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We show that the density matrix of a spin-l system can be described entirely in terms of the measurement
statistics of projective spin measurements along a minimum of 4l +1 different spin directions. It is thus possible
to represent the complete quantum statistics of anyN-level system within the spherically symmetric three-
dimensional space defined by the spin vector. An explicit method for reconstructing the density matrix of a
spin-1 system from the measurement statistics of five nonorthogonal spin directions is presented and the
generalization to spin-l systems is discussed.
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I. INTRODUCTION

As rapid progress is being made in the experimental gen-
eration of quantum states, it becomes necessary to develop
efficient methods of characterizing the actual mixed state
output of each new realization. In particular, various types of
optical spin-1 systems have recently been generated using
parametric down-conversion[1–6]. It is therefore interesting
to consider the measurements necessary to properly identify
the quantum states of such spin systems.

In the most general case, these states can be characterized
by reconstructing the complete density matrix from a suffi-
ciently large set of measurements, a procedure commonly
referred to as quantum tomography[7–10]. For two-level
systems(qubits), quantum tomography is usually realized by
measuring the three orthogonal components of the Bloch
vector represented by the Pauli operators. In spin-1/2 sys-
tems, the physical meaning of these components is generally
clear. In particular, they represent the components of the
three-dimensional Stokes vector in the commonly studied
case of single-photon polarization[7,8]. In spin-l systems
with higher total spin, the connection between the much
larger number of density-matrix elements and the physical
properties of the system is less clear. For abstractN-level
systems(qudits), an expansion of the density matrix into the
generators most closely related to the individual density-
matrix elements has been proposed[9]. However, the physi-
cal properties corresponding to these operators are quite dif-
ferent from the spin components observed, e.g., in Stern-
Gerlach orn-photon polarization measurements.

In particular, the recently generatedn-photon polarization
states are usually characterized by photon detection measure-
ments in a pair of orthogonal polarization directions[1–4].
This corresponds to a projective measurement of one com-
ponent of the three-dimensional Stokes vector, which is for-
mally equivalent to the three-dimensional spin vector. The
direction of the Stokes vector component is determined by
the pair of orthogonal polarization directions detected in the
measurement and can be varied by using standard birefrin-

gent elements such as quarter wave plates and half wave
plates. The experimental characterization of such optical
spin-l systems thus corresponds to the measurement of spin

componentsL̂i along a set of well-defined measurement di-
rectionsi. It is therefore desirable to formulate quantum to-
mography in terms of the measurement statistics obtained in
this kind of measurements.

In the following, we show how the measurement statistics

obtained in measurements of spin componentsL̂i relate to the
elements of the density matrix. Based on these results, a
systematic approach to the quantum tomography of spin-l
systems is developed. We propose a decomposition of the
density matrix into components that reflect the spherical
symmetry of the spin system and correspond directly to well-
defined contributions in the experimentally observable spin
statistics. It is shown that measurements along a minimum of
4l +1 spin directions are necessary to reconstruct the com-
plete density matrix. An explicit method for reconstructing a
spin-1 density matrix from the measurement probabilities
along five nonorthogonal spin directions is derived and the
extension of this method to general spin-l systems is dis-
cussed. Since this method can be applied equally well to
small (few-level) and large(many-level) quantum systems, it
also provides a useful basis for the discussion of decoherence
and the transition from quantum to classical physics.

II. MEASUREMENT STATISTICS OF A SPIN- l SYSTEM

Each projective von Neumann measurement of a spin

componentL̂i results in one of the 2l +1 eigenvaluesm of the
quantized spin along the direction corresponding toi. By
repeating the measurement a large number of times, it is
possible to determine the probability distributionpismd of the
measurement outcomesm. The information represented by
this probability distribution can also be expressed in terms of

averages of different powers ofL̂i,

ksL̂idnl = o
m

mnpismd. s1d

The probability distribution over the 2l +1 possible outcomes
is then uniquely defined by the 2l averages obtained forn*Electronic address: h.hofmann@osa.org
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=1 to n=2l; that is, the 2l expectation values form a set of
linearly independent parameters describing the complete
measurement statistics.

