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Entanglement and four-wave mixing effects in the dissipation-free nonlinear interaction
of two photons at a single atom
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We investigate the nonlinear interaction between two photons in a single-input pulse at an atomic two-level
nonlinearity. A one-dimensional model for the propagation of light to and from the atom is used to describe the
precise spatiotemporal coherence of the two-photon state. It is shown that the interaction generates spatiotem-
poral entanglement in the output state similar to the entanglement observed in parametric down-conversion. A
method of generating photon pairs from coherent pump light using this quantum-mechanical four-wave mixing
process is proposed.
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[. INTRODUCTION only a single-spatial coordinate. In free space, the propaga-
tion velocity ¢ is constant. The linear propagation process
Optical nonlinearities sensitive to individual photons maycan then be described by a dispersion relationwef ck,
provide interesting new possibilities of controlling and ma-wherek is a scalaf14]. If this approximation is applied to
nipulating the quantum states of lighit—10]. Possible appli- the interaction of electromagnetic field with a single two-
cations of such nonlinearities include quantum nondemolilevel system, the transversal profile of tkespace eigen-
tion measurements of photon numipgt] and quantum logic modes is defined by the coupling characteristics of the two-
circuits for photonic qubit§12]. Experimentally, sufficiently level system to the three-dimensional field in free space. As
strong nonlinearities have been achieved in cavity quanturhas been discussed in REE4], the single-spatial coordinate
electrodynamics, where cavity confinement can enhance the corresponding to the wave vectéirthen represents the
coupling between a single two-level atom and the input fielddistance from the system at=0, where negative values
[2]. By optimizing the suppression of uncontrollable photonindicate propagation towards the system and positive values
losses in such systems, it may be possible to realize a fullindicate propagation away from the system.
guantum coherent photon-photon interac{in8]. The analy- Figure 1 shows a schematic representation of the model.
sis of such a quantum level nonlinearity then requires arhe Hamiltonian of this system can be written as
guantum-mechanical treatment of the spatiotemporal coher-
ence in the input and output fields. Specifically, spontaneous - - ~
four-wave mixing effects may entangle the two input pho- H1p=Hpropt Haps,
tons in their spatial coordinates. This entanglement appears
to introduce noise in the single-photon coherence, evemwith
though the two photons are still in a quantum-mechanically
pure state.
In order to investigate such effects, we apply a one- Hprop:f dk #ck blE)k,

dimensional model of light field propagation to and from a
single two-level atonj14,15. If photon losses are avoided,
it is then possible to determine the response functions for R lcT ... ...
single-photon and for two-photon inputs. Using these re- Habs=j dk A\/—(blo_+a'by),
sponse functions, we derive the output state for a resonant 7
rectangular input. We discuss the implications of this result
for coherent input fields and show that it is possible to create
entangled photon pairs from coherent input light by using an
interferometric strategy similar to the one recently applied in
parametric down-conversidi6].

@

Twao level atom

II. ONE-DIMENSIONAL MODEL OF LIGHT FIELD
PROPAGATION r<0

([

0 r>0

If the transversal beam profile is known, it is sufficientto  FiG. 1. Schematic representation of the one-dimensional model
describe the propagation of light to and from a system usingor light field propagation in the field-atom interaction. There is
only one direction of propagation<<0 represents light propagating
towards the atom and>0 represents light propagating away from
*Email address: h.hofmann@osa.org the atom. The interaction takes place locallyr &t0.
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whereb, is the photon annihilation operator knspace and Emission and absorption are therefore described by the in-
o_=|G)E| is the atomic annihilation operator describing Stantaneous addition of an amplitude proportional(&;t)
coherence between the ground si&g and the excited state {0 the single-photon wave function propagating fromo to

|E). The coupling strength is expressed in terms of the dif >0. Atr#0, the dynamics ofj(r;t) is simply described
pole relaxation ratd’. This rate defines the characteristic Py linear propagationy(r;t) = y(r —ct;0).

time scale of the coherent interaction between the light field In order to obtain the dynamics @f(E;t), it is necessary
and the two-level atom. For convenience, the resonant frelo define the integral corresponding t(r=0;t). The
quency of the atom has been set to zero. Note that thiBroper result is obtained by taking the average of the incom-
merely corresponds to a rotating frame of reference for théng amplitude ¢(r——0;t) and the outgoing amplitude
phase oscillations, so that all frequencies are expressed g§r— +0;t). However, it is convenient to use the result of
frequency shifts relative to the resonant frequensy  EQ.(5) to express the dynamics gf(E;t) entirely in terms

