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Sum rules and bounds on the exchange and correlation energy functional
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The exact expression for the exchange-correlation energy funciggal,j,] of the current-density func-
tional theory (CDFT) is derived by means of the coupling-constant integration technique. It contains the
coupling-constant-averaged pair correlation function, which is a functional of the electron defr3itsnd
paramagnetic current density(r). On the basis of this expression, the local density approximation and its
modifications forE,J p,j,] are proposed within the CDFT. In addition, we present sum rules and bounds on
Exd p.jp] by considering the behaviors of the basic variables Bgfip,j,] under the various types of the
nonuniform coordinate scaling of electrons. They are useful in estimating the validity of the approximate forms
of Exd p.j,] proposed.
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. INTRODUCTION derive the coupling-constant expressionEgg p,j,] via the
Hellmann-Feynman theorem, another to derive the exact
The current-density functional theofCDFT)'? and its  conditions fulfilled bYE,d p.ip].
relativistic version, relativistic current- and spin-density  As for the former strategy, the coupling-constant expres-
functional theory RCSDFT,>~° have been extensively stud- sjon is a good starting point to develop the various approxi-
ied as useful methods for describing the ground state of thﬁ]ate forms OExc[pvjp]- Once the Coup”ng-constant expres-
systems such asi) strongly correlated electron systems sjon is obtained, we can easily define the CDFT version of
where the orbital current is induced from the strong spinthe LDA and nonlocal density schemes which correspond to
orbit interaction(ii) inhomogeneous electronic systems in anthe average-density approximatiofADA)***® and the
external magnetic field including a two-dimensional electronyeighted-density approximatiofW?vDA)'~2°of the conven-
gas in the quantum Hall regime, aifiil) open-shell atoms tional density functional theoryDFT). It is expected that
and ions where the spontaneous orbital current exists. In othese approximate schemes are applicable to actual energy-
der to calculate the electronic structures within the CDFT obhand calculations by means of only the knowledge of the
RCSDFT, it is imperative that the exchange-correlation enhomogeneous electron liquid in the uniform magnetic field.
ergy functional is developed in an applicable form. That is, Concerning the latter strategy, the exact conditions on
in the field of the CDFT it is one of the central subjects to Exdp.ip] can be utilized as sum rules and bounds which
develop the approximate form of the exchange-correlatiorhould be satisfied by the approximate forms. This strategy is
energy functional. analogous to the generalized gradient approximai@aA)
There already exist a few attempts to devise the approximethod of the DFT in developing the approximate form of
mate form of the exchange-correlation energy functionathe exchange-correlation energy functiofaf® Erhard and
Exd p.ipl- Herep(r) andjy(r), respectively, show the elec- Gross have derived the exact conditionsBg p,j,] from
tron density and paramagnetic current density, which are reche viral theorem and the uniform coordinate scaling of
ognized in the CDFT as the basic variables that uniquelyelectrons’® Liu et al. have also presented the local formulas
determine the ground state properties of the system. Vignalir the exchange and correlation energy functionals under the
and co-workers have proposed the local density approximdecal and variable-separation assumptiéh3he formalism
tion (LDA) of E,{p.j,] by borrowing the knowledge of the employed parallels the one used in the conventional
exchange-correlation energy from the homogeneous electrddFT.2°~% In addition, the gauge invariance of the system
liquid in a uniform magnetic field:>®~8This LDA scheme imposes the additional condition & p,j,].>**?It guar-
has also been applied to several systems includingntees that the basic variables are reproduced in the fictitious
molecules’*? electron-hole liquids+'? and quantum dotd  system for any gauges. With reference to these achievements,
in a magnetic field. In another attempt, Cappelle and Grosi this paper we present the exact conditionsEg p,j]
have suggested the possibility of deriving the exchangethrough the nonuniform coordinate scaling of electrons. They
correlation energy functional of the CDFT from that of the can be regarded as new kinds of sum rules and bounds on
spin-density functional theory, though any practical formulast, p,j,]. Our result and previous ones mentioned above are

have not been presented, unfortunatély. complementary to each other for the purpose of developing
In this paper, we elaborate two strategies as the first stefhe approximate form o, p,jp].
toward deriving an approximate form & p.j,]. One is to The organization of this paper is as follows. In Sec. Il, the
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coupling-constant expression fB p,j,] is presented. The WhereTyp,j,] and U[p] denote the kinetic energy of the
LDA and its modifications such as the ADA and WDA are noninteracting fictitious system and the Hartree energy, re-
proposed on the basis of this expression. In Sec. lll, wespectively. In the case @-=0, the system is recognized as a
derive sum rules and bounds &R p,j,] by using the non- noninteracting fictitious system. Using the Kohn-Sham po-
uniform coordinate scaling of electrons. Finally in Sec 1V, tentials veg(r) and Agy(r),” the ground-state energy of the
we summarize the results and discuss the properties of trgystem ¢=0) is given by
proposed approximations by means of the sum rules derived. &2
0_ H 2

