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Sum rules and bounds on the exchange and correlation energy functional
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The exact expression for the exchange-correlation energy functionalExc@r,j p# of the current-density func-
tional theory ~CDFT! is derived by means of the coupling-constant integration technique. It contains the
coupling-constant-averaged pair correlation function, which is a functional of the electron densityr(r ) and
paramagnetic current densityj p(r ). On the basis of this expression, the local density approximation and its
modifications forExc@r,j p# are proposed within the CDFT. In addition, we present sum rules and bounds on
Exc@r,j p# by considering the behaviors of the basic variables andExc@r,j p# under the various types of the
nonuniform coordinate scaling of electrons. They are useful in estimating the validity of the approximate forms
of Exc@r,j p# proposed.
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I. INTRODUCTION

The current-density functional theory~CDFT!1,2 and its
relativistic version, relativistic current- and spin-dens
functional theory~RCSDFT!,3–5 have been extensively stud
ied as useful methods for describing the ground state of
systems such as~i! strongly correlated electron system
where the orbital current is induced from the strong sp
orbit interaction,~ii ! inhomogeneous electronic systems in
external magnetic field including a two-dimensional electr
gas in the quantum Hall regime, and~iii ! open-shell atoms
and ions where the spontaneous orbital current exists. In
der to calculate the electronic structures within the CDFT
RCSDFT, it is imperative that the exchange-correlation
ergy functional is developed in an applicable form. That
in the field of the CDFT it is one of the central subjects
develop the approximate form of the exchange-correla
energy functional.

There already exist a few attempts to devise the appr
mate form of the exchange-correlation energy functio
Exc@r,j p#. Herer(r ) and j p(r ), respectively, show the elec
tron density and paramagnetic current density, which are
ognized in the CDFT as the basic variables that uniqu
determine the ground state properties of the system. Vig
and co-workers have proposed the local density approxi
tion ~LDA ! of Exc@r,j p# by borrowing the knowledge of the
exchange-correlation energy from the homogeneous elec
liquid in a uniform magnetic field.1,2,6–8 This LDA scheme
has also been applied to several systems includ
molecules,9,10 electron-hole liquids11,12 and quantum dots13

in a magnetic field. In another attempt, Cappelle and Gr
have suggested the possibility of deriving the exchan
correlation energy functional of the CDFT from that of th
spin-density functional theory, though any practical formu
have not been presented, unfortunately.14

In this paper, we elaborate two strategies as the first
toward deriving an approximate form ofExe@r,j p#. One is to
0163-1829/2002/65~19!/195122~9!/$20.00 65 1951
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derive the coupling-constant expression forExc@r,j p# via the
Hellmann-Feynman theorem, another to derive the ex
conditions fulfilled byExc@r,j p#.

As for the former strategy, the coupling-constant expr
sion is a good starting point to develop the various appro
mate forms ofExc@r,j p#. Once the coupling-constant expre
sion is obtained, we can easily define the CDFT version
the LDA and nonlocal density schemes which correspond
the average-density approximation~ADA !15–18 and the
weighted-density approximation~WDA!16–20 of the conven-
tional density functional theory~DFT!. It is expected that
these approximate schemes are applicable to actual ene
band calculations by means of only the knowledge of
homogeneous electron liquid in the uniform magnetic fie

Concerning the latter strategy, the exact conditions
Exc@r,j p# can be utilized as sum rules and bounds wh
should be satisfied by the approximate forms. This strateg
analogous to the generalized gradient approximation~GGA!
method of the DFT in developing the approximate form
the exchange-correlation energy functional.21–23 Erhard and
Gross have derived the exact conditions onExc@r,j p# from
the viral theorem and the uniform coordinate scaling
electrons.24 Liu et al. have also presented the local formul
for the exchange and correlation energy functionals under
local and variable-separation assumptions.25 The formalism
employed parallels the one used in the conventio
DFT.26–30 In addition, the gauge invariance of the syste
imposes the additional condition onExc@r,j p#.2,31,32 It guar-
antees that the basic variables are reproduced in the fictit
system for any gauges. With reference to these achievem
in this paper we present the exact conditions onExc@r,j p#
through the nonuniform coordinate scaling of electrons. Th
can be regarded as new kinds of sum rules and bound
Exc@r,j p#. Our result and previous ones mentioned above
complementary to each other for the purpose of develop
the approximate form ofExc@r,j p#.

The organization of this paper is as follows. In Sec. II, t
©2002 The American Physical Society22-1
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coupling-constant expression forExc@r,j p# is presented. The
LDA and its modifications such as the ADA and WDA a
proposed on the basis of this expression. In Sec. III,
derive sum rules and bounds onExc@r,j p# by using the non-
uniform coordinate scaling of electrons. Finally in Sec I
we summarize the results and discuss the properties o
proposed approximations by means of the sum rules deri

II. EXCHANGE-CORRELATION
ENERGY FUNCTIONAL Exc†r, jp‡

In this section we present the exact expression
Exc@r,j p# with the aid of the coupling-constant integratio
technique. The exact expression enables us to define
LDA scheme forExc@r,j p# within the CDFT. On the basis o
the LDA expression, we further propose the nonlocal den
schemes which correspond to the ADA and WDA of t
conventional DFT.17–20

