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with Image Registration Technique∗
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SUMMARY We propose a method for compensating distor-
tion of image by calibrating intrinsic camera parameters by image
registration which does not need point-to-point correspondence.
The proposed method divides the registration between a calibra-
tion pattern and a distorted image observed by a camera into two
steps. The first step is the straightforward registration from the
pattern in order to correct the displacement due to projection.
The second step is the backward registration from the observed
image for compensating the distortion of the image. Both of the
steps use Gauss-Newton method, a nonlinear optimization tech-
nique, to minimize residuals of intensities so that the pattern and
the observed image become the same. Experimental results show
the usefulness of the proposed method. Finally we discuss the
convergence of the proposed method which consists of the two
registration steps.
key words: camera calibration, image distortion, image regis-
tration, intrinsic camera parameters, nonlinear optimization

1. Introduction

1.1 Background

Calibrating a camera and compensating distortion of
image are important processes for computer vision.
Many researches (for examples, [2], [3]) formulate their
problems without considering distortion because of sim-
plicity. However, distortion is inevitable when we use
an ordinary camera lens, and the displacement of a
point due to the distortion is sometimes more than ten
pixels. Although self-calibration have been studied re-
cently, they don’t consider barrel/pin-cushion distor-
tion. So pre-calibration of intrinsic camera parameters
and correcting distorted image are required.

Some codes of calibration have been available via
internet (e.g., Tsai’s method [4] is available from [5]),
however, such ordinary techniques require a lot of cor-
respondences between points on an image and known
three-dimensional coordinates (on a plane or on some
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structure like a cube or a house) to estimate parameters
of transformation of the corresponding points.

When the correspondences should be done manu-
ally, such a method is not reliable because of human
errors. Moreover, it takes much time and patience, so
it is too hard to measure a change of the distortion
parameters, for example, as changing camera zooming.

An alternative procedure is detecting markers such
as corners or intersections. It can be done by a template
matching technique and maybe sub-pixel order can be
achieved. However, another correspondence problem
arises; which marker on the image corresponds to which
point in a space. It is hard to be neglected as the num-
ber of the markers increases in order to improve the ac-
curacy of estimation. If the problem can be avoided [6],
the number of points used for correspondence is limited.

In this paper, we propose a new calibration method
which compensates distortion of image due to change
of intrinsic camera parameters. The proposed method
makes the correspondence between images, so that
more precise estimation than the marker detection is
achieved because this method uses not several points
of markers but all points of the image. This is an im-
age registration technique which is used in the area of
motion analysis. The proposed method consists of the
following three procedures. The first step is to roughly
transform the pattern onto the image, which is rep-
resented by affine parameters. Then the accurate pa-
rameters of transformation of plane under perspective
projection are estimated with a nonlinear optimiza-
tion technique minimizing residuals between two im-
ages. Finally the distortion parameters are estimated
to minimize residuals that remain after applying the
previous step due to distortion.

1.2 Image Registration for Distortion

The basic idea is that calibration needs point-to-point
correspondence and image registration can supply such
correspondences of all points in an image. The pro-
posed method makes correspondence between an ideal
calibration pattern I1 and a distorted image I2 of the
printed pattern observed by a camera. The observation
is modeled by two transformations (see Fig. 1); one is
projection u and the other is distortion d (the inverse
of f). Then, using the image registration technique,
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Fig. 1 Diagram of image transformation modeling. I1 is the
calibration pattern and I2 is the observed image. Hatched arrow
represents the registration.

the proposed method minimizes the difference between
I1 and I2; that is, the square of residuals of intensities
of the two images.

The procedure of the proposed method is as fol-
lows: At first, create the calibration pattern I1. Any
digital image (taken by a digital camera, scanned photo
or CG) can be used as the pattern. Next, print the pat-
tern on a sheet by a printer†. Then, take the image of
the pattern, I2, by the camera to be calibrated. Fi-
nally, we make registration between the pattern I1 and
the observed image I2 through the two transformations
u and d. As shown in Fig. 1, let Iu

1 be the image which
is made from I1 by applying u, and Iud

1 be from Iu
1 with

d. The registration finds the parameters of u and d so
that the transformed calibration pattern Iud

1 becomes
the same with the observed image I2.