Il. EXCHANGE-CORRELATION . TS[pJpr P(Nver AT+ 5@ f P(1)Aer(r)"dr

ENERGY FUNCTIONAL E,J{p.j,]

e

In this section we present the exact expression for +Efjp(r)'Aeﬁ(r)dr- (2.9
Exd p:ip] with the aid of the coupling-constant integration
technique. The exact expression enables us to define tHfgn the other hand, from the Hellmann-Feynman theorem, we
LDA scheme forE,J p,j,] within the CDFT. On the basis of have
the LDA expression, we further propose the nonlocal density
schemes which correspond to the ADA and WDA of the El_EO= fldg Pé
conventional DF /=20 0

df¢

dé

Substituting Eqgs(2.3) and (2.4) into Eq. (2.5, the exact
expression folE, ] p,j,] is written as

\1f§>. (2.5

A. Coupling-constant expression forE,[p,j,]

Let us first consider the exact expression E¥[p,jp]. )
The exact expression fdg,[p] in the DFT was derived € p(p(r’) ,
successfully by using the coupling-constant integration Exdp.jpl= 2 [r—r’] {9(r.r';lp.jpl) —1}drdr’,
technique®®~3°It is possible to apply the same technique to (2.6)

the CDFT. The starting point is the Hamiltonian, — ., . . . .
where g(r,r';[p.jp]) is a coupling-constant-averaged pair

A e . correlation function, which is defined by
H§=T+§W+j ﬁ(r)vgxt(r)errEfjp(r)-Agxt(r)dr

1
2 ﬁ(r,r’;[p,Jp])EJO ge(r.r'ilp.jphdé, (279

+ 2 [ snat(n2d 2.1)
2mC p(r) ext(r) rv -

o A 9er.r Lo d ) =W p.i ][R WEL p,j )
whereT, W, p(r), andj,(r) are the operators of the kinetic , ,
energy, electron-electron interaction, electron density, and —o(r=r)p(N)ilp(rp(r’).  (2.79
paramagnetic current density, respectively, gisla param-  The exact expressiof2.6) is quite similar to that of the DFT.
eter characterizing the strength of the electron-electron interfhe different point is that the coupling-constant-averaged
action. The external potentialg,(r) andAj(r) are chosen pair correlation function is the functional gi(r) in the
so that the ground-state densities of the system are identicBIFT,*® while it is the functional of bottp(r) andj(r) in the

with those of the real many-body system, i.e., CDFT.
fa o It should be noted that the exchange-correlation energy
(PEpTE=p(r), (228 functional E,J p,j,] of the Kohn-Sham schem@.6) is dif-
R ) ferent from the real exchange-correlation enefgy of the
(PN WE)=jp(r), (22D many-body system&,, is expressed by leaving out the

whereW¢ is the ground-state wave function for Hamiltonian coupling-constant integration of E(2.6). We have

(2.1). Assuming that there exist such external potentials for o2 p(1)p(r")

each¢, the Hohenberg-Koghn thegrem guarantges one—to—oneg;c[p'j o= ?f f g L)) — 13dr dr

correspondences amoR®e, ("), Agx(r)}, 1p(r).jip(r)} and [r=r’]|

pé (2.89
The system characterized by the Hamiltonian withl is e C ia A .

identical to the real many-body system. The ground-state en- ("' Lo dpD)={(Welp.ipllp(Npr ) Welp.jpl)

ergy of the systemg=1) is given by —8(r—r")p(N)}p(r)p(r’). (2.8
The difference betweef,J p.j,] and&, is given by

Exc[Pajp]_g;(c[P:jp]:T[P:jp]_Ts[ijp]- (2.9

2
e e
+—j p(r)Aext(r)zdr"__f Jp(r) - Aex(r)dr, E,dp.i,] contains the difference between the real kinetic
2mc? c P > e
energy and the kinetic energy of the fictitious system through
(2.3  the coupling-constant integration. In the framework of the

