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We have studied the low-energy electronic structure of a Kondo insulatoi,YtyBhigh-resolution
photoemission spectroscopy. A “Kondo peak” is observetd meV below the Fermi level, which
agrees well with the Kondo temperature, whereas the gap at the Fermi level is found much smaller,
indicating that the magnetic properties at higher temperat#@$ (K) are indeed determined by the
Kondo effect in spite of the gap formation at lower temperatures. A renormalized band picture is
presented to describe the coexistence of the Kondo peak and the transport gap as well as the highly
asymmetric line shape of the Kondo peak. [S0031-9007(96)01690-0]

PACS numbers: 79.60.Bm, 71.28.+d, 75.30.Mb

Correlated electron systems have fascinated researchesergy electronic structures by PES because within the
for decades not only because of their interesting groundramework of the Anderson-impurity model (AIM), a
state and excited-state properties themselves but also biéendo peak is predicted to appear below the Fermi level
cause of their intermediate nature between the localize(Er) [8,9] and can therefore be studied with high-energy
and itinerant limits, which often requires a new descrip-resolution. Recent PES studies have indeed indicated the
tion of the phenomena or even a new physical concepexistence of the Kondo peak in some metallic Yb com-
A class of f-electron compounds termed “Kondo insula- pounds [10,11]. Our results have also revealed a Kondo
tors” have attracted considerable interest in recent yeaggeak ~25 meV belowEy, indicating that the same pic-
[1]: They are nonmagnetic insulators at low temperaturesure properly describes the Kondo insulator YpBn this
and behave as local-moment (and often metallic) systemmsnergy scale. The insulating behavior manifests itself on
at high temperatures. It has been controversial whethex smaller energy scale as a much smaller gapgat In
the insulating gaps are due to Kondo interaction of locabrder to describe the coexistence of the Kondo peak and
character [2] or they are hybridization gaps renormalizedhe tiny gap as well as the strongly asymmetric line shape
by electron correlation [3]. In the former case, a localof the Kondo peak, we have employed a phenomeno-
description of the electronic structure should be more aplogical renormalizedf-band picture, starting from the
propriate and the single-site Kondo temperatigewvould  band structure calculated by means of the local-density
set the energy scale of low-energy physics [4]. In theapproximation (LDA) [12].
latter case, an itinerant picture or band theory, which ex- Polycrystalline samples of YbB were prepared by
plicitly treats the lattice periodicity, would provide a rele- borothermal reduction &200 °C and were checked to be
vant starting point. It is therefore of essential importancen a single phase by x-ray diffraction. A small amount
to obtain experimental information about the low-energy(~3%) of Lu was substituted for Yb to obtain good
electronic structure of the Kondo insulators. quality samples. Their magnetic susceptibility and the