Some researchers use image registration to esti-
mate extrinsic camera parameters for calibration [7] or
mosaicing [8]. The problem to employ image registra-
tion strategy in a straightforward manner is that f ,
the transformation from Iud

1 to Iu
1 , is a nonlinear func-

tion (as you see in later section). This means that the
inverse d is not a closed-form but something imple-
mented by an iterative procedure. Usually a gradient
based nonlinear optimization method is used for im-
age registration, however, the gradient/Jacobian of the
transformation d is not available because of the reason
mentioned above. Therefore, we can not perform the
registration between I1 and I2 directly.

To overcome this problem, we propose dividing the
registration into two steps as shown in Fig. 2; one is
from I1, the other is from I2. At the first step, the
registration is straightforward and doesn’t consider the
effect of distortion. It finds the parameters of u so that
the transformed calibration pattern Iu

1 becomes similar
to the observed image I2.

On the other hand, at the second step the registra-
tion is performed in inverse direction and only considers
the effect of distortion. It finds the parameters of f so
that If

2 , the transformed image of I2 by applying f ,

Fig. 2 Division of the registration into two steps.

becomes similar to Iu
1 which is obtained by the first

registration.
This means that the comparisons of images are

done at the intermediate stages (middle column of
Fig. 2) from both sides of the transformations. There-
fore, this approach enable us to avoid the unavailability
of gradient/Jacobian and to make registration between
the pattern and the observed image indirectly.

In Sect. 2, we explain about the preliminary step
performed before the registration steps. Then the first
and the second step of the registrations are described
in Sects. 3 and 4. Experimental results are shown in
Sect. 7, and the convergence of the proposed method is
discussed in Sect. 8.

2. Rough Matching with Affine Transforma-
tion

At first, a calibration pattern image I1 should be cre-
ated. It must have three color (r, g, b) markers at co-
ordinates mr, mg, mb on the corners, then the pattern
is printed with colors.

Then the camera, which is to be calibrated, takes
an image of the printed pattern, I2. The coordinates of
the markers m′

r, m
′
g, m

′
b in the image I2 are detected

by thresholding or template matching.
Here we calculate the parameters of the transfor-

mation from the pattern I1 into the image I2. This
transformation is represented by six affine parameters
θa = (θa

1 , . . . , θa
6 )T .

Let p = (x, y)T be a point on I1, and p + a(p; θa)
be the point on I2 corresponding to p, where

a(p; θa) =
(

x y 0 0 1 0
0 0 x y 0 1

)
θa (1)

and solve the following system of linear equations

m′
i = mi + a(mi; θa), i = r, g, b (2)

to obtain the affine parameters θa. Here we model the
†We assume that a printer provide us an ideal print.
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displacement of two corresponding points as an affine
transformation (a modification of ordinary affine form)
because it is convenient to use affine parameters as the
initial value of the first registration step when the model
of this step and that of the first step have the same
form.

In fact, this preliminary step can be skipped when
I2 is similar enough to I1.

3. First Step; Forward Registration of Projec-
tion

The preliminary step described above uses only three
corresponding points for the affine parameters. Here
we make an image registration, using plane projective
transformation.

As mentioned above, the registration in this step
doesn’t consider the effect of distortion but deals with
the displacement of the pattern in the image. The pa-
rameters of u are estimated so that the transformed
calibration pattern Iu

1 becomes similar to the observed
image I2.

3.1 Modeling and Formulation

Suppose that a point p in I1 is transformed by u to
p + u in Iu

1 (the intensities of the two points are the
same). The difference between the intensity of p + u
in Iu

1 and that of p + u in I2 (at the same location) is
expected to be small.

