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Bound entangled states violate a nonsymmetric local uncertainty relation
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As a consequence of having a positive partial transpose, bound entangled states lack many of the properties
otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound
entangled states from separable states. In this paper, it is shown that some bound entangled states violate a
nonsymmetric class of local uncertainty relations@H. F. Hofmann and S. Takeuchi, Phys. Rev. A68, 032103
~2003!#. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of
bound entanglement.
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Entanglement is an essential element of quantum infor
tion theory and is known to be responsible for a wide vari
of nonclassical effects@1–5#. However, it is not generally
clear what properties of entanglement are required for
particular application. In fact, the properties of mixed e
tangled states are so difficult to characterize that even
question whether a given density matrix is entangled or se
rable may be difficult to answer@6–10#. For 232 and 2
33 systems, this problem can be solved by testing whe
the partial transpose of the density matrix is positive or
@6,7#. However, for higher dimensional Hilbert spaces, the
are examples of entangled states with a positive partial tr
pose@8,11,12#. Since the positivity of the partial transpose
a fundamental nonlocal property of the state that canno
changed using only local operations and classical comm
cation, the entanglement of states with positive partial tra
pose cannot be distilled to singlett form and is therefore
available for standard applications in quantum informat
protocols@11#. For this reason, entangled states with posit
partial transpose are generally referred to as bound entan
states. Nevertheless, the inseparability of bound entan
ment suggests that there are other fundamental propertie
entanglement that distinguish bound entanglement fr
separable states. In particular, it would be interesting to kn
whether there are some potentially useful properties
bound entanglement that can be applied without requir
distillation to pure states. In this paper, it is shown that so
bound entangled states do indeed have such a property.
cifically, the correlations between the two systems in the
33 bound entanglement analyzed in the following overco
the local uncertainty limit@13#. This means that bound en
tanglement could be applied directly in quantum commu
cation, e.g., for quantum teleportation or for dense codi
since the amount of noise in data transmission would cle
be less than that of the corresponding classical limit.

The type of bound entanglement considered in this pa
is the 333 entanglement first presented in Ref.@8#. Since the
angular momentum components of the spin-1 algebra wil
used in the analysis, it is most convenient to express
state in thel̂ z basis as
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r̂a5
a

118a
~ u21;0&^21;0u1u21;11&^21;11u

1u0;21&^0;21u1u0;11&^0;11u1u11;0&^11;0u!

1
3a

118a
uEmax.&^Emax.u1

1

118a
uP&^Pu,

where uEmax.&5
1

A3
~ u21;21&1u0;0&1u11;11&)

and uP&5A11a

2
u11;21&1A12a

2
u11;11&.

~1!

The parametera can take any value between zero and one
order to analyze the correlations between the physical p
erties of the two three-level systems represented by this d
sity matrix, it is necessary to express the statistics of
density matrix in terms of expectation values of observab
A particularily convenient description of this type can b
obtained by using a set of eight Hermitian generating ope
tors l̂ i characterized by the relations@14#

Tr$l̂ i%50,

Tr$l̂ i l̂ j%52d i , j , ~2!

(
i

l̂ i
25

16

3
1̂. ~3!

The expectation values of these generating operators
then be interpreted as a generalization of the Bloch vecto
particular, the purity of the density matrix of a three-lev
system can be expressed as

Tr$r̂ local
2 %5

1

3
1

1

2 (
i

^l̂ i&
2. ~4!

This relation implies that the length of the eight-dimension
Bloch vector is limited toA4/3. Using Eqs.~3! and~4!, it is
then possible to formulate the sum uncertainty relation@13#

for the generating operatorsl̂ i ,
©2003 The American Physical Society07-1
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(
i

dl i
2>4. ~5!