=cko. of the incoming amplitude/(r — —0;t). It then reads
Experimentally, the model presented here could be real-

ized using a one-sided microcavit¥3,15. Losses to trans- — WED = —TWE ) —iV2eT (r— —0-t 6

versal light field modes can then be minimized and almost all dt¢( ) YED ] pr—=0it).

the light emitted by a two-level atom inside the cavity is _ )
emitted along the axis of the cavity. If this ideal condition The amplitude of the excited stafe(E;t) can therefore be
cannot be met, the model described here could still be apRPtained from an integration of the previous incoming field
plied. However, it would be necessary to treat the losses as@NPlitudes(r — —0;t). Since the dynamics of these ampli-
transversal-mode mismatch between the input and outpdtdes are given by linear propagation at a constant velogity
beams and the one-dimensional field actually interactingh€y can be obtained from the initial single-photon wave
with the single atom. unction atr <0 using the linear propagation dynamics men-
tioned above.

With these results, it is possible to integrate the equations
of motion from any initial timet;, to any final timety. In

It is now possible to formulate the Schiinger equations particular, the output field within €r<c(ty,—ti,) for
for the single-photon case by defining the one-photon basig/(E;t;,) =0 is given by
as|k) for one photon in & eigenstate anfE) for the excited o
atom with no photon in free space. The quantum gt#(e€)) ) B ) . )
is then described by the componentgk;t) = (k| (t)) and Y o) = (= C(Lou— tin) Tin) 1 ?'/'(E’tom_r/c)
W(E;t)=(E|y(t)). The temporal dynamics of these compo- .

LN r
nents is given by =y(r _C(tout_tin);tin)_zgf dr’

d - - \/ﬁ r70(t0ut7tin)
= (k;t) = —ickyg(k;t) =i\ —¥(ESD), r
dt ™ Xexl{_E[r_r/_c(tout_tin)])‘/’(r’;tin)-

¢ f . (7)
GMED= "/?f dk ¥(k;t). 2

As the first line of Eq(7) shows, the output wave function is

These equations of motion can now be transformed into reaR superposition of a component that propagated past the atom

space coordinatesby using the Fourier transform unchanged and a component emitted by the excited atom.
Since the atom was initially in the ground state, the emission

1 can be traced to absorptions of the incoming wave function,
y(rit)= —J dk exp(ikr)g(k;t). (3)  as represented by the integral in the last line of &j. The

e output wave function at>0 can thus be represented as a
linear function of the input wave function a&0.

IIl. LOCAL ABSORPTION AND EMISSION

The equation for the propagating field then reads

d 9 IV. MANY-PHOTON EFFECTS
GUED=—cou(nD 2T 8N WED. (@)

The advantage of a local description of the field-atom
interaction is that it is easily extended to multiple photons.
As a result of the integration ovér this equation of motion  No matter how high the photon density is, we can always
now includes a5 function expressing the locality of emis- gefine a region from= — € to r = + € around the atom small
Sion. Sil’lce the t|me eVOIution Sh0u|d be COI’ItiI‘lUOUS, thS enough to contain On|y one photon_ In order to solve the

function implies a jump ofy(r;t) atr=0. By integrating field-atom interaction problem for many photons, it is there-

Eq. (4), the discontinuity is found to be given by fore only necessary to consider what happens if a photon
5T interacts with the excited atom.
o PO Loy For this purpose, it is useful to define the many-photon
Yr—+0:0=(r—-0n) ! c WED. () Hilbert space as a product space of independent particles.
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The bosonic nature of photons must then be included in th&on of the input and output wave functions. In the context of
symmetry of the initial state. For reasons of consistency, it iour model, this characterization is easy to obtain since the
then also necessary to distinguish the origin of an excitationpropagation before and after the interaction processes does
effectively treating the excited state as a state of the photomot change the shape of the wave packet. For the single-
The two-photon wave function is then given by the ampli-photon cases, the input and output wave functions can there-

tudes for two photons in free spacg(r,,r,), the ampli- fore be given by

tudes for one photon in free space and one photon at the

atom, ¢(rq,E) or ¢(E,r,), and the amplitude for a double Pin(X)= lim g(r=x+ctyt;),
excitation, (E,E). For a two-level atom, the latter must ti—— o