Hence, what to do is minimizing the residuals of
intensities between pi in I1 and pi + u(pi; θ

u) in I2;

ru
i = I1(pi)− I2(pi + u(pi; θ

u)) (3)

where θu = (θu
1 , . . . , θu

8 )T and

u(p; θu) =
(

x y 0 0 1 0 x2 xy
0 0 x y 0 1 xy y2

)
θu

= Mu(p)θu, p = (x, y)T (4)

The function to be minimized is the square of the resid-
uals.

min
θu

∑
i

ρ(ru
i ), ρ(r) = r2 (5)

Here u() is a 2D quadratic model with eight parameters
of instant motion of a planar object and often used for
motion analysis [9]. This model can deal with the case
that the rotation of two viewpoints is small and the
depth change of the planar object is relatively small
as compared with the distance between the object and
the camera. Thus u is not an exact planar perspective
motion model which has anther parameter sets [10]. Al-
though we have not evaluated the error to employ this
model, the effect can be negligible because in fact, in
order to make the area for the registration large, the
printed pattern appeared in I2 becomes large enough

(almost fills in the image) and the pattern is placed al-
most parallel to the image plane so that the difference
between I1 and I2 is small. And also we don’t need
extrinsic camera parameters themselves to compensate
distortion.

3.2 Minimization

Estimating the parameters θu, the objective function
(5) is minimized by Gauss-Newton method, an non-
linear optimization technique [11]. The parameters are
updated from some initial value by the following rule.

θu ← θu + δθu (6)

We use θa, the affine parameters obtained at the pre-
liminary step, as the initial value of the first six ele-
ments of θu. The last two of θu are initialized to 0.
If the preliminary step was skipped, all elements of θu

are initialized to 0.
The decent direction δθu is calculated as fol-

lows [11]; †

δθu = −(JD̃JT )−1JD̃ru (7)

J =
∂ru

∂θu =

[
∂ru

i

∂θu
j

]
(8)

D̃ = diag
[
ρ̇(ru

i )
ru
i

]
(9)

ρ̇(ru
i ) =

∂ρ(r)
∂r

∣∣∣∣
r=ru

i

(10)

This is the same as the least square formulation, that
is, the system of linear equations [9] which is written as

∑
l,i

ρ̇(ru
i )

ru
i

∂ru
i

∂θu
k

∂ru
i

∂θu
l

δθu
l = −

∑
i

ρ̇(ru
i )

ru
i

ru
i

∂ru
i

∂θu
k

(11)

for k = 1, . . . , 8. The partial derivatives are the ele-
ments of the following Jacobian obtained by the chain
rule of differential.

∂ru

∂θu =
∂u

∂θu

∂ru

∂u
= −{Mu(p)}T∇I2(p +u(p)) (12)

The iteration of calculating δθu in Eq. (6) is re-
peated until it converges. At each iteration, the pa-
rameters estimated at the previous iteration are used
for the calculation of u(p).

In the following section, let θ̂
u

be the estimates of
θu after the iteration stops.

4. Second Step; Backward Registration of Dis-
tortion

At the end of the first step, the image registration be-
†The reason to introduce D̃ is to make it easy to deal

with a robust function as ρ instead of least-square when the
pattern in the image are partially occluded or out of scene.
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Fig. 3 Model of distortion.

tween the pattern image and the pattern in the dis-
torted image is performed without considering the ef-
fect of distortion.

In fact, the effect of approximation of 2D motion
model exists, however, the radial distortion still remains
even if the other model is employed. Modeling distor-
tion of image usually consists of two successive pro-
cesses [12]–[14] as shown in Fig. 3; at first a point P
in three dimensional space is projected onto the image
plane, then the projected point pu in the image plane
is slightly moved to pd because of the radial distortion.

The effect of 2D model arises from the difference
between the model of projection, however, it can be
negligible as described before.

