
, Japan

PHYSICAL REVIEW A 68, 043813 ~2003!
Entanglement and four-wave mixing effects in the dissipation-free nonlinear interaction
of two photons at a single atom
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We investigate the nonlinear interaction between two photons in a single-input pulse at an atomic two-level
nonlinearity. A one-dimensional model for the propagation of light to and from the atom is used to describe the
precise spatiotemporal coherence of the two-photon state. It is shown that the interaction generates spatiotem-
poral entanglement in the output state similar to the entanglement observed in parametric down-conversion. A
method of generating photon pairs from coherent pump light using this quantum-mechanical four-wave mixing
process is proposed.
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I. INTRODUCTION

Optical nonlinearities sensitive to individual photons m
provide interesting new possibilities of controlling and m
nipulating the quantum states of light@1–10#. Possible appli-
cations of such nonlinearities include quantum nondem
tion measurements of photon number@11# and quantum logic
circuits for photonic qubits@12#. Experimentally, sufficiently
strong nonlinearities have been achieved in cavity quan
electrodynamics, where cavity confinement can enhance
coupling between a single two-level atom and the input fi
@2#. By optimizing the suppression of uncontrollable phot
losses in such systems, it may be possible to realize a f
quantum coherent photon-photon interaction@13#. The analy-
sis of such a quantum level nonlinearity then requires
quantum-mechanical treatment of the spatiotemporal co
ence in the input and output fields. Specifically, spontane
four-wave mixing effects may entangle the two input ph
tons in their spatial coordinates. This entanglement app
to introduce noise in the single-photon coherence, e
though the two photons are still in a quantum-mechanic
pure state.

In order to investigate such effects, we apply a on
dimensional model of light field propagation to and from
single two-level atom@14,15#. If photon losses are avoided
it is then possible to determine the response functions
single-photon and for two-photon inputs. Using these
sponse functions, we derive the output state for a reso
rectangular input. We discuss the implications of this res
for coherent input fields and show that it is possible to cre
entangled photon pairs from coherent input light by using
interferometric strategy similar to the one recently applied
parametric down-conversion@16#.

II. ONE-DIMENSIONAL MODEL OF LIGHT FIELD
PROPAGATION

If the transversal beam profile is known, it is sufficient
describe the propagation of light to and from a system us

*Email address: h.hofmann@osa.org
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only a single-spatial coordinate. In free space, the propa
tion velocity c is constant. The linear propagation proce
can then be described by a dispersion relation ofv5ck,
wherek is a scalar@14#. If this approximation is applied to
the interaction of electromagnetic field with a single tw
level system, the transversal profile of thek-space eigen-
modes is defined by the coupling characteristics of the tw
level system to the three-dimensional field in free space.
has been discussed in Ref.@14#, the single-spatial coordinat
r corresponding to the wave vectork then represents the
distance from the system atr 50, where negative value
indicate propagation towards the system and positive va
indicate propagation away from the system.

Figure 1 shows a schematic representation of the mo
The Hamiltonian of this system can be written as

Ĥ1D5Ĥprop1Ĥabs,

with

Ĥprop5E dk \ck b̂k
†b̂k ,

Ĥabs5E dk \AcG

p
~ b̂k

†ŝ21ŝ2
† b̂k!, ~1!

FIG. 1. Schematic representation of the one-dimensional mo
for light field propagation in the field-atom interaction. There
only one direction of propagation.r ,0 represents light propagatin
towards the atom andr .0 represents light propagating away fro
the atom. The interaction takes place locally atr 50.
©2003 The American Physical Society13-1
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whereb̂k is the photon annihilation operator ink space and
s25uG&^Eu is the atomic annihilation operator describin
coherence between the ground stateuG& and the excited state
uE&. The coupling strength is expressed in terms of the
pole relaxation rateG. This rate defines the characterist
time scale of the coherent interaction between the light fi
and the two-level atom. For convenience, the resonant
quency of the atom has been set to zero. Note that
merely corresponds to a rotating frame of reference for
phase oscillations, so that all frequencies are expresse
frequency shifts relative to the resonant frequencyv0
5ck0.

Experimentally, the model presented here could be r
ized using a one-sided microcavity@13,15#. Losses to trans-
versal light field modes can then be minimized and almos
the light emitted by a two-level atom inside the cavity
emitted along the axis of the cavity. If this ideal conditio
cannot be met, the model described here could still be
plied. However, it would be necessary to treat the losses
transversal-mode mismatch between the input and ou
beams and the one-dimensional field actually interac
with the single atom.

