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Nonlinear interaction of two photons with a one-dimensional atom:
Spatiotemporal quantum coherence in the emitted field
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The nonlinear photon-photon interaction mediated by a single two-level atom is studied theoretically based
on a one-dimensional model of the field-atom interaction. This model allows us to determine the effects of an
atomic nonlinearity on the spatiotemporal coherence of a two-photon state. Specifically, the complete two-
photon output wave function can be obtained for any two-photon input wave function. It is shown that the
quantum interference between the components of the output state associated with different interaction pro-
cesses causes bunching and antibunching in the two-photon statistics. This theory may be useful for various
applications in photon manipulation, e.g., quantum information processing using photonic qubits, quantum
nondemolition measurements, and the generation of entangled photons.
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I. INTRODUCTION

The nonlinearity of atomic objects, e.g., two-level atom
and quantum dots, can be sensitive to individual photo
This kind of nonlinearity may be useful for the study
photon manipulations such as quantum information proc
ing @1–4#, quantum nondemolition measurements@5#, and
the generation of entangled photons@6#. Realizations of
single-atom nonlinearities have been studied extensivel
the field of cavity quantum electrodynamics@7–9#. The sen-
sitivity of this atom-cavity system to individual photons h
been demonstrated by Turchetteet al. @2#. Recently, we pro-
posed a modification of this setup that enhances the non
earity by avoiding all losses in a one-sided cavity geome
@4#. Every input photon will then be found in the output. Th
nonlinear response of a single atom to an input of two p
tons, e.g., from single-photon sources@10#, can then be ob-
served in the correlations between the two output photons
order to apply the correlations due to the nonlinear phot
photon interaction, e.g., in quantum information processi
it is important to understand the precise spatiotemporal
herence of the input and output photons. This cannot be f
achieved by theories that eliminate the quantum state of
field outside the atom-cavity system@7–9#. We therefore pro-
pose a theory that includes the propagation to and from
system in the quantum state, based on a one-dimens
model of the field-atom interaction@11#. In this paper, we
apply this one-dimensional model of the field-atom inter
tion to the case of two-photon input wave packets.

The rest of this paper is organized as follows. In Sec.
we give a theoretical model of the light-atom interaction
one-dimensional free space. In Sec. III, we discuss the
perimental realization. In Sec. IV, we derive the general
lution of the Schro¨dinger equation for the one-photon cas
In Sec. V, we apply the result of the one-photon case
derive the general solution for two photons. In Sec. VI, t
analysis of spatiotemporal coherence in the outgoing w
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packet is performed as an example for the applications of
theory. In Sec. VII, the effects of the nonlinear interaction
the second-order correlations are discussed. In Sec. VIII,
shown that the bunching and antibunching effects in the tw
photon statistics can be understood as quantum interfer
effects of different output components. In Sec. IX, we co
clude with a summary of our discussions.

II. THEORETICAL MODEL OF THE LIGHT-ATOM
INTERACTION IN ONE-DIMENSIONAL FREE SPACE

To investigate the change of the spatiotemporal quan
coherence originating from the nonlinear interaction of tw
photons mediated by a single two-level system, we nee
model for the spatiotemporal propagation to and from
atom. A possible model has been studied in the analysi
spatiotemporal quantum coherence for the case of spont
ous emission from a single excited atom@11#. This model is
illustrated in Fig. 1. Ther-axis represents the single spati
coordinate of the one-dimensional light field. A single tw
level atom is coupled locally with the light field at the pos
tion r 50. The negative regionr ,0 and the positive region
r .0 correspond to the incoming field and the outgoing fie
respectively. This means that the light field can only prop
gate in the positive direction, approaching the atom ar
,0, and moving away from it atr .0. The dispersion rela-
tion describing the field dynamics is then given by the wa
number multiplied by the speed of light,v5ck. The Hamil-
tonian composed of the uninterrupted propagation and
interaction between the atom and the one-dimensional fi
can be written as

Ĥ5E
2`

`

dk\ckb̂†~k!b̂~k!

1E
2`

`

dki\AcG

p
@ b̂†~k!ŝ22ŝ2

† b̂~k!#, ~1!

whereb̂(k) is the photon annihilation operator, ands2 is the
annihilation operator of the atomic excitation.AcG/p is the
©2003 The American Physical Society03-1
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coupling constant between the atom and the light field.G is
the dipole relaxation rate. As will be seen later, this r
defines the only relevant time scale of our model. Note t
the Hamiltonian has been formulated in a rotating frame
fined by the transition frequencyv0. Likewise, the wave
vector k is defined in the rotating frame, i.e.,k is defined
relative to the resonant wave vectorv0 /c.

III. EXPERIMENTAL REALIZATION

The situation described by the theoretical model in Sec
can be realized experimentally by using a one-sided cavit
illustrated in Fig. 2. The left mirror of the cavity has a tran
mittance much higher than the right mirror, which has nea
100% reflectance. The negative region on the space ax
the model shown in Fig. 1 corresponds to the input in Fig
and the positive region corresponds to the output in Fig.

