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Nonlinear interaction of two photons with a one-dimensional atom:
Spatiotemporal quantum coherence in the emitted field

Kunihiro Kojima!* Holger F. Hofmanrt;? Shigeki Takeucht;? and Keiji SasaKi
IResearch Institute for Electronic Science, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
2PRESTO, Japan Science and Technology Corporation (JST), Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
(Received 10 October 2002; published 2 July 2003

The nonlinear photon-photon interaction mediated by a single two-level atom is studied theoretically based
on a one-dimensional model of the field-atom interaction. This model allows us to determine the effects of an
atomic nonlinearity on the spatiotemporal coherence of a two-photon state. Specifically, the complete two-
photon output wave function can be obtained for any two-photon input wave function. It is shown that the
qguantum interference between the components of the output state associated with different interaction pro-
cesses causes bunching and antibunching in the two-photon statistics. This theory may be useful for various
applications in photon manipulation, e.g., quantum information processing using photonic qubits, quantum
nondemolition measurements, and the generation of entangled photons.
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[. INTRODUCTION packet is performed as an example for the applications of our
theory. In Sec. VI, the effects of the nonlinear interaction on
The nonlinearity of atomic objects, e.g., two-level atomsthe second-order correlations are discussed. In Sec. VI, it is
and quantum dots, can be sensitive to individual photonsshown that the bunching and antibunching effects in the two-
This kind of nonlinearity may be useful for the study of photon statistics can be understood as quantum interference
photon manipulations such as quantum information procesffects of different output components. In Sec. IX, we con-
ing [1-4], quantum nondemoliton measuremef, and clude with a summary of our discussions.
the generation of entangled photof8]. Realizations of
single-atom nonlinearities have been studied extensively in  1l. THEORETICAL MODEL OF THE LIGHT-ATOM
the field of cavity quantum electrodynamics-9]. The sen- INTERACTION IN ONE-DIMENSIONAL FREE SPACE

sitivity of this atom-cavity system to individual photons has To investiaate the chanae of the spatiotemporal quantum
been demonstrated by Turchegteal. [2]. Recently, we pro- gate 9 spatiotemporal q
coherence originating from the nonlinear interaction of two

poged a mod_|f|pat|on of this getup that_enhance_s the nonlln'hotons mediated by a single two-level system, we need a
earity by avoiding all losses in a one-sided cavity geometr)P

. : . model for the spatiotemporal propagation to and from the
[4]. I_Every input photon W'I,I then be found n the output. The 544 A possible model has been studied in the analysis of
nonlinear response of a single atom to an input of two pho

: Spatiotemporal quantum coherence for the case of spontane-
tons, e.g., from single-photon sourddd)], can then be ob- 4,5 emission from a single excited atéfri]. This model is

served in the correlations between the two output photons. Iy strated in Fig. 1. Tha-axis represents the single spatial
order to apply the correlations due to the nonlinear photongoordinate of the one-dimensional light field. A single two-
photon interaction, e.g., in quantum information processingjevel atom is coupled locally with the light field at the posi-
it is important to understand the precise spatiotemporal cotion r=0. The negative region<0 and the positive region
herence of the input and output photons. This cannot be fully >0 correspond to the incoming field and the outgoing field,
achieved by theories that eliminate the quantum state of theespectively. This means that the light field can only propa-
field outside the atom-cavity systdm—9]. We therefore pro- gate in the positive direction, approaching the atonr at
pose a theory that includes the propagation to and from thez0, and moving away from it at>0. The dispersion rela-
system in the quantum state, based on a one-dimensiongibn describing the field dynamics is then given by the wave
model of the field-atom interactiofiL1]. In this paper, we number multiplied by the speed of light,=ck. The Hamil-
apply this one-dimensional model of the field-atom interactonian composed of the uninterrupted propagation and the
tion to the case of two-photon input wave packets. interaction between the atom and the one-dimensional field
The rest of this paper is organized as follows. In Sec. Il,can be written as
we give a theoretical model of the light-atom interaction in

one-dimensional free space. In Sec. lll, we discuss the ex- . % . .

perimental realization. In Sec. IV, we derive the general so- H Zf dkiickb'(k)b(k)

lution of the Schrdinger equation for the one-photon case. o

In Sec. V, we apply the result of the one-photon case to x [cT .. . ...

derive the general solution for two photons. In Sec. VI, the +f dki# ?[bT(k)a_—aT_b(k)], (1)

analysis of spatiotemporal coherence in the outgoing wave

whereb(k) is the photon annihilation operator, and is the
*Electronic address: kuni@es.hokudai.ac.jp annihilation operator of the atomic excitatioficl'/ 7 is the

1050-2947/2003/68)/01380313)/$20.00 68 013803-1 ©2003 The American Physical Society



PHYSICAL REVIEW A 68, 013803 (2003

KOJIMA et al.
r(space) T T ~0
r 3
&
r>0 &
input §
&
> &
\
8
output §
< \
« "
B
0 je—> \\
A\

. FIG. 2. Schematic representation of cavity geomefrand T’
single two-level atom . .
are the transmittances of the mirroEsandG represent the ground
state and the excited state of the single two-level atom. The arrows
to the left of the cavity represent the free space input and output

<0 ) .
" fields, respectively.