Using this representation of the measurement information
obtained along one spin direction, it is now possible to derive
the relations between the measurement statistics along differ-
ent spin directions by expressing the spin statistics of an
arbitrary spin direction in terms of the three orthogonal spin

componentsL̂x, L̂y, and L̂z. If the spin direction is given in
terms of the horizontal and azimuthal anglesf and u, the

measurement statistics ofL̂sf ,ud then read

kfL̂sf,udgnl = kfsinsudcossfdL̂x + sinsudsinsfdL̂y

+ cossudL̂zgnl. s2d

Each nth order expectation valueksL̂idnl can therefore be
expanded into expectation values ofnth order products of the
three orthogonal spin components. Specifically, the linear
spin expectation valuessn=1d are defined by the three com-

ponents of the average spin,kL̂xl, kL̂yl, and kL̂zl, while the
quadratic spin expectation values are given by expectation

values such askL̂xL̂y+ L̂yL̂xl, describing correlations and fluc-
tuations of the spin, and so on. The measurement statistics of
any measurement direction can therefore be described by a
hierarchy of expectation values ranging fromn=1 to n=2l.

Although there are an infinite number of measurement
directions, only a finite number of independent parameters is
necessary to describe allnth order expectation values. In
general, these independent parameters can be obtained by
multiplying out Eq.(2) and identifying the contributions as-
sociated with different functions of the anglesf and u. Al-
ternatively, it is possible to identify these contributions with
elements of the density matrix. As will be described in more
detail below, this corresponds to an expansion of the density

matrix into basis operatorsl̂n,i that can be expressed as
nth-order polynomial functions of the spin component opera-

tors L̂i. Since the density matrix uniquely determines the spin
statistics, the number of independentnth-order expectation
values should be equal to the number of independent basis

operatorsl̂n,i in the expansion of the density matrix. The
additional density-matrix elements associated with an in-
crease of spin from spin-sl −1/2d to spin-l can then be iden-
tified with the additionalsn=2ldth-order expectation values
required to describe the spin statistics given by Eq.(2).

The number of parameters defining the density matrix of
any N-level system isN2−1. A spin-l system is anN=2l
+1 level system, and the number of parameters defining the
density matrix is 4lsl +1d. A spin-sl −1/2d system is anN
=2l level system, and the number of parameters defining the
density matrix is 4l2−1. The number of additional param-
eters needed to describe a spin-l system rather than a spin-
sl −1/2d system is therefore equal to 4l +1. Since these addi-
tional parameters characterize thesn=2ldth order of the mea-
surement statistics given by Eq.(2), the number of indepen-
dentnth-order expectation values should be equal to 2n+1.
Note that this result is indeed consistent with the number of

symmetrically orderednth-order products of the three spin

components required to describekL̂n
i l, once the constant

value of the total spin length defined byL̂2
x+ L̂2

y+ L̂2
z= lsl +1d

has been taken into account. Explicit examples for compo-
nents of thenth-order spin expectation values will be given
in Secs. III and V.

Table I illustrates the distribution of density-matrix pa-
rameters. Any spin-l system is characterized by 2n+1 expec-
tation values ofnth order, withn running from n=1 to n
=2l. That is, the density matrix can always be represented by
three linear spin averages, five second-order spin averages,
seven third-order spin averages, and so on[11]. Experimen-
tally, each measurement along a given spin direction deter-
mines onenth-order average for each value ofn. Since com-
plete quantum tomography requires the determination of 4l
+1 independent contributions to the expectation values of
order n=2l, it is therefore necessary to measure at least 4l
+1 different spin directions in order to obtain the necessary
measurement information[12]. Note that this condition is a

result of allowing only measurements of spin componentsL̂i.
If general von Neumann measurements were possible, 2l
+2 measurements would be sufficient for quantum tomogra-
phy. In the case of spin component measurements, about half
of the information obtained is redundant, since it reproduces
the results for lower order expectation values that can be
obtained from fewer spin directions. For example, quantum
tomography of a spin-2 system requires measurements along
nine spin directions, providing nine averages to determine
the three linear spin expectation values, nine averages to de-
termine the five quadratic spin expectation values, nine av-
erages to determine the seven third-order spin expectation
values, and nine averages to determine the nine fourth-order
expectation values. Thus it is only the need to determine the
completesn=2ldth-order spin statistics that makes it neces-

sary to measure a total of 4l +1 spin directionsL̂i.
Note that the precise choice of measurement directions is

not very critical, since the only requirement for obtaining the
complete spin statistics is that 2n+1 of the 4l +1 averages
obtained from thenth-order statistics are linearly indepen-
dent. In some special cases, the information obtained from
4l +1 different measurement directions may not be sufficient

TABLE I. Reconstruction of the density matrix fromnth-order
expectation values of the spin obtained from projective measure-
ments of various spin directionsi. The total number of matrix ele-
ments necessary for tomography isN2−1, whereN=2l +1 is the
dimensionality of the corresponding Hilbert space.

