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We show that the density matrix of a sgisystem can be described entirely in terms of the measurement
statistics of projective spin measurements along a minimunh-of 4lifferent spin directions. It is thus possible
to represent the complete quantum statistics of Fgvel system within the spherically symmetric three-
dimensional space defined by the spin vector. An explicit method for reconstructing the density matrix of a
spin-1 system from the measurement statistics of five nonorthogonal spin directions is presented and the
generalization to spih-systems is discussed.
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[. INTRODUCTION gent elements such as quarter wave plates and half wave
plates. The experimental characterization of such optical

As rapid progress is being made in the experimental gengyin| systems thus corresponds to the measurement of spin
eration of quantum states, it becomes necessary to develo

efficient methods of characterizing the actual mixed stateC%nmonemELi along a set of well-defined measurement di-

output of each new realization. In particular, various types o]rect|on5|. IF is therefore desirable to formula.te'quantur'n to—_
optical spin-1 systems have recently been generated usi pgrgphy in terms of the measurement statistics obtained in
parametric down-conversidi—6]. It is therefore interesting is kind of measurements. -
to consider the measurements necessary to properly identify In- the followmg, we show hOVY the measurement statistics
the quantum states of such spin systems. obtained in measurements of spin componéntslate to the

In the most general case, these states can be characteriZ&i@ments of the density matrix. Based on these results, a
by reconstructing the complete density matrix from a suffi-Systematic approach to the quantum tomography of kpin-
ciently large set of measurements, a procedure commoni§ystems is developed. We propose a decomposition of the
referred to as quantum tomograpfiy—10. For two-level density matrix into components that reflect _the spherical
systemgqubits, quantum tomography is usually realized by Symmetry of the spin system and correspond directly to well-
measuring the three orthogonal components of the BlocHefined contributions in the experimentally observable spin
vector represented by the Pauli operators. In spin-1/2 sysstatlstlc§. It is shpwn that measurements along a minimum of
tems, the physical meaning of these components is generalfff +1 Spin directions are necessary to reconstruct the com-
clear. In particular, they represent the components of th@lgte densﬂy matrlx._An explicit method for reconstructing a
three-dimensional Stokes vector in the commonly studie@Pin-1 density matrix from the measurement probabilities
case of single-photon polarizatidi?,8]. In spin{ systems along f|ve nonqrthogonal spin d|rect|ons_ is denveq an.d the
with higher total spin, the connection between the muctextension of this method to general spisystems is dis-
larger number of density-matrix elements and the physicafussed. Since this method can be applied equally well to
properties of the system is less clear. For absthavel — Small(few-leve) and larggmany-leve) quantum systems, it
systemgqudits, an expansion of the density matrix into the also prowdesg useful basis for the dISCUS.SIOI’l of dgcoherence
generators most closely related to the individual density@nd the transition from quantum to classical physics.
matrix elements has been propog8f However, the physi-
cal properties corresponding to these operators are quite dif-1l. MEASUREMENT STATISTICS OF A SPIN- | SYSTEM
ferent from the spin components observed, e.g., in Stern- - .
Gerlach orn-photon polarization measurements. Each projective von Neumann measurement of a spin

In particular, the recently generataebhoton polarization =~ component,; results in one of thel2 1 eigenvaluesn of the
states are usually characterized by photon detection measuf@antized spin along the direction corresponding.t@®y
ments in a pair of orthogonal polarization directidds-4.  repeating the measurement a large number of times, it is
This corresponds to a projective measurement of one coni2ossible to determine the probability distributipiim) of the
ponent of the three-dimensional Stokes vector, which is formeasurement outcomes. The information represented by
mally equivalent to the three-dimensional spin vector. Thethis probability distribution can also be expressed in terms of
direction of the Stokes vector component is determined byverages of different powers ﬁf,
the pair of orthogonal polarization directions detected in the R
measurement and can be varied by using standard birefrin- (L™ => m™p;(m). (D

m

The probability distribution over thel 21 possible outcomes
*Electronic address: h.hofmann@osa.org is then uniquely defined by thel Zverages obtained for
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=1 ton=2l; that is, the 2 expectation values form a set of = TABLE |. Reconstruction of the density matrix fronth-order

linearly independent parameters describing the completexpectation values of the spin obtained from projective measure-

measurement statistics. ments of various spin directioris The total number of matrix ele-
Using this representation of the measurement informatiofnents necessary for tomographyN8-1, whereN=2I+1 is the

obtained along one spin direction, it is now possible to derivedimensionality of the corresponding Hilbert space.