III. LOCAL ABSORPTION AND EMISSION

It is now possible to formulate the Schro¨dinger equations
for the single-photon case by defining the one-photon b
asuk& for one photon in ak eigenstate anduE& for the excited
atom with no photon in free space. The quantum stateuc(t)&
is then described by the componentsc(k;t)5^kuc(t)& and
c(E;t)5^Euc(t)&. The temporal dynamics of these comp
nents is given by

d

dt
c~k;t !52 ickc~k;t !2 iAcG

p
c~E;t !,

d

dt
c~E;t !52 iAcG

p E dk c~k;t !. ~2!

These equations of motion can now be transformed into r
space coordinatesr by using the Fourier transform

c~r ;t !5
1

A2p
E dk exp~ ikr !c~k;t !. ~3!

The equation for the propagating field then reads

d

dt
c~r ;t !52c

]

]r
c~r ;t !2 iA2cGd~r !c~E;t !. ~4!

As a result of the integration overk, this equation of motion
now includes ad function expressing the locality of emis
sion. Since the time evolution should be continuous, thid
function implies a jump ofc(r ;t) at r 50. By integrating
Eq. ~4!, the discontinuity is found to be given by

c~r→10;t !2c~r→20;t !52 iA2G

c
c~E;t !. ~5!
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Emission and absorption are therefore described by the
stantaneous addition of an amplitude proportional toc(E;t)
to the single-photon wave function propagating fromr ,0 to
r .0. At rÞ0, the dynamics ofc(r ;t) is simply described
by linear propagation,c(r ;t)5c(r 2ct;0).

In order to obtain the dynamics ofc(E;t), it is necessary
to define the integral corresponding toc(r 50;t). The
proper result is obtained by taking the average of the inco
ing amplitude c(r→20;t) and the outgoing amplitude
c(r→10;t). However, it is convenient to use the result
Eq. ~5! to express the dynamics ofc(E;t) entirely in terms
of the incoming amplitudec(r→20;t). It then reads

d

dt
c~E;t !52Gc~E;t !2 iA2cGc~r→20;t !. ~6!

The amplitude of the excited statec(E;t) can therefore be
obtained from an integration of the previous incoming fie
amplitudesc(r→20;t). Since the dynamics of these amp
tudes are given by linear propagation at a constant velocitc,
they can be obtained from the initial single-photon wa
function atr ,0 using the linear propagation dynamics me
tioned above.

With these results, it is possible to integrate the equati
of motion from any initial timet in to any final timetout. In
particular, the output field within 0,r ,c(tout2t in) for
c(E;t in)50 is given by

c~r ;tout!5c„r 2c~ tout2t in!;t in…2 iA2G

c
c~E;tout2r /c!

5c„r 2c~ tout2t in!;t in…22
G

cEr 2c(tout2t in)

0

dr8

3expS 2
G

c
@r 2r 82c~ tout2t in!# Dc~r 8;t in!.

~7!

As the first line of Eq.~7! shows, the output wave function i
a superposition of a component that propagated past the a
unchanged and a component emitted by the excited at
Since the atom was initially in the ground state, the emiss
can be traced to absorptions of the incoming wave functi
as represented by the integral in the last line of Eq.~7!. The
output wave function atr .0 can thus be represented as
linear function of the input wave function atr ,0.

IV. MANY-PHOTON EFFECTS

The advantage of a local description of the field-ato
interaction is that it is easily extended to multiple photon
No matter how high the photon density is, we can alwa
define a region fromr 52e to r 51e around the atom smal
enough to contain only one photon. In order to solve
field-atom interaction problem for many photons, it is the
fore only necessary to consider what happens if a pho
interacts with the excited atom.

For this purpose, it is useful to define the many-phot
Hilbert space as a product space of independent partic
3-2
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The bosonic nature of photons must then be included in
symmetry of the initial state. For reasons of consistency,
then also necessary to distinguish the origin of an excitat
effectively treating the excited state as a state of the pho
The two-photon wave function is then given by the amp
tudes for two photons in free space,c(r 1 ,r 2), the ampli-
tudes for one photon in free space and one photon at
atom,c(r 1 ,E) or c(E,r 2), and the amplitude for a doubl
excitation, c(E,E). For a two-level atom, the latter mus
always be zero. In the Hamiltonian given by Eq.~1!, this fact
is expressed by the difference between the atomic annih
tion operatorŝ2 and the annihilation operators of harmon
oscillators. Within the product space of independent p
ticles, this difference is simply represented by setting
matrix elements between single excitation and double e
tation to zero. The Schro¨dinger equation for the two-photo
wave function then reads

d

dt
c~r 1 ,r 2 ;t !52c

]

]r 1
c~r 1 ,r 2 ;t !2 iA2cGd~r 1!c~E,r 2 ;t !