In terms of the conventional cavity quantum electrod
namics parameters, this regime is characterized byk@g,
wherek is the cavity damping rate through the left mirr
andg is the dipole coupling between the atom and the cav
mode. Therefore the method of adiabatic elimination can
applied to the time evolution of the cavity field@7#. This
means that since the cavity damping ratek is much faster
than the dipole couplingg, the interaction between the ato
and the outside field mediated by the cavity field can
expressed by an effective dipole relaxation rateG5g2/k. It
should be noted that, in this case, Hamiltonian~1! represents
an approximation valid only within the finite cavity band
width of 2k. Effectively, the theoretical model can then b
used to correctly describe the atom-cavity dynamics at t
scales larger than 1/k. This approximation is sufficient fo
the description of atomic absorption and emission proce
as long as 1/G@1/k. Features of the cavity response whi
become obvious only at a time scale of about 1/k are ne-
glected in this paper.

FIG. 1. Illustration of the theoretical model. Ther axis repre-
sents the single spatial coordinate of the field. A single two-le
atom is placed at the positionr 50. E andG represent the ground
state and the excited state of the atom.r .0 corresponds to the
output field andr ,0 corresponds to the input field.
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The dipole relaxation rateG describes the dipole dampin
caused by emissions through the left mirror of the cavity, a
the corresponding rate of spontaneous emission through
cavity is equal to 2G @4,7,9#. In our case, we assume that th
rate of spontaneous emission into the noncavity modesg i is
negligible (g i!2G). Nearly all emissions from the atom ca
then be confined to the cavity and 2G is the total spontane
ous emission rate of the excited atom in the cavity. In pres
cavity designs, this can be realized by covering a large s
angle of the atomic emission with the cavity mirrors a
exploiting the enhancement of spontaneous emission by
cavity. For example, in the experiment of Turchetteet al. @2#,
the cavity parameters indicate that about 70% of the spo
neous emission from the atom is emitted through the sin
cavity mode. Another promising method of achieving a on
dimensional emission and absorption of the atom is the
of semiconductor microstructures, as reported, e.g., in R
@12#. In any case, our model should apply to any cavity d
sign with k@g@g i .

IV. ONE-PHOTON PROCESSES

In this section, we treat the interaction of one photon w
the atomic system as a preparation for the analysis of t
photon processes. We can expand the quantum state o
single photon in the basis of the wave-number eigenstatesuk&
and the excited stateuE& of the two-level atom. The quantum
state for the one-photon process can then be written as

uC~ t !&5C~E;t !uE&1E
2`

`

dkC~k;t !uk&. ~2!

In this basis, The Hamiltonian given by Eq.~1! can be ex-
pressed as

Ĥ1photon5\ck̂1Ĥ int, ~3!

with k̂5E
2`

`

dkkuk&^ku and Ĥ int

5 i\AcG

p E
2`

`

dk~ uk&^Eu2uE&^ku!.

FIG. 2. Schematic representation of cavity geometry.T andT8
are the transmittances of the mirrors.E andG represent the ground
state and the excited state of the single two-level atom. The arr
to the left of the cavity represent the free space input and ou
fields, respectively.
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The equations for the time evolution of the probability a
plitudesC(E;t) andC(k;t) can then be obtained from th
Schrödinger equationi\d/dtuC(t)&5ĤuC(t)& using Eqs.
~2! and ~3!,

d

dt
C~E;t !52AcG

p E
2`

`

dkC~k;t !, ~4!

d

dt
C~k;t !52 ikcC~k;t !1AcG

p
C~E;t !. ~5!

The time evolutionC(k;t) can be obtained by integratin
Eq. ~5!,
ud
th
T
rp

of
rp

E

r

01380
- C~k;t !5e2 ikc(t2t i )C~k;t i !

1AcG

p E
t i

t

dt8e2 ikc(t2t8)C~E;t8!, ~6!

wheret i is the initial time of the time evolution. In order to
describe the time evolution in real space, the result of in
gration ~6! can be Fourier transformed using

C~r ;t !5
1

A2p
E

2`

`

dkeikrC~k,t !. ~7!

The real space representation of the time evolution t
reads
C~r ;t !5H C~r 2c~ t2t i !;t i ! for r ,0 or c~ t2t i !,r ,

C~r 2c~ t2t i !;t i !1A2G

c
CS E;t2

r

cD for 0,r ,c~ t2t i !.
~8!
tom
the

tate

no
at
n-
The top term corresponds to the single-photon amplit
propagating without being absorbed by the atom. On
other hand, the bottom term consists of two processes.
first term also corresponds to propagation without abso
tion, while the second term corresponds to the amplitude
single photon reemitted into the outgoing field after abso
tion by the atom@11#. The time evolutionC(E;t) of the
excited-state amplitude can be obtained by integrating
~4! using the result forC(k;t) given in Eq.~6!,

C~E;t !52AcG

p E
t i

t

dtE
2`

`

dkC~k;t !

52AcG

p E
t i

t

dtE
2`

`

dkS e2 ikc(t2t i )C~k;t i !