always be zero. In the Hamiltonian given by E#), this fact
is expressed by the difference between the atomic annihila- .
P Y Youl )= lIM  (r =X+ toueitou).- ©

tion operatoro_ and the annihilation operators of harmonic touo +
oscillators. Within the product space of independent par-

t'CIeS.” this difference is S'”."p'y reprgsgnted by setting th(.eAccording to Eq.(7), the output wave function can be ob-
matrix elements between single excitation and double exci:

tation to zero. The Scheinger equation for the two-photon tame_d from the, input wave function using a linear-response
. functionU,(x;x") such that
wave function then reads

d o)
a¢(r1,r2;t)=—c%z//(rl,rz;t)—iVZCFé(rl)t//(E,rz;t) wout(X)=f dx"U1(x;x") ¢hin(X"). (10
1 — 00
—c%zﬂ(rl,rz;t) The single-photon response function reads
2
—iv2cl'o(ry)(rq,E;t), U.(x;x")
d 5 ! 2r F{ F ! f = !
FUET0=~TU(E )~ iN2eTg(r;— =05 ;) | o mxmzpexg = o (xmx) | forx=x )

0 for x>x'.

J
—co—W(Er) (o), | | |
2 Note that the response functidiy(x;x") is a representation
of the unitary operation describing the time evolution of the
field-atom interaction. It therefore preserves the norm of the
wave function given by the integral over the absolute square.
) Likewise, the field-atom interaction of a two-photon wave
—iV2el(ry,ro——051), (8 function can be described by a linear-response formalism.

o ) The input and output wave functions are then described by
where (- - -) marks the missing two-photon absorption terms.

This two-photon Schidinger equation describes the nearly L _ _ ]
independent dynamics of two separate photons, except for ¥in(X1:X2)= lIM g(ry=Xy+Ctin.ro=Xo+ Clintin),

ty— —

d J
at/x(rl,E;tF—cmt/f(rl,E;t) () —Ty(r,E)

the absence of absorption for one photon if the other photon n

has been absorbed by the atom. The integration of the two-

photon Schrdinger equation can therefore be achieved by ¢ou(X1,X2)=lim (r;=X;+ Ctoy,Fo=Xo+ C toyestouy -
using the single-photon results and setting all contributions tour +

of double excitation to zerfil5]. In the following, however, (12

we will present an alternative solution of the dynamics based

on the two-photon interaction represented by the missinghe unitary transform of the input state into the output state
double excitation terms in Ed8). This procedure has the can also be described by linear-response function
advantage that it can be easily extended to three or more
photons and may therefore provide a useful foundation for
further investigations. lﬂou&Xl,Xz):j dx1dX5U5(X1,X0 X1 ,X5) Yin(X] ,X5) .

(13

o

V. SINGLE-PHOTON AND TWO-PHOTON

RESPONSE FUNCTIONS
If the two photons are always very far apark;{Xx,

Using the results for local emission and absorption, it iss1I'/c), or if the atom is replaced with a harmonic oscillator,
possible to evaluate the effects of the atom-field interactiorthe propagation of the two photons must be independent of
on an arbitrary single-photon wave function. For this pur-each other. In this case, the response function is equal to the
pose, it is useful to define a time-independent characterizggroduct of two single-photon response functions,
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Ujin(X1,X2;X1,X5) =U 1(Xq ;X)) U 1(X2:X5). (14 Ua(X1,X2;X1,X5) =Uq(X1:X1)U1(X2;X5)

This response function corresponds to the linear part of the + AU ponin(X1,X23X1,X5). (15
field-atom interaction. However, the absence of two-photon

absorption in the dynamics causes a coupling between th&ccording to the considerations in the preceding section,
photons that can be described by a nonlinear correctioAU, i, can be found by integrating the contributions from

AU onin SUch that double excitations itJ;;,. The result reads
4F2;{F<' ) o ¢ x0)| for eyl <mint 1
., —4d—exg — —(X;—Xq) |exg — —(X3—X» or maxXxq,Xo}<min{xy,x;
AU joniin(X1,X23 X1 ,X2) = c? ¢ c (16)
0 else,

where the minimum mifx; x5} effectively defines the latest this response function to a variety of input states. In the
absorption time and the maximum nfax,x,} defines the following, we will focus on the case of a resonant rectangu-
earliest emission. Thus the nonlinearity removes all compolar wave packet.
nents where the first emission occurs only after the second
absorption 15]. VI. THE QUANTUM LEVEL NONLINEARITY

