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Bound entangled states violate a nhonsymmetric local uncertainty relation
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As a consequence of having a positive partial transpose, bound entangled states lack many of the properties
otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound
entangled states from separable states. In this paper, it is shown that some bound entangled states violate a
nonsymmetric class of local uncertainty relatigis F. Hofmann and S. Takeuchi, Phys. Rev68, 032103
(2003]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of
bound entanglement.
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Entanglement is an essential element of quantum informa-_
tion theory and is known to be responsible for a wide variety pa=
of nonclassical effect§1—5]. However, it is not generally
clear what properties of entanglement are required for any +]0;—1)(0;—1|+]0;+21)(0;+ 1|+ |+1;0)(+1;0])
particular application. In fact, the properties of mixed en-
tangled states are so difficult to characterize that even the n IE ) Enmal + |11
guestion whether a given density matrix is entangled or sepa- 1+8a' Ma/ATmaxi’ 1483 '
rable may be difficult to answdi—10. For 2x2 and 2
X 3 systems, this problem can be solved by testing whether
the partial transpose of the density matrix is positive or not
[6,7]. However, for higher dimensional Hilbert spaces, there
are examples of entangled states with a positive partial trans- 1+a 1-a
pose[8,11,12. Since the positivity of the partial transpose is ~ and  |[IT)= \V T' +1;-1)+ T' +1;+1).

a fundamental nonlocal property of the state that cannot be 1)
changed using only local operations and classical communi-

cation, the entanglement of states with positive partial transThe parametea can take any value between zero and one. In
pose cannot be distilled to singlett form and is therefore nobrder to analyze the correlations between the physical prop-
available for standard applications in quantum informationerties of the two three-level systems represented by this den-
protocols[11]. For this reason, entangled states with positivesity matrix, it is necessary to express the statistics of the
partial transpose are generally referred to as bound entangle@nsity matrix in terms of expectation values of observables.
states. Nevertheless, the inseparability of bound entanglék particularily convenient description of this type can be
ment suggests that there are other fundamental properties obtained by using a set of eight Hermitian generating opera-
entanglement that distinguish bound entanglement fromors); characterized by the relatiofig4]

separable states. In particular, it would be interesting to know

a
Trag (I~ LO(= 10+ =1+ 1) (- 1;+1]

1
where |Emax.>:ﬁ(|_l;_1>+|0;0>+|+1;+1>)

whether there are some potentially useful properties of Tr{Xi}=0,

bound entanglement that can be applied without requiring

distillation to pure states. In this paper, it is shown that some Tr{xif\j}zzgi i 2
bound entangled states do indeed have such a property. Spe- ’

cifically, the correlations between the two systems in the 3 ~, 16.

X 3 bound entanglement analyzed in the following overcome Z AN=31 ()

the local uncertainty limif13]. This means that bound en-
tanglement could be applied directly in quantum communi-The expectation values of these generating operators can
cation, e.g., for quantum teleportation or for dense codingihen be interpreted as a generalization of the Bloch vector. In

since the amount of noise in data transmission would clearlyarticular, the purity of the density matrix of a three-level
be less than that of the Corresponding classical limit. System can be expressed as

The type of bound entanglement considered in this paper

is the 3x 3 entanglement first presented in R&f]. Since the ay o 101 o

angular momentum components of the spin-1 algebra will be Tr{piocat = 373 Z (A% )
used in the analysis, it is most convenient to express this

state in thd, basis as This relation implies that the length of the eight-dimensional

Bloch vector is limited toy4/3. Using Eqgs(3) and(4), it is
then possible to formulate the sum uncertainty relafib3)
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S ai=a 5 As(1)=Qu(1)  Rs(2)=Qu(2),

o S . No(1)=Z(1) Ne(2)=1,(2),
As explained in Ref{13], this purity uncertainty can be used
to define a sufficient condition for entanglement. Specifi- )‘\7(1):|“:Xy(1) X7(2)=é><y(2),
cally, no separable state of the<3 system can violate any
local uncertainty relation of the form