A. Coupling-constant expression forExc†r, jp‡

Let us first consider the exact expression forExc@r,j p#.
The exact expression forExc@r# in the DFT was derived
successfully by using the coupling-constant integrat
technique.33–35 It is possible to apply the same technique
the CDFT. The starting point is the Hamiltonian,

Ĥj5T̂1jŴ1E r̂~r !next
j ~r !dr1

e

c E ĵ p~r !•Aext
j ~r !dr

1
e2

2mcE r̂~r !Aext
j ~r !2dr , ~2.1!

whereT̂, Ŵ, r̂(r ), and ĵ p(r ) are the operators of the kineti
energy, electron-electron interaction, electron density,
paramagnetic current density, respectively, andj is a param-
eter characterizing the strength of the electron-electron in
action. The external potentialsnext

j (r ) andAext
j (r ) are chosen

so that the ground-state densities of the system are iden
with those of the real many-body system, i.e.,

^Cjur̂~r !uCj&5r~r !, ~2.2a!

^Cju ĵ p~r !uCj&5 j p~r !, ~2.2b!

whereCj is the ground-state wave function for Hamiltonia
~2.1!. Assuming that there exist such external potentials
eachj, the Hohenberg-Kohn theorem guarantees one-to-
correspondences among$next

j (r ),Aext
j (r )%, $r(r ),j p(r )% and

Cj.
The system characterized by the Hamiltonian withj51 is

identical to the real many-body system. The ground-state
ergy of the system (j51) is given by

E15Ts@r,j p#1U@r#1Exc@r,j p#1E r~r !next~r !dr

1
e2

2mc2 E r~r !Aext~r !2dr1
e

c E j p~r !•Aext~r !dr ,

~2.3!
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whereTs@r,j p# and U@r# denote the kinetic energy of th
noninteracting fictitious system and the Hartree energy,
spectively. In the case ofj50, the system is recognized as
noninteracting fictitious system. Using the Kohn-Sham p
tentials neff(r ) and Aeff(r ),2 the ground-state energy of th
system (j50) is given by

E05Ts@r,j p#1E r~r !neff~r !dr1
e2

2mc2 E r~r !Aeff~r !2dr

1
e

c E j p~r !•Aeff~r !dr . ~2.4!

On the other hand, from the Hellmann-Feynman theorem,
have

E12E05E
0

1

djK CjUdĤj

dj
UCjL . ~2.5!

Substituting Eqs.~2.3! and ~2.4! into Eq. ~2.5!, the exact
expression forExc@r,j p# is written as

Exc@r,j p#5
e2

2 E E r~r !r~r 8!

ur2r 8u $ḡ~r ,r 8;@r,j p# !21%dr dr 8,

~2.6!

where ḡ(r ,r 8;@r,j p#) is a coupling-constant-averaged pa
correlation function, which is defined by

ḡ~r ,r 8;@r,j p# ![E
0

1

gj~r ,r 8;@r,j p# !dj, ~2.7a!

gj~r ,r 8;@r,j p# ![$^Cj@r,j p#ur̂~r !r̂~r 8!uCj@r,j p#&

2d~r2r 8!r~r !%/r~r !r~r 8!. ~2.7b!

The exact expression~2.6! is quite similar to that of the DFT.
The different point is that the coupling-constant-averag
pair correlation function is the functional ofr(r ) in the
DFT,36 while it is the functional of bothr(r ) andj p(r ) in the
CDFT.

It should be noted that the exchange-correlation ene
functionalExc@r,j p# of the Kohn-Sham scheme~2.6! is dif-
ferent from the real exchange-correlation energyExc8 of the
many-body system.Exc8 is expressed by leaving out th
coupling-constant integration of Eq.~2.6!. We have

Exc8 @r,j p#5
e2

2 E E r~r !r~r 8!

ur2r 8u $g~r ,r 8;@r,j p# !21%dr dr 8,

~2.8a!

g~r ,r 8;@r,j p# ![$^CG@r,j p#ur̂~r !r̂~r 8!uCG@r,j p#&

2d~r2r 8!r~r !%/r~r !r~r 8!. ~2.8b!

The difference betweenExc@r,j p# andExc8 is given by

Exc@r,j p#2Exc8 @r,j p#5T@r,j p#2Ts@r,j p#. ~2.9!

Exc@r,j p# contains the difference between the real kine
energy and the kinetic energy of the fictitious system throu
the coupling-constant integration. In the framework of t
2-2



tio
n

th

uc
he

o
le

on

an
s

e
o

c
he
din
t t

-
le

ion
ent
d 8.

ed
n

liq-

of

i-
ev-

the
c-

n-
the

s

rgy

on
n

is-
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DFT, the difference betweenT@r# and Ts@r# cannot be ig-
nored, since its magnitude is comparable to the correla
energy, e.g., just a few electron volts for most atomic a
molecular systems.37 The difference~2.9! may not be negli-
gible either in the case of the CDFT on the analogy of
DFT.