1AcG

p E
t i

t

dt8e2 ikc(t2t8)C~E;t8! D . ~9!

Using the Fourier transform to obtain the real-space rep
sentation ofC(k;t), the result reads
e
e
he
-
a
-

q.

e-

C~E;t !5e2G(t2t i )C~E;t i !

2A2GcE
t i

t

dt8e2G(t2t8)C~2c~ t82t i !;t i !.

~10!

The first term corresponds to emission from the excited a
and the second term corresponds to the excitation of
atom by the incoming light.

Since we are interested in the response of the ground-s
atom to a one-photon input, the initial conditions ofC(E;t i)
andC(r ;t i) can be defined as follows:

C~r .0;t i !50, ~11!

C~E;t i !50. ~12!

Condition ~11! represents the assumption that there is
light at r .0. Condition~12! represents the assumption th
the atom is initially in the ground state. With the above co
ditions, the time evolutionC(r ;t) given by Eqs.~8! and~10!
becomes
C~r ;t !55
C„r 2c~ t2t i !;t i… for r ,0,

C„r 2c~ t2t i !;t i…22GE
t i

t2r /c

dt8e2G(t2r /c2t8)C„2c~ t82t i !;t i… for 0,r ,c~ t2t i !,

0 for r .c~ t2t i !.

~13!
3-3
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To investigate the outgoing amplitudeC(r .0;t) for an
arbitrary incoming amplitude under conditions~11! and~12!,
it is convenient to representC(r .0;t) by using the matrix
element of the time evolution operator. In order to derive t
matrix element, we expand the time evolutionuC(t)& of the
quantum state given by Eqs.~11! and ~12! as follows:

uC~ t !&5Û~ t2t i !uC~ t i !&

5E
2`

`

drdr8ur &^r uÛ~ t2t i !ur 8&^r 8uC~ t i !&

1uE&E
2`

`

dr8^EuÛ~ t2t i !ur 8&^r 8uC~ t i !&,

~14!

where ur &[(1/A2p)*2`
` dke2 ikr uk& is the eigenstate of a

photon at the positionr. Û(t2t i)5e2( i /\)Ĥ1photon(t2t i ) is the
time evolution operator.C(r ;t) can then be expressed a
follows:
A
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d

he

ns
t
is
o

h
ic
o
nt
er
n
s

01380
s

C~r ;t !5^r uC~ t !&5E
2`

`

dr8u1photon~r ,r 8;t2t i !C~r 8;t i !,

~15!

where

u1photon~r ;r 8;t2t i !5^r uÛ~ t2t i !ur 8&.

u1photon(r ;r 8;t2t i) is the matrix element of the time evolu
tion operatorÛ(t2t i). This matrix element is the transitio
probability amplitude from the stateur 8& at time t i to the
state ur & at time t. u1photon(r ,r 8;t2t i) can be obtained by
comparing the results~13! and ~15!. It is given by

u1photon~r ;r 8;t2t i !5uprop~r ;r 8;t2t i !1uabs~r ;r 8;t2t i !,

with

uprop~r ;r 8;t2t i !5d„r 2c~ t2t i !2r 8…

and
uabs~r ;r 8;t2t i !5H 2
2G

c
e2(G/c)[c(t2t i ] 1r 82r ) for 0,r ,c~ t2t i !1r 8 andr 8,0,

0 for r .c~ t2t i !1r 8 or r 8.0.

~16!
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This transition amplitude can be interpreted as follows.
the initial time t i , the photon starts to propagate at the po
tion r 8. For r ,0, it propagates at constant velocityc. For
r .0, it has already passed the atom and is in a superpos
of two amplitudes corresponding to the uninterrupted pro
gation of the photon and to absorption and reemission by
atom, respectively.uprop corresponds to the uninterrupte
propagation anduabs corresponds to the reemission from t
atom at an emission rate ofG. An illustration of the one-
photon time evolution is shown in Fig. 3.

V. TWO-PHOTON PROCESSES

In this section, we treat the interaction of two photo
with a single two-level atom. The method we use here
describe the two-photon quantum state is to first distingu
the particles and then to introduce the correct symmetry
the wave function for indistinguishable bosons. Note that t
is a standard textbook approach to problems in multipart
quantum mechanics@13#. If we consider the two photons t
be separate physical systems, we can describe their qua
state in the product space of their single-photon Hilb
spaces. A general stateuC(t)& for two-photon processes ca
then be expanded in the product basis of the eigenstateuk&
and uE& as
t
i-

on
-
e

o
h
f

is
le

um
t

uC~ t !&5E
2`

`

dk1C~k1 ;E2 ;t !uk1& ^ uE2&

1E
2`

`

dk2C~E1 ;k2 ;t !uE1& ^ uk2&

1E
2`

`

dk1dk2C~k1 ;k2 ;t !uk1& ^ uk2&

1C~E1 ;E2 ;t !uE1& ^ uE2&, ~17!

where the indices 1 and 2 of the eigenstatesuk& and uE&
distinguish the two photons. Since photons are indistingu
able bosons, the actual quantum state has to be a sta
positive symmetry. This bosonic property of photons requi
that the quantum states fulfill the following conditions:

C~k;E2 ;t !5C~E1 ;k;t !,

C~k1 ;k2 ;t !5C~k2 ;k1 ;t !. ~18!