FIG. 1. lllustration of the theoretical model. Theaxis repre- The dipole relaxation ratE describes the dipole damping
sents the single spatial coordinate of the field. A single two-levelcaused by emissions through the left mirror of the cavity, and
atom is placed at the positian=0. E and G represent the ground the corresponding rate of spontaneous emission through the
state and the excited state of the atarm:0 corresponds to the cavity is equal to ¥ [4,7,9]. In our case, we assume that the
output field and<0 corresponds to the input field. rate of spontaneous emission into the noncavity mogds
) ) - negligible (y<2I'). Nearly all emissions from the atom can
coupling constant between the atom and the light fiElds  then be confined to the cavity and’ds the total spontane-
the dipole relaxation rate. As will be seen later, this rategys emission rate of the excited atom in the cavity. In present
defines the Only relevant time scale of our model. Note tha&avny designsy this can be realized by Covering a |arge solid
the Hamiltonian has been formulated in a rOtating frame dEang|e of the atomic emission with the Ca\/ity mirrors and
fined by the transition frequency,. Likewise, the wave exploiting the enhancement of spontaneous emission by the
vector k is defined in the rotating frame, |d(, is defined Cavity_ For examp|e' in the experiment of Turch&'ﬂmL[Z]’

relative to the resonant wave vectop/c. the cavity parameters indicate that about 70% of the sponta-
neous emission from the atom is emitted through the single

cavity mode. Another promising method of achieving a one-
The situation described by the theoretical model in Sec. Ig:cn:z;:ilggﬁéEg?;?sr;?igriggui?j?ergnzg ?ésgft;(;[orgl és tir;]eRu es:

can be realized experimentally by using a one-sided cavity 2]. In any case, our model shou]d apply to ar,ly ca;/ity de-

illustrated in Fig. 2. The left mirror of the cavity has a trans- sign with x> g> '

mittance much higher than the right mirror, which has nearly Y-

100% reflectance. The negative region on the space axis in IV. ONE-PHOTON PROCESSES

the model shown in Fig. 1 corresponds to the input in Fig. 2
and the positive region corresponds to the output in Fig. 2.  In this section, we treat the interaction of one photon with

In terms of the conventional cavity quantum electrody-the atomic system as a preparation for the analysis of two-
namics parameters, this regime is characterized«byg, photon processes. We can expand the quantum state of the
where « is the cavity damping rate through the left mirror single photon in the basis of the wave-number eigenstijes
andg is the dipole coupling between the atom and the cavityand the excited sta&) of the two-level atom. The quantum
mode. Therefore the method of adiabatic elimination can batate for the one-photon process can then be written as

applied to the time evolution of the cavity field@]. This

means that since the cavity damping ratés much faster (1)) =W (E;t)|E)+ Jm dkW (k; 1) k). 2)
than the dipole coupling, the interaction between the atom —w

and the outside field mediated by the cavity field can be ) ) o .

expressed by an effective dipole relaxation fteg?/ . It !N this basis, The Hamiltonian given by E() can be ex-
should be noted that, in this case, Hamiltoniahrepresents Pressed as

an approximation valid only within the finite cavity band- N A
width of 2«. Effectively, the theoretical model can then be H 1photor= 1 CK+ Hipng, 3

Ill. EXPERIMENTAL REALIZATION

used to correctly describe the atom-cavity dynamics at time .

scales larger than &/ This approximation is sufficient for with R:J dkkk)(k| and Hj,

the description of atomic absorption and emission processes —o

as long as 17> 1/k. Features of the cavity response which

become obvious only at a time scale of about &fe ne- —i# /EJ“ dk(|K)(E|— [E)(K]).
T ) -

glected in this paper.
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The equations for the time evolution of the probability am- W (k;t)=e kg (k;t;)
plitudesW (E;t) and ¥ (k;t) can then be obtained from the -
. . . ~ . t
Schralinger equationizd/dt|W(t))=H|W¥(t)) using Egs. 1A /C_f dt’ e ket )1 (E:t7), (6)
(2) and(3), m s,
d cl (= wheret; is the initial time of the time evolution. In order to
a\If(E;t): - —j dk¥(k;t), (4) describe the time evolution in real space, the result of inte-
T gration (6) can be Fourier transformed using
d\If k;t)=—ikcW (k; \/CF\If E;t 5 W(r;t)= ! fw dke W (k,t 7
a ( 5t)_ IKC ( !t)+ aT ( l)' () (r1 )_\/ﬁ o ( l)'
The time evolutionW (k;t) can be obtained by integrating The real space representation of the time evolution then
Eq. (5), reads
W(r—c(t—t;);t;) for r<0 or c(t—t,)<r,
W(r;t)= 2 r (8)
W(r—c(t—tj;t;)+ T\If E;t—E for O<r<c(t—t;).

The top term corresponds to the single-photon amplitude \]I(E;t):e_r(t_ti)\II(E;ti)

propagating without being absorbed by the atom. On the .

other hand, the bottom term consists of two processes. The _ T P o= Tt )N (47 )t
first term also corresponds to propagation without absorp- ZFCJtidt © Vet =t)it).
tion, while the second term corresponds to the amplitude of a

single photon reemitted into the outgoing field after absorp- (10

tion by the atom[11]. The time evolution¥(E;t) of the  The first term corresponds to emission from the excited atom
excited-state amplitude can be obtained by integrating Ecand the second term corresponds to the excitation of the

(4) using the result for’ (k;t) given in Eq.(6), atom by the incoming light.
Since we are interested in the response of the ground-state
ol [t " atom to a one-photon input, the initial conditionsW{E;t;)
V(E;t)=— \/—f dtf dkW¥(k;t) andW¥(r;t;) can be defined as follows:

o ti — o0

T (t . ¥(r>0;t;)=0, (11

=- \/—f dtf dk( e KT (k;t;)
Iy e W (E;t;)=0. (12

t
+ \lgf dt’ e ket=tp(E;t') | . (9)  Condition (11) represents the assumption that there is no
T Jy light atr>0. Condition(12) represents the assumption that
the atom is initially in the ground state. With the above con-
Using the Fourier transform to obtain the real-space repreditions, the time evolutio (r;t) given by Eqs(8) and(10)
sentation of¥ (k;t), the result reads becomes