B. Local density approximation and its modifications

In the conventional DFT, the approximation schemes s
as the LDA, ADA, and WDA have been developed on t
basis of the coupling-constant expression forExc@r#.15–20

Also in the CDFT, the exact expression~2.6! is a good start-
ing point to develop the various approximate forms
Exc@r,j p#. Introducing the exchange-correlation ho
rxc„r ,r 8;@r(r ),j p(r )#…, Eq. ~2.6! is rewritten as

Exc@r,j p#5
e2

2 E E r~r !rxc~r ,r 8;@r~r !,j p~r !# !

ur2r 8u
dr dr 8

~2.10!

with

rxc~r ,r 8;@r~r !,j p~r !# !5r~r 8!$ḡ~r ,r 8;@r~r !,j p~r !# !21%.
~2.11!

Here we shall give notes on Eqs.~2.10! and~2.11!. As men-
tioned in Sec. I, the gauge invariance causes the additi
condition onExc@r,j p#.2,31,32Using this condition, it is easily
shown thatExc@r,j p# depends onj p(r ) only through the vor-
ticity n(r ), defined by

n~r ![¹3H j p~r !

r~r ! J . ~2.12!

Therefore, the exchange-correlation energy functional
hole, i.e., Eqs.~2.10! and ~2.11!, can also be referred to a
the functional ofr(r ) andn(r ).2

In a similar way to the DFT, the approximation schem
can be devised by modeling the exchange-correlation h
@Eq. ~2.11!#. We will borrow the knowledge ofrxc or ḡ from
the homogeneous electron liquid. We first consider the lo
density approximation. The LDA scheme is obtained if t
exchange-correlation hole is replaced by the correspon
homogeneous electron liquid expression and evaluated a
local densitiesr(r ) andn(r ), i.e.,

rxc„r ,r 8;@r~r !,n~r !#…→r~r !$ḡhom~ ur2r 8u,r~r !,n~r !!21%,
~2.13!

where ḡhom(ur2r 8u,r(r ),n(r )) is the coupling-constant
averaged pair correlation function of the homogeneous e
tron liquid. Substituting Eq.~2.13! into Eq. ~2.10!, we have

Exc
LDA@r,j p#5Exc8

LDA@r,n#

5
e2

2 E E r~r !2

ur2r 8u

3$ḡhom
„ur2r 8u,r~r !,n~r !!21%dr dr 8.

~2.14!
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This is just the LDA expression for the exchange-correlat
energy functional of the CDFT. This expression is equival
to the previous result which was discussed in Refs. 7 an
In Eq. ~2.14!, ḡhom

„ur2r 8u,r(r ),n(r )… can be obtained from
the Fourier transform of the coupling-constant-averag
static structure factorS̄hom(q) of the homogeneous electro
liquid. Vignale and co-workers have evaluatedS̄hom(q) with
respect to the ground-state of the homogeneous electron
uid in a uniform magnetic field.6,38 Note that a state of uni-
form density and vorticity can be identified as a state
uniform density in a uniform magnetic field viaB
52mcn/e.7 Skudlarski and Vignale have further invest
gated the behaviors of the exchange-correlation hole for s
eral sets ofr andn through numerical calculations.6 Thus it
is possible to perform energy-band calculations within
LDA by utilizing the knowledge of the homogeneous ele
tron liquid in the uniform magnetic field.

Next, as modifications to the LDA we propose the no
local density schemes which can be regarded as
CDFT version of the ADA and WDA. In the ADA,
ḡ(r ,r 8;@r(r ),n(r )#) is borrowed from the homogeneou
electron liquid and evaluated at the averaged densitiesr̄(r )
and n̄(r ). Furthermore the prefactorr(r 8) in Eq. ~2.11! is
replaced by the averaged densityr̄(r ),

rxc„r ,r 8;@r~r !,n~r !#…→ r̄~r !$ḡhom~ ur2r 8u,r̄~r !,n̄~r !…21%,
~2.15!

with

r̄~r !5E dr 8w~ ur2r 8u,r̄~r 8!,n̄~r 8!!r~r 8!, ~2.16a!

n̄~r !5E dr 8w~ ur2r 8u,r̄~r 8!,n̄~r 8!!n~r 8!, ~2.16b!

wherew(ur2r 8u,r̄(r 8),n̄(r 8)) is the weight function to be
determined. We are led to the exchange-correlation ene
functional in the ADA as

Exc
ADA@r,j p#5Exc8

ADA@r,n#

5
e2

2 E E r~r !r̄~r !

ur2r 8u

3$ḡhom~ ur2r 8u,r̄~r !,n̄~r !!21%dr dr 8.

~2.17!

In the WDA, one also replaces the pair correlation functi
ḡ(r ,r 8;@r(r ),n(r )#) with that of the homogeneous electro
liquid, but the prefactor is kept at the exact densityr(r 8):

rxc~r ,r 8;@r~r !,n~r !# !

→r~r 8!$ḡhom~ ur2r 8u,r̃~r !,ñ~r !…21%.

~2.18!

The density arguments ofḡhom(ur2r 8u,r(r ),n(r )) are re-
placed by the weighted densitiesr̃(r ) and ñ(r ), which are
determined by requiring the following sum rule to be sat
fied for eachr :
2-3
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E dr 8~r 8!$ḡhom~ ur2r 8u,r̃~r !,ñ~r !!21%521.