In order to make it easier to formulate the matrix eleme
of the time evolution for two-photon processes, we will fir
divide the Hamiltonian into a linear term and a nonline
term. The linear term describes the dynamics of two phot
3-4



m
th
a

iti
on
ib
st

m
e
th
m
qu

an

of
he

n in

an

f the

in

e

a
th
at

n
pte

b

NONLINEAR INTERACTION OF TWO PHOTONS WITH A . . . PHYSICAL REVIEW A68, 013803 ~2003!
that are absorbed and emitted independently. The Ha
tonian of this interaction free dynamics is then given by
sum of the single-photon Hamiltonians. Note that this line
Hamiltonian includes transitions to the stateuE1 ,E2&, where
both photons are absorbed by the atom. Since this trans
is impossible in a two-level atom, there will be an interacti
between the two photons. This interaction can be descr
by a nonlinear term that suppresses the transitions to the
uE1 ,E2&. In the following, we first introduce the linear term
and then solve the Schro¨dinger equation for the linear syste
using the results of the one-photon case. Next, the nonlin
term is added to the linear term and the matrix element of
time evolution for two-photon processes is derived by a co
parison between the linear equations and the nonlinear e
tions.

The linear component of the two-photon Hamiltonian c
be expressed using the single-photon Hamiltonian~3!,

FIG. 3. Schematic representation of the time evolution of
coming and outgoing amplitudes. The horizontal axes in~a! and~b!
represent the space coordinater. The vertical axes represent th
probability amplitude of the spatial one-dimensional field.~a! illus-
trates the amplitude before the arrival of the photon at the atom
~b! illustrates the amplitude after the arrival of the photon at
atom. In~a!, the photon, having a deltalike amplitude, is propag
ing in the incoming field. The amplitude at timet has its peak at
r 5c(t2t i)1r 8. In ~b!, the outgoing amplitude of the photon is i
a superposition of two amplitudes associated with the uninterru
propagation of the photon and with reemission after absorption
the atom, respectively.
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Ĥ lin5Ĥ1photon
(1)

^ Î 1photon
(2) 1 Î 1photon

(1)
^ Ĥ1photon

(2) ,

where Ĥ1photon
( i ) 5\ck̂( i )1Ĥ int

( i ) and Î 1photon
( i )

5E
2`

`

dki uki&^ki u1uEi&^Ei u,

with k̂( i )5E
2`

`

dkiki uki&^ki u and

Ĥ int
( i )5 i\AcG

p E
2`

`

dki~ uki&^Ei u2uEi&^ki u!. ~19!

This Hamiltonian describes the interaction free evolution
the two-photon state. Therefore the time evolution of t
two-photon probability amplitudes C lin(k1 ,k2 ;t),
C lin(E1 ,k2 ;t), andC lin(k1 ,E2 ;t) given by this Hamiltonian
corresponds to the results of the one-photon case give
Eqs.~4!–~5!. It reads

d

dt
C lin~k1 ,k2 ;t !52 ic~k11k2!C lin~k1 ,k2 ;t !

1AcG

p
@C lin~k1 ,E2 ;t !

1C lin~E1 ,k2 ;t !#, ~20!

d

dt
C lin~E1 ,k2 ;t !52 ick2C lin~E1 ,k2 ;t !

2AcG

p E
2`

`

dk1C lin~k1 ,k2 ;t !

1AcG

p
C lin~E1 ,E2 ;t !, ~21!

d

dt
C lin~k1 ,E2 ;t !52 ick1C lin~k1 ,E2 ;t !

2AcG

p E
2`

`

dk2C lin~k1 ,k2 ;t !

1AcG

p
C lin~E1 ,E2 ;t !. ~22!

Since the time evolution described byĤ lin corresponds to the
time evolution of the single photon case, the integration c
be performed according to the procedure in Eqs.~6!–~10!,
and the matrix elementu2photon

lin (r 1 ,r 2 ;r 18 ,r 28 ;t2t i) of the
time evolution operator can be expressed as a product o
individual single-photon matrix elements given by Eq.~16!,

u2photon
lin ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

5u1photon~r 1 ;r 18 ;t2t i !•u1photon~r 2 ;r 28 ;t2t i !.

~23!
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The photon-photon interaction can now be included by a
ing the nonlinear term that suppresses transitions to the
photon absorption stateuE1 ,E2&,

Ĥ2photon5Ĥ lin1DĤNonlin,

where DĤNonlin52~Ĥ int
(1)

^ uE2&^E2u1uE1&^E1u ^ Ĥ int
(2)!.

~24!

With this addition, the matrix elements of the two-phot
Hamiltonian ~24! are identical with the corresponding two
photon matrix elements of the original Hamiltonian~1!. The
time evolution of the wave function is modified only slight
by the addition of the nonlinear term. It now reads

d

dt
C~k1 ,k2 ;t !52 ic~k11k2!C~k1 ,k2 ;t !