4.1 Modeling of Distortion

The relationship between undistorted and distorted co-
ordinates in an image is usually modeled by the fol-
lowing five intrinsic camera parameters [12], [13], [15];
the radial distortion parameters κ1 and κ2, coordi-
nate of image center (cx, cy)T , and the aspect ratio
(horizontal scale) sx. We write these parameters as
θd = (κ1, κ2, cx, cy, sx)T . Here we consider only ra-
dial distortion, however, the following discussion can
be applied when another model involving decentering
distortion [14] is employed.

The distortion is represented usually with a coordi-
nate system which has its origin at (cx, cy)T , while the
system used in the previous section has the origin at
top-left corner. Therefore, we introduce another nota-
tion. Let pu = (xu, yu)T and pd = (xd, yd)T be points
in the un-distorted and distorted images, both of them
have their origins at the top-left corner of their images.
Here we have two functions between pu and pd about
the system of top-left corner origin,

pd = d(pu; θd) (13)

pu = f (pd; θd)

=
(

xd−cx

sx
(1 + κ1R

′2 + κ2R
′4) + cx

(yd − cy)(1 + κ1R
′2 + κ2R

′4) + cy

)
(14)

where

R′ =

√(
xd−cx

sx

)2

+ (yd − cy)2 (15)

f and d are the inverse of each other, but d is not a
closed-form function of pu and d is implemented by an
iterative procedure [12] as we addressed previously.

Anyway, we can write the transformation between
images using Eqs. (13) and (14), and the following equa-
tions about intensities of corresponding points hold.

I1(p) = Iu
1 (p + u(p; θu); θu)) (16)

Iu
1 (p; θu)) = Iud

1 (d(p; θd); θu, θd) (17)

Iu
1 (f(p; θd); θu) = Iud

1 (p; θu, θd) (18)

4.2 Minimization with Backward Registration

Since the transformation from I1 to Iud
1 is not closed-

form, now consider a backward registration. As we de-
scribed in Sect. 1, the difference between I2 with Iud

1 is
expected to be small, that is, minimize the square of
residuals of intensities between two images;

rd
i = I2(pi)− Iud

1 (pi; θ
u, θd) (19)

But the point pi in Iud
1 corresponds to f(p) in Iu

1 as
shown in Fig. 2. So using Eq. (18), this equation can be
rewritten as follows;

rd
i = I2(pi)− Iu

1 (f(pi; θ
d); θu) (20)

Note that since a point p in I2 is transformed to f(p)
in If

2 , the residual defined by the intensity of the point
f(p) in Iu

1 and that of f(p) in If
2 is equal to Eq. (20).

This is shown in Fig. 4.
Hence, the estimation method becomes the same

one in the previous step. The minimization is
done about the following function with Gauss-Newton
method.

min
θd

∑
i∈Ω

ρ(rd
i ) (21)

where Ω = {i | pi ∈ I2, ∃p ∈ I1, f(pi) = p + u(p)},
which means that the minimization should use points
in I2 within the region corresponding to the pattern I1

(the gray area in the figure).
The system of equations to be solved is the same

form with Eq. (11);

∑
l, i∈Ω

ρ̇(rd
i )

rd
i

∂rd
i

∂θd
k

∂rd
i

∂θd
l

δθd
l = −

∑
i∈Ω

ρ̇(rd
i )

rd
i

rd
i

∂rd
i

∂θd
k

(22)

and the derivatives in Eq. (22) are derived as follows;

∂rd

∂θd
=

∂f

∂θd

∂rd

∂f
=

∂f

∂θd
(−∇Iu

1 (f(p); θ̂
u
)) (23)

According to Eq. (14), the Jacobian is
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∂f(pd)
∂θd

=




R′2 xd−cx

sx
R′2(yd − cy)

R′4 xd−cx

sx
R′4(yd − cy)