~2.19!

The WDA expression for the exchange-correlation ene
functional is given by

Exc
WDA@r,j p#5Exc8

WDA@r,n#

5
e2

2 E E r~r !r~r 8!

ur2r 8u

3$ḡhom~ ur2r 8u,r̃~r !,ñ~r !!21%dr dr 8.

~2.20!

In a way similar to the LDA calculations,9–13 the actual
energy-band calculations are feasible in the ADA and W
because the knowledge ofḡhom(ur2r 8u,r(r ),n(r )) can also
be employed from the homogeneous electron liquid in
uniform magnetic field.6,38 So far, the available form o
ḡhom(ur2r 8u,r(r ),n(r )) has been restricted to the rando
phase approximation~RPA!.6,38 In cases where the parama
netic current or magnetic field does not exist, a more sop
ticated theory which includes the higher-order short-ran
correlations and the exchange terms beyond the RPA
been developed by Singwiet al.39 It is so-called STLS
theory. This scheme utilizes the generalized RPA expres
for the dielectric function and approximates the exchan
correlation contribution by the local field factor. It is possib
to introduce the STLS theory into the present expression
the CDFT in a similar way to the conventional DFT.40

At the end of this section, we will emphasize that mo
fications to the LDA, such as ADA and WDA, cannot b
defined until the exchange-correlation energy functio
Exc@r,j p# is given in an exact form@Eq. ~2.16!#.

III. EXACT CONDITIONS ON Exc†r, jp‡ FROM
NONUNIFORM COORDINATE SCALINGS

A. Behavior of Ec†r, jp‡ for scaling parameter
going to zero or infinity

On the basis of the method developed by Go¨rling and
Levy in the DFT,41 we shall investigate the exact condition
19512
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on the correlation energy functionalEc@r,j p# of the CDFT.
The systematic analysis enables us to derive the kinds
conditions onEc@r,j p#, some of which are never obtained b
simple analogy with the conventional DFT.41

Let us first consider a nonuniform coordinate scaling su
that thex coordinates of electrons are scaled withl, wherel
is the scaling factor and takes a positive value. The sca
ground-state wave function

CG@r,j p#l
x~r1 ,...,rN!

[lN/2CG@r,j p#~lx1 ,...,lxN ,y1 ,...,yN ,z1 ,...,zN!

~3.1!

is normalized to unity, and leads to the scaled basic varia

rl
x~r ![lr~lx,y,z!, ~3.2!

j pl
x~r ![„l2 j p~lx,y,z!x ,l j p~lx,y,z!y ,l j p~lx,y,z!z….

~3.3!

The correlation energy functional corresponding to t
scaled basic variables is given by

Ec@rl
x ,j pl

x #5^CG@rl
x ,j pl

x uT̂uCG@rl
x ,j pl

x #&

1^CG@rl
x ,j pl

x #uŴuCG@rl
x ,j pl

x #&

2^Fs@rl
x ,j pl

x #uT̂uFs@rl
x ,j pl

x #&

2^Fs@rl
x ,j pl

x #uŴuFs@rl
x ,j pl

x #&. ~3.4!

Here CG@rl
x ,j pl

x # and Fs@rl
x ,j pl

x # denote the ground-stat
wave function of the real many-body system and the non
teracting fictitious system, respectively, both of which ha
the ground-state densitiesrl

x(r ) andj pl
x(r ). The constrained-

search formulation forCG@rl
x ,j pl

x # leads to a simple and
important condition:

Ec@rl
x ,j pl

x #<0. ~3.5!

The transformation of the integration variables
Eq. ~3.4! from (x1 ,...,xN ,y1 ,...,yN ,z1 ,...,zN) into
(l21x1 ,...,l21xN ,y1 ,...,yN ,z1 ,...,zN) yields the following
form:
Ec@rl
x ,j pl

x #5E ¯ E CG* @rl
x ,j pl

x #l21
x (

i 51

N

2
\2

2m S l2
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2DCG@rl

x ,j pl
x #l21

x dr1¯drN

1E ¯ E e2

2 (
iÞ j

(
j 51

N uCG@rl
x ,j pl

x #l21
x u2

Al22~xi2xj !
21~yi2yj !

21~zi2zj !
2

dr1¯drN

2E ¯ E Fs* @rl
x ,j pl

x #l21
x (

i 51

N

2
\2

2m S l2
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2DFs@rl

x ,j pl
x #l21

x dr1¯drN

2E ¯ E e2

2 (
iÞ j

(
j 51

N uFs@rl
x ,j pl

x #l21
x u2

Al22~xi2xj !
21~yi2yj !

21~zi2zj !
2

dr1¯drN . ~3.6!
2-4
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From the constrained-search formulation forCG@rl
x ,j pl

x #, the functionCG@rl
x ,j pl

x #l21
x in Eq. ~3.6! yieldsr(r ) andj p(r ), and

minimizes the expectation value of

(
i 51

N

2
\2

2m S l2
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D 1(

iÞ j
(
j 51

N
e2/2

Al22~xi2xj !
21~yi2yj !