1AcG

p
@C~k1 ,E2 ;t !1C~E1 ,k2 ;t !#,

~25!

d

dt
C~E1 ,k2 ;t !52 ick2C~E1 ,k2 ;t !

2AcG

p E
2`

`

dk1C~k1 ,k2 ;t !, ~26!

d

dt
C~k1 ,E2 ;t !52 ick1C~k1 ,E2 ;t !

2AcG

p E
2`

`

dk2C~k1 ,k2 ;t !. ~27!

The comparison between Eqs.~21!–~22! and Eqs.~26!–~27!
shows that the integration of Eqs.~26! and ~27! is the same
as the integration of Eqs.~21! and ~22!, except that
C(E1 ,E2 ;t) is zero in the integration ofC(E1 ,k2 ;t) and
C(k1 ,E2 ;t). This means that the matrix eleme
u2photon(r 1 ,r 2 ;r 18 ,r 28 ;t2t i) of the time evolution described

by Ĥ2photoncan be obtained by identifying the components
the interaction free propagation of the two photons fro
r 18 ,r 28 to r 1 ,r 2 described by the matrix elemen
ulin(r 1 ,r 2 ;r 18 ,r 28 ;t2t i) and removing the ones due to two
photon absorption.

For the case that photon 1 and photon 2 start atr 28,r 18
,0, the time evolution of this probability amplitude can b
obtained by distinguishing the following three time region

Time region I. t,t i2r 18/c, the two photons are indepen
dently propagating in the incoming field@see Fig. 4~a!#. The
matrix element associated with the uninterrupted propaga
u2photon

I (r 1 ,r 2 ;r 18 ,r 28 ;t2t i) can be expressed as

u2photon
I ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

5uprop~r 1 ;r 18 ;t2t i !•uprop~r 2 ;r 28 ;t2t i !. ~28!
01380
-
o-

.

n

Time region II. t i2r 18/c,t,t i2r 28/c, photon 1 has al-
ready arrived at the atom and photon 2 has not arrived ye
this situation, photon 1 is interacting with the atom and ph
ton 2 is propagating in the incoming field@see Fig. 4~b!#. The
matrix element associated with one photon absorpt
u2photon

II (r 1 ,r 2 ;r 18 ,r 28 ;t2t i) can be expressed as

u2photon
II ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

5u1photon~r 1 ;r 18 ;t2t i !•uprop~r 2 ;r 28 ;t2t i !.

~29!
Time region III. t i2r 28/c,t includes a new situation no

treated in the one-photon processes, because both pho
have now reached the atom. In this time region, the ti
evolution given byĤ2photonis different from the one given by
Ĥ lin because there cannot be any contributions of the t
photon absorption amplitudeC(E1 ,E2 ;t2t i) in the time

FIG. 4. Schematic representation of the time evolution of
incoming and the outgoing amplitudes in time regions I and II. T
horizontal axes in~a! and~b! represent the space coordinater. The
vertical axes represent the probability amplitude of the spatial o
dimensional field.~a! corresponds to time region I;~b! corresponds
to time region II. In time region I, photon 1 and photon 2, having
deltalike amplitude, are propagating in the incoming field. Th
amplitudes at timet have their peaks atr 15c(t2t i)1r 18 and r 2

5c(t2t i)1r 28 , respectively. In time region II, only photon 1 ha
arrived at the atom, the outgoing amplitude of photon 1 is the sa
as the amplitude for the one-photon case. Time region III is
shown, since it results in a superposition state that cannot be re
sented by single-photon amplitudes.
3-6
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evolution of the outgoing amplitude. This means that
matrix element corresponding to two-photon absorpt
uabs(r 1 ;r 18 ;t2t i)•uabs(r 2 ;r 28 ;t2t i) will not be included in
the time evolution ofu2photon(r 1 ,r 2 ;r 18 ,r 28 ;t2t i) if the posi-
fo
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ing

n
tim
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to
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01380
e
n
tion r 1 of photon 1 is less thanc(t2t i)1r 28 , since, in this
case, photon 2 arrives at the atom before photon 1 is ree
ted. The matrix elementu2photon

III (r 1 ,r 2 ;r 18 ,r 28 ;t2t i) can then
be expressed as
u2photon
III ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !5H u1photon~r 1 ;r 18 ;t2t i !•u1photon~r 2 ;r 28 ;t2t i ! for r 1.c~ t2t i !1r 28,

u1photon~r 1 ;r 18 ;t2t i !•uprop~r 2 ;r 28 ;t2t i ! for r 1,c~ t2t i !1r 28 .
~30!
-

ime

f
x-
Note that the dependence of the transition amplitudes
photon 2 on the output coordinate of photon 1 makes it
possible to separate the dynamics of photon 1 and photo
Therefore it is not possible to illustrate this time region us
single-photon amplitudes.