∂xu

∂cx

∂yu

∂cx
∂xu

∂cy

∂yu

∂cy

∂xu

∂sx

∂yu

∂sx


 (24)

where
∂xu

∂cx
= 1− 1

sx
(1 + κ1R

′2 + κ2R
′4)

− 2(κ1 + 2κ2R
′2)

(xd − cx)2

sx
3

(25)

∂yu

∂cx
= −2(κ1 + 2κ2R

′2)
xd − cx

sx
2

(yd − cy) (26)

∂xu

∂cy
= −2(κ1 + 2κ2R

′2)
xd − cx

sx
(yd − cy) (27)

∂yu

∂cy
= 1− (1 + κ1R

′2 + κ2R
′4)

− 2(yd − cy)2(κ1 + 2κ2R
′2) (28)

∂xu

∂sx
=
−(xd − cx)

sx
2

(1 + κ1R
′2 + κ2R

′4)

− 2(κ1 + 2κ2R
′2)

(xd − cx)3

sx
4

(29)

∂yu

∂sx
= −2(yd − cy)(κ1 + 2κ2R

′2)
(xd − cx)2

sx
3

(30)

Initial parameters to solve Eq. (22) are set as fol-
lows; cx and cy to half of the width and the height of
I2, κ2 = 0 and sx = 1. On the other hand, κ1 is ran-
domly initialized to avoid that all of Eqs. (25) – (28)
and (30) become 0 by initializing κ1 = κ2 = 0. We
choose empirically κ1 ∈ [−10−7, 10−7].

In the following section, let θ̂
d

be the estimates of
θd after the iteration stops.

5. Iteration of Two Steps with Coarse-to-Fine

To reduce computation time, and to obtain an accurate
estimation even when there is a relatively large residual
in the initial state, the coarse-to-fine strategy is em-
ployed. The procedures mentioned above are applied
to a filtered image which is much blurred at first and
then gradually becomes sharpened. Therefore, the first
and the second steps are repeated in turn as changing
the resolution of the images I1 and I2.

The first step should be modified appropriately to
involve the parameters θ̂

d
estimated in the second step.

In the previous formulation, the parameters of u are
estimated so that Iu

1 becomes similar to I2, but now
the estimation of the first step is changed so that Iu

1

becomes similar to If
2 , the corrected image of I2 (see

Fig. 4).
The residual Eq. (3) is modified as

ru
i = I1(pi)− If

2 (pi + u(pi; θ
u); θ̂

d
) (31)

Fig. 4 Relation between two steps repeated by coarse-to-fine.
The arrows indicate points corresponding each other used in each
step.

and the Jacobian Eq. (12) as

∂ru

∂θu = −{Mu(p)}T∇If
2 (p + u(p; θu); θ̂

d
) (32)

where If
2 is the image transformed by applying f with

θ̂
d

to I2 as;

If
2 (f(p; θ̂

d
); θ̂

d
) = I2(p) (33)

If
2 (p; θ̂

d
) = I2(d(p; θ̂

d
)) (34)

6. Some Strategies

6.1 Interpolation of Pixel Value

When we want to obtain an intensity of pixel whose
coordinate is not on the integer grid, and it occurs fre-
quently, we need to interpolate the intensity using the
values of the pixels that are already located on the grid.
We use the bilinear interpolation[16, p.382], an easy
and simple method, which interpolate with the values
of four neighbor pixels on a rectilinear grid.

6.2 Histogram Matching

In general, intensity of the pattern in the image ob-
served by a camera is different from that of the origi-
nal one, and Iud

1 can not be identical to I2 in a strict
sense. So we use histogram matching technique[17,
p.93] which changes the histogram of the observed im-
age I2 so that it becomes identical to that of the dis-
torted pattern Iud

1 .