2c
]

]r 2
c~r 1 ,r 2 ;t !

2 iA2cGd~r 2!c~r 1 ,E;t !,

d

dt
c~E,r 2 ;t !52Gc~E,r 2 ;t !2 iA2cGc~r 1→20,r 2 ;t !

2c
]

]r 2
c~E,r 2 ;t ! ~••• !,

d

dt
c~r 1 ,E;t !52c

]

]r 1
c~r 1 ,E;t ! ~••• ! 2Gc~r 1 ,E;t !

2 iA2cGc~r 1 ,r 2→20;t !, ~8!

where (•••) marks the missing two-photon absorption term
This two-photon Schro¨dinger equation describes the nea
independent dynamics of two separate photons, excep
the absence of absorption for one photon if the other pho
has been absorbed by the atom. The integration of the t
photon Schro¨dinger equation can therefore be achieved
using the single-photon results and setting all contributi
of double excitation to zero@15#. In the following, however,
we will present an alternative solution of the dynamics ba
on the two-photon interaction represented by the miss
double excitation terms in Eq.~8!. This procedure has th
advantage that it can be easily extended to three or m
photons and may therefore provide a useful foundation
further investigations.

V. SINGLE-PHOTON AND TWO-PHOTON
RESPONSE FUNCTIONS

Using the results for local emission and absorption, i
possible to evaluate the effects of the atom-field interac
on an arbitrary single-photon wave function. For this p
pose, it is useful to define a time-independent character
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tion of the input and output wave functions. In the context
our model, this characterization is easy to obtain since
propagation before and after the interaction processes
not change the shape of the wave packet. For the sin
photon cases, the input and output wave functions can th
fore be given by

c in~x!5 lim
t in→2`

c~r 5x1c tin ;t in!,

cout~x!5 lim
tout→1`

c~r 5x1c tout;tout!. ~9!

According to Eq.~7!, the output wave function can be ob
tained from the input wave function using a linear-respon
function U1(x;x8) such that

cout~x!5E
2`

`

dx8U1~x;x8!c in~x8!. ~10!

The single-photon response function reads

U1~x;x8!

5H d~x82x!22
G

c
expF2

G

c
~x82x!G for x<x8

0 for x.x8.

~11!

Note that the response functionU1(x;x8) is a representation
of the unitary operation describing the time evolution of t
field-atom interaction. It therefore preserves the norm of
wave function given by the integral over the absolute squa

Likewise, the field-atom interaction of a two-photon wa
function can be described by a linear-response formali
The input and output wave functions are then described

c in~x1 ,x2!5 lim
t in→2`

c~r 15x11c tin ,r 25x21ctin ;t in!,

cout~x1 ,x2!5 lim
tout→1`

c~r 15x11ctout,r 25x21c tout;tout!.

~12!

The unitary transform of the input state into the output st
can also be described by linear-response function

cout~x1 ,x2!5E
2`

`

dx18dx28U2~x1 ,x2 ;x18 ,x28!c in~x18 ,x28!.

~13!

If the two photons are always very far apart (x12x2
@G/c), or if the atom is replaced with a harmonic oscillato
the propagation of the two photons must be independen
each other. In this case, the response function is equal to
product of two single-photon response functions,
3-3
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U lin~x1 ,x2 ;x18 ,x28!5U1~x1 ;x18!U1~x2 ;x28!. ~14!

This response function corresponds to the linear part of
field-atom interaction. However, the absence of two-pho
absorption in the dynamics causes a coupling between
photons that can be described by a nonlinear correc
DUnonlin such that
t

po
on

or

o-
s

u

ve

tw
pl
e
n
he
n

U2~x1 ,x2 ;x18 ,x28!5U1~x1 ;x18!U1~x2 ;x28!

1DUnonlin~x1 ,x2 ;x18 ,x28!. ~15!

According to the considerations in the preceding secti
DUnonlin can be found by integrating the contributions fro
double excitations inU lin . The result reads
DUnonlin~x1 ,x2 ;x18 ,x28!5H 24
G2

c2
expF2

G

c
~x182x1!GexpF2

G

c
~x282x2!G for max$x1 ,x2%,min$x18 ,x28%

0 else,

~16!
the
u-

so-
gest
n-
nse

ion
lyti-
where the minimum min$x18 ,x28% effectively defines the lates
absorption time and the maximum max$x1 ,x2% defines the
earliest emission. Thus the nonlinearity removes all com
nents where the first emission occurs only after the sec
absorption@15#.