the relations between the measurement statistics along differ=

ent spin directions by expressing the spin statistics of an Components of the
arbitrary spin direction in terms of the three orthogonal spin density matrix
componentd.,, Ly, andL,. If the spin direction is given in System size Ly (LD (L (LH - Total

terms of the horizontal and azimuthal angk#sand 6, the

t statisti 6 o) th d Spin-1/2(two-leve) 3 3

measurement statistics bf¢, 6) then rea Spin-1 three -leve) 3 5 8

~ . ~ . . ~ Spin-3/2(four-leve 3 5 7 15
(L(8,0)1") = ([sin(6)cod P)L, + sin(O)sin($)L, pin-3/2( b

Spin-2 (five-level) 5 7 9 - 24

+cogO)LI". 2

Each nth order expectation valué(I:i)“) can therefore be ) i
expanded into expectation valuesntii order products of the symmetrically orderedith-order products of the three spin

three orthogonal spin components. Specifically, the linea€omponents required to descrilie,), once thAe constant
spin expectation valuesi=1) are defined by the three com- value of the total spin length defined hy+L%+L5=1(1+1)
ponents of the average spifl,), (L,), and(L,), while the ~ has been taken into account. Explicit examples for compo-
quadratic spin expectation values are given by expectatioRents of thenth-order spin expectation values will be given

; rr e : in Secs. Il and V.
valu-es such aé-xl-_y+|-y|-x>= describing correlations and quF:- Table | illustrates the distribution of density-matrix pa-
tuations of the spin, and so on. The measurement statistics ?.J:\meters Anv spisvstem is characterized bvi2 1 expec-
any measurement direction can therefore be described by - ANy SPIT-SY n b

hierarchy of expectation values ranging fram 1 ton=2I tation values ofnth order, withn running fromn=1 ton
y P ging e =2lI. That is, the density matrix can always be represented by

. AlthOUQh there_a_re an mﬂmte_number of measuremen_{hree linear spin averages, five second-order spin averages,
directions, only a finite number of independent parameters I2aven third-order spin averages, and sqtiH. Experimen-

nzﬁZf;Fr¥héZed?rfgélb:m?grr:t of;rmz):gre;tggr?nbgaéﬁ;nLnd ally, each measurement along a given spin direction deter-
9 ’ P P nes onenth-order average for each valuerofSince com-

mul_tlplymg_out Ea.2) and |d_ent|fy|ng the contributions as- plete quantum tomography requires the determinationl of 4
sociated with different functions of the anglésand 6. Al- : o :
+1 independent contributions to the expectation values of

ternatively, it is possible to identify these contributions with ordern=21, it is therefore necessary to measure at least 4

elements of the density matrix. As will be described in more " Jitarent spin directions in order to obtain the necessary

detail below, this corresponds to an expansion of the denSi%easurement informatiof2]. Note that this condition is a

nmtﬁt[)l)r( dé:r;tgoltg/arllsc)lfniglpgr?é%?r?él ;P?r:ecsi)r;nt::%n?;g;eesnstec?p;zresu't of allowing only measurements of spin compongnts
~ ) ) ] ) ~If general von Neumann measurements were possille, 2
torsL;. Since the density matrix uniquely determines the spin, 2" measurements would be sufficient for quantum tomogra-
statistics, the number of independerih-order expectation phy. |n the case of spin component measurements, about half
values should be equal to the number of independent basi the information obtained is redundant, since it reproduces
operators\,; in the expansion of the density matrix. The the results for lower order expectation values that can be
additional density-matrix elements associated with an inobtained from fewer spin directions. For example, quantum
crease of spin from spifl—1/2) to spini can then be iden- tomography of a spin-2 system requires measurements along
tified with the additionalln=2l)th-order expectation values nine spin directions, providing nine averages to determine
required to describe the spin statistics given by . the three linear spin expectation values, nine averages to de-
The number of parameters defining the density matrix otermine the five quadratic spin expectation values, nine av-
any N-level system isN?>-1. A spind system is anN=2 erages to determine the seven third-order spin expectation
+1 level system, and the number of parameters defining thealues, and nine averages to determine the nine fourth-order
density matrix is #(1+1). A spin{l-1/2) system is arN expectation values. Thus it is only the need to determine the
=2l level system, and the number of parameters defining theomplete(n=2l)th-order spin statistics that makes it neces-
density matrix is #-1. The number of additional param- sary to measure a total of 41 spin directionii_
eters needed to describe a spisystem rather than a spin-  Note that the precise choice of measurement directions is
(I-1/2) system is therefore equal td+#41. Since these addi- not very critical, since the only requirement for obtaining the
tional parameters characterize {ime=2l)th order of the mea- complete spin statistics is than21 of the 4+1 averages
surement statistics given by E@), the number of indepen- obtained from thenth-order statistics are linearly indepen-
dentnth-order expectation values should be equalte2.  dent. In some special cases, the information obtained from
Note that this result is indeed consistent with the number o#ll + 1 different measurement directions may not be sufficient
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to reconstruct the complete density matrix because the Ill. EXPANSION OF THE SPIN-1 DENSITY MATRIX
choice of measurement directions coincides with a symmetry