21~zi2zj !
2

~3.7!

among the inversely scaled functionsXl21
x (r1 ,...,rN) defined by

Xl21
x

~r1 ,...,rN![l2N/2X~l21x1 ,l21x2 ,...,l21xN ,y1 ,y2 ,...,yN ,z1 ,z2 ,...,zN!. ~3.8!
r

es

:

ha

ns.

di-

are
ft
Here X(r1 ,...,rN) is the arbitraryN-particle wave function
which yields rl

x(r ) and j pl
x(r ). With the aid of the

constrained-search formulation forFs@rl
x ,j pl

x #, the function
Fs@rl

x ,j pl
x #l21

x yieldsr(r ) and j p(r ), and minimizes the ex-
pectation value of

(
i 51

N

2
\2

2m S l2
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D ~3.9!

among the set of functions~3.8!. This property of
Fs@rl

x ,j pl
x #l21

x leads to the fact that the kinetic-energy pa
~the first and third terms! of Eq. ~3.6! is positive or zero.

In the following discussions, bothCG@rl
x ,j pl

x #l21
x and

FS@rl
x ,j pl

x #l21
x are assumed to approach the limit valu

whenl goes to infinity. Since Eqs.~3.7! and ~3.9! approach
the same operators in the limitl→`, the limits of
CG@rl

x ,j pl
x #l21

x andFs@rl
x ,j pl

x #l21
x are equal to each other

lim
l→`

CG@rl
x ,j pl

x #l21
x

5 lim
l→`

Fs@rl
x ,j pl

x #l21
x . ~3.10!

The integrand of the second term in Eq.~3.6! is equal to that
of the fourth term in the limitl→` because of Eq.~3.10!.
Therefore, the electron-electron interaction energy part~the
second and fourth terms! of Eq. ~3.6! goes to zero asl
→`. Since the kinetic-energy part of Eq.~3.6! is positive or
zero, one obtains liml→` Ec@rl

x ,j pl
x #>0. Accordingly, with

Eq. ~3.5! in mind, we obtain

lim
l→`

Ec@rl
x ,j pl

x #50. ~3.11a!

In addition, if bothCG@rl
x ,j pl

x #l21
x and Fs@rl

x ,j pl
x #l21

x are
expanded in powers ofl21 for large values ofl, then we
obtain tighter condition than Eq.~3.11a!:

lim
l→`

lEc@rl
x ,j pl

x #5const. ~3.11b!

The other exact conditions concerning thex coordinate scal-
ing can be obtained under the assumption t
CG@rl

x ,j pl
x #l21

x andFs@rl
x ,j pl

x #l21
x become the limit values

for l→0. We have
19512
t

t

lim
l→0

Ec@rl
x ,j pl

x #50, ~3.11c!

lim
l→0

l21Ec@rl
x ,j pl

x #50, ~3.11d!

lim
l→0

l22Ec@rl
x ,j pl

x #5const. ~3.11e!

Here conditions~3.11d! and ~3.11e! are derived under the
assumption that bothCG@rl

x ,j pl
x #l21

x andFs@rl
x ,j pl

x #l21
x are

expanded in powers ofl for small values ofl.
Further exact conditions onEc@r,j p# can be derived from

other types of a nonuniform coordinate scaling of electro
If we scale two coordinates withl and leave the third one
unchanged, the scaled basic variables are given by

rll
xy ~r ![l2r~lx,ly,z!, ~3.12!

j pll
xy ~r ![~l3 j p~lx,ly,z!x ,

l3 j p~lx,ly,z!y ,l2 j p~lx,ly,z!z!. ~3.13!

In a similar way to the above discussions, the exact con
tions for Eqs.~3.12! and ~3.13! are given by

lim
l→`

Ec@rll
xy ,j pll

xy #50, ~3.14a!

lim
l→`

lEc@rll
xy ,j pll

xy #5const, ~3.14b!

lim
l→0

Ec@rll
xy ,j pll

xy #50, ~3.14c!

lim
l→0

l21Ec@rll
xy ,j pll

xy #50, ~3.14d!

lim
l→0

l22Ec@rll
xy ,j pll

xy #5const. ~3.14e!

In the case of the scaling such that two coordinates
scaled withl andl21, respectively, and the third one is le
unchanged, the scaled basic variables are given by

rl 1/l
x y ~r ![r~lx,l21y,z!, ~3.15!
2-5
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j pl 1/l
x y ~r ![„l j p~lx,l21y,z!x ,l21 j p~lx,l21y,z!y ,

j p~lx,l21y,z!z…. ~3.16!

The corresponding exact conditions onEc@r,j p# are obtained
as follows:

lim
l→`

Ec@rl 1/l
x y ,j pl 1/l

x y #50, ~3.17a!

lim
l→`

lEc@rl 1/l
x y ,j pl 1/l

x y #50, ~3.17b!

lim
l→`

l2Ec@rl 1/l
x y ,j pl 1/l

x y #5const, ~3.17c!

lim
l→0

Ec@rl 1/l
x y ,j pl 1/l

x y #50, ~3.17d!

lim
l→0

l21Ec@rl 1/l
x y ,j pl 1/l

x y #50, ~3.17e!

lim
l→0

l22Ec@rl 1/l
x y ,j pl 1/l

x y #5const. ~3.17f!