Components of the

density matrix

System size kL̂il kL̂i
2l kL̂i

3l kL̂i
4l ¯ Total

Spin-1/2(two-level) 3 ¯ 3

Spin-1 (three -level) 3 5 ¯ 8

Spin-3/2(four-level) 3 5 7 ¯ 15

Spin-2 (five-level) 3 5 7 9 ¯ 24

A A A A A ¯ A
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to reconstruct the complete density matrix because the
choice of measurement directions coincides with a symmetry
in the sn=2ldth-order expectation values. For example, the

second-order information obtained forL̂z is already obtained

from measurements ofL̂x and L̂y, sinceL̂2
x+ L̂2

y+ L̂2
z= lsl +1d.

However, even a small tilt of one of the measurement axes
can fix this problem by providing additional information.
Therefore, almost any choice of 4l +1 measurement direc-
tions will be sufficient for quantum tomography. To mini-
mize errors, it may be useful to keep the angles between
different directions as large as possible[10]. However, the
choice of 4l +1 measurement directions used for a complete
reconstruction of the density matrix can generally be quite
arbitrary, and each specific tomography protocol merely rep-
resents one example out of an infinity of equally valid pos-
sibilities.

In order to obtain an explicit description of the density
matrix in terms ofnth-order spin statistics, it is necessary to
identify the contributions of different ordern in the density
matrix. This can be achieved by expanding the density ma-
trix using an appropriate operator basis. In general, there are
infinitely many expansions of the density matrix into ortho-
normal basis operators. For reasons of mathematical simplic-
ity, the most common choice is that given by the generators
of the susNd algebra[13,14]. However, these generators do
not represent the spherical symmetry of the spin-l system.
We therefore propose an alternative expansion of the spin-l
density matrixr̂l that is based on the different ordersn of the

spin statistics, given by basis operatorsl̂n,i, wheren repre-

sents the lowest order of the spin statistics to whichl̂n,i
contributes, andi is the index of the component within this
order, running from 1 to 2n+1 for each value ofn. The
conditions for orthogonality and for the normalization of this
basis then read

Trhl̂n,ij = 0,

Trhl̂n,il̂m,jj = 2dn,m di,j . s3d

Using this complete operator basis, it is possible to expand
the spin-l density matrixr̂l in terms of expectation values of
the spin statistics as

r̂l =
1

2l + 1
1̂ +

1

2o
n=1

2l S o
i=1

2n+1

kl̂n,ill̂n,iD . s4d

It is thus possible to formulate the density matrix entirely in
terms of the measurement statistics of the three-dimensional
spin vector, reflecting the analysis of the measurement sta-
tistics described by Eq.s2d given in Table I. Specifically, the
sN2−1d-dimensional basis is divided into groups ofnth-order
products of the spin operators with 2n+1 operators each,
describing the separatenth-order contributions to the spin
statistics. In the following, we show how such a basis of
three linear and five quadratic spin operators can be defined
for the specific case ofl =1.

III. EXPANSION OF THE SPIN-1 DENSITY MATRIX

The case ofl =1 provides the most simple example of
nonlinear contributions to the spin statistics. Moreover, opti-
cal spin-1 systems have already been realized by two photon
polarization states[1–4] or by the orbital angular momentum
of single photons[5,6]. The following procedure for quan-
tum tomography of a spin-1 system may therefore be particu-
larly useful in the characterization of such experimental re-
sults.