T (r—c(t—t;);t;) forr<o,

t—rlc

W(r;t)= \I'(r—c(t—ti);ti)—Zl“f dt’e FU=re=t)p (—c(t’ —t;);t;) for 0<r<c(t—t;), (13

t

0 forr>c(t—t;).
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To investigate the outgoing amplitudg(r>0;t) for an o
arbitrary incoming amplitude under conditiofisl) and(12), ‘I’(f;t):<r|‘1’(t)>=J dr’Ugphotod I, 15t =) W(r';t;),
it is convenient to represeflt (r >0;t) by using the matrix - (15)
element of the time evolution operator. In order to derive this
matrix element, we expand the time evolutioh(t)) of the  where
guantum state given by Eq&ll) and(12) as follows:

ulphotor(r;r,;t_ti):<r|0(t_ti)|r/>'

ulphotor(r;r’;t—ti) is the matrix element of the time evolu-
[~ , A N tion operatorJ(t—t;). This matrix element is the transition
- %drdr [E(r{UE=t)]r){r[W(t)) probability amplitude from the statg’) at timet; to the
state|r) at time t. UjpnorofF,r';t—1;) can be obtained by
comparing the result€l3) and(15). It is given by

[T (1)) =0(t—t)| (1))

+18) [ ar(El0c-tlr)e ),

ulphotor(r;r’;t_ti):uprop(r;r’;t_ti)"_uabir;r’;t_ti)a

(14

where |r)=(1/y27)[” .dke |k} is the eigenstate of a with

photon at the position. U(t—t;)=e~ (/MM 1pnowd =t s the Uprof T3T 3t —t) = 8(r —c(t—t) —r")
time evolution operator¥(r;t) can then be expressed as

follows: and

2L '
— —e (IALCE=HI+"=1) for 0<r<c(t—t;)+r’ andr’'<0,
Uapd 1315t —tj) = ¢ (16)

0 forr>c(t—tj)+r’" orr'>0.

This transition amplitude can be interpreted as follows. At o

the initial timet; , the photon starts to propagate at the posi- ¥ (t)= f_wd kg W (k13 Ez2;t) k) ® |ER)
tion r’. Forr<Q0, it propagates at constant velocity For

r>0, it has already passed the atom and is in a superposition o

of two amplitudes corresponding to the uninterrupted propa- + f_mdkﬂ’(El;kZ;t)|E1>®|k2>

gation of the photon and to absorption and reemission by the

atom, respectivelyu,,, corresponds to the uninterrupted . f
propagation andi,,scorresponds to the reemission from the

atom at an emission rate @f. An illustration of the one-

photon time evolution is shown in Fig. 3. +W(Eq;E2it)|En)®|Ey), (17

dkidkoW (ky;ka;t)[ke) @ ko)

where the indices 1 and 2 of the eigenstdies and |E)
distinguish the two photons. Since photons are indistinguish-
able bosons, the actual quantum state has to be a state of
positive symmetry. This bosonic property of photons requires

_In this section, we treat the interaction of o photonSy, ¢ the quantum states fulfill the following conditions:
with a single two-level atom. The method we use here to

describe the two-photon quantum state is to first distinguish

the particles and then to introduce the correct symmetry of Wk Ez;t)=W(E1;k;t),
the wave function for indistinguishable bosons. Note that this
is a standard textbook approach to problems in multiparticle
guantum mechanidsl 3]. If we consider the two photons to

be separate physical systems, we can describe their quantum
state in the product space of their single-photon Hilbert In order to make it easier to formulate the matrix element
spaces. A general stat@ (t)) for two-photon processes can of the time evolution for two-photon processes, we will first
then be expanded in the product basis of the eigensfidtes divide the Hamiltonian into a linear term and a nonlinear
and|E) as term. The linear term describes the dynamics of two photons

V. TWO-PHOTON PROCESSES

W(ky ko) =W (kyKyst). (18
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1 Tylin_ (1 T(2 T(1 N(2
(@) 5 H™=H g.p)hotor® I g.p)hoton+ I g.p)hotoﬁg) H g.p)hotonv
'% propagation at ¢
& - e O (i _ (i Oy (i Ta
g , where  H{) o= k@ +HE) and 1800
single two-level atom

- chwdki|ki><ki|+|Ei><Ei|'

with R<i>=f dkiki|ki)(k] and

photon
~ (i) cl (=
r<0 0 r>0 Hini=i% - ‘dki(|ki><Ei|_|Ei><ki|)- (19

This Hamiltonian describes the interaction free evolution of
: the two-photon state. Therefore the time evolution of the
single two-level atorf two-photon  probability — amplitudes W' (ky kz;t),
: PIn(E, k,:t), and¥'"(k,,E,;t) given by this Hamiltonian
corresponds to the results of the one-photon case given in
propagation at c Eqs. (4)—(5) It reads

apnyrdure

d . .
\ r Wk kpit) = —ic(ky+ko) W"(Ky kpst)

photon dt
<0 0 r>0 cl’
+ 7[\1’"n(k1£2;t)

FIG. 3. Schematic representation of the time evolution of in-

lin .
coming and outgoing amplitudes. The horizontal axe@jrand(b) FWT(EL kU], (20
represent the space coordinateThe vertical axes represent the d
probability amplitude of the spatial one-dimensional fighy.illus- —PIN(E, ky;t)=—ick,¥"(E; ky;t)
trates the amplitude before the arrival of the photon at the atom and dt