in the (n=2l)th-order expectation values. For example, thenonlinear contributions to the spin statistics. Moreover, opti-

second-order information obtained foy is already obtained  ca spin-1 systems have already been realized by two photon
from measurements df, andL,, sincelL5+L¥+L5=I(I+1).  polarization stategl—4] or by the orbital angular momentum
However, even a small tilt of one of the measurement axesf single photong5,6]. The following procedure for quan-
can fix this problem by providing additional information. tum tomography of a spin-1 system may therefore be particu-
Therefore, almost any choice of 41 measurement direc- larly useful in the characterization of such experimental re-
tions will be sufficient for quantum tomography. To mini- sults.

mize errors, it may be useful to keep the angles between For |=1, the linear spin components already fulfill the
different directions as large as possiljl#]. However, the conditions defined by Eqg$3). The remaining five basis op-
choice of 4+1 measurement directions used for a completeerators can then be constructed using second-order operator
reconstruction of the density matrix can generally be quitgproducts. One such set of quadratic operators that fulfills the
arbitrary, and each specific tomography protocol merely reprelations defined by Eq3) [15] is

resents one example out of an infinity of equally valid pos-

The case ofl=1 provides the most simple example of

sibilities. Qij = I:il:j + th:iu
In order to obtain an explicit description of the density
matrix in terms ofnth-order spin statistics, it is necessary to ASA —[2_{2
y~ xRy

identify the contributions of different order in the density
matrix. This can be achieved by expanding the density ma-
trix using an appropriate operator basis. In general, there are G.=- i(|‘_2 +12-902) (5)
infinitely many expansions of the density matrix into ortho- z oy
normal basis operators. For reasons of mathematical simplic- i ) ) ) )
ity, the most common choice is that given by the generatord? this basis, the generalized eight-dimensional Bloch vector
of the suN) algebra[13,14. However, these generators do €&" b.e sepgrated into a_three—dlr_nensmnal linear part and a
not represent the spherical symmetry of the dpsystem. five-dimensional quadratic part, given by

We therefore propose an alternative expansion of the Ispin- A A ~ 2

density matrixp, that is based on the different ordersf the

spin statistics, given by basis operat&rrﬁ, wheren repre- - N - A

sents the lowest order of the spin statistics to which M2=Ly A22= Qyy
contributes, and is the index of the component within this
order, running from 1 to 2+1 for each value of. The M3=L, A3=Qp

conditions for orthogonality and for the normalization of this
basis then read - -

)\2 4= sz.
Tr{Ani} =0, .
N25= Gy (6)
Tr{xn,i;\m,j} =26,m 8- (3) Inthe L, basis, the matrix elements of these operators read
Using this complete operator basis, it is possible to expand . 010 . 001
the spint density matrixp, in terms of expectation values of Ma=—=|1 0 1|, x;=|0 0 0],
the spin statistics as V2l9 1 0 100
1 1 2l /2n+1 0 -i o 00 i
- A Y =i =i
p = 1+22 ( > <)\n,i>)\n,i) : (4) - 1. _ -
2| + 1 2n=1 i=1 )\1'2: ’_’5 | 0 | ’ )\22: 0 0 0 f
. . . o “lo i o i 00
It is thus possible to formulate the density matrix entirely in
terms of the measurement statistics of the three-dimensional 10 0 0 -i 0
spin vector, reflecting the analysis of the measurement sta- . . 1 :
tistics described by Ed2) given in Table I. Specifically, the A3=|0 0 0], Ns=—fp|i 0 i},
(N2-1)-dimensional basis is divided into groupsrah-order 00 -1 V2 0 -i 0
products of the spin operators witm21 operators each,
describing the separatgth-order contributions to the spin
- . ) 01 O
statistics. In the following, we show how such a basis of - 1
three linear and five quadratic spin operators can be defined N2 4= 5 1.0 -1},
for the specific case df=1. Y“lo -1 0
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1 0 O measurement statistics given by the probabilipgsn) can
Y _ then be identified with normalized coincident count rates at
Ns=—=0 -2 0f. (7)
Y the detectors.
0 01 As discussed above, five measurement settings are neces-