In this Letter we report on a high-resolution photo- electrical resistivity are almost identical to those of pure
emission spectroscopy (PES) study of Y{bBwhich is  YbB,, at least forT > 20 K [7]. The Lu-substitution in-
the only Kondo insulator among various Yb compoundstroduces:-type carriers into the semiconducting samples,
[5-7]. Its magnetic susceptibility shows a Curie-Weissbut the conductivity is rather intrinsic above20 K and
behavior above~170 K; as the temperature decreasesthe Fermi level is supposed to be located in the middle of
it shows a broad maximum at75 K and then rapidly the ~130 K semiconducting gap.
decreases. The electrical resistivity and the electronic Ultraviolet PES measurements were performed with the
specific heat are explained by the opening of a transHe | and Hell resonance lineshfpy = 21.2 and 40.8 eV,
port gap A, ~130 K [5,6]. Among Kondo systems, respectively) as well as synchrotron radiation at BL-3B of
Yb compounds are suitable to the study of their low-the Photon Factory, National Laboratory for High Energy
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Physics. A VSW CLASS-150 analyzer and a SCIENTApeak as shown in Fig. 2(d). This line shape agrees with
SES-200 analyzer were used for energy analysis. Energhe 125 eV spectrum (c), except for the differences due
calibration and estimation of the instrumental resolutionto the energy resolution and small boron contribution
were done for a Au film evaporated on the surface of then the 125 eV spectrum (there is uncertainty in the
samples after each series of measurements. The resolutioggion >0.3 eV, where the surface signals overlap).
was 23, 42, and~55 meV for the Hel, He 1, and By fitting the f-derived spectrum using Mahan’s line
synchrotron radiation measurements, respectively. Alshape convoluted with a Gaussian which represents the
measurements were done at 305 K. The base pressure instrumental resolution and then removing the Gaussian
of the spectrometer was7 X 10~!'! Torr for the Hel  convolution, we find that the peak position 225 meV
and Hell measurements and4 X 107 Torr for the belowEr, as shown by the dashed curve in Fig. 2(d).
synchrotron radiation measurements. The surface of the First, we discuss the spectrum neBf within the
samples was repeatedly scrajedituwith a diamond file. framework of the AIM [8]. In a metallic system, the
Figure 1(a) shows the valence-band spectrum takeKondo temperaturel’x, defined as the binding energy
with the photon energy of 125 eV, for which the Yb of the Kondo singlet, is estimated throu@iz ~ 37 .x,
4f contribution is dominant [13]. The spectral featureswhereTy,.x is the temperature at which the susceptibility
in the range from 4 to 13 eV are assigned to theshows a maximum [17], or througlfx = Cns/x(0),
4113 — 4f12 multiplet structure [14]. Betweel; and whereC = 2.57 emuK/mole is the Curie constant of the
4 eV are observedf!* — 4f13 transitions. As shown YDb3" ion andy(0) is the magnetic susceptibility @& = 0
in Fig. 1(b), they consist of two sets dff'3 spin-orbit K. In YbB,, since y(T) drops belowl ~ 75 K due to
doublets. The sharper doublet closer Bg originates the gap formation, we have assumed thé) would take
from Yb atoms in the bulk and the broader one awaya value comparable t9(7Tma) = 1.0 X 1072 emuy/mole
from Er from divalent Yb atoms on the surface [9,10]. [5] if the gap was not opened. Both estimations give
The surface and bulk signals are represented by Gaussiafig ~ 220 K. According to the AIM, the position of
and Mahan’s asymmetric line shapes [15], respectivelythe Kondo peake; measured fromEr is equal to
as shown in the figure. The Yb valence in the bulkkgTkx in a metallic system [17], as has been confirmed
estimated from the intensity ratio of tHg'> — 4f!2 and  experimentally for YbA{ [10]. In the case of YbR,
4% — 4f13 signals is 2.86+ 0.06, i.e., the number of too, kzTx ~ 19 meV is in good agreement with the
4f holesn; = 0.86 = 0.06, in good agreement with the experimental result of; ~ 25 meV. Therefore it seems
value 0.85 deduced from the high-temperature magnetithat the Kondo effect is present both for the metallic and
susceptibility [16]. insulating Yb compounds in the photoemission spectra
Figure 2 shows the spectra ndgy taken with various and in the magnetic susceptibility aboVe~ Tiax.
photon energies. According to the photoionization cross- The insulating nature of YbB is reflected on the
sections [13], the Ha spectrum (a) is dominated by He | spectrum (Fig. 3), which is dominated by the B
the B 2p contribution. In the Hen spectrum (b), a contribution. From comparison with the Fermi edge of
weak Yb 4 contribution is also present as an additionalAu in the figure, one identifies the opening of a gap or a
intensity within ~0.2 eV of Er. To extract the Yb pseudogap aEr. In the intrinsic conduction regime, the
4f contribution, we have subtracted the Hespectrum
from the Hell spectrum and obtained a quite asymmetric
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FIG. 2. Spectra neak for photon energies of 21.2 eV (a),
FIG. 1. (a) Valence-band sg)ectrum of YpBn a wide energy  40.8 eV (b), and 125 eV (c). (d) is the (b)-(c) difference
range. For thed4f'> — 4f'> part, the calculated multiplet spectrum, representing th&f-derived spectrum. The solid
structure [14] is also shown. (B)f'* — 4f13 part of the curve is a fit using Mahan's line shape convoluted with a
spectrum. The solid and dashed curves represent signals fro@aussian representing the instrumental resolution. The dashed
the bulk and surface Yb atoms, respectively. curve is the same curve but without the convolution.
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top of the occupied valence band should be separated fromhere

Er by the transport activation energy,. = %AC ~6 anlw — 8)
meV [5]. From Fig. 3 one can say that the top of the 2(w) = : PR
valence band is aEr or at most several meV below (@ =& + iya)
it, due to the limited resolution of 23 meV. According S () = —g<< 1 n L) (j =11
to the band-structure calculation, YpBis a semimetal ! Now -8 +iy; vy o

[18]. Since LDA underestimates band gaps [19], we havg o — . is the binding energy measured frof) and

rigidly shifted the valence and conduction bands towards _ s _ _5 meV is the top of the valence band es-

the opposite directions by hand in order to open a finitgjated from the leading-edge shift of the Hespec-

band gap and to compare the calculated density of states,m Equation (1) satisfies the Kramers-Kronig (KK)
(DOS) with the photoemission spectra as shown in Fig. 3;5|5tion and behaves B w) ~ —alw — 8) — iblw —