For l =1, the linear spin components already fulfill the
conditions defined by Eqs.(3). The remaining five basis op-
erators can then be constructed using second-order operator
products. One such set of quadratic operators that fulfills the
relations defined by Eq.(3) [15] is

Q̂ij = L̂iL̂ j + L̂jL̂i ,

Ŝxy = L̂x
2 − L̂y

2,

Ĝz = −
1
Î3

sL̂x
2 + L̂y

2 − 2L̂z
2d. s5d

In this basis, the generalized eight-dimensional Bloch vector
can be separated into a three-dimensional linear part and a
five-dimensional quadratic part, given by

l̂1,1= L̂x, l̂2,1= Ŝxy,

l̂1,2= L̂y, l̂2,2= Q̂xy,

l̂1,3= L̂z, l̂2,3= Q̂yz,

l̂2,4= Q̂zx,

l̂2,5= Ĝz. s6d

In the L̂z basis, the matrix elements of these operators read

l̂1,1=
1
Î230 1 0

1 0 1

0 1 0
4, l̂2,1= 30 0 1

0 0 0

1 0 0
4 ,

l̂1,2=
1
Î230 − i 0

i 0 − i

0 i 0
4, l̂2,2= 30 0 − i

0 0 0

i 0 0
4 ,

l̂1,3= 31 0 0

0 0 0

0 0 − 1
4, l̂2,3=

1
Î230 − i 0

i 0 i

0 − i 0
4 ,

l̂2,4=
1
Î230 1 0

1 0 − 1

0 − 1 0
4 ,
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l̂2,5=
1
Î331 0 0

0 − 2 0

0 0 1
4 . s7d

The expectation values of these eight operators characterize
the density matrix in terms of the linear and the quadratic
measurement statistics given by Eq.(2). The linear expecta-
tion values along any spin direction are given by the three

expectation values ofl̂1,i,

kL̂sf,udl = sin sudcossfdkl̂1,1l + sin sudsinsfdkl̂1,2l

+ cossudkl̂1,3l, s8d

and the quadratic expectation values are given by the five

expectation values ofl̂2,i,

kL̂sf,ud2l =
2

3
+

1

2
sin2sudcoss2fdkl̂2,1l

+ sin2 sudsin sfdcossfdkl̂2,2l

+ sin sudcossudsin sfdkl̂2,3l

+ sin sudcossudcossfdkl̂2,4l

+
1
Î3

S1 −
3

2
sin2 sudDkl̂2,5l. s9d

Using this relation, it is possible to determine the correct
expectation values of all five second-order basis operators

l̂2,i from the quadratic expectation values of five indepen-
dent measurement directions. Together with the linear expec-
tation values, the results of these five measurements then
define the complete density matrix,

s10d

An explicit procedure for quantum tomography can now be
formulated by choosing a set of five measurement directions.

The expectation values of the basis operatorsl̂n,i can then be
expressed in terms of the measurement probabilities along
the five measurement directions.

IV. QUANTUM TOMOGRAPHY OF THE SPIN-1 SYSTEM
BASED ON THE MEASUREMENT STATISTICS

OF FIVE SPIN DIRECTIONS

For l =1, each measurement along a given spin direction

L̂i has three possible outcomes,m= ±1 andm=0. In the ex-
perimentally relevant case of two-photon polarization[1–4],
these measurement outcomes correspond to the detection of
two horizontally polarized photonssm= +1d, two vertically
polarized photonssm= +1d, and one photon each in horizon-
tal and in vertical polarizationsm=0d, where the component
of the Stokes vector is selected by appropriate rotations of
the polarization using standard linear optics elements. The

measurement statistics given by the probabilitiespismd can
then be identified with normalized coincident count rates at
the detectors.

As discussed above, five measurement settings are neces-
sary to perform quantum tomography. A particularly simple
choice of the five measurement directions for the spin-1 sys-
tem is given by

L̂1 = L̂x, L̂2 = L̂y, L̂3 =
1
Î2

sL̂x + L̂yd,

L̂4 =
1
Î2

sL̂y + L̂zd, L̂5 =
1
Î2

sL̂z + L̂xd. s11d

In the case of two-photon polarization, the first three spin
directions can be identified with linear polarization rotated

by zero for L̂1, by p /4 for L̂2, and by p /8 for L̂3. The
remaining two directions then represent elliptical polariza-

tions, with the main axes along ±p /4 for L̂4, and the main

axes along angles of zero andp /2 for L̂5. Using this set of
measurement settings, it is now possible to explicitly identify

the expectation valueskl̂n,il that define the density matrix
with the corresponding measurement probabilitiespismd.