The expectation values of these eight operators characterify to perform quantum tomography. A particularly simple
the density matrix in terms of the linear and the quadraticchoice of the five measurement directions for the spin-1 sys-
measurement statistics given by E8). The linear expecta- tem is given by
tion values along any spin direction are given by the three

expectation values of, I:1 = I:X, I:2 = I:y, Ly= “‘_E(LX +L),
\
(L(¢,0)) = sin (6)cOs (B)(Ay 1) +sin (Dsin(B)(Ay, 2
- ~ 1 ~ = ~ 1 ~ -
+COS(9)<)\1,3>: (8) Ly= E(I—y+ LZ)! Ls= E(Lz+ Lx)- (11

and the quadratic expectation values are given by the five o , .
: - In the case of two-photon polarization, the first three spin
expectation values of;},

directions can be identified with linear polarization rotated

by zero for I:1, by w/4 for |:2, and by 7/8 for |:3. The
remaining two directions then represent elliptical polariza-

tions, with the main axes alongm#4 for I:4, and the main

~ 2 ~
(L(6.07) =3 + SsiP(0)c0s (2)(R, )

+sirf (f)sin (g)cos(¢)(rz2 axes along angles of zero and?2 for I:5. Using this set of
+sin (#)cos (O)sin (¢)<)‘\213> measurement settings,Ait is now possible to explicitly identify
_ . the expectation value§\,;) that define the density matrix
+sin (9)cos (6)cos (h)(\z,a) with the corresponding measurement probabilifigsn).
1 3 - In general, the measurement probabilities of a spin-1 sys-
+\"_§ 1—53ln2 (0) |(\2,5) (9 tem along a given direction are related to theath-order

expectation values of the corresponding spin compoﬁent

Using this relation, it is possible to determine the correctpy
expectation values of all five second-order basis operators .
\,; from the quadratic expectation values of five indepen- Lp=p(+-p(=-1),
dent measurement directions. Together with the linear expec-
tation values, the results of these five measurements then [2

) ' . : LD =1-p(0). 12
define the complete density matrix, (L Pi(0) (12
3 T The quadratic terms of the spin statistics are thus entirely
E(Xlﬁxlﬁ—2022,1)):2,;- determined by the measuremgnt probabilitig€d) for a .
il i—1 measurement value of zero spin along the measurement di-

N | =

. L
i =—1+
Pi=1 5

from (i(¢,0)) from (i(¢, 0% (10)

rectioni. The five expectation values,; defining the qua-
dratic components of the density matrix can therefore be ob-
An explicit procedure for quantum tomography can now betained from the five measurement probabilitig€0) along
formulated by choosing a set of five measurement directionghe spin directions=1 toi=5 defined by Eq(11). The re-
The expectation values of the basis operaiqriggan then be lations between the measurement statistics and the expecta-
expressed in terms of the measurement probabilities alonion values of the corresponding basis operators then read
the five measurement directions. N -

(A2, = (S = = [P1(0) = p2(0)],

IV. QUANTUM TOMOGRAPHY OF THE SPIN-1 SYSTEM A B
BASED ON THE MEASUREMENT STATISTICS (A2,2 = (Qey) = P1(0) +p(0) — 2p3(0),
OF FIVE SPIN DIRECTIONS

For =1, each measurement along a given spin direction (N2,2> =(Qyp = P1(0) = 2p4(0) + 1,