It is now possible to derive the output wave function for AT RESONANCE
any two-photon input wave function by integrating E#3)
using the expressions fat; and for AU .in given by Egs.
(11) and(15), respectively. If the input is a single-mode two-
photon pulse, the input wave function can be written as
product state

Since the absorption of a photon is the strongest at reso-
nance, a resonant input should also produce the strongest
aponlinear effect in the field-atom interaction. In order to in-
vestigate this resonant nonlinearity, we consider the response
to a rectangular input wave packet given by

Pin(X1,X2) = Gin(X1) Pin(X2), (17) 1
where ¢;, defines the shape of the input pulse. The quantum bin(X) = ﬁ for 0<x<L 21)
state of the output field can then be described by "

X1,Xo)= X Xo)+A in(X1,X2), (18)
YoulX1:X2) = PoulX1) Poulz Yronin(X1. X2) The linear and nonlinear parts of the output wave function
where ¢,,; describes the linear single-photon response giveffor this rectangular wave packet can be determined analyti-

0 else.

by cally. They read

” Pout(X)

daa0= | axUi o0, a9
o [ 2 rL r
. S . ——|1l—exp ——]|exp =x| for x<O

and the nonlinear contribution is directly obtained from JL c c

* ! ! ! ! = < 1 F

Awnon“n(xl,xz):f_ dx1dX5AU ponin(X1,X25X1,X5) _ﬁ 1-2ex _E(L_X) for O<x<L
X pin(X1) bin(X3)- (20 L0 else
(22)

These equations describe the nonlinear response of the two-
level atom at the quantum level. It is now possible to applyand

p( FL)
l1-expg — —
C
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(a) total output oyt (b) nonlinear part Aty o1in.

20t BT e DL TR

(Yol i) =1+ J Ax1 A% Y5 X1, X2) A ronin X1, X2)

I P,
~1-, | dx_ex E'X‘|

1500

10/ .

: 4 8c 27
0 o N (
o5 10 15 20 5 10 15 20 The probability that the two photons will be scattered out of
La, Loy the input mode is therefore approximately equal to
FIG. 2. Contour plots of(a) the output wave function 1= oud i) 2 @ (28)
YoulX1,X,) and(b) the nonlinear componeti,onin(X1,X,) Of the outn rL’

output for a resonant rectangular input wave packet of lehgth
=20c/I". The contour shading corresponds to amplitudes rangin
from —4/L for black to +2/L for white. The dark gray shading at
the edges of the graphs correspond to zero amplitude. The light gra
shading of the triangular plateau regions (@ correspond to an
amplitude of 1L equal to the input amplitude of the rectangular
wave packet.

The long pulse limit requires that this fraction is never close
o 1. However, the result can be used to define a scattering
oss section for the two photons. If we think of the first
hoton as being in a random position within the pulse, the

chance of finding the second photon within a distasce
should be equal to@/L. The interaction cross sectienfor
the two-photon nonlinearity can then be defined as
=8c/I". Note thatc/I" is the coherence length of spontane-
Figure 2 shows the output wave functigi,; and the non-  ous emission from the atom. The nonlinear photon-photon
linear componentA ¢,onin at an input pulse length of  interaction mediated by the two-level atom therefore appears
=20c/T". The most remarkable feature of the nonlinear conto extend over a region eight times longer than this coher-
tribution is its localization arounct;=Xx,. This is a direct ence length.
consequence of the local interaction between the two pho-
tons. VII. ENTANGLEMENT AND FOUR-WAVE MIXING

A detailed discussion of the two-time correlation originat- IN THE NONLINEAR COMPONENT
ing from this spatiotemporal locality of the interaction is
given elsewher¢l5]. In the present paper, we focus on the
coherent properties of the two-photon wave function. Fo
this purpose it is useful to simplify the results by assumin
the limit of long pulsesL>c/T", and concentrating on the

In the long pulse limit, the input mode is very nearly a
Iplane wave resonant with the two-level atok=0). It is
therefore possible to describe the scattering effect as a four-
Yvave mixing effect changing the photon frequencies from
ko=0 to +k and —k, respectively. Thé&-space representa-

region W'th'n th_e pulse, ﬁxi<_L. In this limit, the photon- tion of the output wave packet can be obtained by using the
photon interaction becomes independent of the pulse shaﬁ>e . ) . :
gcal Fourier transform in the spatial region fraxp=0 to

effects caused by the sudden rise and fall of the rectangula)l(r_: L given b
pulse amplitude. The results should then apply to any pulsé' 9 y

with an input amplitude varying slowly on a scale ofl’, 1L

where the pulse length parametedefines the local photon Poul Ky, ko) = [jo dx,dX; exp(—ikiXq)

density as /. The output amplitudes are then given by
X exp( —ikaX2) Youl X1,X2)