Finally, in the case of the scaling such that two coor
nates are scaled withl and the third one withl21, the
scaled basic variables are given by

rll 1/l
xy z ~r ![lr~lx,ly,l21z!, ~3.18!

j pll 1/l
xy z ~r ![„l2 j p~lx,ly,l21z!x ,

l2 j p~lx,ly,l21z!y , j p~lx,ly,l21z!z….

~3.19!

The corresponding exact conditions are as follows:

lim
l→`

Ec@rll 1/l
xy z ,j pll 1/l

xy z #50, ~3.20a!

lim
l→`

lEc@rll 1/l
xy z ,j pll 1/l

xy z #50, ~3.20b!

lim
l→`

l2Ec@rll 1/l
xy z ,j pll 1/l

xy z #5const ~3.20c!

lim
l→0

Ec@rll 1/l
xy z ,j pll 1/l

xy z #50, ~3.20d!

lim
l→0

l21Ec@rll 1/l
xy z ,j pll 1/l

xy z #50, ~3.20e!

lim
l→0

l22Ec@rll 1/l
xy z ,j pll 1/l

xy z #5const. ~3.20f!
19512
-

In the GGA method of the conventional DFT, the appro
mate form ofEc@r# has been devised so that it satisfies so
of the exact conditions which are derived from the nonu
form coordinate scalings.22,23 Therefore, the present exac
conditions derived can be regarded as new sum rules
Ec@r,j p# which provide the useful guidelines for developin
and testing the approximate forms ofEc@r,j p#. It should be
noted that exact conditions~3.11e!, ~3.14b!, ~3.17c!, ~3.17f!,
~3.20b!, and ~3.20c! are not only tighter than those of th
DFT which were previously derived by Go¨rling and Levy,41

but also are never obtained by simple analogy with th
results.

B. Upper and lower bounds onExc†r, jp‡

In this subsection, we derive the upper and lower bou
on Exc@r,j p# by means of a different method than in Se
III A. We first consider a nonuniform coordinate scaling su
that thex coordinates of electrons are scaled withl. From
the constrained-search formulation of the CDF
CG@rl

x ,j pl
x #, minimizes the expectation value ofT̂1Ŵ

among the arbitraryN-particle wave functions that yield
rl

x(r ) and j pl
x(r ). The constrained-search formulation al

guarantees thatCG@r,j p#l
x minimizes the expectation valu

of

(
i 51

N

2
\2

2m S l22
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D

1(
iÞ j

(
j 51

N
e2/2

Al2~xi2xj !
21~yi2yj !

21~zi2zj !
2

.

~3.21!

among the scaled functionsYl
x(r1 ,...,rN) defined by

Yl
x~r1 ,...,rN!

[lN/2Y~lx1 ,lx2 ,...,lxN ,y1 ,y2 ,...,yN ,z1 ,z2 ,...zN!.

~3.22!

Here Y(r1 ,...,rN) is an arbitraryN-particle wave function
that yields r(r ) and j p(r ). Since CG@r,j p#l

x and
CG@rl

x ,j pl
x # obey different equations, respectively, they a

different from each other, i.e.,

CG@rl
x ,j pl

x #ÞCG@r,j p#l
x . ~3.23!

This leads to the following two kinds of inequalities after th
changes of variables:
2-6
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^CG@rl
x ,j pl

x #u(
i 51

N
2\2

2m S l22
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D 1(

i 51

N

(
j Þ i

e2/2

Al2~xi2xj !
21~yi2yj !

21~zi2zj !
2

uCG@rl
x ,j pl

x #&

>T@r,j p#1W@r,j p#, ~3.24!

and

T@rl
x ,j pl

x #1W@rl
x ,j pl

x #<^CG@r,j p#u(
i 51

N
2\2

2m S l2
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D

1(
i 51

N

(
j Þ i

e2/2

Al22~xi2xj !
21~yi2yj !

21~zi2zj !
2
uCG@r,j p#&. ~3.25!
W

-

ar-

o-
Similarly, the scaled functionFs@r,j p#l
x is different from

Fs@rl
x ,j pl

x # because they obey the respective equations.
have

Fs@rl
x ,j pl

x #ÞFs@r,j p#l
x . ~3.26!

SinceFs@r,j p#l
x minimizes the expectation value of

(
i 51

N

2
\2

2m S l22
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2D

among the set of functions~3.22!, we obtain the inequality.

^Fs@rl
x ,j pl

x #U(
i 51

N
2\2

2m S l22
]2

]xi
2 1

]2

]yi
2 1

]2

]zi
2DUFs@rl

x ,j pl
x #&

>Ts@r,j p#. ~3.27!

Because of inequality~3.26!, the constrained-search formu
lation for Fs@rl

x ,j pl
x # leads to

Ts@rl
x ,j pl

x #<^Fs@r,j p#U(
i 51

N
2\2

2m S l2
]2

]xi
2 1

]2

]yi
2

1
]2

]zi
2DUFs@r,j p#&. ~3.28!