I:i has three possible outcomes=+1 andm=0. In the ex-

perimentally relevant case of two-photon polarizatjar4], (No,2) = (Qp0 = Po(0) — 2p5(0) + 1,

these measurement outcomes correspond to the detection of

two horizontally polarized photongn=+1), two vertically <7A\2 o= <éz> - \E[pl(O) +py0) - g] (13)
, ' 34

polarized photongm=+1), and one photon each in horizon-

tal and in vertical polarizatioim=0), where the component The measurement probabilities for=0 thus determine five
of the Stokes vector is selected by appropriate rotations off the eight coefficients in the expansion of the density ma-
the polarization using standard linear optics elements. Theix given by Eq.(4). The remaining three coefficients can be
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obtained from the linear expectation values given by the dif- 1
ferences betweep;(+1) andp(-1), e.g., [po(+ 1) —po(- D] = E{[psﬁ' 1) = ps(= D]+ [pa(+ 1)

A L -ps(-1)]- 1) - ps(- DT}
(A1 =Ly =pi(+1) - ps-1), P4(—= D] -[ps(+ 1) = ps( )]}(15)

. . Effectively, the measurement results for the spin directions

N\ =Ly =p(+ 1) - po- D), three to five can be used to predict the results for spin direc-
tions one and two. Relationd5) thus illustrate the applica-

tion of quantum tomography to the prediction of further mea-

(){1 NE <|:Z> =— \,'E{[p3(+ 1) - ps(= D] - [pa(+ 1) = pa(= D] surements on the same system. The experimental differences

’ between this prediction and the actual outcome of the mea-

—[ps(+ 1) = ps(= D]} (14)  surements may therefore provide a realistic estimate of the
errors, limiting the reliability of quantum tomography in

Since the results of five measurement directions are used @yactical applications. A
determine only three parameters, there are two relations be- Since the eight parametef, ;) completely define the
tween the measurement results that should be approximatetiensity matrix, they can be used as an alternative represen-
fulfilled if the measurement error is low. These relations cartation of the quantum state, just like the three-dimensional
be written as Bloch vector for two-level systems. Any other representation
of the density matrix can then be obtained from &), if
the representations of each element of the basis is known.

1 >
[pa(+ 1) = pa(= D] = —={lps(+ 1) = pa(= D] - [pa(+ 1) For example, the density-matrix elements in the basis
\ given by Eqs(7) can be used to express any density matrix
- ps(= D] +[ps(+ 1) —ps(—= D}, defined by the expectation valu@s, ;) as
|
—~ 1_}_ )\ + )\ i }‘\ . )A\ . )A\ . )A\ 1 . - -
3 2< 1,3 —< 2,5 2\5« 1,0~ i1 — A9+ (\2.) E(O\z,ﬁ —i(\22)
1 - ~ R R 1 1 - 1 - A ~ -
Pl=1= ﬁ((’q,ﬁ +i(\y ) +iN2 2 +(N\20) 37 E(Kz,ﬁ ﬁ(@\l,ﬁ =i\ N2 —(N\2g)
1 - . 1 - o A - 1
5(0\2,1) +i(N\22) ﬁ(O\u} +i(N 2 —i(N29 = (\20) 3 50\1 P+ ~<>\z 5
) (16)

The quantum coherences between different eigenstatfezs of well-defined subset of the operattir@i. This organization of
can thus be expressed in terms of averages involving theasis operators can be generalized to arbitrary spibg

other two spin componenté andf_ In fact, this relation- formulating the operator basis,; for each spin value in such
ship between quantum coherence in H;eba5|s and the or- & way that the matrix elements of each operator are nonzero

for only one value ofm’—m|. The relationship between the
thogonal spin components( andL can be used to system- ~

atically construct density-matrix decomposmons for h|gherh'era_rChy of Spin expectation .valuézsnp and the_ density-
spins, as we will show in the following. matrix elements in thé&, basis is then as shown in Table II.

Specifically, the P+1 diagonal matrix element§m’—m|
=0) are determined by the set of 21 operator expectation

vaIues:()\n (2n+1)) that can be obtained from the measurement
In order to generallze the construction of a convenient SeLttistics ofL according to Eq(l). Likewise, the 4 off-
of basis operator)sm to arbitrarily large spins, it is useful to  diagonal elements withm’ -m|=1 can be determined by the
organize the basis operators according to their density- maméet of 4 operator expectation valueé; ) and O\ ),
n,2n n,2n-1

elements in theL basis. Such an organization is already gnq so on. Note that thel 42 off- diagonal elements with
indicated by the example for spin-1 given in E@6). In this |y —m|=2 do not include any first-order spin statistics, since
example, each group of density-matrix elemdmigm’| with  {he inear spin components only have matrix elements up to

the same order of coherendée’—m| in L, depends on a |m’'-m|=1

V. QUANTUM STATISTICS FOR [>1
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TABLE II. Relation between the density-matrix elemefts |p|m) in the L, basis and the corresponding
nth-order basis operators representing the spin statistics.