As explained in Ref.@13#, this purity uncertainty can be use
to define a sufficient condition for entanglement. Spec
cally, no separable state of the 333 system can violate an
local uncertainty relation of the form

(
i

d„l i~1!2l i~2!…2>8, ~6!

wherel i(1/2) represent the measurement outcomes for
observables corresponding to the operatorsl̂ i(1/2), respec-
tively. It should be noted, however, thatl̂ i(1) andl̂ i(2) do
not have to be the same operators. Indeed, it is an impo
part of the result presented in this paper that they can h
completely different properties.

It is now possible to define an optimal selection of ope
tors l̂ i(1) and l̂ i(2) for the bound entangled state~1!. In
order to obtain both a compact formulation and a direct c
nection with the physical properties of a spin-1 system, o
fundamental set of generating operators can be defined u
the operators of the spin components,l̂ x , l̂ y , and l̂ z , and
their quadratic functions,

Q̂i j 5 l̂ i l̂ j1 l̂ j l̂ i ,

Ŝxy5 l̂ x
22 l̂ y

2 ,

Ĝz5A3S l̂ z
22

2

3D . ~7!

With these basic definitions, the correlations of the bou
entanglement described by Eq.~1! can be expressed in term
of optimally aligned operator pairs. This optimal alignme
is determined by maximizing the total correlation given b

K total5(
i

^l̂ i~1! ^ l̂ i~2!&. ~8!

The choices ofl̂1(1) to l̂5(1) are determined by the fac
that these operator properties are only correlated with
respective operator propertiesl̂1(2) to l̂5(2) in system-2.
However, there are some cross correlations in the remai
three operator properties, making it necessary to determi
nontrivial selection of operators. In general, the optimiz
operator alignment can be given by the following set of o
erator pairs,

l̂1~1!5 l̂ x~1! l̂1~2!5 l̂ x~2!,

l̂2~1!52 l̂ y~1! l̂2~2!5 l̂ y~2!,

l̂3~1!52Q̂xy~1! l̂3~2!5Q̂xy~2!,

l̂4~1!52Q̂yz~1! l̂4~2!5Q̂yz~2!,
03430
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l̂5~1!5Q̂zx~1! l̂5~2!5Q̂zx~2!,

l̂6~1!5Ẑ~1! l̂6~2!5 l̂ z~2!,

l̂7~1!5F̂xy~1! l̂7~2!5Ŝxy~2!,

l̂8~1!5F̂z~1! l̂8~2!5Ĝz~2!, ~9!

where Ẑ(1), F̂xy(1), andF̂z(1) are linear combinations o
l̂ z(1), Ŝxy(1), andĜz(1) that have to be optimized depen
ing on the specific value ofa chosen forr̂ in Eq. ~1!. The
result of this optimization reads

Ẑ5
1

2
l̂ z1

A3

2
Ĝz ,

F̂xy5
112a

21a
Ŝxy1

A3~12a2!

21a SA3

2
l̂ z2

1

2
ĜzD ,

F̂z5
112a

21a SA3

2
l̂ z2

1

2
ĜzD 2

A3~12a2!

21a
Ŝxy . ~10!

With this choice of operator properties, the maximal corre
tion achieved is always equal toK total54/3. Since this result
is exactly equal to the square of the maximal length of
local Bloch vector, the optimized correlation already cor
sponds to the maximal correlation that can be achieved
separable systems. The local uncertainty defined by Eqs~6!
and ~9! can now be evaluated by using this correlation,

~11!

The local uncertainty relation~6! is therefore violated be-
cause of the nonvanishing mismatch in the local expecta
values given by

^l7~1!2l7~2!&52S 3aA12a2

~21a!~118a!
D ,

^l8~1!2l8~2!&5
A3a~12a!

~21a!~118a!
. ~12!

Any separable states with a maximal correlation total
K total54/3 must have perfectly aligned local Bloch vecto
However, the mismatch given by Eq.~12! shows that this is
not the case for the bound entangled statera given by Eq.
7-2
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~1!. Therefore, this class of bound entangled states viol
the local uncertainty relation~6!.