If l>1, then inequalities~3.24!, ~3.25!, ~3.27!, and ~3.28!
are turned to

T@r,j p#1W@r,j p#<T@rl
x ,j pl

x #1W@rl
x ,j pl

x #

<l2T@r,j p#1lW@r,j p#, ~3.29!

and

Ts@r,j p#<Ts@rl
x ,j pl

x #<l2Ts@r,j p#. ~3.30!

Likewise, if l<1, we obtain the following inequalities:

T@rl
x ,j pl

x #1W@rl
x ,j pl

x #<T@r,j p#1W@r,j p#

<l22T@rl
x ,j pl

x #1l21W@rl
x ,j pl

x #,

~3.31!

and
19512
e
l2Ts@r,j p#<Ts@rl

x ,j pl
x #<Ts@r,j p#. ~3.32!

On the other hand, the Hartree termU@rl
x # can be written

through the changes of variables as

U@rl
x #

5
e2

2 E E r~r !r~r 8!

Al22~x2x8!21~y2y8!21~z2z8!2
dr dr 8.

Using this expression, we have the inequalities for the H
tree term. The results are

U@r#<U@rl
x #<lU@r#<l2U@r# for l>1, ~3.33!

l2U@r#<lU@r#<U@rl
x #<U@r# for l<1. ~3.34!

From inequalities~3.29!–~3.34!, we finally arrive at the fol-
lowing exact conditions:

2~l221!~Ts@r,j p#1U@r#!1Exc@r,j p#

<Exc@rl
x ,j pl

x #

<~l221!~Ts@r,j p#1U@r#!1l2Exc@r,j p# for l>1,

~3.35!

2~12l2!~Ts@r,j p#1U@r#!1l2Exc@r,j p#

<Exc@rl
x ,j pl

x #

<~12l2!~Ts@r,j p#1U@r#!1Exc@r,j p# for l<1.

~3.36!

Next let us consider another kind of the nonuniform c
ordinate scaling which is given by Eqs.~3.12! and ~3.13!. It
gives a different type of exact conditions than Eqs.~3.35!
and ~3.36!. About T@r,j p# and W@r,j p#, we obtain the
relations

T@r,j p#1W@r,j p#<T@rll
xy ,j pll

xy #1W@rll
xy ,j pll

xy #

<l2T@r,j p#1lW@r,j p# for l>1,

~3.37!
2-7
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T@rll
xy ,j pll

xy #1W@rll
xy ,j pll

xy #

<T@r,j p#1W@r,j p#

<l22T@rll
xy ,j pll

xy #1l21W@rll
xy ,j pll

xy # for l!1,

~3.38!

Similarly, the functionalTs@r,j p# satisfies

Ts@r,j p#<Ts@rll
xy ,j pll

xy #<l2Ts@r,j p# for l>1,
~3.39!

l2Ts@r,j p#<Ts@rll
xy ,j pll

xy #<Ts@r,j p# for l<1.
~3.40!

Using Eqs.~3.37!–~3.40!, we finally obtain

2~l221!~Ts@r,j p#1U@r#!1Exc@r,j p#

<Exc@rll
xy ,j pll

xy #

<~l221!~Ts@r,j p#1U@r#!1l2Exc@r,j p# for l>1,

~3.41!

2~12l2!~Ts@r,j p#1U@r#!1l2Exc@r,j p#

<Exc@rll
xy ,j pll

xy #

<~12l2!~Ts@r,j p#1U@r#!1Exc@r,j p# for l<1.

~3.42!

The present exact conditions~3.35!, ~3.36!, ~3.41!, and
~3.42! provide both upper and lower bounds on t
exchange-correlation energy functional for the scaled b
variables. Both upper and lower bounds explicitly depend
j p(r ) becauseTs@r,j p#1U@r# is rewritten by

Ts@r,j p#1U@r#

5(
k

occ.

«k2
e

c E j p~r !•Aeff~r !dr2E r~r !

3H neff~r !2
e2

2 E r~r 8!

ur2r 8u
dr 81

e2

2mc2 Aeff~r !2J dr ,

~3.43!

with the aid of the Kohn-Sham equation.2 Assuming that we
obtain an approximate form ofExc@r,j p#, then Ts@r,j p#
1U@r# is calculated from Eq.~3.43!. Substituting the value
of Ts@r,j p#1U@r# thus calculated into Eqs.~3.35!, ~3.36!,
~3.41!, and ~3.42!, we can evaluate the validity of the ap
proximate form ofExc@r,j p#.

Conditions ~3.30!, ~3.32!, ~3.35!, ~3.36!, and ~3.39!–
~3.42! should be recognized as the requirements in the
proximate functionals ofExc@r,j p# and Ts@r,j p#. Vignale,
Skudlarski, and Rasolt have calculated the surface prope
of an electron-hole droplet by means of the approximate
pressions forExc@r,j p# and Ts@r,j p#.11 In their paper,
Exc@r,j p# was replaced with the LDA expression whi
Ts@r,j p# was approximated in the spirit of Thomas-Fer
theory plus second-order gradient expansion. The pre
19512
ic
n

p-

ies
x-

i
nt

conditions mentioned above can be used as the upper
lower bounds on the approximate forms ofExc@r,j p# and
Ts@r,j p#.