(b) illustrates the amplitude after the arrival of the photon at the T (=

atom. In(a), the photon, having a deltalike amplitude, is propagat- S, /C_f dkl‘lf'i”(kl Ko :t)
ing in the incoming field. The amplitude at tintehas its peak at T ) e
r=c(t—t;)+r’. In (b), the outgoing amplitude of the photon is in

a superposition of two amplitudes associated with the uninterrupted n /%\I’””(ELEZ 1),

propagation of the photon and with reemission after absorption by (22)
the atom, respectively.
d . _
aq’“n(kl,Ez;t): —ick, W"(ky,Ey;t)
that are absorbed and emitted independently. The Hamil- cl (= in
tonian of this interaction free dynamics is then given by the - 7£wdk2\lf (ki,kast)
sum of the single-photon Hamiltonians. Note that this linear
Hamiltonian includes transitions to the stég ,E,), where cl .
both photons are absorbed by the atom. Since this transition +\ VBB, (22)

is impossible in a two-level atom, there will be an interaction
between the two photons. This interaction can be describedince the time evolution described BY" corresponds to the

by a nonlinear term that suppresses the transitions to the stafighe evolution of the single photon case, the integration can

|E1,E5). In the following, we first introduce the linear term pe performed according to the procedure in E§—(10),

and then solve the Schitimger equation for the linear system and the matrix elemenmg?)hotor(rler;ri!ré;t_ti) of the

using the results of the one-photon case. Next, the nonlineaime evolution operator can be expressed as a product of the
term is added to the linear term and the matrix element of théndividual single-photon matrix elements given by E&6),
time evolution for two-photon processes is derived by a com-

parison between the linear equations and the nonlinear equa- Usnhoto 1,7 25T 1,155t — 1)
tions. _ el g el ey
The linear component of the two-photon Hamiltonian can = Uzphotod 137131 1i) - Uspotod 1237251 i).
be expressed using the single-photon Hamiltori&n (23
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The photon-photon interaction can now be included by add-(a)

ing the nonlinear term that suppresses transitions to the two
photon absorption stat&, ,E,),

spnyrdure

sirégle two-level atom

%
n

|:| aphotor= |:| lin A |:| Nonlin,

where  ARN= — (H{{®|Eo)(Esl +|E0)(Er| @A)

int /+

With this addition, the matrix elements of the two-photon
Hamiltonian (24) are identical with the corresponding two- Photon 2 Photon 1

photon matrix elements of the original Hamiltoniél). The r<0 0 r>0
time evolution of the wave function is modified only slightly

by the addition of the nonlinear term. It now reads (b)

]
]

gle two-level aton';

sl

apnydure
P -

d
a‘l’(kl,kz;t)= —ic(ky+ko)W(ky,ky;t)

cl’ ropagation at ¢
W (ke Eoi) + W (B kost)], SRS

(25 k

photon 2 I—\ photon 1 -
d
a\lf(El,kz;t):—ickz«p(El,kz;t) r<0 0 r>0

FIG. 4. Schematic representation of the time evolution of the
. /EF dk, W (kg Koit),  (26) incoming and the outgoing amplitudes in time regions | and II. The
) e ¥ 12t horizontal axes ifa) and(b) represent the space coordinatdhe
vertical axes represent the probability amplitude of the spatial one-
d dimensional field(a) corresponds to time region (b) corresponds
a‘l’(klszit): —ick, W (kq,Ep;t) Loelttl;r:itle(ereg:gn Il In time region |, photqn 1 an_d phoFon 2, having a
plitude, are propagating in the incoming field. Their
amplitudes at time have their peaks at;=c(t—t;)+r; andr,
A /ﬂj” dk, W (Ky koit).  (27) =c(t—t;)+r,, respectively. In time region Il, only photon 1 has
) 2 1Rzt arrived at the atom, the outgoing amplitude of photon 1 is the same
as the amplitude for the one-photon case. Time region Il is not
The comparison between Eq81)—(22) and Eqs(26)—(27) shown, sinc_e it results in a superposition state that cannot be repre-
shows that the integration of Eq6) and (27) is the same  Sented by single-photon amplitudes.
as the integration of Egs(21) and (22), except that
WV (E4,E5;t) is zero in the integration o (E,,k,;t) and
W(ky,Epit). This means that the matrix element Time region Il t;—r}/c<t<t;—rj/c, photon 1 has al-

Uzpnoto{ 1,7 257 1,725t —t;) of the time evolution described ready arrived at the atom and photon 2 has not arrived yet. In
by HphotonCan be obtained by identifying the components inthis situation, photon 1 is interacting with the atom and pho-
the interaction free propagation of the two photons fromton 2 is propagating in the incoming fidlsee Fig. 4b)]. The
ri,ry to rq,r, described by the matrix element matrix element associated with one photon absorption
un(ry,ro;r],r4;t—t;) and removing the ones due to two- UppnowodF1.12:F1.15;t—t;) can be expressed as
photon absorption.

For thg case tha’F photon. 1 and phpton 2 stant,atr nghotor(flyfzifi,réJt—ti)
<0, the time evolution of this probability amplitude can be
obtajned by distinguishing the following three tim(_e regions. =Usphotol F1371:t—1)) - Uprog(F 23T 25— 1))

Time region | t<t;—r;/c, the two photons are indepen-

dently propagating in the incoming fieldee Fig. 4a)]. The ) . , . . .(29)
matrix element associated with the uninterrupted propagatioP T;mde 're%;]on It ti_hr2tlc<t includes abnew sﬂustl?hn nr?tt
| VNI reated in the one-photon processes, because both photons
u rq,fo;r;,ro;t—t;) can be expressed as > ; )
2photo 11237172 5t1) P have now reached the atom. In this time region, the time
U'zphotor(flyfzifi rhit—t) evolution given b)ﬂzphotonis different from the one given by