ElZTS[p,j p]+ Ulp]+ Exc[prjp]+ f p(1) vey(r)dr
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DFT, the difference between[p] and T4 p] cannot be ig- This is just the LDA expression for the exchange-correlation
nored, since its magnitude is comparable to the correlatioenergy functional of the CDFT. This expression is equivalent
energy, e.g., just a few electron volts for most atomic ando the previous result which was discussed in Refs. 7 and 8.
molecular system¥. The difference(2.9) may not be negli- In Eq. (2.14), g"™(r—r’|,p(r),»(r)) can be obtained from

gible either in the case of the CDFT on the analogy of thethe Fourier transform of the coupling-constant-averaged

DFT. static structure facto8"°™q) of the homogeneous electron

. o . o liquid. Vignale and co-workers have evalua®¥™q) with
B. Local density approximation and its modifications respect to the ground-state of the homogeneous electron lig-

In the conventional DFT, the approximation schemes suchiid in a uniform magnetic field> Note that a state of uni-
as the LDA, ADA, and WDA have been developed on theform density and vorticity can be identified as a state of
Also in the CDFT, the exact expressiéh6) is a good start- = —mcv/e.” Skudlarski and Vignale have further investi-
ing point to deve'op the various approximate forms Ofgated the behaviors of the eXChange-CO”elann hole for sev-

EXC[p!jp]' |ntr0ducing the exchange_corre'ation hole eral sets Ob and v through numerical CalCUlatiOﬁSThUS it

P15 [p(r),J (1)), Eq. (2.6) is rewritten as is possible to perform energy-band calculations within the
LDA by utilizing the knowledge of the homogeneous elec-

e p(1)pycr,1"3[p(r),jp(1)]) tron liquid in the uniform magnetic field.
Exd p.ipl= ?f j —r| drdr’ Next, as modifications to the LDA we propose the non-

(2.10 local density schemes which can be regarded as the
CDFT version of the ADA and WDA. In the ADA,
with g(r,r’;[p(r),»(r)]) is borrowed from the homogeneous
) - ) electron liquid and evaluated at the averaged densifie}
Px(F 5 [p(r),jp(r) D) =p(r"){gr,r";[p(r),jp(r)]))—1}. and {r). Furthermore the prefactgs(r’) in Eq. (2.11) is
(2.1 replaced by the averaged densiyr),

Here we shall give notes on E¢2.10 and(2.11). As men- . — o= —

tioned in Sec.glj, the gauge in\(/{ariance causes the additionaffXC(r’r Lp(r), M) D—pIn{g""r -1 |,p(r),v(r))(—211}é)

condition onE, p,j,].%***Using this condition, it is easily '

shown thate,J p.j,] depends onj(r) only through the vor-  with

ticity »(r), defined by

710~ [ drrwile—r'| 51y A Dp(r), (216

jp(r)]

rN=vVxi—-t. 2.1

v(r) o) (2.12

Therefore, the exchange-correlation energy functional and ﬂr)=f dr'w([r=r'[,p(r"),mr"))ur"), (2.16b

hole, i.e., Eqs(2.10 and(2.11), can also be referred to as _ . . .
as(2.10 219 wherew(|r—r’'|,p(r"),»(r")) is the weight function to be

the functional ofp(r) and ¥(r).? \ .
In a similar way to the DFT, the approximation SChemesdetermlned. We are led to the exchange-correlation energy

can be devised by modeling the exchange-correlation holinctional in the ADA as
[Eq. (2.11)]. We will borrow the knowledge of,. or g from EAPAL i ]=E/APA[ p, v]
the homogeneous electron liquid. We first consider the local —*¢ Palp e LP:
density approximation. The LDA scheme is obtained if the e? p(r)p(r)
exchange-correlation hole is replaced by the corresponding = gj f
homogeneous electron liquid expression and evaluated at the
local densitiesp(r) and»(r), i.e., X{g"™|r—r'|,p(r),»(r))—1}drdr’.

(TS [p(0), 1) D= p(1){GMr =1 | p(r),m(r) — 1}, 217
(2.13 In the WDA, one also replaces the pair correlation function

g(r,r’;[p(r),»(r)]) with that of the homogeneous electron

éi_quid, but the prefactor is kept at the exact dengify’):

r=r']

where g"™"(|r—r’|,p(r),»(r)) is the coupling-constant-
averaged pair correlation function of the homogeneous ele

tron liquid. Substituting Eq(2.13 into Eq.(2.10, we have o112 [p(6), (1))
Exc [p.ipl=Exs™[p.v] —p(r){g"|r—r’B(r), B(r)— 1}.
e? p(r)? (2.19
:7J’ jm The density arguments a™™(|r—r'|,p(r),»(r)) are re-

