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of Experimentally Realized Quantum Operations
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It is shown that a good estimate of the fidelity of an experimentally realized quantum process can be
obtained by measuring the outputs for only two complementary sets of input states. The number of
measurements required to test a quantum network operation is therefore only twice as high as the number
of measurements required to test a corresponding classical system.
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One of the greatest challenges in quantum information
science is the experimental realization of well-controlled
operations on increasingly complex quantum systems. In
particular, quantum computation is based on the imple-
mentation of networks of universal quantum gates operat-
ing at low noise [1]. Recently, there have been several
successful experimental demonstrations of quantum con-
trolled NOT gates that could serve as essential elements in
future quantum computation networks [2—8]. Since all of
these devices operate at non-negligible noise levels, there
has also been an increasing interest in the quantification of
noise and the development of efficient criteria for the
comparison of different experiments [9-14]. However,
the criteria presently discussed in the literature are mostly
based on theoretical considerations, and experimentalists
have usually evaluated the performance of their devices on

n “ad hoc” basis instead of applying the more compli-
cated and often nonintuitive procedures necessary to obtain
an evaluation fulfilling the theoretical requirements for a
good measure (see [14] for an interesting discussion of this
problem and an overview of error measures for quantum
processes). In order to bridge this gap between the exper-
imentalists intuition and the theorists requirements for a
good error measure, it may thus be useful to investigate the
possibility of estimating the performance of quantum de-
vices based on a minimal number of well-defined experi-
mental tests.

In the following, it is shown that any unitary transform
U, is uniquely defined by its observable effects on only
two complementary sets of orthogonal input states [15].
The performance of any device implementing the unitary
transform U, can therefore be tested by measuring the
classical fidelities of these two complementary operations.
The relationship between the complementary fidelities and
the overall process fidelity is discussed and upper and
lower bounds for an estimate of the process fidelity are
given [20]. An estimate of the process fidelity for an
N-level system can thus be obtained from only 2N mea-
surement probabilities, corresponding to the successful
performance of two well-defined classical operations on
the respective sets of orthogonal input states.
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If the desired operation of a quantum device is described
by the unitary operator U, the expected outcomes for a
specific set of orthogonal input states {| n)} are given by

Uolny=|rf.. (1)

Since U, is unitary, the output states also form an orthogo-
nal set {| f,,)}. Itis therefore possible to verify the operation
described by Eq. (1) by a conventional von Neumann
measurement of the output [21]. For an experimental real-
ization of the intended unitary operation Uy, the fidelity of
this classically defined operation is equal to the average
probability of obtaining the correct output for each of the N
possible input states. If the actual experimental process is
described by the linear map p., = E(piy), this classical
fidelity is given by

Foop, = Z(n | OSE( n)n )Ty | n)

- Z(f,, LE(I n)n 1) | f)
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p(fnln) (2)
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Since the classical concept of fidelity represents a very
intuitive test of device performance, it has been commonly
used to characterize the operation of experimental quantum
gates in the computational basis [3,5,6]. However, it is
generally recognized that the classical fidelity is not suffi-
cient as an experimental criterion for the successful im-
plementation of U, since it is not sensitive to quantum
coherence between different input and output states. In
particular, a fidelity of one can be obtained for a large
number of processes E(pi,), some of which can actually
have a process fidelity of zero with respect to the intended
unitary operation U.

To analyze what kind of information about the experi-
mental process E(p;,) is actually obtained from a measure-
ment of the classical fidelity defined by Eq. (2), it is useful
to consider a set of N orthogonal quantum processes U,
with a fidelity of F,,_., = 1[22]. A convenient expression
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for such a set of orthogonal processes can be defined by

N 2
0, 1n) = exp| =i Tan] 11, 3

Note that this set of orthogonal unitary transformations is
not unique, since the definition of phase for the output
states | f,) is quite arbitrary. In this sense, Eq. (3) gives
only an example of how to construct an orthogonal set of N
unitary transformations with a classical fidelity of one for
the operation n — f,. The experimental process E(p;,) can
then be expanded in terms of a complete set of N2 orthogo-
nal basis operators {U 4}» Where the first N basis operators
are defined according to Eq. (3), and the remaining N(N —
1) operators can be any set of orthogonal unitary operators
spanning the remaining process space,

NI-1
E(ﬁin) = Z Xq,rﬁqﬁinUI' (4)
q,r=0
The fundamental properties of this expansion are most
easily understood by considering the application of
E(p;,) to a maximally entangled state | ¢) g of the system
A and areference R. If E is applied only to A (thatis, £ ®
is applied to the joint system of A and R), the process
matrix is then equal to the density matrix of the output state
for the orthogonal basis states {U g ® 11¢)ar} generated
by applying the basis operators {U q} ® 1 to the pure state
input | @) g. From this observation, it follows that the
process matrix is a positive Hermitian matrix with a trace
of one (or less for conditional operations with a limited
probability of success). Moreover, the process fidelity can
be defined as the probability of obtaining the output state
Up®1|¢) AR corresponding to the application of the ideal
process U, to system A of the pure state input | P)ar-
Since this probability is equal to the corresponding diago-
nal element of the process matrix, the overall process
fidelity is then given by Fprocess = X0,0-
Using the expansion given by Eq. (4), the classical
fidelity F,_.; can now be related directly to the elements
Xg,r Of the process matrix,