) ) H'™ because there cannot be any contributions of the two-
=Uprop M1 13t = 1) - Uprod 257 25t=t).  (28)  photon absorption amplitud® (E;,E,;t—t;) in the time

013803-6
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evolution of the outgoing amplitude. This means that thetion r, of photon 1 is less than(t—t;)+r,, since, in this
matrix element corresponding to two-photon absorptiorcase, photon 2 arrives at the atom before photon 1 is reemit-
Uapd 137 13— 1) - Uand 25T 25t—t;) will not be included in  ted. The matrix elementyy ,o(r1,r2:r1,r5;t—t;) can then

the time evolution olsphelF1,72:r1.75;t—t;) if the posi-  be expressed as

Uzphotorf 137 18— i) - Uspnotad 23T 25— 1) forry>c(t—t;) +ry,
Usphotof 1.7 237 1,155t —t)) = , , , (30
. ulphotor(rl;rl;t_ti)'uprop(rz;rz;t_ti) forr1<c(t—ti)+r2.

Note that the dependence of the transition amplitudes fofwo parametersV, (r,—ct;,r,—ct;). In the same way, the
photc_)n 2 on the output coordmgte of photon 1 makes it imtwo-photon wave function? (r,r,;t;) in the outgoing far
possible to separate the dynamics of photon 1 and photon Zeld can be expressed a&,(r,—ct;,r,—ct;). We can
Therefore it is not possible to illustrate this time region usingthen simplify our result32) by the transformation to a mov-

single-photon amplitudes. ing coordinate system,
The matrix element with;<r; can be obtained from the
results forr,<r; by using the positive symmetry between r,—ct=xq,
photons propagating in free space. The results of these time
regions can be summarized as follows: r,—Cct=Xx,. (33
Ugphotork 1512 r,rot—t) In this coordinate system, the output state at an arbitrary time

4in t; can be expressed as

=Upphotor 1,7 257 1,T 25t 1))
Nonlin ot Woul( X1, X2) =W (rq,ro;t5)
+Au2photor(rlvr2-r1'r2!t_ti)1
oo
’ _ ' ’ v ! 1oyl
Ulzlrr;hotor(rl,rzifi,l’é?t_ti) _f_wdxldx2u(xlvx2ixl'x2)'q’in(xlrx2);
—_ R ap! .
=u1photor(rlyr11t_ti)'ulphotor(r21r2xt_ti)v .
with  X;=r;—ct;, X,=r,—ct;,
Nonlin YA
AUzphotof F1,723T 1,1 23t — 1)

X;=ri—ct;, and x;=r,—ct, (39
41°°
_ e (F/c)[r +r +2c(t tj)—ri—rol N .
o2 whereu(Xy,X,;X1,X5) IS given by
for 0<rq,rp<c(t—t)+min(ry,rj), (31 U(X1,X2;X],X5) = U"(Xq,X2;X] ,X5)
. : - _ Nonli :
where min(y,r;) is the minimum ofr; andr;. The matrix HAUTO(X X011, Xp),  (35)

eIementAu’z\"’ﬁ(','{}m of the nonlinear interaction between the
two photons originates from the impossibility of two-photon Where  U™(Xy,X2;X{,X5) = Usphotoff X1 X1) - Uzphotor X2 X2).
absorption at the single two-level atom. The remainder of the (36)
dynamics is identical to the single-photon processes. The to-
tal output wave function of two photons propagating in the

2T
; oyl — !y = A= (Tle) (X" —x)
one-dimensional field can then be expressed as WIth  Uspnoto X;X") = S(X=X") c®

W(rq,ry;t) for x<x’ (37
* Nonli .
:f dridraUgphotod F1,7 231 1,12t =) - W(ry,rst). and - AUTPTR(Xy X5 X1 1 Xp)
2
(32) :—ge (F/C)(x1+X2 X1= X))
c

The output wave function describes the state of the photons

propagating in the far field after the interaction with the for  xp,Xp<min(xy,X3). (39
atom. In general, a two-photon wave function propagating in

one-dimensional free space obeys the relatiogr,r,;t) Note that the linear component"(x, ,x,;x} ,x5) of the ma-
=W (r,—ct,r,—ct;0). Therefore, the function of three pa- trix elementu(x,,X,;X1,X5) represents the time evolution of
rametersW(rq,r,;t;) can be expressed by the function of the two photons without interaction. Therefore it can be ex-
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pressed by the product of two one-photon matrix elements. ) ,

On the other hand, the nonlinear component ‘I’éﬂr(xlixz):f dxqdxpu™(Xg, Xz X1 ,X5) - Win(X],X5)
AuNoninex, x,:x},x5) represents the difference from the -

time evolution of the linear component. The output wave =W oulX1) - VoulX2),

function W ,,(X41,X,) can then be expressed as the superpo-

sition of the linear term and the nonlinear term by substitut- . ® oyt /

ing the right hand side of Eq35) into Eq. (34), g with - Wou(X) = f _, 0X Uzpnorof Xix") - Win(X)

—qplin Nonlin r
qjout(xlyXZ) \Pout(xlvx2)+AlPout (lexz), (39) i(ef(F/c)(fo)_e(I‘/c)X) for x<0
] \/[ ,
\I'ltl)rl.ljt(xly)(Z):Jioodxidxéulm(xl1X2;Xiixé)'\Pin(X:’LIXé)i —

1
(40) —L(2e*<F’°>(L*X>—1) for 0=<x=<L,

A Noring ) foc A dx L O otherwise.
X1,X9) = Xydx
out 1,72 Y 1422 (43)
X AUNOM(x X0 X, X5) - Win(X],X5). The nonlinear term in the output of the rectangular input
wave packet described by E@2) can be obtained according
(4) o Eq.(4)). It reads