In general, the measurement probabilities of a spin-1 sys-
tem along a given directioni are related to thenth-order

expectation values of the corresponding spin componentL̂i
by

kL̂il = pis+ 1d − pis− 1d,

kL̂i
2l = 1 − pis0d. s12d

The quadratic terms of the spin statistics are thus entirely
determined by the measurement probabilitiespis0d for a
measurement value of zero spin along the measurement di-

rection i. The five expectation valuesl̂2,i defining the qua-
dratic components of the density matrix can therefore be ob-
tained from the five measurement probabilitiespis0d along
the spin directionsi =1 to i =5 defined by Eq.(11). The re-
lations between the measurement statistics and the expecta-
tion values of the corresponding basis operators then read

kl̂2,1l = kŜxyl = − fp1s0d − p2s0dg,

kl̂2,2l = kQ̂xyl = p1s0d + p2s0d − 2p3s0d,

kl̂2,3l = kQ̂yzl = p1s0d − 2p4s0d + 1,

kl̂2,4l = kQ̂zxl = p2s0d − 2p5s0d + 1,

kl̂2,5l = kĜzl = Î3fp1s0d + p2s0d − 2
3g . s13d

The measurement probabilities form=0 thus determine five
of the eight coefficients in the expansion of the density ma-
trix given by Eq.(4). The remaining three coefficients can be
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obtained from the linear expectation values given by the dif-
ferences betweenpis+1d andpis−1d, e.g.,

kl̂1,1l = kL̂xl = p1s+ 1d − p1s− 1d,

kl̂1,2l = kL̂yl = p2s+ 1d − p2s− 1d,

kl̂1,3l = kL̂zl = − Î2hfp3s+ 1d − p3s− 1dg − fp4s+ 1d − p4s− 1dg

− fp5s+ 1d − p5s− 1dgj. s14d

Since the results of five measurement directions are used to
determine only three parameters, there are two relations be-
tween the measurement results that should be approximately
fulfilled if the measurement error is low. These relations can
be written as

fp1s+ 1d − p1s− 1dg <
1
Î2

hfp3s+ 1d − p3s− 1dg − fp4s+ 1d

− p4s− 1dg + fp5s+ 1d − p5s− 1dgj,

fp2s+ 1d − p2s− 1dg <
1
Î2

hfp3s+ 1d − p3s− 1dg + fp4s+ 1d

− p4s− 1dg − fp5s+ 1d − p5s− 1dgj.

s15d

Effectively, the measurement results for the spin directions
three to five can be used to predict the results for spin direc-
tions one and two. Relations(15) thus illustrate the applica-
tion of quantum tomography to the prediction of further mea-
surements on the same system. The experimental differences
between this prediction and the actual outcome of the mea-
surements may therefore provide a realistic estimate of the
errors, limiting the reliability of quantum tomography in
practical applications.

Since the eight parameterskl̂n,il completely define the
density matrix, they can be used as an alternative represen-
tation of the quantum state, just like the three-dimensional
Bloch vector for two-level systems. Any other representation
of the density matrix can then be obtained from Eq.(4), if
the representations of each element of the basis is known.
For example, the density-matrix elements in theL̂z basis
given by Eqs.(7) can be used to express any density matrix
defined by the expectation valueskl̂n,il as

r̂l=1 = 3
1

3
+

1

2
kl̂1,3l +

1

2Î3
kl̂2,5l

1

2Î2
skl̂1,1l − ikl̂1,2l − ikl̂2,3l + kl̂2,4ld

1

2
skl̂2,1l − ikl̂2,2ld

1

2Î2
skl̂1,1l + ikl̂1,2l + ikl̂2,3l + kl̂2,4ld

1

3
−

1
Î3

kl̂2,5l
1

2Î2
skl̂1,1l − ikl̂1,2l + ikl̂2,3l − kl̂2,4ld

1

2
skl̂2,1l + ikl̂2,2ld

1

2Î2
skl̂1,1l + ikl̂1,2l − ikl̂2,3l − kl̂2,4ld

1

3
−

1

2
kl̂1,3l +

1

2Î3
kl̂2,5l

4 .

s16d

The quantum coherences between different eigenstates ofL̂z
can thus be expressed in terms of averages involving the

other two spin components,L̂x and L̂y. In fact, this relation-

ship between quantum coherence in theL̂z basis and the or-

thogonal spin componentsL̂x and L̂y can be used to system-
atically construct density-matrix decompositions for higher
spins, as we will show in the following.