N—1

Fusg, = Xoo+ D Xog )
q=1

In terms of the linear algebra of process expansions, the
classical fidelity F,_. corresponds to a projective mea-
sure of the process components that lie within the
N-dimensional subspace of the N?-dimensional process
space spanned by the orthogonal basis {Uq}. Since this
subspace is larger than the one-dimensional subspace rep-
resenting the ideal operation, the classical fidelity F,_; is
always equal to or greater than the process fidelity given by
Xo,0- Each classical fidelity thus provides an upper bound
for the overall process fidelity [16].

In order to experimentally distinguish the N operations
U ¢ With classical fidelities of F,,_.; = 1 from each other, it

is necessary to change the input basis. Optimal distinguish-
ability is achieved when the output states of different U q
for the same input state are orthogonal to each other. This
condition can be fulfilled by complementary sets of input
states | k'Y with [(n | k'}|> = 1/N for all n and &, as, e.g.,
given by

N 27
|k —\/N’;exp[ szn}|n>. (6)

For this set of states, the unitary operation U, defines a
second classical function, given by

Uy 1Ky =g}, 7

where the output states | g, ) are also complementary to the
output states | f,,) according to

, 1< 2@
0= g5 e gk |ln®

Since these output states are maximally sensitive to the
quantum phases between the components | f,,), the effects
of different unitary operations U,y on the quantum
phases of |f,) become directly observable in the output
basis | g}). Specifically,

U gen 1K) =l g, ) ©)

Thus the output states for different operations U ¢ are in-
deed orthogonal, making the operation on the complemen-
tary input states | k') given by Eq. (7) ideal for the task of
distinguishing the operations 00<q< ny with F,_, =1
from the intended operation U,,.

The classical fidelity of the complementary operation
k — g, can be obtained experimentally by
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Again, it is possible to find NV orthogonal operations that all
have F_, = 1. However, the only operation that has both

F, =land Fj_, = 1is U,, since
(gil Uocgen 1K) = (g; | 8110 = 0. (1D

This relation also implies that any unitary operation U,_, "
with a fidelity of F;_,, = 1is orthogonal to the operations

—fn

Up<4<n- since

THO ., Ogeqent = SR 1 01, Uoegen | KO
k

= SUsi | ghi )P = 0. (12)
k
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It is therefore possible to identify the remaining N — 1
orthogonal operations having classical fidelities of
Fi_,, = 1 with the basis operators Uy to UZ(N,,). In
fact, it is possible to explicitly construct an orthogonal
set of unitary operators in close analogy with Eq. (3),

N 2
0 yegeanr) | K = exp[—zﬁ(q + 1)k} g (13)

The complementary classical fidelity F;_, can then be
expressed in terms of the process matrix elements y,, , of
Eq. (14) as

2(N-1)

Fk—»gk = Xo0,0 + Z_V Xaq.q- (14)
q=

In terms of the linear algebra of process expansions, the
complementary fidelity Fj_,, thus evaluates the compo-
nent of the process in an N-dimensional subspace of the
N?-dimensional process space that only overlaps with the
subspace defined by F,_, in the ideal process U,.
Therefore, the maximal total fidelity F,_.; + F;_, can-
not exceed one unless there is a nonvanishing contribution
from the ideal process Uj.

Based on these results, it is possible to derive an estimate
of the process fidelity Fprocess = Xo,0 from the measured
results for the classical fidelities F,_,; and F;_,, . Since
the process fidelity is by definition equal to the process
matrix element ) o, the relationship between the classical
fidelities and the process fidelity is given by Egs. (5) and
(14). These equations show that the classical fidelities can
each be interpreted as sums of process fidelities for N
orthogonal (and therefore distinguishable) processes. If
the two complementary classical fidelities are added,
only the intended process U, contributes twice. The lower
bound of the process fidelity is therefore equal to the
amount by which the total fidelity F,,_.; + Fi_, exceeds
one,

F’l—’fn + Fk—'gk —1= Fprocess' (15)

An upper bound for the process fidelity can be derived
from the minimum of the two classical fidelities, since the
sum of N process fidelities is necessarily equal to or greater
than each individual fidelity [17]. The upper bound thus
reads

Fprocess = Min{Fn—vf,,’ Fk—»gk}- (16)

Note that the difference between the lower and the upper
bound depends on the closeness of the maximal classical
fidelity to one. Specifically, if F,_, =1 — € is greater
than F;_,, and close to 1, the process fidelity will be found
in an interval of width € below the lower classical fidelity
Fi_,, given by

Fk—»gk —E€= Fprocess = Fk—»gk- (I7)

The complementary classical fidelities are therefore par-

ticularly well suited for an estimate of process fidelity if the
performance in one basis (e.g., the computational basis) is
highly reliable and the main error source is dephasing
between these basis states [18].