—homy| . _ v _ , placed by the weighted densitig¢r) and¥(r), which are
X{GWN(r=r'].p(r),v(r)) — 1}drdr’. determined by requiring the following sum rule to be satis-
(2.149 fied for eachr:
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oot =ho e _ on the correlation energy functiongl[ p,j,] of the CDFT.
f dr’(r"){g"™™|r—r'[.B(r),¥(r)) —1}=—1. The systematic analysis enables us to derive the kinds of
(2.19 conditions orE[ p,j,], some of which are never obtained by
simple analogy with the conventional DET.
Y Let us first consider a nonuniform coordinate scaling such
that thex coordinates of electrons are scaled withwherex

The WDA expression for the exchange-correlation energ
functional is given by

Exe [pip]=Exe p.v] is the scaling factor and takes a positive value. The scaled
" " N ground-state wave function
e [ [ p(n)p(r) _
:?JJ [r—r’] Walpjpl(ri,eeorn)

X{@""(Jr—r'|,B(r),#(r))— 1}dr dr’. =MW G0, o JONXE o AXNGY 10 YN Zes - Z)

(2.20 3.1)
In a way similar to the LDA calculation;*® the actual is normalized to unity, and leads to the scaled basic variables

energy-band calculations are feasible in the ADA and WDA PN =Ap(AXY,2), 3.2

because the knowledge gf°™(|r—r'|,p(r),»(r)) can also
be employed from the homogeneous electron liquid in the | X(r)=(\2j (AX,Y,2),Njo(AX,Y,2Z)v N j o(AX,Y,2),).
uniform magnetic fiel®:*® So far, the available form of o JpUGY 2o M plAXY 2y I plY 2(3_3)
g™™(|r—r'|,p(r),»(r)) has been restricted to the random H lati tunctional ding to th
phase approximatioRPA).>% In cases where the paramag- el got:re aton ebr;erg_y unc |(t))na corresponding to the
netic current or magnetic field does not exist, a more sophigc2/€d PasIC variables is given by

ticated theory which includes the higher-order short-range X i oxq_ X - oxia X - x
correlations and the exchange terms beyond the RPA has EdloX ipx]=(WalpX Jon TIVeloX ipx])

been developed by Singwét al®® It is so-called STLS DAL XTI Al X i X

theory. This scheme utilizes the generalized RPA expression (el i lIWWelpy inD)

for the dielectric function and approximates the exchange- (DT X i XTI X i X
correlation contribution by the local field factor. It is possible (PLpi T ITICL Py Jon])

to introduce the STLS theory into the present expression of (DI IWRLpX ik D). (3.9

the CDFT in a similar way to the conventional DET. “ iy .
At the end of this section, we will emphasize that modi- Here Velpy .ipy] and @4 py i1 denote the ground-state
fications to the LDA, such as ADA and WDA, cannot be Wave function of the real many-body system and the nonin-

E,dp.ip] is given in an exact forniEg. (2.16)]. the ground-state densitigg(r) andj,\(r). The constrained-
search formulation fog[p} ,jpx] leads to a simple and
Ill. EXACT CONDITIONS ON  E,p,j,] FROM important condition:

NONUNIFORM COORDINATE SCALINGS -
EcdlpX ipn]<O. (3.9
transformation of the integration variables in
Eq. (3.4 from (Xq{,...XN:Y1s---2YNZ1:---Zy)  INtO
On the basis of the method developed byrlag and (A *Xy,... A "Xy, Y1,.--YNZ1,...,2Zy) Yields the following
Levy in the DFT!* we shall investigate the exact conditions form:

A. Behavior of E¢[p,]j,] for scaling parameter The
going to zero or infinity

N 2 2 2 2
. . 4 :
ELpin1= [ o [ VAL ITS, — g Vb | el Ty

[Walpx iyl

2 N

e
+f f_E E drl"'drN

2 171 21 N2 (6= X)) 2 (Yi— )P+ (zi— 7)?

O* x-xX§ h? 2072 § [92@ Xk .d d
— ... s[PA’Jpx]vlizl_ﬁ A (7—)('24—(7—)/'24‘&_2'2 Loy dpay-1dry--dry

N

e? DL} iy -1l
_J ...J72 D SELVING dry---dry. (3.6

71 =1 N2 (= %) 2 (Yi—y) 2 (2 zy)?