It is now possible to derive the output wave function f
any two-photon input wave function by integrating Eq.~13!
using the expressions forU1 and forDUnonlin given by Eqs.
~11! and~15!, respectively. If the input is a single-mode tw
photon pulse, the input wave function can be written a
product state

c in~x1 ,x2!5f in~x1!f in~x2!, ~17!

wheref in defines the shape of the input pulse. The quant
state of the output field can then be described by

cout~x1 ,x2!5fout~x1!fout~x2!1Dcnonlin~x1 ,x2!, ~18!

wherefout describes the linear single-photon response gi
by

fout~x!5E
2`

`

dx8U1~x;x8!f in~x8!, ~19!

and the nonlinear contribution is directly obtained from

Dcnonlin~x1 ,x2!5E
2`

`

dx18dx28DUnonlin~x1 ,x2 ;x18 ,x28!

3f in~x18!f in~x28!. ~20!

These equations describe the nonlinear response of the
level atom at the quantum level. It is now possible to ap
-
d

a

m

n

o-
y

this response function to a variety of input states. In
following, we will focus on the case of a resonant rectang
lar wave packet.

VI. THE QUANTUM LEVEL NONLINEARITY
AT RESONANCE

Since the absorption of a photon is the strongest at re
nance, a resonant input should also produce the stron
nonlinear effect in the field-atom interaction. In order to i
vestigate this resonant nonlinearity, we consider the respo
to a rectangular input wave packet given by

f in~x!5H 1

AL
for 0,x,L

0 else.

~21!

The linear and nonlinear parts of the output wave funct
for this rectangular wave packet can be determined ana
cally. They read

fout~x!

55
2

2

AL
F12expS 2

GL

c D GexpS G

c
xD for x,0

2
1

AL
H 122 expF2

G

c
~L2x!G J for 0,x,L

0 else

~22!

and
Dcnonlin~x1 ,x2!5H 2
4

L F12expS 2
GL

c D G2

expFGc ~x11x222max$0,x1 ,x2%!G for xi,L

0 else.

~23!

043813-4
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Figure 2 shows the output wave functioncout and the non-
linear componentDcnonlin at an input pulse length ofL
520c/G. The most remarkable feature of the nonlinear co
tribution is its localization aroundx15x2. This is a direct
consequence of the local interaction between the two p
tons.

A detailed discussion of the two-time correlation origina
ing from this spatiotemporal locality of the interaction
given elsewhere@15#. In the present paper, we focus on t
coherent properties of the two-photon wave function. F
this purpose it is useful to simplify the results by assum
the limit of long pulses,L@c/G, and concentrating on th
region within the pulse, 0,xi,L. In this limit, the photon-
photon interaction becomes independent of the pulse sh
effects caused by the sudden rise and fall of the rectang
pulse amplitude. The results should then apply to any pu
with an input amplitude varying slowly on a scale ofc/G,
where the pulse length parameterL defines the local photon
density as 2/L. The output amplitudes are then given by

fout~x1!fout~x2!5
1

L
, ~24!

Dcnonlin~x1 ,x2!52
4

L
expS 2

G

c
ux12x2u D , ~25!

cout~x1 ,x2!5
1

L F124 expS 2
G

c
ux12x2u D G . ~26!

In the long pulse limit, the linear part of the output wa
function is nearly equal to the original input pulse. Howev
the nonlinear contribution reduces this overlap by scatte
photons into other modes according to

FIG. 2. Contour plots of ~a! the output wave function
cout(x1 ,x2) and~b! the nonlinear componentDcnonlin(x1 ,x2) of the
output for a resonant rectangular input wave packet of lengtL
520c/G. The contour shading corresponds to amplitudes rang
from 24/L for black to12/L for white. The dark gray shading a
the edges of the graphs correspond to zero amplitude. The light
shading of the triangular plateau regions in~a! correspond to an
amplitude of 1/L equal to the input amplitude of the rectangul
wave packet.
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^coutuc in&511E dx1dx2cout* ~x1 ,x2!Dcnonlin~x1 ,x2!

'12
4

LE dx2 expS 2
G

c
ux2u D

512
8c

GL
. ~27!