The formulation above can be used to analyze the outgoing Nonlin s
amplitude for any arbitrary incoming two-photon state. Inthe AWy (X1,X2) = j_ dx;dx;
following section, these results are applied to the case of

rectangular two-photon input wave packets. XAUNO”"”(Xl,Xz;Xi,Xé)-‘I’in(xi,xé)
VI. GENERAL SOLUTION FOR RECTANGULAR INPUT _ 4 eT/0) (X1 +30) (g~ (TTe)max(0xy o)
WAVE PACKETS L

In order to investigate the typical properties of the non- —e~(T/oLy2
linear photon-photon interaction, a rectangular two-photon _
input wave packet is convenient because the homogeneous forx<L (i=1,2), (44)
probability distribution of the two input photons makes it where max(0; ,x,) is the maximum of O, andx,. The

easier to understand the change of the correlations betwe%r&tput two-photon wave packet can then be written as
the two photons due to the interaction. We assume that the

shape of a single two-photon pulse prepared in the incoming WoulX1,X2) =W (X1, %) + AWNMIN(x o). (45)
far field is a rectangle of length. Such a rectangular two- ]
photon wave packet can be written as follows: It should be noted that the shape of the output wave packet is
defined by the ratio of the dipole relaxation lengti’ and
Wi (X1, X0) =Win(Xq1) - Win(X5), the lengthL of the input wave packet. In frequency represen-
tation, this means that the shape of the output wave packet is
\F for 0=x<L sensitive to whether the frequency spectrum of the input
Win(x)= L == (47 ~ Wave packet is narrower than the atomic line width ar

. not. A particularly simple case for showing the contribution
0 otherwise. of the nonlinear term to the output wave packet can be ob-

. . o tained in the long pulse limit/I"<L because, in this limit,
Note that, in any practical situation, the flanks of a rectangu-, . ; ;

. ; L : - 2" the linear term given by Eq43) of the output wave packet is
lar pulse will not rise and fall infinitely fast. The discontinui-

ties of the wave function should therefore be interpreted as glmost constant for the region<0¢ <L —2¢/I'(i=1,2), that

continuous change of amplitude that is extremely fast on a’
time scale of I/. In particular, the flanks of the pulse should y 1 )
be smooth at a timescale of<lflue to the limitations of the ‘I’c')ﬂt(xlvxz)”:[ for 0<x;<L—-2c/T" (i=1,2). (46)
model regarding the description of the cavity dynanigse
Sec. Ill). However, we assume this timescale to be so muclOn the other hand, the nonlinear term given by Ed) of
shorter than I/ that its effects can be neglected in the fol- the output wave packet can be approximated as
lowing.

As shown in Eq.(39), the output wave packet can be ApNoningy ):_fef(rlc)\xlfxz\
separated into a linear term and a nonlinear term. The linear out Lz L
term in the output of the rectangular input wave packet de- .
scribed by Eq(42) can be obtained according to E40). It for0<xi<L=2c/I" (i=1.2),
reads 47
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FIG. 5. Contour plot of the output two-photon wave packet for an input wave-packet lenigth2c/I". The horizontal axeg; in both
parts represent the space coordinate of photon 1, and the vertical,aegsesent the space coordinate of photo(aRis a contour line plot
of ¥ ,.{X1,X,) and(b) is the cross section of the contour plobat=10c/T

which only depends on the relative distanog—x,| be-  G@)(t,t+r) is defined by the joint probability density of
tween the two photons. The exponential decay indicates thf&etecting one photon at tinte- ~ when the other photon is
the nonlinear deviation from the linear term only becomesjetected at timet. When the second-order correlation
significant in the vicinity ofx;=xX,. The output wave func- Gﬁf}t(t,Hr) is expressed by using the probability density

tion can then be written as | u(x+c7,x)|?, the timet is given by the space coordinate
1 4 x divided by the speed of light=—x/c. Also, the probabil-
Wl X1 ,X0) = E—Ee*(F/C)\XerI ity density| ¥, (x+c7,x)|2 must be rescaled by a factor of

c?, since the probability density per unit time is expressed by
for0O<x;<L—2c/T (i=1,2. (48) c times the probabili_ty dens_ity per L_Jnit length and, for
second-order correlations, this factor is squared. Moreover,
The contour plot in Fig. &) shows an example of the G{) does not distinguish between the two photons. There-
output wave function¥ ,,(x;,X,) in the long pulse limit. fore, both| ¥, (x,x+c7)|? and| V¥ o (x+ c7,x)|? contribute
The probability amplitude increases from black to whiteto Ggi{(t,H 7). Taking all these factors into account, the
shading. In this example, we have chosen an input waveecond-order correlation function can be written as
packet length.=20c/T", which is 20 times greater than di-

pole relaxation lengtte/I". The plateau region away from GR(—xlc,—xlc+ 7)=c[| W gu(x+c7,X)|?
X1=X, in Fig. 5 (@) has a positive amplitude. On the other )
hand, in the vicinity ofx;=x,, a valley of negative ampli- + W o X, x+c7)|%]

tude cuts across this plateau. The shape of this valley can be
seen in Fig. B). Figure 3b) is the cross section of the
contour plot atx,=10c/T". It should be noted that the shape 2 2
of the valley is the same for any cross sectionwithin the ~ NOte that [Wo(x+crx)|* and [Wou(x,x+c7)|* always

plateau region. The valley is due to the contribution of thehave to be equal to each other because of the bosonic nature

nonlinear term in Eq(44) which decreases with the distance of the t,WO photons. 'I_'he .contour plot of the seco.nd-order
betweenx, andx,. The plateau is the unchanged character—Correl"’“Ions is shown in Figs(#1) and _E(a-z_) for an input
istic feature of the long rectangular input wave packet, FigPulse length ofl =20c/T". The correlation increases from
ure 5 shows the typical characteristics in the output for J)Iacllf to white S(;]ad'n.%' (‘jl’oblndlcate t_he ﬁontrlbutlgn OJ the
long two-photon input pulse. In the following section, thesehoniinear term described by E¢d4) in the second-order

typical characteristics are analyzed in terms of two-photorForrelations’ it is conyenient to compare this rgsult with the
statistics second-order correlations obtained from the linear compo-

nent of the output only. Figures(&-1) and Gb-2) shows

this second-order correlation G)"(—x/c,—x/c+7)