195122-4



SUM RULES AND BOUNDS ON THE EXCHANGE AND.. .. PHYSICAL REVIEW B5 195122

From the constrained-search formulation ¥g[ p} ,jpx 1, the function® [ py ,jpi]’;,l in Eq. (3.6) yields p(r) andj,(r), and
minimizes the expectation value of

N 2 2 2 2 N 2

h & J J e’/2
E N—+ —+ —|+ E E (3.7
=oam\tad oy iz & = 2= X))+ (Y=Y (z—7)?

among the inversely scaled functioxﬁ,l(rl,...,rN) defined by

Xifl(rl,...,rN)E)\iNIZX()\ilxl,)\71)(2,...,)\71XN,yl,yz,...,yN,21,22,...,ZN). (38)
|

Here X(rq,...,ry) is the arbitraryN-particle wave function lim E¢[p},jpx1=0, (3.119
which yields pX(r) and jyx(r). With the aid of the A—0
constrained-search formulation fdrJ p ,j,\ 1, the function
DI p} iprly-1 Yields p(r) andj,(r), and minimizes the ex- lim X~ 'E[p} .jpx]=0, (3.110
pectation value of A—=0

N2 2 22 liinox “2EJp} ipr]=const. (3.118

D o | Nmt ot 3.9

=1 2m ox;g  ady; 9z - )
Here conditions(3.110d and (3.11e are derived under the
among the set of functions(3.8. This property of assumption that bot c[py jpx]y-1 and P p} ,jpa]5-1 are
D p},ip 1 1 leads to the fact that the kinetic-energy part €xpanded in powers oi for small values of.

(the first and third termsof Eq. (3.6) is positive or zero. Further exact conditi.ons OBl p ’jP] can be_derived from
In the following discussions, both [ p* ipi]x . and other types of a nonuniform coordinate scaling of electrons.
AT

If we scale two coordinates with and leave the third one
@ p} iply-1 are assumed to approach the limit valuesynchanged, the scaled basic variables are given by
when\ goes to infinity. Since Eq$3.7) and (3.9) approach

the same operators in the limikt—o, the limits of P (=N%p(AX,\Y,2), (3.12

Wl pX ipx]x-1 and @ pX ,jX1x -1 are equal to each other:
i X poX9X X ;XX
lim We[pX jpxly-1= Im ®JpY jpx] -1 (3.10 A3] p()\x,)\y,z)y,hzj SOXAY.2),). (313

A—© A—x©
In a similar way to the above discussions, the exact condi-

The integrand of the second term in E§.6) is equal to that tions for Eqs.(3.12) and (3.13 are given by

of the fourth term in the limit\ —o because of Eq3.10.
Therefore, the electron-electron interaction energy fthe

second and fourth termsf Eq. (3.6) goes to zero as AlinmEC[p“ ol =0, (3.143
—o0, Since the kinetic-energy part of E@.6) is positive or
zero, one obtains lig... E¢[ p} ,jpi]zo. Accordingly, with Cxy1_
Eq. (3.5 in mind, we obtain x'[nwAEc[PM, Jpaa) = const, (3.14b
lim Ec[p ,ipx]1=0. (3.113 lim Edpip1=0, (3.149
A= A—0
In addition, if bothWg[p} ,jpi]y-1 and @ p} ,jpnly-1 are lim X E[pj,41=0, (3.149
expanded in powers of ! for large values of\, then we A—0
obtain tighter condition than Eq3.113:
lim N "2Eo[ p)Y i pay]=const. (3.149
lim NE([p} .jpx]=cONSt. (3.11b A—0

A— o
In the case of the scaling such that two coordinates are
The other exact conditions concerning theoordinate scal- scaled withx andx ~*, respectively, and the third one is left
ing can be obtained under the assumption thatinchanged, the scaled basic variables are given by
Vel pX ipx]x-1 and @ pX X151 become the limit values . B
for \—0. We have Py in(N=p(AX,\77Y,2), (3.19

195122-5
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Jp))iyl/)\(r)z()\J p()\xl)\_lYaZ)xJ\_lj p()\xyk_lyuz)y,
ip(AX, N1y, 2),). (3.19

The corresponding exact conditions &g p,j,] are obtained
as follows:

)\'Tl Eclp} Indpy In1=0, (3.173
)\“Tm)\Ec[P)ﬁ Inodpx inl=0, (3.17H
J[nm NEc[pX Inipr In]=const, (3.179
liino Eclox I dpx In]=0, (3.179
liino)\ilEc[Pi Inodpy In1=0, (3.17¢
lim N "?Ec[pX Ipipx Inl=const.  (3.17h

A—0

Finally, in the case of the scaling such that two coordi-

nates are scaled with and the third one wit\ "1, the
scaled basic variables are given by

P I =Np(AX, Ny, A" 12), (3.18

i An (D=2 p(AX, Y, N 12),,
N2 p(NXNY N T12)y f (A XNY N T 12),).
(3.19

The corresponding exact conditions are as follows:

)\"an EclpXX In M nl=0, (3.209
}\“LTL )\Ec[Pi){\ Z1/>\ in‘{ Zl/x]zoa (3.20h
)\"an NEL o indpa 1a]=const (3.200
lim ELpd 1 Jok 1] =0, (3.200
)!iLnok_lEc[P)x(X Indpa l=0, (3.208
lim A"2Ed[p3X Inpak In]=const.  (3.200

A—0

PHYSICAL REVIEW B 65 195122

In the GGA method of the conventional DFT, the approxi-
mate form ofE [ p] has been devised so that it satisfies some
of the exact conditions which are derived from the nonuni-
form coordinate scaling€:?® Therefore, the present exact
conditions derived can be regarded as new sum rules on
Eclp.jp] which provide the useful guidelines for developing
and testing the approximate forms ©f[ p,j,]. It should be
noted that exact condition8.11e, (3.14b, (3.179, (3.171),
(3.20h, and (3.209 are not only tighter than those of the
DFT which were previously derived by @mg and Levy*
but also are never obtained by simple analogy with their
results.

B. Upper and lower bounds onE,J p,j,]

In this subsection, we derive the upper and lower bounds
on Ex{p.jp] by means of a different method than in Sec.
Il A. We first consider a nonuniform coordinate scaling such
that thex coordinates of electrons are scaled withFrom
the constrained-search formulation of the CDFT,
Velpl.ipy], minimizes the expectation value OF+W
among the arbitraryN-particle wave functions that yield
px(r) andj,x(r). The constrained-search formulation also
guarantees thaIfG[p,jp]f\ minimizes the expectation value
of

N
h? L L
_ 2 4 4
2, A oxs ay? oz’
e?/2
2(X X)2+(y| yJ) +(ZI_ZJ)2
(3.2

P

among the scaled function&(r4,...,ry) defined by

Y))i(rlv'--!rN)
E)\N/ZY()\Xl,)\Xz,... 'ZN)'

(3.22

’)\XN WY1.Y2, YN Z1sZ0,

Here Y(rq,...,rn) is an arbitraryN-particle wave function
that vyields p(r) and j,(r). Since ¥g[p,j,]x and
W[ p}.ipx] Obey different equations, respectively, they are
different from each other, i.e.,

\I,G[P))i ’jp))i]iq,G[P:jp]i- (3.23

This leads to the following two kinds of inequalities after the
changes of variables:

195122-6



SUM RULES AND BOUNDS ON THE EXCHANGE AND.. ..

PHYSICAL REVIEW B5 195122

N 52 7 (92 P\ o %2
’\P X ,' X )\*2__,’_ + \I, X,' X
(Welpy Jpx]|§l om a2 ay? &Zi izlj#i \/)\Z(Xi_xj)z"'(Yi_Yj)2+(Zi_Zj)2| clPX i)
=T[p,jp]+Wlp,jpl, (3.29
and
N g2 92 92 92
T AT WA 1= el )|, | N 27+
N 2
e’/2
PP W elp.ip)- (3.29
SLIF NP0 —x) P (YY) P+ (z— J)2 P
|
Similarly, the scaled functiorﬂ)s[p,jp]i is different from )\ZTS[P,J'p]$Ts[P)§ ,jpi]gTs[p,jp]_ (3.32

dJp} ,jp’{] because they obey the respective equations. We

have
q)s[P;i ,jpi]qﬁq)s[p,jp]))i_ (3.26
Sinced  p,j p]§ minimizes the expectation value of
Noa? ? PP
i_l‘ﬁ<* praNEva a?)

among the set of function@.22), we obtain the inequality.

N 2 2 2 2
—h J J J
X X -2
<q)s[P>\ !Jp)\] ;1 om ()\ r7Xi2+ (9in+ &le) s[P)\ -Jpx])

=Tdpipl- 3.27

Because of inequality3.26), the constrained-search formu-
lation for @ p ,jpy] leads to

N g2 7?9
TIPL I 1=(@dpp] 5 (kzﬂ_xfﬂ’_yiz
2
+&_Zi2 CI)S[p,jpD- (3.2&

If A=1, then inequalitieg3.24), (3.25, (3.27), and (3.28
are turned to

TLo,ipl+WLp,jp1<TLpx jpx] +WLoX sipa]
<N?T[p.jpl +A\WIp,jpl, (3.29
and

Ts[Pyjp]gTs[P;(\ ajp;(\]s)\sz[Pyjp]- (3.30

Likewise, if A=<1, we obtain the following inequalities:

TLoX dpa ¥ WEoX dpa < TLpuipl+Wip,jp]

$)\72T[p§ ijp;(\]—i_)\ilw[p;(\ 1Jp))i]1

(3.31

and

On the other hand, the Hartree tet#ip}] can be written
through the changes of variables as

Ulp3]
f f YA T2

Using this expression, we have the inequalities for the Har-
tree term. The results are

p(r)p(r’)
(X=Xx")2+(y—y')?+(z—2')?

drdr’.