The probability that the two photons will be scattered out
the input mode is therefore approximately equal to

12u^coutuc in&u2'
16c

GL
. ~28!

The long pulse limit requires that this fraction is never clo
to 1. However, the result can be used to define a scatte
cross section for the two photons. If we think of the fir
photon as being in a random position within the pulse,
chance of finding the second photon within a distance<s
should be equal to 2s/L. The interaction cross sections for
the two-photon nonlinearity can then be defined ass
58c/G. Note thatc/G is the coherence length of spontan
ous emission from the atom. The nonlinear photon-pho
interaction mediated by the two-level atom therefore appe
to extend over a region eight times longer than this coh
ence length.

VII. ENTANGLEMENT AND FOUR-WAVE MIXING
IN THE NONLINEAR COMPONENT

In the long pulse limit, the input mode is very nearly
plane wave resonant with the two-level atom (k50). It is
therefore possible to describe the scattering effect as a f
wave mixing effect changing the photon frequencies fro
k050 to 1k and2k, respectively. Thek-space representa
tion of the output wave packet can be obtained by using
local Fourier transform in the spatial region fromxi50 to
xi5L given by

cout~k1 ,k2!5
1

LE0

L

dx1dx2 exp~2 ik1x1!

3exp~2 ik2x2!cout~x1 ,x2!

'dk1,0dk2,02
8Gc

L~G21c2k1
2!

dk1 ,2k2
, ~29!

whereki can have values equal to integer multiples of 2p/L.
Note that this discretization ofki is necessary to preserve th
correct normalization of the quantum state. The pha
matching conditions of four-wave mixing is expressed in E
~29! as a Kronecker deltadk1 ,2k2

ensuring that the sum ofk1

and k2 is indeed zero. As a result of this strong correlati
betweenk1 and k2, the k-space representation of the two
photon output is the Schmidt decomposition of the entang
state@17#,

ucout&5uk150;k250&2(
k

8Gc

L~G21c2k2!
uk;2k&.

~30!

g

ay
3-5
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According to this representation of the two-photon state,
single-photon density matrix can be written as a mixture ok
eigenstates with

r̂5S 12
16c

GL D uk50&^k50u1(
k

S 8Gc

L~G21c2k2!
D 2

uk&^ku.

~31!

This density matrix defines the single-photon coherence
the output. In particular, the frequency spectrum of the s
tered light is given by a squared Lorentzian,

I scatter~k!5
1

Dk
^kur̂uk&5

16c

GL

2cG3

p~G21c2k2!2
. ~32!

Note that the resolution factorDk52p/L is required to ad-
just the normalization of the continuous spectrumI scatter(k)
to the discrete distribution given byr̂. Figure 3 shows this
scattering spectrum in comparison with the spontane
emission spectrum of the two-level atom. It should be no
that the squared Lorentzian of the scattering spectrum is
rower than the Lorentzian of spontaneous emission. T
spectral feature clearly distinguishes the two-photon sca
ing process from an incoherent sequence of absorption
reemission and may serve as an indication of spontane
four-wave mixing in experiments where low detection ef
ciencies prevent an evaluation of two-photon coincidenc

As this analysis shows, the resonant nonlinear interac
of the two photons at the atom causes correlated chang
the frequencies of the photons. Since the output state is c
pletely quantum coherent, the noise in the single-photon d
sity matrix actually indicates entanglement between the s
tered photons. This situation is quite similar to the creat
of photon pairs by spontaneous parametric down-convers
In fact, it may also be possible to create entangled pho

FIG. 3. Frequency spectrumI scatterof the photons in the nonlin-
ear componentDcnonlin . The intensityI and the frequencyk have
been scaled in such a way that the area of the spectral line in
graph is equal to one. The dashed line shows the Lorentzian lin
spontaneous emission from the two-level atom derived from
same model@14#. Note that the area of this line is also one. T
comparison shows that the spectrum of photons scatters by sp
neous four-wave mixing at the single atom is narrower than
spectrum of spontaneous emission.
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pairs from the spontaneous four-wave mixing effect a
single-atom nonlinearity by isolating the nonlinear part
the two-photon response to a coherent input field throu
destructive interference with an appropriate reference pu
This method will be discussed in the following section.

VIII. GENERATION OF PHOTON PAIRS USING
COHERENT INPUT LIGHT

Spontaneous four-wave mixing can only occur if two ph
tons interact. Moreover, phase matching requires that a p
ton scattered to1k must always be accompanied by a ph
ton scattered to2k. It is therefore possible to use th
nonlinear photon-photon interaction to generate correla
photon pairs from a coherent input pulse by selecting
corresponding output ports in a spectrometer. However, e
better results for photon pair creation may be achieved if
linear component is removed by interference with anot
coherent light field using a method similar to the one appl
to parametric down-conversion in Ref.@16#.