=2c?|win (x+cr,x)|? of the linear component. The com-
Two-photon statistics are often used to characterize thearison of these figures shows that both cases are identical

properties of nonclassical light from the viewpoint of photonexcept for their distributions around=0. As can be seen in

counting. For this purpose, the second-order correlatiorrig. 6(@-2), the nonlinear interaction causes photon bunching

=2¢?| W (x+emx)|2 (49

VII. ANALYSIS OF TWO-PHOTON STATISTICS
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FIG. 6. Distribution of the second-order correlatidasG{2)(— x/c,—x/c+ 7) and(b) G&Z)"™(—x/c+ ,—x/c) for an input wave-packet
length of L=20c/T". The horizontal axes-x/c+ 7 in (a-1) and(b-1) represent the detection time for one photon, and the vertical axes
—x/c represent the detection time for the other photon. The second-order correlations increase from black to white(at2ding(b-2)

are the cross sections @d-1) and(b-1) att=10T".

around 7=0 and photon antibunching aroundr g (—xl/c,—xlc+7)=GE)—x/c,—xIc+7)/(2c/L)?
==*2In2l. In order to compare the second-order correla- L2
tions with other systems in quantum optics, it is useful to :7|‘1’out(X+CT,X)|2- (50)

normalize the correlation functio{?) by the product of the

probability densities of single-photon detection at times

—x/c and —x/c+ 7 in the output field. In the long pulse With the approximations for the long pulse limit given by
limit, the total probability of finding both photons within the Ed. (48), this correlation reads

output region of G<x;<L(i=1,2) is nearly equal to 1.

Therefore the single-photon detection probability density per @) 1 Pl

unit time within this region is 2/L. By using this average Goul —X/C,—x/ct+ 7)=5(1—4e 17

photon density, we obtain the normalized second-order cor-

relation function, for 0={x+cr,x}<L—2c/T. (51

013803-10



NONLINEAR INTERACTION OF TWO PHOTONS WITHA . .. PHYSICAL REVIEW 48, 013803 (2003

For x;<X; andx;<x,, the components afi(X;,X,;X;,X5)
read

=

U(I)(Xl X2 ;Xi 1Xé) = upro[(Xl ;X:/L) ) uprop(XZ ;Xé),

w

u® (X1,X23X1,X5) = uprop(xl 1X1) * Uapd X25X3)

+ uabs(xl ;Xi) ’ uprop(XZ ;X£)1

—_

U (xg X2 5X1 ,X5) = Ugpd X1;X1) - Ugod X2 X2)

+AUNOM X Xox],x5).  (53)

9@ (—x/c,—z/c+T)
[}

0
) 2 0 2 4 Therefore, the output wave pack@t,,(x;,x,) can be ex-
7 in units of 1/T panded as
FIG. 7. Normalized second-order correlatigff) in the outgo- Woul(X1,%2) =P (X1, %) + W (%1, %) + ¥ (x,%,),

ing two-photon wave packet. A typical feature of the correlations is

the double dip feature with zero two-photon coincidence occurringyherew (0-(ii) g given by
at nonzero time delays 2 (IQ)Z/I‘. ggi)t approaches 1/2 beyond the
double dip feature, sincg;=1/2 is a statistical property of the N R

single-mort)je two-photongi%L;:;ut state. Propery \szﬂ (HI)(Xl’X2): fﬁmdxldXZ

That is, the second-order correlatigff)(—x/c,—x/c+ 7) in X U= (x, x5 %, x4) - Win(X} ,Xb).
the long pulse limit only depends on the delay tima the

output region @ {x,x+c7t<L—2c/T. g} aroundr=0 is (54
shown in Fig. 7. A typical feature of the correlations is the For the rectangular input wave packet, the output wave func-
double dip feature with zero two-photon coincidence occurftjon in the interval Gsx,<L(i=1,2) is given by

ing at nonzero time delays ef=*=2 In21". Such a nonlin-

ear effect is similar to the nonclassical effect that has been
reported in Refs[7,14. However, in our caseg!?) ap-
proaches 1/2 beyond the double dip feature. The vglﬁ}a
=1/2 is a statistical property of the single-mode two-photon
input state. Note that the value g)=1/2 does not indicate
that there is a correlation between the two photons in the
pulse. The anticorrelation expressed @if)=1/2 simply +£(2e—(F/c)(L—x2)_2)
arises because one cannot detect the same photon twice. In L '
the following section, we trace the second order correlation

back to the coherent terms of the output wave packet. p (i)
out

(i) 1
\I,out(xl 1X2) :E'

; 1
W QX1 Xp) = [ (287 T/ —2)

ut

(Xl 1X2) :é(e—(rlc)(L—Xl)_ 1)(e—(F/C)(L—X2)_ 1)