To place the results into a wider context, it may also be
useful to convert the process fidelity into the average quan-
tum state fidelity F, as given by F = (NFyocess T 1)/(N +
1) [7,13,14,19]. The inequalities (15) and (16) then estab-
lish a relation between the classical fidelities F,_.; and
Fi_.,, obtained by averaging over a very specific limited
selection of input states, and the fidelity F' obtained by
averaging over all possible pure state inputs. It might be
interesting to consider the implications of this result for the
relations between noncomplementary classical fidelities.

To illustrate the practical application of complementary
classical fidelities, it may be helpful to consider the specific
example of a quantum controlled-NOT gate. The effects of
this gate on the computational basis (indicated by the index
Z in the following) and an appropriate complementary
basis (indicated by the index X in the following) can be
given by

UCNOT|OZ;OZ> = |OZ;OZ>: UCNOTloX;0X> = |0X;0X>y

UCNOT|OZ;1Z>:IOZ;]Z>) UCNOTllX;1X>:|1X;1X>; (18)
0CN0T|IZ;1Z>=|1Z;IZ>r ﬁCNOTllX;OX>=|1X;OX>’

UCNOTl 1z 1z> = |lz;02>, UCNOTl Ix; 1X> = |0X; 1X>,

where the basis transformation corresponds to the applica-
tion of a Hadamard transformation to each qubit,

1 0y) = i2<| 0+ | 1)),

= | 1) = izu 0= | 1)),

75
19)

The complementary classical fidelities of the quantum
controlled-NOT gate thus correspond to the fidelities of
two classical controlled-NOT operations, where the
Hadamard transform of the input and output basis causes
an exchange of the roles of control and target qubit [23].
The complementary classical fidelities of the quantum
controlled-NOT gate can then be obtained from eight mea-
surement probabilities,

1
F; = Z[Pzzlzz(omoo) + P7777(01]01)

+ P7772(11]10) + Pz,,(10[11)],
(20)

1
Fx = Z[PXXIXX(O()lOO) + Pyxxx(11]01)
+ Pyxixx(10110) + Pxxixx(01[11)].

As discussed above, these eight measurement results are
already sufficient to obtain reliable estimates of the process
fidelity Frocess- In particular, the lower bound of the pro-
cess fidelity given by Fyoees = Fz + Fx — 1 can be used
to obtain estimates of the gate performance for other sets of
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orthogonal input states, since the classical fidelities of such
operations are always greater than or equal to the process
fidelity. For example, an estimate of the entanglement
capability can be obtained by considering the classical
fidelity Fepangle for the generation of maximally entangled
outputs if the control qubit input is an eigenstate of X and
the target qubit is an eigenstate of Z. The classical fidelity
Fepangle Of this entanglement generation process represents
the average overlap of the output states with the corre-
sponding maximally entangled states. This average overlap
therefore defines a minimal amount of entanglement that
can be generated by the operation. In terms of the con-
currence C, this lower bound of the entanglement capa-
bility is given by

Cc= 2'Fentangle - L (2D

Since Fepangle = Fprocess» the lower bound of the process
fidelity given by F; + Fx — 1 also applies t0 Fepngre and
the entanglement capability can be estimated directly by

C=2F,+Fy) -3 22)

If F,=1— € is close to 1, the gate is thus capable of
generating entanglement if F'y is greater than 0.5 — €. Note
that this estimate of the entanglement capability can be
obtained without actually generating any entanglement
when the device is tested. The possibility of entanglement
generation is simply a necessary consequence of the high
fidelity observed in the complementary local operations of
the quantum gate.

In summary, it has been shown that an efficient test of
experimentally realized quantum operations can be per-
formed by measuring the classical fidelities for only two
complementary sets of orthogonal input states. This sim-
plified test criterion can provide good estimates of the
process fidelity and other characteristic properties of the
noisy experimental process from only 2N measurement
probabilities. In the case of a quantum controlled-NOT
operation, the complementary classical fidelities can be
determined from the measurement probabilities of eight
pairs of local inputs and outputs. For comparison, the
precise determination of process fidelity from local inputs
and outputs reported in [13] was based on 71 measurement
probabilities out of the 256 probabilities required for com-
plete quantum process tomography. The complementary
classical fidelities therefore provide a compact and intui-
tive measure of how well a given experimental device
performs a desired quantum process.

Part of this work has been supported by the JST-CREST
project on quantum information processing.
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