8I'c

1
boul(X1) d’out(XZ) = E ) (24) ~ 5k1,05k2,0_ L(F2+ Czki)

5k1,7k21 (29)

wherek; can have values equal to integer multiples af/R.
r Note that this discretization & is necessary to preserve the
p( - _|X1_X2|>’ (25 correct normalization of the quantum state. The phase-
matching conditions of four-wave mixing is expressed in Eq.
(29) as a Kronecker delté -, ensuring that the sum &
andk, is indeed zero. As a result of this strong correlation
. (26) betweenk; and k,, the k-space representation of the two-
photon output is the Schmidt decomposition of the entangled

4
A l//nonlin(xl !X2) =— [ex

1 r
Youl X1,X2) = E 1-4exg - Elxl_x2|

state[17],
In the long pulse limit, the linear part of the output wave
function is nearly equal to the original input pulse. However, |ou) = |y =0;kp=0)— E |k; — k).
the nonlinear contribution reduces this overlap by scattering o ’ K L(I%+c%k?)
photons into other modes according to (30

043813-5
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I (k) pairs from the spontaneous four-wave mixing effect at a
scatter . ; . . . ;

single-atom nonlinearity by isolating the nonlinear part of

the two-photon response to a coherent input field through
destructive interference with an appropriate reference pulse.
This method will be discussed in the following section.

0.
0.
rsp 0.
162 Iscatter 0
' VIII. GENERATION OF PHOTON PAIRS USING
0. COHERENT INPUT LIGHT
0.

S BN W e o

Spontaneous four-wave mixing can only occur if two pho-
tons interact. Moreover, phase matching requires that a pho-
ton scattered tor- k must always be accompanied by a pho-
ton scattered to—k. It is therefore possible to use the
FIG. 3. Frequency spectrutgof the photons in the nonlin- nonlinear photon-photon intera_ction to generate correlated

photon pairs from a coherent input pulse by selecting the

ear componeni ¢,.qin- The intensityl and the frequenck have di ) H
been scaled in such a way that the area of the spectral line in thgorresponding output ports In a spectrometer. However, even

graph is equal to one. The dashed line shows the Lorentzian line JJEt€r results for photon pair creation may be achieved if the
spontaneous emission from the two-level atom derived from thdin€ar component is removed by interference with another
same mode[14]. Note that the area of this line is also one. The coherent light field using a method similar to the one applied
comparison shows that the spectrum of photons scatters by sponti parametric down-conversion in R¢16].
neous four-wave mixing at the single atom is narrower than the For any pulse shape defined by the wave functorit is
spectrum of spontaneous emission. possible to define a weak coherent statg with a low av-
erage photon number|2<1. This coherent state can then
According to this representation of the two-photon state, thde expanded into components with zero, one, and two pho-
single-photon density matrix can be written as a mixturk of tons. Using|vac) for the vacuum statd¢) for the single-
eigenstates with photon pulse, andlp; ¢) for the two-photon pulse, this ex-
pansion reads

8I'c
L(T'2+c?k?)

Z)=(l—%)|k:0><k=0|+§k:

2
) k) (K|. ,
o
(3D |a>“|VaC>+a|¢>+E|¢,¢>+"-- (33

This density matrix defines the single-photon coherence of
the output. In particular, the frequency spectrum of the sca

tered light is given by a squared Lorentzian, LI'he unitary operatot) describing the response of the two-

level system can now be applied separately to the vacuum, to

1 16¢ PIRAE the single-photon state, and to the two-photon state. The
— kS = ¢ vacuum state is not changed by the interaction at all
I scattef K) Ak<k|p|k> TL > 21 2.2° (32 ~
m(I'“+ck?) (Ulvad=|vag). In the resonant long pulse limit, the single-