IV. SUMMARY AND DISCUSSIONS

In the first half of this paper, we have derived the exa
expression for the exchange-correlation energy functiona
the CDFT by means of the coupling-constant integrat
technique. On the basis of the coupling-constant express
we have also proposed three kinds of the approxima
schemes, which should be called the CDFT versions of
LDA, ADA, and WDA. It is shown that the LDA, ADA, and
WDA schemes are applicable to actual energy-band calc
tions by borrowing the knowledge of the exchang
correlation hole from the homogeneous electron liquid in
uniform magnetic field.

In the second half of this paper, the exact conditions f
filled by Exc@r,j p# have been derived from the various typ
of nonuniform coordinate scaling of electrons. After a sy
tematic analysis, we have obtained about 30 kinds of con
tions on Exc@r,j p#. The set of these exact conditions is
complement to the previous results derived from the ga
invariance,2,31,32 the virial theorem, and uniform coordinat
scaling of electrons.24 All of them can be utilized as sum
rules and bounds onExc@r,j p# when we develop and chec
the approximate form ofExc@r,j p#.

Thus, we have obtained the new kinds of sum rules a
bounds as well as the proposal of the approximate funct
als of Exc@r,j p#. On the basis of these results, let us discu
which of the sum rules derived are satisfied by the appro
mate functionals proposed. First, we shall discuss the cas
the LDA expression ofExc@r,j p#. Like the conventional
DFT42 the LDA of the CDFT violates most of sum rule
derived from the nonuniform coordinate scalings. Supp
that the external magnetic field is parallel to thex axis, and
ḡhom(ur2r 8u,r,n) is calculated within the RPA.6 In this
case, the LDA obeys the sum rules~3.11c!, ~3.14c!, and
~3.20d!, because Ec

LDA@rl
x ,j pl

x #, Ec
LDA@rll

xy ,j pll
xy #, and

Ec
LDA@rll1/l

xyz ,j pll1/l
xyz # are proportional to2l1/2, 2l1/4, and

2l1/2, respectively, whenl→0. The same is true for the
sum rules which are derived from a uniform coordinate sc
ing. However, the LDA expression does not obey the s
rules ~3.11d!, ~3.11e!, ~3.14d!, ~3.14e!, ~3.17b!, ~3.17c!,
~3.17e!, ~3.17f!, ~3.20e!, and ~3.20f! because they becom
2` for each limit. Sum rules~3.17a! and ~3.17d! are not
satisfied by the LDA expression either, because they
proach constants for each limit. With respect to the other s
rules, we cannot conclude whether they are satisfied by
LDA expression or not. These ambiguities will be remov
by studying at greater lengths the homogeneous electron
uid under the weak magnetic field, especially in the case
high- and low-density limits.6 Here it should be noted tha
we may obtain the different results if the magnetic field
parallel to thez axis. In this case, the sum rules derived fro
a uniform coordinate scaling are also satisfied by the L
expression, while the sum rules~3.11a!, ~3.11b!, ~3.14a!,
~3.14b!, ~3.17a!–~3.17f!, and ~3.20a!–~3.20c! are not satis-
fied. About the other sum rules, there remain the ambigui
2-8
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similarly to the previous case. In this way, the sum ru
satisfied by the LDA expression strongly depend on the
rection of the magnetic field.

Next let us consider the ADA and WDA expressions d
fined in Sec. II. The difference between the LDA and ADA
that an exchange-correlation hole of the ADA expression
evaluated at certain averaged densities. Here the dens
mean the electron density and vorticity. In order to estim
how the exchange-correlation energy functional varies w
l, one has to investigate how the averaged scaled dens
change withl. Suppose that the weight function is dete
mined independently ofl, and thus the resultant average
scaled-densities change withl just as the scaled densities d
Under this assumption, the ADA expression obeys the sa
sum rules as the LDA. In addition, the ADA has the pos
bility of satisfying more exact conditions than the LDA b
choosing the weight function appropriately. The same is t
for the WDA expression. In the WDA, a coupling-constan
averaged pair correlation function is replaced byḡhom(ur
2r 8u,r̃(r ),ñ(r )), as shown in Sec. II. The weighted dens
m

tt.

om

19512
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ties r̃(r ) and ñ(r ) are one of the solutions of the integr
equation ~2.19! which is the sum rule on the exchang
correlation hole. If the weighted scaled densities are de
mined by the requirement that they vary withl similarly to
the scaled densities, the WDA expression also obeys
same sum rules as the LDA.

Consequently, the LDA expression violates most of s
rules derived from the nonuniform coordinate scaling
though it obeys sum rules from the uniform coordinate sc
ing. Thus it seems reasonable to expect that the sum r
derived from the nonuniform coordinate scalings play an i
portant role as a constraint when we construct more accu
approximations than the LDA. As mentioned above, t
ADA and WDA expressions potentially satisfy more su
rules than the LDA if the averaged densities and
weighted densities are determined appropriately. Judg
from not only the nonlocality of the exchange-correlati
hole but also the sum rules satisfied, we may expect that
ADA and WDA improve on the LDA with respect to th
accuracy.
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