential igpresent theory, the accuracy is expected to be improved be-
vanished after deriving the Kohn-Sham equation. In othecause the explicit form of the exchange-correlation energy
words, the “artificial” external vector potential is introduced functional is written in terms of characteristic quantities of
in the 1-representable CDFT scheme so that one can dedhe systent.In a forthcoming papet we will derive various
with j,(r) as the basic variable. The present theory allows usgypes of self-consistent single-particle equations by choosing
to choosej(r) as one of basic variables and to derive thebasic variables depending on aspects of the electron correla-
Kohn-Sham equation without introducing such an “artifi- tion.

cial” external vector potential. Finally, we shall give a note on the present theory. The
present theory does not necessarily require external potential
VI. CONCLUDING REMARKS terms which are coupled with any basic variables but the

) electron density. This is because the essential idea of our
In this paper, we extend the Hohenberg-Kohn theorem byheory is the smaller division of the Hilbert space by basic
modifying the Levy constrained-search formulation. Theyariablegsee Fig. 1b)]. Therefore, the present theory is dif-
theorem allows us to choose arbitrary physical quantities agerent from “{a}-functional theory” in which the basic vari-
basic variables. By means of this theorem, we derive selfaples and the corresponding external potentials are written in
consistent single-particle equations which reproduce basighe general formé® The present theory shows that arbitrary

variables correctly. The single-particle equations can be requantities, even if they do not appear in the Hamiltonian
ognized as an extension of the KS equations of the ordinangxpiicitly, can be chosen as basic variables.

DFT scheme. In order to confirm the validity of the theory,
we consider the case where the spin density or paramagnetic
current density is chosen as one of basic variables. Each case
makes a reproduction of the SDFT or CDFT scheme com- The authors acknowledge critical readings of this manu-
pletely. script, and fruitful comments and discussions on the logical

Due to the arbitrary choice of basic variables, the presenbasis of the DFT by Helmut Eschrig. In particular, the math-
theory has two advantages over the conventional DFT. Iematical aspects of the constrained-search formulation were
discussing the ground-state properties, it is to be desired thaiscussed with him. The authors are also obliged to Akira
quantities which characterize the system can be obtained cortasegawa for continual discussions on energy-band theory.
rectly within energy-band theory. In the present theory, weOne of the authoréM.H.) would like to express his thanks to
can directly calculate such characteristic quantities by mearthie Alexander von Humboldt Foundation for facilitating both
of single-particle orbitals because they can be chosen as bthe stay and the research in Dresden, Germany.
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