7. Experimental Results

We conducted experiments with the proposed method
using real images which is taken by a camera with zoom
lens. We use a scanned photograph as the calibration
pattern (shown in Fig. 5), and print it on a sheet by a
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Fig. 5 The calibration pattern (640× 480).

laser monochrome printer (EPSON LP-9200PS2), then
capture images of the printed output by a CCD camera
(Sony EVI-D30) with a capturing software (of SGI O2).
As fixing the camera zooming, we placed the sheet of
the pattern in front of the camera almost parallel to
the image plane so that the image is filled with the
pattern. We took two images of the printed pattern
as changing the zooming of the camera as shown in
Figs. 6 (a) and (e). At each setting, we took also the
image of a grid pattern (shown in Figs. 6 (c) and (g))
to show the effect of distortion more visually. As you
see, the wider the view angle is, the larger the effect of
barrel distortion becomes (the lines of the grid pattern
in Fig. 6 (a) curve more tightly than those in Fig. 6 (g)).
In these experiments, we skipped the preliminary step
described in Sect. 2.

The results of estimation of the intrinsic camera
parameters θd are shown in Table 1. The right column
of Fig. 6 shows the images compensated by Eq. (14)
with the estimated parameters. In the compensated
figures, the curved lines in the grid pattern are cor-
rected to straight lines, so the proposed method works
well. The computational time was about twenty min-
utes for about 50 iterations including both of the two
steps, however, the optimization almost converged by
15 iterations.

The results have some errors as shown in the right
column of Fig. 6. The lines of grid still slightly curves
especially around the corners of the image, because the
gradation of illumination of the image (the left side is
darker and the right is brighter) can not be removed
thoroughly by the simple histogram transformation.
The histogram matching method should be replaced
with an estimation of illumination change by some
method, such as a linear brightness constraint [19].

To see the usefulness of the proposed method, we
compared with the results by another method; the
camera calibration toolbox for MATLAB included in
the Open Source Computer Vision Library released
by Intel [18]. This method needs several images of
the checkerboard (no high/low limits are indicated but
their example uses 20 images), and detects the corners
of the squares based on the coordinates of the four cor-
ners of the checkerboard which are indicated by user
(in this case, 4 corners × 20 images = 80 points on
the images should be clicked by a mouse). Their model

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Experimental results of the proposed method. (a) the
image of the calibration pattern taken by the camera at the
widest view angle. (b) compensated image of (a). (c) the
image of the grid pattern taken at the widest view angle. (d)
compensated image of (c). (e) the image of the calibration pat-
tern taken by the camera at the second-widest view angle. (f)
compensated image of (e). (g) the image of the grid pattern
taken at the second-widest view angle. (h) compensated image
of (g).

Table 1 Estimation results at two view angle.

Fig. 6 (a) Fig. 6 (e)

κ1 2.804e-07 -6.7631e-08
κ2 2.992e-13 5.219e-13
cx 327.8 326.6
cy 214.3 184.2
sx 0.9954 0.9997

of distortion includes parameters of the forth order of
radial and upto the second order of tangential distor-
tion. Although the model is different from ours and
the comparison of the estimates of intrinsic parameter
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Table 2 Two steps of the estimations at step k and k + 1.

Estimate �u Estimate �d

step k �
u
k = argmin

�u
Lu(�u,�d

k−1) �
d
k = argmin

�d

Ld(�u
k , �d)

step k + 1 �
u
k+1 = argmin

�u
Lu(�u,�d

k) �
d
k+1 = argmin

�d

Ld(�u
k+1, �d)

Table 3 Inequalities obtained by each estimation step.

Ld(�u
k ,�d

k−1) > Ld(�u
k ,�d

k) at step k of estimating �d fixing �u
k

Lu(�u
k , �d

k) > Lu(�u
k+1,�d

k) at step k + 1 of estimating �u fixing �d
k

Ld(�u
k+1,�d

k) > Ld(�u
k+1,�d

k+1) at step k + 1 of estimating �d fixing �u
k+1

(a) (b)

(c) (d)

Fig. 7 Experimental results by another method [18]. (a)
checkerboard used for calibration. (b) corrected image of the
checkerboard with estimated intrinsic parameters. (c) corrected
image of Fig. 6 (a). (d) corrected image of Fig. 6 (c).

is difficult, the distorted images can be corrected by
both method.