Density-matrix elements

Spin statistics |[m'-m|=0 |m'-m|=1 |m'-m|=2 |m'-m|=3 |m'-m|=4 |m'-m|=5 ... Total
(A1) 1 2 3
(o 1 2 2 5
(A3j) 1 2 2 7
<)A\4,i> 1 2 2 9
(As) 1 2 2 2 11
Total 2+1 4 4 -2 4-4 4-6 4-8 <o Al(1+1)

Likewise, the 4-4 off-diagonal elements withm'~m|  yajues inL, andL, that is needed to identify this coherence
=3 do not include any linear or quadratic spin statistics. Injy the measurement statistics. The spin correlation hierarchy
general, an expectation value of at legat—mth order is 1Lg:)resented in Table Il may thus provide a key to understand-
necessary to describe the effect of a corresponding offing the non-classical effects associated with quantum super-
diagonal element in the spin statistics. . positions in arbitrarily large physical systems.

A convenient way to construct the two operatafg and

\n 2 With nonzero density-matrix elements of maximal coher-
ence|m-m’|=nis to apply the non-Hermitian spin operator VI. NONCLASSICAL CORRELATIONS

Lx+iL,. This operator only has nonzero matrix elements with AND DECOHERENCE

m’—m=+1. Specifically, The highest possible value fim’ —m| in the density ma-
trix is obtained for quantum coherence between the extremal
L, eigenstatesm=+1) and |m=-1). According to Table I,

the two matrix elements describing this coherence corre-
spond to the twd2l)th-order spin expectation values. These
expectation values can be constructed explicitly using Eq.

(18) and include only products of, andL,. In order to

characterize a coherent superposition of theeigenstates
i (. +iL )"+ (D, =il |[m=+1) and|m;—|>, it is therefore necessary to evaluate the
1= e = (2D)th-order spin statistics in thay plane. For all orders
' \/Tr{(Lx+iLy)“(LX—iLy)“} lower than 2, the spin statistics obtained in the measure-
ments of such a coherent superposition are identical to those
PN A~ A of an incoherent mixture gin=+l) and|m=-1).
s I((Ly+ily)" = (L =iLy)") (18) This observation has significant implications for the iden-
" \/Tr{(f_ L)L, — il )m ' tification of strong nonclassical effects in large quantum sys-
ooy Ty tems. At sufficiently high values df, the superposition of
Starting from these definitions of basis operators, the comim=+I) and|m=-1) is a(cat-state-lik¢ superposition of two
plete set of basis operators may be constructed, e.g., by mukacroscopically distinguishable states. It is therefore inter-
tiplying the operators)A\n 1> With different powers Ofl:z esting to knpw that the effects of_ this superposition appear
~y ng o - . only in the highest-order expectation value of the spin statis-
and/ orLX; Ly to ok?ta|n hlgr;er-grder contrlputlg)_r;]s with j[he tics. While the lower-order expectation values are very easy
?ar?e co erebnchf; t_m| in tde _en5|tt%/ matrix. The ;t)re;:lse to measure since only very few measurement directions are
actors can be determined using the requirements Tor Orrequired and the measurement errors tend to average out, the
thogonality and normalization given by EB). It is then

ble t truct lete orth | tor b highest-order expectation values can only be determined
possibie to construct a compléete orthonormal operator basig, ,, sufficiently precise measurement results of at least 4
for any spint system.

e . . - 1 measurement directions. Effectively, the highest-order
By establishing the relation between spin statistics an Y 9

: . . : Xpectation values represent a measurement resolution at the
coherence in the density matrix, E48) al§0 ilustrates the qguantum level, providing the information necessary to re-

physical meaning of quantum coherence.inIn particular,  splve the precise eigenvalues of the spin compongr6

it is worth noting that the greater the differenjee’ —m| be-  This means that thé2l)th-order spin statistics is very sensi-
tween thel, eigenvalues of the states that are in a coherentive to errors of £1 in the spin measurements. In other words,
superposition, the higher the order of the spin expectatiothe smallest measurement errors are sufficient to make the