V. QUANTUM STATISTICS FOR l .1

In order to generalize the construction of a convenient set

of basis operatorsl̂n,i to arbitrarily large spins, it is useful to
organize the basis operators according to their density-matrix

elements in theL̂z basis. Such an organization is already
indicated by the example for spin-1 given in Eq.(16). In this
example, each group of density-matrix elementsumlkm8u with

the same order of coherenceum8−mu in L̂z depends on a

well-defined subset of the operatorsl̂n,i. This organization of
basis operators can be generalized to arbitrary spinsl by
formulating the operator basisl̂n,i for each spin value in such
a way that the matrix elements of each operator are nonzero
for only one value ofum8−mu. The relationship between the
hierarchy of spin expectation valueskl̂n,il and the density-

matrix elements in theL̂z basis is then as shown in Table II.
Specifically, the 2l +1 diagonal matrix elementssum8−mu
=0d are determined by the set of 2l +1 operator expectation

valueskl̂n,s2n+1dl that can be obtained from the measurement

statistics ofL̂z according to Eq.(1). Likewise, the 4l off-
diagonal elements withum8−mu=1 can be determined by the

set of 4l operator expectation values,kl̂n,2nl and kl̂n,2n−1l,
and so on. Note that the 4l −2 off-diagonal elements with
um8−mu=2 do not include any first-order spin statistics, since
the linear spin components only have matrix elements up to
um8−mu=1.
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Likewise, the 4l −4 off-diagonal elements withum8−mu
=3 do not include any linear or quadratic spin statistics. In
general, an expectation value of at leastum8−muth order is
necessary to describe the effect of a corresponding off-
diagonal element in the spin statistics.

A convenient way to construct the two operatorsl̂n,1 and

l̂n,2 with nonzero density-matrix elements of maximal coher-
enceum−m8u=n is to apply the non-Hermitian spin operator

L̂x+ iL̂y. This operator only has nonzero matrix elements with
m8−m= +1. Specifically,

sL̂x + iL̂yduml = Îsl − mdsl + m+ 1dum+ 1l. s17d

Consequently,sL̂x+ iL̂ydn has only matrix elements withm8
−m=n. It is therefore possible to generate thenth-order basis

operatorsl̂n,1 and l̂n,2 with matrix elements ofum8−mu=n

from the normalized Hermitian components ofsL̂x+ iL̂ydn,

l̂n,1 =
sL̂x + iL̂ydn + sL̂x − iL̂ydn

ÎTrhsL̂x + iL̂ydnsL̂x − iL̂ydnj
,

l̂n,2 =
− i„sL̂x + iL̂ydn − sL̂x − iL̂ydn

…

ÎTrhsL̂x + iL̂ydnsL̂x − iL̂ydnj
. s18d

Starting from these definitions of basis operators, the com-
plete set of basis operators may be constructed, e.g., by mul-

tiplying the operatorsl̂n,1/2 with different powers ofL̂z

and/or L̂x
2+ L̂y

2 to obtain higher-order contributions with the
same coherenceum8−mu in the density matrix. The precise
factors can be determined using the requirements for or-
thogonality and normalization given by Eq.(3). It is then
possible to construct a complete orthonormal operator basis
for any spin-l system.

By establishing the relation between spin statistics and
coherence in the density matrix, Eq.(18) also illustrates the

physical meaning of quantum coherence inL̂z. In particular,
it is worth noting that the greater the differenceum8−mu be-

tween theL̂z eigenvalues of the states that are in a coherent
superposition, the higher the order of the spin expectation

values inL̂x and L̂y that is needed to identify this coherence
in the measurement statistics. The spin correlation hierarchy
presented in Table II may thus provide a key to understand-
ing the non-classical effects associated with quantum super-
positions in arbitrarily large physical systems.

VI. NONCLASSICAL CORRELATIONS
AND DECOHERENCE

The highest possible value forum8−mu in the density ma-
trix is obtained for quantum coherence between the extremal

L̂z eigenstatesum= + ll and um=−ll. According to Table II,
the two matrix elements describing this coherence corre-
spond to the twos2ldth-order spin expectation values. These
expectation values can be constructed explicitly using Eq.

(18) and include only products ofL̂x and L̂y. In order to

characterize a coherent superposition of theL̂z eigenstates
um= + ll and um=−ll, it is therefore necessary to evaluate the
s2ldth-order spin statistics in thexy plane. For all orders
lower than 2l, the spin statistics obtained in the measure-
ments of such a coherent superposition are identical to those
of an incoherent mixture ofum= + ll and um=−ll.