The matrix element withr 18,r 28 can be obtained from the
results forr 28,r 18 by using the positive symmetry betwee
photons propagating in free space. The results of these
regions can be summarized as follows:

u2photon~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

5u2photon
lin ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

1Du2photon
Nonlin ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !,

u2photon
lin ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

[u1photon~r 1 ;r 18 ;t2t i !•u1photon~r 2 ;r 28 ;t2t i !,

Du2photon
Nonlin ~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !

[2
4G2

c2
e2(G/c)[ r 181r 2812c(t2t i )2r 12r 2]

for 0,r 1 ,r 2,c~ t2t i !1min~r 18 ,r 28!, ~31!

where min(r18 ,r28) is the minimum ofr 18 and r 28 . The matrix
elementDu2photon

Nonlin of the nonlinear interaction between th
two photons originates from the impossibility of two-photo
absorption at the single two-level atom. The remainder of
dynamics is identical to the single-photon processes. The
tal output wave function of two photons propagating in t
one-dimensional field can then be expressed as

C~r 1 ,r 2 ;t !

5E
2`

`

dr18dr28u2photon~r 1 ,r 2 ;r 18 ,r 28 ;t2t i !•C~r 18 ,r 28 ;t i !.

~32!

The output wave function describes the state of the pho
propagating in the far field after the interaction with t
atom. In general, a two-photon wave function propagating
one-dimensional free space obeys the relationC(r 1 ,r 2 ;t)
5C(r 12ct,r 22ct;0). Therefore, the function of three pa
rametersC(r 1 ,r 2 ;t i) can be expressed by the function
r
-
2.

e

e
o-

ns

n

two parametersC in(r 12cti ,r 22cti). In the same way, the
two-photon wave functionC(r 1 ,r 2 ;t f) in the outgoing far
field can be expressed asCout(r 12ctf ,r 22ctf). We can
then simplify our result~32! by the transformation to a mov
ing coordinate system,

r 12ct5x1 ,

r 22ct5x2. ~33!

In this coordinate system, the output state at an arbitrary t
t f can be expressed as

Cout~x1 ,x2!5C~r 1 ,r 2 ;t f !

5E
2`

`

dx18dx28u„x1 ,x2 ;x18 ,x28…•C in~x18 ,x28!,

with x15r 12ctf , x25r 22ctf ,

x185r 182cti , and x285r 282cti , ~34!

whereu(x1 ,x2 ;x18 ,x28) is given by

u~x1 ,x2 ;x18 ,x28!5ulin~x1 ,x2 ;x18 ,x28!

1DuNonlin~x1 ,x2 ;x18 ,x28!, ~35!

where ulin~x1 ,x2 ;x18 ,x28!5u1photon~x1 ;x18!•u1photon~x2 ;x28!,
~36!

with u1photon~x;x8!5d~x2x8!2
2G

c
e2(G/c)(x82x)

for x<x8 ~37!

and DuNonlin~x1 ,x2 ;x18 ,x28!

52
4G2

c2
e2(G/c)(x181x282x12x2)

for x1 ,x2,min~x18 ,x28!. ~38!

Note that the linear componentulin(x1 ,x2 ;x18 ,x28) of the ma-
trix elementu(x1 ,x2 ;x18 ,x28) represents the time evolution o
the two photons without interaction. Therefore it can be e
3-7
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pressed by the product of two one-photon matrix eleme
On the other hand, the nonlinear compone
DuNonlin(x1 ,x2 ;x18 ,x28) represents the difference from th
time evolution of the linear component. The output wa
function Cout(x1 ,x2) can then be expressed as the super
sition of the linear term and the nonlinear term by substit
ing the right hand side of Eq.~35! into Eq. ~34!,

Cout~x1 ,x2!5Cout
lin ~x1 ,x2!1DCout

Nonlin~x1 ,x2!, ~39!

Cout
lin ~x1 ,x2!5E

2`

`

dx18dx28u
lin~x1 ,x2 ;x18 ,x28!•C in~x18 ,x28!,

~40!

DCout
Nonlin~x1 ,x2!5E

2`

`

dx18dx28

3DuNonlin~x1 ,x2 ;x18 ,x28!•C in~x18 ,x28!.

~41!

The formulation above can be used to analyze the outgo
amplitude for any arbitrary incoming two-photon state. In t
following section, these results are applied to the case
rectangular two-photon input wave packets.

VI. GENERAL SOLUTION FOR RECTANGULAR INPUT
WAVE PACKETS

In order to investigate the typical properties of the no
linear photon-photon interaction, a rectangular two-pho
input wave packet is convenient because the homogen
probability distribution of the two input photons makes
easier to understand the change of the correlations betw
the two photons due to the interaction. We assume that
shape of a single two-photon pulse prepared in the incom
far field is a rectangle of lengthL. Such a rectangular two
photon wave packet can be written as follows:

C in~x1 ,x2!5C in~x1!•C in~x2!,

C in~x!5HA1

L
for 0<x<L,

0 otherwise.

~42!

Note that, in any practical situation, the flanks of a rectan
lar pulse will not rise and fall infinitely fast. The discontinu
ties of the wave function should therefore be interpreted a
continuous change of amplitude that is extremely fast o
time scale of 1/G. In particular, the flanks of the pulse shou
be smooth at a timescale of 1/k due to the limitations of the
model regarding the description of the cavity dynamics~see
Sec. III!. However, we assume this timescale to be so m
shorter than 1/G that its effects can be neglected in the fo
lowing.