For any pulse shape defined by the wave functionf, it is
possible to define a weak coherent stateua& with a low av-
erage photon numberuau2!1. This coherent state can the
be expanded into components with zero, one, and two p
tons. Usinguvac& for the vacuum state,uf& for the single-
photon pulse, anduf;f& for the two-photon pulse, this ex
pansion reads

ua&'uvac&1auf&1
a2

A2
uf;f&1•••. ~33!

The unitary operatorÛ describing the response of the two
level system can now be applied separately to the vacuum
the single-photon state, and to the two-photon state.
vacuum state is not changed by the interaction at
(Ûuvac&5uvac&). In the resonant long pulse limit, the single
photon component changes its phase byp, but remains
nearly unchanged otherwise. However, the two-photon co
ponent is changed by the addition ofuDcnonlin&. The expan-
sion of the output state therefore reads

ucout&'uvac&2auf&1
a2

A2
uf;f&1

a2

A2
uDcnonlin&

'u2a&1
a2

A2
uDcnonlin&. ~34!

The linear component can therefore be represented by
weak coherent stateu2a& with the same coherence prope
ties as the original pulse. This coherent pulse can be remo
by destructive interference with a much stronger refere
pulse of the same shape at a high reflectivity beam spli
Note that the high reflectivity of the beam splitter is nece
sary to avoid quantum noise effects in the interaction t
would appear as photon losses in the final output. If th
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conditions are met, the destructive interference may be
resented by the displacement operatorD̂(a)5exp(aâ†

2a* â). For uau!1, this operator is only slightly differen
from 1̂, but it does have the fundamental property th
D̂(a)u2a&5uvac&. The final output therefore reads

D̂~a!ucout&'D̂~a!u2a&1D̂~a!
a2

A2
uDcnonlin&

'uvac&1
a2

A2
uDcnonlin&. ~35!

This output wave function now contains only a zero and
two-photon component. The one-photon component has b
eliminated by the interference effects at the high reflectiv
beam splitter. It is therefore possible to generate entan
photon pairs with a two-photon wave function described
Dcnonlin using a coherently driven dissipation-free two-lev
atom and an interferometric setup. The average numbe
photon pairs created in each pulse is then given by

uau4

2
^DcnonlinuDcnonlin&5

8c

GL
uau4. ~36!

In the long pulse limit, it is possible to approximate contin
ous input light as a sequence of rectangular pulses of le
L@c/G. The intensity of the pump light is then given b
I in5cuau2/L and the rate of pair creationRpair is given by the
average number of pairs per pulse divided by the pulse
ration L/c. The result of this estimate reads

Rpair5
8

G
I in

2 , ~37!

where higher-order many-photon effects are negligible ifI in
!G. The pair-creation rate is therefore also limited toRpair
!G. However,G is usually in the range of nanoseconds,
considerable pair rates should be possible.
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According to Eq.~30!, the quantum state of the emitte
photon pair can be written as

uDcnonlin&52(
k

8Gc

L~G21c2k2!
uk;2k&, ~38!

wherek represents the discretizedk space withDk52p/L.
In real-space representation, the same entanglement is
pressed by the coefficientsDcnonlin(x1 ,x2) given by Eq.
~25!. These representations show the same time-freque
correlations as a phase-matched parametric do
conversion, that is,x1'x2 andk152k2. It may therefore be
possible to use photon pairs created by four-wave mixing
applications similar to those of down-converted photons.

IX. CONCLUSIONS

We have described the spatiotemporal dynamics of a o
dimensional light field interacting with a single two-lev
atom for input states with up to two-photons. In the case o
resonant two-photon input, the interaction at the atom res
in spontaneous four-wave mixing effects, scattering the p
tons to higher and lower frequencies. Since this scatte
effect is fully quantum coherent, the resulting output state
entangled in frequency and time.

For a coherent-state input, it is possible to remove
linear single-photon and two-photon components by dest
tive interference with a reference pulse. The remaining o
put then consists of the vacuum state and a small contr
tion from the nonlinear two-photon component. This outp
is very similar to the output from spontaneous parame
down-conversion. It may therefore be possible to realiz
source of entangled photon pairs using the spontaneous
wave mixing effects at a single two-level atom.
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