Le+iL)m =\l -m(+m+m+1).  (17)

Consequently(I:X+iI:y)” has only matrix elements with'
—m=n. It is therefore possible to generate tith-order basis

operators\,, ; and )A\nyz with matrix elements ofm’—m|=n
from the normalized Hermitian components(a+iL,)",
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effects of the cat-state-like superposition betwé;m: +1) VIl. ENTANGLEMENT STATISTICS AND GENERAL SPIN
and [m=-I) disappear. We can therefore conclude that the NETWORKS

actual nonclassical properties of a superposition of macro- . .
scopically distinguishable states can only be observed in the The formalism developed above can also be applied to

microscopic details of the measurement statistics. It is ther entangled spin-systems. In this case, the density matrix of

fore not surprising that decoherence quickly wipes out suc he total system is obtained by evaluat_lng the correlations
tiny details. between measurements of the local spin components. Spe-

For a more precise evaluation of decoherence and meg_mcally, the joint quantum state of a spig-systemA and a

surement precision, it is useful to consider the case of isotrog'p'r.HB systemB can be determined by simultaneously mea-

pic decoherence caused by spin diffusion due to random rg3uring spin componentt;(A) in A and spin components
tations. The time evolution of the density matrix caused byL(B) in B, obtaining the joint probabilitieg;;(m,,mg) of
this kind of decoherence can be described by each measurement outcome. The correlated spin statistics
can then be expressed in terms of the expectation values,
d. Ty 1.ony ~on . .
=T <§Li2p Pl LiPLi) .9 (LA e LA = 3, mamPp(m,mg). (22
1=XY,2 ma, Mg

Using the well-known commutation relations of the spin Op_It is then possible to analyze the spin statistics accordmg to
the local ordem, andng, where the total number of inde-

erators, it is possible to calculate the relaxation dynamics o . ) .
the nth-order expectation values of the spin. For the nonendent components required to characterize each order is

. A A given by the product2n,+1)(2ng+1). Note that in this case,
Hermitian operatorsL,+iL,)" the result reads n,=0 andng=0 have to be included in order to describe the
local spin statistics of each system. Consequently, the lowest
order expectation values are given by,=1,ng=0) and
(na=0,ng=1), with three independent components each. The
second-order expectation valu@s,+ng=2) are given by

Since the relaxation of the spin is isotropic, ath-order ~five components for(n,=2,nz=0), nine components for
contributions to the expansion of the density matrix shouldNa=1.ng=1), and five components fom,=0,ng=2). The
relax at the same rate. The effect of isotropic decoherenc@ighest order contribution to the correlated spin statistics is
therefore reduces eachth-order parametex\,;) of the thfnmglwlen_ %y (nA:(flA’nB:z'B)' with T‘; total bOf (4]!/*
density-matrix expansiori4) by a decoherence factor of +1)(4lg+1) independent components. The number of mea-

exp[-I'tn(n+1)/2], and the time evolution of the density suremerrw]t sfettlng? reqlul;ed to perftorm cprrlﬁletefquantumlt?-
matrix can be written as mography for entangled spin systems is therefore equal to

(4l,+1)(4lg+1). In the experimentally realized case kf
el =lg=1 [3-6], this would require 25 different measurement
nin+1) S S S settings with nine possible outcomes each, for a total of 225
= (Anid=ohni |- measurement probabilities.
An explicit description of the density matrix in terms of
21 the correlatedn,, ng)th-order spin statistics can be obtained
using products of the basis operators for each individual sys-
The expansion of the density matixinto an operator basis tem. The expansion of the density matrix then reads
\ni based on the different orders of the spin statistics there-
fore greatly simplifies the description of any isotropic errors Pag= 1 101+ 1 > (2 <§\n ,
in the preparation and manipulation of spin states. 2+ 1(2g+1) 22+ )\
Since the decoherence effects described by(ED). arise 1
from spin diffusion, it is also possible to identifyt with an Dh. o1+ —— 19 % M
increasing uncertainty in the spin directidrt= 66 2/2. The ® Dy @ 1) 2(2g+ 1)nEB (2 (18 Mgl