As shown in Eq.~39!, the output wave packet can b
separated into a linear term and a nonlinear term. The lin
term in the output of the rectangular input wave packet
scribed by Eq.~42! can be obtained according to Eq.~40!. It
reads
01380
s.
t

-
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g
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Cout
lin ~x1 ,x2!5E

2`

`

dx18dx28u
lin~x1 ,x2 ;x18 ,x28!•C in~x18 ,x28!

5Cout~x1!•Cout~x2!,

with Cout~x!5E
2`

`

dx8u1photon~x;x8!•C in~x8!

55
2

AL
~e2(G/c)(L2x)2e(G/c)x! for x,0,

1

AL
~2e2(G/c)(L2x)21! for 0<x<L,

0 otherwise.

~43!

The nonlinear term in the output of the rectangular inp
wave packet described by Eq.~42! can be obtained accordin
to Eq. ~41!. It reads

DCout
Nonlin~x1 ,x2!5E

2`

`

dx18dx28

3DuNonlin~x1 ,x2 ;x18 ,x28!•C in~x18 ,x28!

52
4

L
e~G/c!(x11x2)~e2~G/c!max(0,x1 ,x2)

2e2~G/c!L!2

for xi<L ~ i 51,2!, ~44!

where max(0,x1 ,x2) is the maximum of 0,x1, and x2. The
output two-photon wave packet can then be written as

Cout~x1 ,x2!5Cout
lin ~x1 ,x2!1DCout

Nonlin~x1 ,x2!. ~45!

It should be noted that the shape of the output wave pack
defined by the ratio of the dipole relaxation lengthc/G and
the lengthL of the input wave packet. In frequency represe
tation, this means that the shape of the output wave pack
sensitive to whether the frequency spectrum of the in
wave packet is narrower than the atomic line width 2G or
not. A particularly simple case for showing the contributio
of the nonlinear term to the output wave packet can be
tained in the long pulse limitc/G!L because, in this limit,
the linear term given by Eq.~43! of the output wave packet is
almost constant for the region 0,xi,L22c/G( i 51,2), that
is,

Cout
lin ~x1 ,x2!.

1

L
for 0,xi,L22c/G ~ i 51,2!. ~46!

On the other hand, the nonlinear term given by Eq.~44! of
the output wave packet can be approximated as

DCout
Nonlin~x1 ,x2!.2

4

L
e2(G/c)ux12x2u

for 0,xi,L22c/G ~ i 51,2!,

~47!
3-8
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FIG. 5. Contour plot of the output two-photon wave packet for an input wave-packet length ofL520c/G. The horizontal axesx1 in both
parts represent the space coordinate of photon 1, and the vertical axesx2 represent the space coordinate of photon 2.~a! is a contour line plot
of Cout(x1 ,x2) and ~b! is the cross section of the contour plot atx2510c/G
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which only depends on the relative distanceux12x2u be-
tween the two photons. The exponential decay indicates
the nonlinear deviation from the linear term only becom
significant in the vicinity ofx15x2. The output wave func-
tion can then be written as

Cout~x1 ,x2!.
1

L
2

4

L
e2(G/c)ux12x2u

for 0,xi,L22c/G ~ i 51,2!. ~48!

The contour plot in Fig. 5~a! shows an example of th
output wave functionCout(x1 ,x2) in the long pulse limit.
The probability amplitude increases from black to wh
shading. In this example, we have chosen an input w
packet lengthL520c/G, which is 20 times greater than d
pole relaxation lengthc/G. The plateau region away from
x15x2 in Fig. 5 ~a! has a positive amplitude. On the oth
hand, in the vicinity ofx15x2, a valley of negative ampli-
tude cuts across this plateau. The shape of this valley ca
seen in Fig. 5~b!. Figure 5~b! is the cross section of th
contour plot atx2510c/G. It should be noted that the shap
of the valley is the same for any cross sectionx2 within the
plateau region. The valley is due to the contribution of t
nonlinear term in Eq.~44! which decreases with the distanc
betweenx1 andx2. The plateau is the unchanged charact
istic feature of the long rectangular input wave packet. F
ure 5 shows the typical characteristics in the output fo
long two-photon input pulse. In the following section, the
typical characteristics are analyzed in terms of two-pho
statistics.

VII. ANALYSIS OF TWO-PHOTON STATISTICS

Two-photon statistics are often used to characterize
properties of nonclassical light from the viewpoint of phot
counting. For this purpose, the second-order correla
01380
at
s

e

be

e

-
-
a

n
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n

Gout
(2)(t,t1t) is defined by the joint probability density o

detecting one photon at timet1t when the other photon is
detected at timet. When the second-order correlatio
Gout

(2)(t,t1t) is expressed by using the probability dens
uCout(x1ct,x)u2, the timet is given by the space coordinat
x divided by the speed of light,t52x/c. Also, the probabil-
ity density uCout(x1ct,x)u2 must be rescaled by a factor o
c2, since the probability density per unit time is expressed
c times the probability density per unit length and, f
second-order correlations, this factor is squared. Moreo
Gout

(2) does not distinguish between the two photons. The
fore, bothuCout(x,x1ct)u2 anduCout(x1ct,x)u2 contribute
to Gout

(2)(t,t1t). Taking all these factors into account, th
second-order correlation function can be written as

Gout
(2)~2x/c,2x/c1t!5c2@ uCout~x1ct,x!u2

1uCout~x,x1ct!u2#

52c2uCout~x1ct,x!u2. ~49!