As discussed in Ref.@13#, a useful measure of the relativ
violation of local uncertainty can be obtained by normalizi
the amount by which the uncertainty is violated with t
uncertainty limit,

CLUR512
1

8 (
i

d„l i~1!2l i~2!…2

5
1

8
@^l7~1!2l7~2!&21^l8~1!2l8~2!&2#

5
3a2~12a!

4~21a!~118a!2
. ~13!

The dependence of this relative violation of local uncertai
on the parametera that defines the bound entangled state
shown in Fig. 1. This result shows that the nonclassical c
relations of the bound entangled states considered here
about one-thousand times weaker than the nonclassical
relations of maximally entangled states. It is also interest
to note that the maximal amount of bound entanglemen
obtained fora'0.3077, with a relative local uncertainty vio
lation of CLUR'0.001 78.

Using the violation of local uncertainty as a criterion, it
also possible to extend the class of bound entangled s
given by Eq.~1! to mixtures ofr̂a and white noise,

r̂~a;pN!5pN1̂^ 1̂1~12pN!r̂a . ~14!

Such states still violate the local uncertainty relation~6! as
long as the noise level is below the limit given by

pN

3~12pN!2
,CLUR~pN50!, ~15!

FIG. 1. Relative violation of local uncertaintyCLUR as a func-

tion of the parametera defining the bound entangled stater̂a .
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whereCLUR(pN50) is the relative violation of local uncer

tainty for r̂a given by Eq.~13! above. This result indicate
that an addition of noise to bound entanglement is not crit
if the noise level is well below 0.5%, thus determining t
level of precision required for an experimental investigati
of bound entangled states.

Besides the possibility of quantifying the nonclassic
properties of bound entanglement, the violation of local u
certainty relations also provides insights into the physi
properties of bound entanglement. The local uncertainty
lation ~6! defines a correspondence between the prope
l̂ i(1) of system 1 and the propertiesl̂ i(2) of system 2.
However, Eq.~10! defines the last three operator pairs in
highly asymmetric fashion. In particular, the correlated o
erators do not even have the same eigenvalue spectru
may well be that this lack of symmetry in bound entang
ment is the main practical obstacle preventing the const
tion of entanglement purification protocols for bound e
tangled states@11#. Nevertheless the fact that boun
entanglement overcomes the uncertainty limit given by re
tion ~6! suggests that it may actually be used directly
realize a kind ofquantum teleportation. Specifically, quant
teleportation using bound entanglement would transfer
properties of the input state to properties of the output s
according to a trace preserving map defined by the Bell m
surement and the pair correlations given by Eq.~9!. Since
this map changes the eigenvalue spectrum of operators,
necessarily nonpositive. The positivity of the output state
only preserved by the noise added in the transfer proc
Even though this kind of asymmetric teleportation therefo
requires a certain minimum of noise, the violation of t
local uncertainty relation~6! shows that the transfer of prop
erties would still be more precise than local operations a
classical communication would allow. Quantum teleportat
using bound entangled states can thus be seen as a non
sical implementation of a nonpositive map, similar to qua
tum cloning or the universal NOT operation@15–17#.

In conclusion, it has been shown that the bound entang
states given by Eq.~1! violate the local uncertainty relation
~6! defined by the choice of generating operators~9!. It is
then possible to quantify the amount of entanglement
terms of the relative violation of local uncertainty and
identify the nonclassical correlations between the two s
tems in terms of local physical properties. The result in
cates a specific kind of asymmetry between the correla
operator properties, characterized by the fact that the co
lated operators do not share the same eigenvalue spectru
may well be that this kind of asymmetry is largely respo
sible for the lack of distillability in bound entanglemen
However, the violation of local uncertainty itself shows th
bound entanglement may overcome the classical limit in
plications such as quantum teleportation or dense coding
, and
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