”(”; U@+l (20

d ~ .- n
d_t<(LX+ILy) >:_

p(t) =

1 2l
1+ 2, exp| Tt
21+1 E p[

result of Eg.(21) can then be used to estimate the errors 1

caused by a misalignment of the measurement direction. ® \p i)+_ > (E(f\n @\, j>f\n @\, j)‘
Specifically, an alignment error @9 will reduce the expec- & Mg\ i BN &

tation values observed for theth-order spin statistics (23)

by a factor of exp-86°n(n+1)/4]. To obtain at least

exd —0.25]=78% of the original expectation value at orders The expectation values defining the density matrix can now
n>1 of the spin statistics, the errors of the spin alignmentoe expressed in terms of the joint measurement probabilities
have to be smaller thaf#=1/n. The precision in the align- pj;(ma, Mg) by writing the(n,, ng)th-order expectation values
ment of the spin direction necessary to obtain tktieorder  of the correlated spins in E€R2) as a function of the expec-
statistics is thus proportional to &,/and the requirement for tation values in Eq(23). It is then possible to fully charac-
observing evidence of catlike superpositions in dpBys-  terize anyNX M entanglement in terms of the correlated
tems is an angular resolution 69<<1/(2l). spin statistics.
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The extension of this formalism to multipartite spin net- The explicit procedure for the quantum tomography of
works is also straightforward, since the density matrix can bespin-1 systems provides an example of the general method
expanded into products of the local basis operators for anthat can be applied directly to experimentally generated two-
number of systems. The expectation values of these producghoton polarization states such as the ones reported in Refs.
can then be determined from the correlated measurement std—4]. It may thus serve as the foundation of a more detailed
tistics of spin measurements performed simultaneously on attharacterization of decoherence and noise effects in these
systems. newly available entanglement sources.

Besides its practical usefulness for the experimental char-
VIll. CONCLUSIONS acterization of general spinsystems, the expansion of the
fdensity matrix into elements of the spin statistics also pro-

In conclusion, we have shown how the density matrix o i it derstandi ; i tatistics i
spind systems can be reconstructed from the measuremelft?®s @ More intuitive understanding of quantum statistics in

statistics of projective spin measurements along a set of grge systems. _The anaIyS|_§ presented above may therefore
least 4+1 different spin directions. The components of thealso help to .clarn‘y the conditions for th? emergence of quan-
density matrix can then be identified with different contribu- tum effects in physical systems of arbitrary size.

tions to the statistics of the three-dimensional spin vector. It
is therefore possible to interpret the discrete quantum statis-
tics of arbitrarily large spin systems within the same three-
dimensional space defined by the Bloch vector of a two-level H.F.H. would like to thank A.G. White and K. Tsujino for
system. some very motivating discussions.

ACKNOWLEDGMENTS

[1] T. Tsegaye, J. Soderholm, M. Atature, A. Trifonov, G. Bjork, (200Y.
A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. [11] It may be worth noting that, in terms of group theory, the 2

Lett. 85, 5013(2000. +1 expectation values atth-order forms an irreducible repre-
[2] A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, and S. P. sentation of the spherical symmetry defined by the arbitrary
Kulik, Phys. Rev. A64, 041803R) (2001). direction of the spin componeit in Eq. (2).
[3] A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, Nature[12] It has recently come to our attention that a particular choice of
(London 412 887 (200D. 41+1 measurement directions was proposed as early as 1968
[4] J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, Phys. by R. G. Newton and B.-L. Young, Ann. Phy@\.Y.) 49, 393
Rev. Lett. 88, 030401(2002. (1968. The results in this paper show thdt#4 measurement
[5] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature directions are also sufficient for quantum tomography. How-
(London 412 313(2001). ever, Newton and Young suggested that a better choice of di-
[6] A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Let89, rections could reduce the number of measurement directions
240401(2002. needed. Our results show that this is in fact impossible.
[7] A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat,[13] F. T. Hioe and J. H. Eberly, Phys. Rev. Le#7, 838 (1981).
Phys. Rev. Lett.83, 3103(1999. [14] G. Mahler and V. A. WeberruQuantum NetworkéSpringer,
[8] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Berlin, 1998, p. 44.
Phys. Rev. A66, 052312(2001. [15] H. F. Hofmann, Phys. Rev. A48, 034307(2003.
[9] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys. [16] In fact, the truncation of the measurement statistic&(g)?)
Rev. A 66, 012303(2002. itself is a consequence of the fact that the discreteness of the
[10] G. Klose, G. Smith, and P. S. Jessen, Phys. Rev. Bét4721 quantized eigenvalues makes a higher resolution unnecessary.

042108-8