This observation has significant implications for the iden-
tification of strong nonclassical effects in large quantum sys-
tems. At sufficiently high values ofl, the superposition of
um= + ll and um=−ll is a (cat-state-like) superposition of two
macroscopically distinguishable states. It is therefore inter-
esting to know that the effects of this superposition appear
only in the highest-order expectation value of the spin statis-
tics. While the lower-order expectation values are very easy
to measure since only very few measurement directions are
required and the measurement errors tend to average out, the
highest-order expectation values can only be determined
from sufficiently precise measurement results of at least 4l
+1 measurement directions. Effectively, the highest-order
expectation values represent a measurement resolution at the
quantum level, providing the information necessary to re-
solve the precise eigenvalues of the spin components[16].
This means that thes2ldth-order spin statistics is very sensi-
tive to errors of ±1 in the spin measurements. In other words,
the smallest measurement errors are sufficient to make the

TABLE II. Relation between the density-matrix elementskm8ur̂uml in the L̂z basis and the corresponding
nth-order basis operators representing the spin statistics.

Density-matrix elements

Spin statistics um8−mu=0 um8−mu=1 um8−mu=2 um8−mu=3 um8−mu=4 um8−mu=5 . . . Total

kl̂1,il 1 2 ¯ 3

kl̂2,il 1 2 2 ¯ 5

kl̂3,il 1 2 2 2 ¯ 7

kl̂4,il 1 2 2 2 2 ¯ 9

kl̂5,il 1 2 2 2 2 2 ¯ 11

A A A A A A A A
Total 2l +1 4l 4l −2 4l −4 4l −6 4l −8 ¯ 4lsl +1d
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effects of the cat-state-like superposition betweenum= + ll
and um=−ll disappear. We can therefore conclude that the
actual nonclassical properties of a superposition of macro-
scopically distinguishable states can only be observed in the
microscopic details of the measurement statistics. It is there-
fore not surprising that decoherence quickly wipes out such
tiny details.

For a more precise evaluation of decoherence and mea-
surement precision, it is useful to consider the case of isotro-
pic decoherence caused by spin diffusion due to random ro-
tations. The time evolution of the density matrix caused by
this kind of decoherence can be described by

d

dt
r̂l = − G o

i=x,y,z
S1

2
L̂i

2r̂ +
1

2
r̂L̂i

2 − L̂ir̂L̂iD . s19d

Using the well-known commutation relations of the spin op-
erators, it is possible to calculate the relaxation dynamics of
the nth-order expectation values of the spin. For the non-

Hermitian operatorssL̂x+ iL̂ydn the result reads

d

dt
ksL̂x + iL̂ydnl = −

nsn + 1d
2

GksL̂x + iL̂ydnl. s20d

Since the relaxation of the spin is isotropic, allnth-order
contributions to the expansion of the density matrix should
relax at the same rate. The effect of isotropic decoherence

therefore reduces eachnth-order parameterkl̂n,il of the
density-matrix expansions4d by a decoherence factor of
exp f−Gtnsn+1d /2g, and the time evolution of the density
matrix can be written as

r̂std =
1

2l + 1
1̂ + o

n=1

2l

expF− Gt
nsn + 1d

2
GS o

i=1

2n+1

kl̂n,ilt=0l̂n,iD .

s21d

The expansion of the density matrixr̂l into an operator basis

l̂n,i based on the different orders of the spin statistics there-
fore greatly simplifies the description of any isotropic errors
in the preparation and manipulation of spin states.

Since the decoherence effects described by Eq.(21) arise
from spin diffusion, it is also possible to identifyGt with an
increasing uncertainty in the spin direction,Gt=du 2/2. The
result of Eq.(21) can then be used to estimate the errors
caused by a misalignment of the measurement direction.
Specifically, an alignment error ofdu will reduce the expec-
tation values observed for thenth-order spin statistics
by a factor of expf−du2nsn+1d /4g. To obtain at least
expf−0.25g=78% of the original expectation value at orders
n@1 of the spin statistics, the errors of the spin alignment
have to be smaller thandu=1/n. The precision in the align-
ment of the spin direction necessary to obtain thenth-order
statistics is thus proportional to 1/n, and the requirement for
observing evidence of catlike superpositions in spin-l sys-
tems is an angular resolution ofdu,1/s2ld.