The observed band edge is thus found to be much steepg;z for small |o — &| as in a Fermi liquid. For sim-

than the calculated B partial DOS, indicating strong plicity, we have neglected the momentum-dependence
renorm_allzatlon (i.e., narrowing) of energy bands neay ,q self-energy [21,22]. The spectrum could be best
Er. Since Bsp states themselves are not expected toreproduced withg, = 24.0 e\2, y, = 4.0 eV, g =
be strongly correlated, the Y4 components hybridizing 0.025 e\2, v, = 0.08 eV .ng _ ’0.0015 e\'/z ané yp =

with the B sp states should have caused the stron;o15 eV as shown in Fig. 4. The high-energy-scale com-

renormalization. A similar picture has been corroborate onent3,(w) causes the shift of the structure between

by an exact diagonalization study of the Anderson latticE_) ; and~025 eV in the LDA DOS to the Kondo peak

as 1mo?el for a Kondo InS#Iatorh[ZO].bf i (at ~25 meV belowEr after having removed the Gauss-
Therefore we expect that the Ybf gpectral line ., broadening) and the shift of the structure arow@3

shape is likewise subject to the strong renormalization,; in the LDA DOS to the higher binding energy side
of energy bands. Instead of first-principles approacheg; o peak. The low-energy-scale componeBigw)

such as second-order perturbatiqn calculations [21],.W nd 3,(w) were necessary to reproduce the steep rise
have employed a phenomenological approach and fittegl o vicinity of Er. As a result the negative slope of

the observed spectral line shape using a model self—energyez(w) increases as one approachgs. This in tum
correction. As shown in Fig. 4 by the dashed curve, thqncreasesj Im3(w)| away from Ex through the KK re-
Yb f partial DOS has structures from150 to ~400 lation, which explains how the DOS peak ai0.3 eV
meV Wh.'le the obser_v_ed peak positionsl0 meV _below in the LDA is smeared out and results in the asymmet-
Ep. This peak exhibits a steep rise frofy as in the . single peak in the measured spectrum. The resulting

case of the B g-derived Hel spectrum, and a slow I h V-shaped |i h -
tailing off on the higher binding energy side, resulting in| m3(w)| shows a V-shaped line shape nézr, a remi

a highly asymmetric line shape. This indicates that the
band narrowing is energy dependent and is stronger near

Er. The model self-energy which we have employed to
calculate the # spectral functionps(w) is of the same —~ 15L
type as that previously used for FeSi [12]: >
&
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FIG. 4. Yb 4f spectrum of YbB, (dots), the Ybf partial
FIG. 3. He 1 spectrum of YbB, in the vicinity of Er. DOS (dashed curve), the calculated spectral funciigiw)
The solid curve is the spectrum of Au evaporated onto thewith and without the instrumental broadening (solid curve and
sample. The By partial DOS given by the LDA band-structure long dashed curve, respectively), and the quasi-particle DOS
calculation broadened by the instrumental resolution is als@V*(w) (dot-dashed curve). The self-energy(w) used to
shown. calculate the spectral function is shown in the lower panel.
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Susaki et al. Reply: In a recent Letter [1], we have (iv) As we stated in Ref. [1], the spectrum shown in
reported a photoemission study of the Kondo insulatoFig. 3 of Ref. [1] does not reveal a definite gap judging
YbB,, and shown that the data can be interpreted irfrom the band edge position but reveals “missing spectral
terms of the Anderson-impurity model for the global weight” within ~10 meV of Er. This has become
(>>10 meV) electronic structure including the Kondo clearing in our subsequent study of \YhLu,B1,, which
peak. On the other hand, more subtle electronic structureovers from the Kondo insulatéx ~ 0) to Kondo metals
in the vicinity (=10 meV) of the Fermi levelEr) includ- (x ~ 1); The spectrum of LuBR taken with hv =
ing the gap formation has been analyzed starting from21.2 eV, which is dominated by Bp states, shows a clear
one-electron band theory and incorporating correlatiorFermi edge unlike YbB. The result will be published
effects via self-energy correction. Joyce and Arko [2]elsewhere [5].
have cast doubt upon the validity of our analysis in the To summarize, there is indeed a consistency between
following points: (i) The trivalent signal is overestimated. the spectroscopic and thermodynamic data in the Kondo
(i) Data quality is not good because of the scrapednsulator YbB; in spite of the presence of the insulating
polycrystalline surfaces. (iii) The asymmetric “Kondo gap. This is because the energy scale of the gap opening
peak” should be explained by a symmetric Lorentzianis small compared to that of the Kondo effect.
multiplied by a Fermi-Dirac function. (iv) The gap is
not clearly seen in the measured spectra. We refute eadh Susaki, A. Sekiyama, K. Kobayashi, T. Mizokawa,
point below. A. Fujimori,! M."Tsunekawaz, T. Mgro,2 T. Matsushitg,
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