_ _ ) photon component changes its phase #y but remains
Note that the resolution factd&xk=2#/L is required to ad- nearly unchanged otherwise. However, the two-photon com-
just the normalization of the contirjuous spectrigfefK) ponent is changed by the addition |df oy . The expan-
to the discrete distribution given hy. Figure 3 shows this sion of the output state therefore reads
scattering spectrum in comparison with the spontaneous
emission spectrum of the two-level atom. It should be noted

2 2
that the squared Lorentzian of the scattering spectrum is nar- - _ @ . @ ,
rower than the Lorentzian of spontaneous emission. This |Yow~[vag —af g + \/§|¢’¢>+ \/ElA"b”"”"”)
spectral feature clearly distinguishes the two-photon scatter-
ing process from an incoherent sequence of absorption and a?
reemission and may serve as an indication of spontaneous ~|=a)+ Emlﬂnonlin)- (34)

four-wave mixing in experiments where low detection effi-
ciencies prevent an evaluation of two-photon coincidences.

As this analysis shows, the resonant nonlinear interactiofhe linear component can therefore be represented by the
of the two photons at the atom causes correlated changes ireak coherent state- ) with the same coherence proper-
the frequencies of the photons. Since the output state is conties as the original pulse. This coherent pulse can be removed
pletely quantum coherent, the noise in the single-photon derby destructive interference with a much stronger reference
sity matrix actually indicates entanglement between the scapulse of the same shape at a high reflectivity beam splitter.
tered photons. This situation is quite similar to the creatiorNote that the high reflectivity of the beam splitter is neces-
of photon pairs by spontaneous parametric down-conversiosary to avoid quantum noise effects in the interaction that
In fact, it may also be possible to create entangled photomould appear as photon losses in the final output. If these

043813-6
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conditions are met, the destructive interference may be rep- According to Eq.(30), the quantum state of the emitted
resented by the displacement operatd(a)=exp(@a’  Photon pair can be written as
—a*a). For |a|<1, this operator is only slightly different
from 1, but it does have the fundamental property that aT
~ o . C
D(a)|—a)=|vag. The final output therefore reads |A Yrnonind = — > —————|k;—k), (39)
L(I"*+ck?)
A~ A~ A a2
D(a)|‘ﬁout)%D(a)l_a>+D(a)ﬁ|Awnonlin>
wherek represents the discretizédspace withAk=2/L.
a? In real-space representation, the same entanglement is ex-
~|vag+ E|A¢nonlin>- (39 pressed by the coefficientd ¢nomin(X1,X2) given by Eq.
(25). These representations show the same time-frequency
This output wave function now contains only a zero and orrelations as a phase-matched —parametric ~down-
two-photon component. The one-photon component has bed@@nversion, that isg;~x, andk, = —k,. It may therefore be
eliminated by the interference effects at the high reflectivitypossible to use photon pairs created by four-wave mixing in
beam splitter. It is therefore possible to generate entangledpplications similar to those of down-converted photons.
photon pairs with a two-photon wave function described by
Anonin USINg a coherently driven dissipation-free two-level
atom and an interferometric setup. The average number of IX. CONCLUSIONS
photon pairs created in each pulse is then given by

o 8c We have described the spatiotemporal dynamics of a one-
T<A lpnon“nm(pnon”n):ﬁmﬁ, (36) dimensional light field interacting with a single two-level
atom for input states with up to two-photons. In the case of a
In the long pulse limit, it is possible to approximate continu-"€S0nant two-photon input, the interaction at the atom results
ous input light as a sequence of rectangular pulses of length SPontaneous four-wave mixing effects, scattering the pho-
L>c/T. The intensity of the pump light is then given by tons to higher and lower frequencies. Since this scattering
lin=C|a|?/L and the rate of pair creatidRy; is given by the  effect is fully quantum coherent, the resulting output state is
average number of pairs per pulse divided by the pulse duentangled in frequency and time.
ration L/c. The result of this estimate reads For a coherent-state input, it is possible to remove the
linear single-photon and two-photon components by destruc-
8 , tive interference with a reference pulse. The remaining out-
Rpair:F'in' (37 put then consists of the vacuum state and a small contribu-
tion from the nonlinear two-photon component. This output
where higher-order many-photon effects are negligiblg,if is very similar to the output from spontaneous parametric
<TI'. The pair-creation rate is therefore also limitedRg,, ~ down-conversion. It may therefore be possible to realize a
<I'. However,I" is usually in the range of nanoseconds, sosource of entangled photon pairs using the spontaneous four-
considerable pair rates should be possible. wave mixing effects at a single two-level atom.
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