Ulp]<U[p{I=NU[p]<A3U[p] for \=1, (3.33

N2U[p]=<AU[p]<U[p]<U[p] for A<1. (3.39

From inequalitieg3.29—(3.34), we finally arrive at the fol-
lowing exact conditions:

_()\2_1)(T5[P1jp]+u[p])+Exc[Pajp]
= Exc[P;(\ !jpi]
g()\2_:I-)(-I—s[l)ajp]""U[P])"')\ZExc[I)ajp] for A=1,
(3.35
_(1_)\2)(Ts[prjp]+U[p])+)\2Exc[pvjp]
= Exc[P;(\ ’jp;i]
g(1_)\2)(-|-5;|:pajp]+U[P])"’Exc[ijp] for A<1.
(3.36

Next let us consider another kind of the nonuniform co-
ordinate scaling which is given by Eq8.12 and(3.13. It
gives a different type of exact conditions than E¢&35
and (3.39. About T[p,j,] and W[p,j,], we obtain the
relations

TLp.pl+ WL, o< TP i pd 1+ WL i X
<N?T[p.jpl +A\W[p,j,] for A=1,
(3.37)
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T i WX i pnk
<T[p,jp] +Wlp,jp]
$)\_2T[p§§’\ J p§{] AW ,jp;i{ for A<1,
(3.39

Similarly, the functionalT{ p,j,] satisfies

Tdpipl<TLA dp <A Tdpijpl  for x=1,
(3.39

)\2Ts[p1jp]$Ts[p))i))( !jp;i)}/\]$-rs[p-jp] for A<1.
(3.40
Using EQs.(3.37—(3.40, we finally obtain
_()\2_1)(TS[P1jp]+U[P])+Exc[P-jp]
gExc[pi%/\ 7jp))i¥\
S()\2_:I-)(Ts[Pyjp]"'U[p])"')\ZExc[Pyjp] for A=1,
(3.4)
_(1_7\2)(T5[Pajp]+U[P])"’)\ZEXC[Pajp]
$EXC[p))i))/\ !jp;i))/\
g(:I-_)\2)(-|—s|:Prjp:|'*_Ul:p])"'Exc[Pajp] for A<1.
(3.42
The present exact condition8.35, (3.36), (3.41), and
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conditions mentioned above can be used as the upper and
lower bounds on the approximate forms Bf{p,j,] and

Tdp.j p]-

IV. SUMMARY AND DISCUSSIONS

In the first half of this paper, we have derived the exact
expression for the exchange-correlation energy functional of
the CDFT by means of the coupling-constant integration
technique. On the basis of the coupling-constant expression,
we have also proposed three kinds of the approximation
schemes, which should be called the CDFT versions of the
LDA, ADA, and WDA. It is shown that the LDA, ADA, and
WDA schemes are applicable to actual energy-band calcula-
tions by borrowing the knowledge of the exchange-
correlation hole from the homogeneous electron liquid in the
uniform magnetic field.

In the second half of this paper, the exact conditions ful-
filled by E.{ p.jp] have been derived from the various types
of nonuniform coordinate scaling of electrons. After a sys-
tematic analysis, we have obtained about 30 kinds of condi-
tions onE,{p,jp]. The set of these exact conditions is a
complement to the previous results derived from the gauge
invariance®*2the virial theorem, and uniform coordinate
scaling of electroné? All of them can be utilized as sum
rules and bounds oB,{ p,j,] when we develop and check
the approximate form o, p,jp].-

Thus, we have obtained the new kinds of sum rules and
bounds as well as the proposal of the approximate function-
als of Exd p.jp]- On the basis of these results, let us discuss

(3.42 provide both upper and lower bounds on theWwhich of the sum rules derived are satisfied by the approxi-
exchange-correlation energy functional for the scaled basigate functionals proposed. First, we shall discuss the case of
variables. Both upper and lower bounds explicitly depend orthe LDA expression ofE,{p,j,]. Like the conventional

jp(r) becausel | p,j,|+U[p] is rewritten by

Tdp.i p] +U[p]

occ.