VII. ENTANGLEMENT STATISTICS AND GENERAL SPIN
NETWORKS

The formalism developed above can also be applied to
entangled spin-l systems. In this case, the density matrix of
the total system is obtained by evaluating the correlations
between measurements of the local spin components. Spe-
cifically, the joint quantum state of a spin-lA systemA and a
spin-lB systemB can be determined by simultaneously mea-

suring spin componentsL̂isAd in A and spin components

L̂isBd in B, obtaining the joint probabilitiespijsmA,mBd of
each measurement outcome. The correlated spin statistics
can then be expressed in terms of the expectation values,

kfL̂isAdgnA ^ fL̂isAdgnBl = o
mA,mB

mA
nAmB

nBpijsmA,mBd. s22d

It is then possible to analyze the spin statistics according to
the local ordernA and nB, where the total number of inde-
pendent components required to characterize each order is
given by the products2nA+1ds2nB+1d. Note that in this case,
nA=0 andnB=0 have to be included in order to describe the
local spin statistics of each system. Consequently, the lowest
order expectation values are given bysnA=1,nB=0d and
snA=0,nB=1d, with three independent components each. The
second-order expectation valuessnA+nB=2d are given by
five components forsnA=2,nB=0d, nine components for
snA=1,nB=1d, and five components forsnA=0,nB=2d. The
highest order contribution to the correlated spin statistics is
then given by snA=2lA,nB=2lBd, with a total of s4lA
+1ds4lB+1d independent components. The number of mea-
surement settings required to perform complete quantum to-
mography for entangled spin systems is therefore equal to
s4lA+1ds4lB+1d. In the experimentally realized case oflA
= lB=1 f3–6g, this would require 25 different measurement
settings with nine possible outcomes each, for a total of 225
measurement probabilities.

An explicit description of the density matrix in terms of
the correlatedsnA,nBdth-order spin statistics can be obtained
using products of the basis operators for each individual sys-
tem. The expansion of the density matrix then reads

r̂AB =
1

s2lA + 1ds2lB + 1d
1̂ ^ 1̂ +

1

2s2lA + 1donA
So

i

kl̂nA,i

^ 1̂ll̂nA,i ^ 1̂D +
1

2s2lB + 1donB
So

i

k1̂ ^ l̂nB,il1̂

^ l̂nB,iD +
1

4 o
nA,nB

So
i,j

kl̂nA,i ^ l̂nB,jll̂nA,i ^ l̂nB,jD .

s23d

The expectation values defining the density matrix can now
be expressed in terms of the joint measurement probabilities
pijsmA,mBd by writing thesnA,nBdth-order expectation values
of the correlated spins in Eq.s22d as a function of the expec-
tation values in Eq.s23d. It is then possible to fully charac-
terize anyN3M entanglement in terms of the correlated
spin statistics.
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The extension of this formalism to multipartite spin net-
works is also straightforward, since the density matrix can be
expanded into products of the local basis operators for any
number of systems. The expectation values of these products
can then be determined from the correlated measurement sta-
tistics of spin measurements performed simultaneously on all
systems.

VIII. CONCLUSIONS

In conclusion, we have shown how the density matrix of
spin-l systems can be reconstructed from the measurement
statistics of projective spin measurements along a set of at
least 4l +1 different spin directions. The components of the
density matrix can then be identified with different contribu-
tions to the statistics of the three-dimensional spin vector. It
is therefore possible to interpret the discrete quantum statis-
tics of arbitrarily large spin systems within the same three-
dimensional space defined by the Bloch vector of a two-level
system.

The explicit procedure for the quantum tomography of
spin-1 systems provides an example of the general method
that can be applied directly to experimentally generated two-
photon polarization states such as the ones reported in Refs.
[1–4]. It may thus serve as the foundation of a more detailed
characterization of decoherence and noise effects in these
newly available entanglement sources.

Besides its practical usefulness for the experimental char-
acterization of general spin-l systems, the expansion of the
density matrix into elements of the spin statistics also pro-
vides a more intuitive understanding of quantum statistics in
large systems. The analysis presented above may therefore
also help to clarify the conditions for the emergence of quan-
tum effects in physical systems of arbitrary size.
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