Figure 7 shows the experimental results of the
method. Figure 7 (a) is one of the images used to cal-
ibration, and Fig. 7 (b) is the corrected image. Fig-
ure 7 (a) is captured with the same parameters with
that of Fig. 6 (a) (that is, the widest view angle), so
Figs. 6 (a) and (c) can be corrected with the parame-
ters estimated by this method. Figures 7 (c) and (d)
show the corrected images with the parameters of this
method.

The computational time of our method is longer
than that of this method because our proposed method
is based on a nonlinear optimization. As for the cor-
rected images, the results of both methods are similar
each other. However, our method is much better for
a batch process when the parameters are estimated as
changing camera zooming. It is because the proposed
method needs only one image of the calibration pattern
and also our method doesn’t need any involvements by
user if the preliminary step can be skipped. Methods
which need numbers of point correspondences would be

a burden for a user.

8. Discussions

8.1 Convergence

In this section, we discuss the convergence of the pro-
posed two-step method. In proposed method, the im-
age registration is divided into two steps. So the result
of estimation at the second step depends on that of the
first step, and the estimation of this method may not
converge. Here we discuss below the convergence of the
method under some assumption.

The two step estimation procedures at steps†k and
k + 1 are summarized in Table 2, where θu

k and θd
k

are the estimates of θu and θd at step k, respectively
(hats are omitted), and Lu, Ld are the residuals with
the parameters as follows;

Lu(θu, θd) =
∑

i

ρ(ru
i (θu, θd)) (35)

Ld(θu, θd) =
∑

j

ρ(rd
j (θu, θd)) (36)

ru
i (θu, θd) = I1(pi)− If

2 (pi + u(pi; θ
u); θd) (37)

rd
j (θu, θd) = I2(pj)− Iu

1 (f(pj ; θd); θu) (38)

At each estimation step, for example, estimating
θd at step k, the minimization of Ld(θu

k , θd) about θd

are done by fixing θu
k with θd

k−1 as the initial state.
Then we obtain the estimates θd

k, and Ld(θu
k , θd

k) should
be smaller than Ld(θu

k , θd
k−1). We obtain this condition

at each estimation step, and they are shown in Table 3.
Here, consider whether both of the following two

inequalities

Lu(θu
k , θd

k−1) > Lu(θu
k+1, θ

d
k) (39)

Ld(θu
k , θd

k) > Ld(θu
k+1, θ

d
k+1) (40)

that is, whether the residuals become smaller If they
hold, both of the residuals become small and the itera-
tion of the proposed method converges.

†Here “steps” means the number of iterations, and one
iteration is a pair of the first and the second steps of the
estimations.
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To derive the above inequalities, we assume that
the following propositions

pi ∈ I1 ⇐⇒ p′
i ∈ Iu

1 , p′
i = pi + u(pi) (41)

pj ∈ Iud
1 ⇐⇒ p′

j ∈ Iu
1 , p′

j = f(pj) (42)

are true so that the mapping between I1 and Iud
1 are

one-to-one mapping through Iu
1 . These assumptions

do not hold exactly about digital image because a pixel
exists only on a grid. But it is reasonable if an image
has an enough resolution.

Using the assumptions mentioned above and
Eqs. (16), (18), we can rewrite the residuals as follows;

ru
i (θu, θd) = I1(pi)− If

2 (pi + u(pi; θ
u); θd)

= Iu
1 (pi + u(pi; θ

u); θu)

− If
2 (pi + u(pi; θ

u); θd)

= Iu
1 (p′

i; θ
u)− If

2 (p′
i; θ

d) (43)

rd
j (θu, θd) = I2(pj)− Iu

1 (f(pj ; θd); θu)

= If
2 (f(pj ; θd); θd)− Iu

1 (f(pj ; θd); θu)

= If
2 (p′

j ; θd)− Iu
1 (p′

j ; θu) (44)

Then Lu, Ld are rewritten as follows

Lu(θu, θd) =
∑

i

ρ(Iu
1 (p′

i; θ
u)− If

2 (p′
i; θ

d)) (45)

Ld(θu, θd) =
∑

j

ρ(If
2 (p′

j ; θd)− Iu
1 (p′

j ; θu)) (46)

Since the order of points i, j doesn’t matter and ρ is an
even function, Lu and Ld are identical.