e
=2 sk—gfjpm-Aeﬁ(r)dr—fp<r>
e r' e’
XA ven(t)— |f£r,)| dr’+2mC2Aeff(r)2]dr,

(3.43

with the aid of the Kohn-Sham equatiéssuming that we
obtain an approximate form oE,Jp.jp], then Ty p,j,]
+U[ p] is calculated from Eq(3.43. Substituting the value
of T p,j,]+U[p] thus calculated into Eq$3.39), (3.36),

(3.41), and (3.42, we can evaluate the validity of the ap-

proximate form ofE,d p,j,].
Conditions (3.30, (3.32, (3.35, (3.36, and (3.39-

DFT* the LDA of the CDFT violates most of sum rules
derived from the nonuniform coordinate scalings. Suppose
that the external magnetic field is parallel to thexis, and
a™™(|r—r'|,p,») is calculated within the RPA.In this
case, the LDA obeys the sum rul¢3.119, (3.149, and
(3.200, because E;™*[p} jpx], Ec' [P\ ipik], and
EcA LY i pXin] are proportional to- A2, —\, and

— 2, respectively, wher\—0. The same is true for the
sum rules which are derived from a uniform coordinate scal-
ing. However, the LDA expression does not obey the sum
rules (3.110, (3.119, (3.149, (3.149, (3.17b, (3.179,
(3.179, (3.179, (3.209, and (3.20f) because they become
—oo for each limit. Sum ruleg3.1789 and (3.179 are not
satisfied by the LDA expression either, because they ap-
proach constants for each limit. With respect to the other sum
rules, we cannot conclude whether they are satisfied by the
LDA expression or not. These ambiguities will be removed
by studying at greater lengths the homogeneous electron lig-

(3.42 should be recognized as the requirements in the apdid under the weak magnetic field, especially in the cases of

proximate functionals of,{p,j,] and TJp,j,]. Vignale,

high- and low-density limit§. Here it should be noted that

Skudlarski, and Rasolt have calculated the surface propertiege may obtain the different results if the magnetic field is
of an electron-hole droplet by means of the approximate exparallel to thez axis. In this case, the sum rules derived from

pressions forE,Jp,j,] and T{p,j,]."* In their paper,

a uniform coordinate scaling are also satisfied by the LDA

Exdp.jp] was replaced with the LDA expression while expression, while the sum rulg8.113, (3.11b, (3.143,
Tdp.jip] was approximated in the spirit of Thomas-Fermi (3.14D, (3.173—(3.17, and (3.203—(3.209 are not satis-
theory plus second-order gradient expansion. The presefied. About the other sum rules, there remain the ambiguities
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similarly to the previous case. In this way, the sum rulesiies 5(r) and¥(r) are one of the solutions of the integral
satisfied by the LDA expression strongly depend on the diequation (2.19 which is the sum rule on the exchange-
rection of the magnetic field. correlation hole. If the weighted scaled densities are deter-
Next let us consider the ADA and WDA expressions de-mined by the requirement that they vary withsimilarly to
fined in Sec. II. The difference between the LDA and ADA is the scaled densities, the WDA expression also obeys the
that an exchange-correlation hole of the ADA expression isame sum rules as the LDA.
evaluated at certain averaged densities. Here the densities Consequently, the LDA expression violates most of sum
mean the electron density and vorticity. In order to estimateules derived from the nonuniform coordinate scalings,
how the exchange-correlation energy functional varies witlthough it obeys sum rules from the uniform coordinate scal-
\, one has to investigate how the averaged scaled densitigsg. Thus it seems reasonable to expect that the sum rules
change with\. Suppose that the weight function is deter- derived from the nonuniform coordinate scalings play an im-
mined independently ok, and thus the resultant averaged portant role as a constraint when we construct more accurate
scaled-densities change withjust as the scaled densities do. approximations than the LDA. As mentioned above, the
Under this assumption, the ADA expression obeys the samADA and WDA expressions potentially satisfy more sum
sum rules as the LDA. In addition, the ADA has the possi-rules than the LDA if the averaged densities and the
bility of satisfying more exact conditions than the LDA by weighted densities are determined appropriately. Judging
choosing the weight function appropriately. The same is truérom not only the nonlocality of the exchange-correlation
for the WDA expression. In the WDA, a coupling-constant- hole but also the sum rules satisfied, we may expect that the
averaged pair correlation function is replaced @¥"(|r ADA and WDA improve on the LDA with respect to the
—r'|,p(r),7(r)), as shown in Sec. Il. The weighted densi- accuracy.
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