Ne(1)=F,(1) Rs(2)=G,(2), ©)
> 50n(1)—\(2))%=8, (6) Yvhere?(l), Ifxy(lz, andF,(1) are linear combinations of
! 1,(1), S,y(1), andG,(1) that have to be optimized depend-
where;(1/2) represent the measurement outcomes for th&9 CI’” tfhi_specific_ value od cdhosen forp in Eq. (1). The
observables corresponding to the operatq(d/2), respec- result of this optimization reads

tively. It should be noted, however, thef(1) and\;(2) do . 1. 3.
not have to be the same operators. Indeed, it is an important Z= §|z+ 7621
part of the result presented in this paper that they can have
completely different properties. YTy
It is now possible to define an optimal selection of opera- |‘:Xy: 1+ za“sxy+ L) E‘Z_ E(‘;Z> ’
tors \;(1) and\;(2) for the bound entangled stat&). In 2+a 2ta 2° 2
order to obtain both a compact formulation and a direct con- >
nection with the physical properties of a spin-1 system, one = :1+2a \/_ET _ E” _ 3(1-a )”S( . (10
fundamental set of generating operators can be defined using Z 2+al 2% 27°¢ 2+a Y

the operators of the spin componerits, T,, andi,, and

their quadratic functions, With this choice of operator properties, the maximal correla-

tion achieved is always equal K= 4/3. Since this result

is exactly equal to the square of the maximal length of the

local Bloch vector, the optimized correlation already corre-

e sponds to the maximal correlation that can be achieved in
Sxy:|§_|§, separable systems. The local uncertainty defined by @Ggs.

and (9) can now be evaluated by using this correlation,
A 2 2
G,= ﬁ( 17— §)- (7)

> (1) =N (2)2= ( E, <[Xi(1)_xi(2)]2>>

With these basic definitions, the correlations of the bound 7
entanglement described by Ed) can be expressed in terms h
of optimally aligned operator pairs. This optimal alignment
is determined by maximizing the total correlation given by

32/3- ZKtotal

—(Z <X,-(1>—X,-(2>>2>
Km'=2i (Ri(1)®Xi(2)). ®

R . =8—(Z <X,-(1>—X,-(2>>2><8-
The choices ofA1(1) to A5(1) are determined by the fact !
that these operator properties are only correlated with the 11)

respective operator propertias(2) to A5(2) in system-2. The local uncertainty relatio6) is therefore violated be-

However, there are SOme Cross cqrrelanons in the remaining, se of the nonvanishing mismatch in the local expectation
three operator properties, making it necessary to determme\?a

nontrivial selection of operators. In general, the optimized lues given by
operator alignment can be given by the following set of op- 3a1-a2
erator pairs, (A(1)=A7(2))=~— (2+a)(1+8a))
M(D)=1,(1) Aq(2)=142
)\1( ) x( ) )\1( ) x( )7 <)\ (1) N (2)> \/§a(1_a) (12)
~ - - a 8 BRAY:] T o LA 1Laa"
Ra1)=-Ty(1) Rx2)=1,(2), (2+a)(1+8a)
- . - . Any separable states with a maximal correlation total of
M3(1)==Qxy(1)  N3(2)=Qx/(2), Kiota=4/3 must have perfectly aligned local Bloch vectors.
. A A . However, the mismatch given by E@L2) shows that this is
Na(1)==QyA1) Ng(2)=QyA2), not the case for the bound entangled siategiven by Eq.
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0.002 whereC, yr(pn=0) is the relative violation of local uncer-

0.00175 tainty for p, given by Eq.(13) above. This result indicates
0.0015 that an addition of noise to bound entanglement is not critical
0.00125 if the noise level is well below 0.5%, thus determining the
CLUR 0.001 level of precision required for an experimental investigation

0.00075 of bound entangled states.