Therefore, the inequality Eq. (39) is derived from
the first and second conditions in Table 3, and Eq. (40)
is derived from the second and third conditions in Ta-
ble 3. This means that both of the residuals Lu and
Ld decrease at every estimation step and the iteration
finally converges.

8.2 Local Minimum

In general, a result of the convergence of nonlinear op-
timization depends on its initial values, and sometimes
the estimates converge into local minimum even though
the value of cost function decreases every step as de-
scribed above. Throughout the discussions we assume
implicitly that the result of the first step is good enough
for initial state of the second step. In fact, this is rea-
sonable when the distortion is small, however, it leads
us to local minimum.

Local minimum which occurs for barrel distortion
is illustrated in Fig. 8. The figure shows how a rectangle
is distorted. In Fig. 8 (a), a rectangle with no distortion
is drawn with dashed line, and its distorted shape ob-
served under barrel distortion is drawn with solid line.
As you can see in the figure, and also in the model of
distortion defined by Eq. (14), the size of the rectangle

(a) (b)

Fig. 8 Difference between estimated and actual shapes under
barrel distortion.

should be larger than that of distorted shape for barrel
distortion, and the rectangular shrinks toward to the
barrel shape along the arrows. Therefore, in this case,
Iu
1 is expected to be estimated as the dashed rectangu-

lar shape.
However, Iu

1 estimated in the first step is different
from what it should be. As shown in Fig. 8 (b), in the
first step the parameters u are estimated so that Iu

1

(rectangular with dashed line) becomes similar to I2

(barrel shape with solid line) and also the sizes become
the same. When the size of Iu

1 is similar to that of
I2 like Fig. 8 (b), the rectangular cannot shrink toward
to the distorted shape. Then the size of If

2 is always
larger than that of Iu

1 , and If
2 will never be identical to

Iu
1 through the second step.

Local minimum is a big problem. The idea to avoid
the size problem of this case is adding one more param-
eter, called κ0, to the intrinsic parameters so that the
size is also estimated; that is, the polynomial parts of
the first term in Eq. (14), 1+κ1R

′2 +κ2R
′4, is replaced

with κ0 +κ1R
′2 +κ2R

′4. This parameter can deal with
the size problem, but may affect the estimates of other
parameters.

9. Conclusions

We have proposed a new technique of automated cam-
era calibration method to obtain internal camera pa-
rameters in order to compensate the distortion of im-
age. The proposed method is based on image reg-
istration and consists of two nonlinear optimization
steps; forward registration step for projection and back-
ward registration for distortion. Experimental results
demonstrated the efficiency of the proposed method in
comparison with the conventional calibration method.
The convergence of the proposed method was shown
under the condition that the image has enough resolu-
tion, and the problem of local minimum was discussed.
We have not mentioned about the one step method [20],
the extension of the proposed two-step method, which
can be a way to avoid the local minimum. There are
some methods that realize the one step method, and
we are trying to develop them and compare features of
them.
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Since the gradation of illumination of the image
affects the result of the estimates, the effect should be
incorporated into the registration. So far the results of
the compensation is evaluated qualitatively because the
actual intrinsic camera parameters is unknown. The
nonlinear optimization somewhat takes time, but it is
enough to run as a batch process. Dealing with the
change of illumination of image, avoiding local mini-
mum and a quantitative evaluation of the estimates are
the future plans.
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