VIIl. EXPLANATION OF THE SECOND-ORDER
CORRELATION FUNCTION IN TERMS OF QUANTUM

INTERFERENCE EFFECTS Figure §a) shows the correlations o (-0 (x, x,) at x,

out

The cause of the features of the second-order correlatiofy 10¢/I" for an input pulse length of =20c/T". The dotted
shown in Fig. 6a-2 and Fig. 7 can be understood by ana-line shows the amplitude corresponding to prodessvhere
lyzing the interaction processes of two photons and the ator0th Of two photons are transmitted without absorption by
as follows. As shown in Eq(16), the matrix element of the the atom. Likewise, the short dashed line shows the ampli-
time evolution U; oo X;X') can be expanded in terms of tude corresponding to proce€is), where one photon is ab-
two interaction processefl) single-photon transmissidine- sorbed and then reemitted and another photon is transmitted
flection in Fig. 2 without absorption{ll) single-photon re- without absorption. The thin line shows the amplitude corre-
emission after absorption. In the same way, the matrix eleSPonding to processii), where both photons are absorbed
ment of the time evolutiom(x,,X,;X},X3) can be expanded a@nd then reemitted. Figuret shows the superposition of
in terms of three interaction processés:two-photon trans- all the amplitudes. This superposition is equal to the output

mission without absorptionii) one-photon transmission 2MPlitudeW o,(X; ,x,=10c/T'). Therefore Fig. f) is iden-

without absorption and one-photon reemission after absorgic@l With Fig. 5b). Note that the discontinuities of the out-

+AwNoIin y %Y. (55)

tion; (iii ) two-photon reemission after absorption, put wave functionV,,, at x;=0 andx;=20c/I" originate
from the direct transmission of the rectangular input wave
U(X1, X2 X1, X5) =UWD (X1, %23 X] ,x5) + U (X1 ,X5; %] ,X5) packet inW,, and ¥} .. As mentioned in Sec. VI, these
(i) . discontinuities represent changes of the amplitude that are
F U (Xq,X25X1,X0) (52 extremely fast on a time scale ofl’l/ but would be continu-
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FIG. 8. Analysis of the interaction processes of two photons and the atom for an input pulse lebgtB@i/T". In (a), the dotted line
shows the amplitude at,=10c/T" corresponding to process, where both photons are transmitted without absorption. The short dashed
line shows the amplitude corresponding to procéss where one photon is absorbed and then reemitted while the another photon is
transmitted without absorption. The thin line shows the amplitude corresponding to ptiigesghere both photons are absorbed and then
reemitted. The superposition of all the amplitudes is showgbinNote that(b) is identical to Fig. ).

ous at a much shorter time scale ok 1/They, therefore, fore describes the saturation dynamics of the two-level atom.

approximately represent the linear response of the atonSince the no-absorption amplitud\fe’ﬁ,‘?Jt and the single-

cavity system at time resolutions sufficiently longer than theabsorption amplituda?{"’, are independent of the saturation

time scale 1 of the cavity dynamics. and their amplitudes are [1/and —4/L, respectively, the
In the long pulse limit.>c/I", the amplitudes described total amplitude¥ , is obtained by adding a constant value

by Eg. (55) can be approximated as of —3/L to w{"  The resulting total amplitud® ,, is then
1 close to 1L for relative distance$x,—x;|>c/T" and drops
\I,f)il),lt(xl'xz):_' to — 3/L for relative distancelx,—x;|<c/T". The total am-
L plitude — 3/L for relative distance$x,—x,|<c/T" is associ-

ated with the bunching effect in the second-order correla-

W (x, x ):_ﬂ tions. The total amplitude then changes from positive to

outt 7172 L’ negative values continuously, depending only on the relative

distance between the two photos—x,|. Precisely speak-
ing, the total amplitude? ,,; is positive if the relative dis-
tance is|x,— x| >2 In(2)c/T" and negative if the relative dis-
tance is|x,—x;|<2 In(2)x/T" [see Fig. &)]. That is, in the
region with [x,— x| <2 In(2)c/T, the interaction of the two
photons causes a phase flip #f This phase flip can be
understood as evidence on the quantum level for the resonant
To understand the details of the two time correlations, wenonlinearity discussed in Ref4]. The antibunching akx,

now examine the effect of the nonlinear contribution —X4|=2 In(2)c/T originates from¥ ,, passing through zero
Aqu‘&”"“(xl,xz) in the superposition. The nonlinear contri- as the sign of the total amplitude changes from negative to
bution only depends on the relative distafkg—x,| which ~ positive. In this way, both the bunching and the antibunching
corresponds to the difference between the detection times &ffects in the two-photon correlation can be explained in
the two photons. When the relative distafcg—x,| is much  terms of interference effects between the quantum coherence
larger than the dipole relaxation lengdfl’, the nonlinear contributions from the different interaction processes.
contribution AW Yo" is nearly equal to zero and the double

absorption amplitude?" is close to 4L. On the other

hand, when the relative distan¢e,—x,| is much smaller IX. CONCLUSIONS

than the dipole relaxation lengtT’, the nonlinear contri- e have presented a fully quantum-mechanical model of
bution AW 5" is nearly equal to-4/L and the double ab- the nonlinear interaction of two photons at a two-level atom.
sorption amplitude® () is close to zero. As noted previ- The experimental realization of such an interaction can be
ously, AT represents the absence of simultaneousmplemented using a one-sided cavity and single-photon

double absorption. The time dependenceAdf "™ there-  sources. Our theory allows us to determine the effects of an

(i) _A  Aynonin
out(leXZ) L (X11X2)!

. 4
whereA\PNO”"”(xl Xp)=— Ee_ (T'/e) Ixg=xa| (56)
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atomic nonlinearity on the spatiotemporal coherence of amation processing, quantum nondemolition measurements,
two-photon state. By applying the general results to rectanand entangled photon sources.

gular input wave packets, we have shown that the nonlinear
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