0.0005 Besiples the possibility of quantifying th_e nonclassical
0.00025 properties of pound entangle_ment., the V|ol_at|on of local un-
’ certainty relations also provides insights into the physical

0 0.2 0.4 0.6 0.8 1 properties of bound entanglement. The local uncertainty re-
lation (6) defines a correspondence between the properties
\i(1) of system 1 and the propertiés(2) of system 2.
FIG. 1. Relative violation of local uncertain@ yg as a func-  However, Eq.(10) defines the last three operator pairs in a
tion of the parametea defining the bound entangled statg. highly asymmetric fashion. In particular, the correlated op-
erators do not even have the same eigenvalue spectrum. It
(1). Therefore, this class of bound entangled states violategay well be that this lack of symmetry in bound entangle-
the local uncertainty relatiof6). ment is the main practical obstacle preventing the construc-
As discussed in Ref13], a useful measure of the relative tion of entanglement purification protocols for bound en-
violation of local uncertainty can be obtained by normalizingtangled states[11]. Nevertheless the fact that bound
the amount by which the uncertainty is violated with the entanglement overcomes the uncertainty limit given by rela-
uncertainty limit, tion (6) suggests that it may actually be used directly to
realize a kind ofquantum teleportation. Specifically, quantum
1 teleportation using bound entanglement would transfer the
Clr=1-3 > SNi(1)—Ai(2))? properties of the input state to properties of the output state
' according to a trace preserving map defined by the Bell mea-

1 surement and the pair correlations given by E9). Since
= §[<)\7(1)_)\7(2)>2+<)\8(1)_)\8(2)>2] this map changes the eigenvalue spectrum of operators, it is
necessarily nonpositive. The positivity of the output state is
3a2(1—a) only preserved by the noise added in the transfer process.

(13 Even though this kind of asymmetric teleportation therefore
requires a certain minimum of noise, the violation of the

The dependence of this relative violation of local uncertamtyloc.al uncertamt_y relatiof6) shov_vs that the transfer Of prop
. ~erties would still be more precise than local operations and

on the parametea that defines the bound entangled state is . L ;
A . ; classical communication would allow. Quantum teleportation

shown in Fig. 1. This result shows that the nonclassical cor-" .
. . using bound entangled states can thus be seen as a nonclas-
relations of the bound entangled states considered here are _~°. . o T
. : sical implementation of a nonpositive map, similar to quan-

about one-thousand times weaker than the nonclassical cdl;

relations of maximally entangled states. It is also interestingum cloning or the universal NOT operatigh5—17.

) ~ In conclusion, it has been shown that the bound entangled
to note that the maximal amount of bound entanglement Btates given b Eq1) violate the local uncertainty relation
obtained fora~0.3077, with a relative local uncertainty vio- g y =4 4

) _ (6) defined by the choice of generating operat@s It is
Iat|on_ofCLUR7O.O_Ol ’8. . ... . then possible to quantify the amount of entanglement in
Using the violation of local uncertainty as a criterion, it is

also possible to extend the class of bound entanaled Statterms of the relative violation of local uncertainty and to
P 9 ?&entify the nonclassical correlations between the two sys-

T A(2+a)(1+8a)%

given by Eq.(1) to mixtures ofp, and white noise, tems in terms of local physical properties. The result indi-
- IO - cates a specific kind of asymmetry between the correlated
p(a;pn) =pn1@1+(1—py)pa- (14 operator properties, characterized by the fact that the corre-

lated operators do not share the same eigenvalue spectrum. It
may well be that this kind of asymmetry is largely respon-
sible for the lack of distillability in bound entanglement.
However, the violation of local uncertainty itself shows that

Such states still violate the local uncertainty relatiéh as
long as the noise level is below the limit given by

P ><CLur(Pn=0), (15)  bound entanglement may overcome the classical limit in ap-
3(1-pn) plications such as quantum teleportation or dense coding.
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