Note that uCout(x1ct,x)u2 and uCout(x,x1ct)u2 always
have to be equal to each other because of the bosonic n
of the two photons. The contour plot of the second-ord
correlations is shown in Figs. 6~a-1! and 6~a-2! for an input
pulse length ofL520c/G. The correlation increases from
black to white shading. To indicate the contribution of t
nonlinear term described by Eq.~44! in the second-order
correlations, it is convenient to compare this result with t
second-order correlations obtained from the linear com
nent of the output only. Figures 6~b-1! and 6~b-2! shows
this second-order correlation Gout

(2)lin(2x/c,2x/c1t)
52c2uCout

lin (x1ct,x)u2 of the linear component. The com
parison of these figures shows that both cases are iden
except for their distributions aroundt50. As can be seen in
Fig. 6~a-2!, the nonlinear interaction causes photon bunch
3-9
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FIG. 6. Distribution of the second-order correlations~a! Gout
(2)(2x/c,2x/c1t) and~b! Gout

(2)lin(2x/c1t,2x/c) for an input wave-packet
length of L520c/G. The horizontal axes2x/c1t in ~a-1! and ~b-1! represent the detection time for one photon, and the vertical a
2x/c represent the detection time for the other photon. The second-order correlations increase from black to white shading.~a-2! and~b-2!
are the cross sections of~a-1! and ~b-1! at t510/G.
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around t50 and photon antibunching aroundt
562 ln 2/G. In order to compare the second-order corre
tions with other systems in quantum optics, it is useful
normalize the correlation functionGout

(2) by the product of the
probability densities of single-photon detection at tim
2x/c and 2x/c1t in the output field. In the long pulse
limit, the total probability of finding both photons within th
output region of 0,xi,L( i 51,2) is nearly equal to 1.
Therefore the single-photon detection probability density
unit time within this region is 2c/L. By using this average
photon density, we obtain the normalized second-order
relation function,
01380
-

s

r

r-

gout
(2)~2x/c,2x/c1t!5Gout

(2)~2x/c,2x/c1t!/~2c/L !2

5
L2

2
uCout~x1ct,x!u2. ~50!

With the approximations for the long pulse limit given b
Eq. ~48!, this correlation reads

gout
(2)~2x/c,2x/c1t!.

1

2
~124e2Gutu!2

for 0&$x1ct,x%&L22c/G. ~51!
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That is, the second-order correlationgout
(2)(2x/c,2x/c1t) in

the long pulse limit only depends on the delay timet in the
output region 0&$x,x1ct%&L22c/G. gout

(2) aroundt50 is
shown in Fig. 7. A typical feature of the correlations is t
double dip feature with zero two-photon coincidence occu
ing at nonzero time delays oft562 ln 2/G. Such a nonlin-
ear effect is similar to the nonclassical effect that has b
reported in Refs.@7,14#. However, in our case,gout

(2) ap-
proaches 1/2 beyond the double dip feature. The valuegout

(2)

51/2 is a statistical property of the single-mode two-pho
input state. Note that the value ofgout

(2)51/2 does not indicate
that there is a correlation between the two photons in
pulse. The anticorrelation expressed bygout

(2)51/2 simply
arises because one cannot detect the same photon twic
the following section, we trace the second order correlat
back to the coherent terms of the output wave packet.

VIII. EXPLANATION OF THE SECOND-ORDER
CORRELATION FUNCTION IN TERMS OF QUANTUM

INTERFERENCE EFFECTS

The cause of the features of the second-order correla
shown in Fig. 6~a-2! and Fig. 7 can be understood by an
lyzing the interaction processes of two photons and the a
as follows. As shown in Eq.~16!, the matrix element of the
time evolutionu1photon(x;x8) can be expanded in terms o
two interaction processes:~I! single-photon transmission~re-
flection in Fig. 2! without absorption;~II ! single-photon re-
emission after absorption. In the same way, the matrix
ment of the time evolutionu(x1 ,x2 ;x18 ,x28) can be expanded
in terms of three interaction processes:~i! two-photon trans-
mission without absorption;~ii ! one-photon transmissio
without absorption and one-photon reemission after abs
tion; ~iii ! two-photon reemission after absorption,

u~x1 ,x2 ;x18 ,x28!5u(i)~x1 ,x2 ;x18 ,x28!1u(ii) ~x1 ,x2 ;x18 ,x28!

1u(iii) ~x1 ,x2 ;x18 ,x28!. ~52!

FIG. 7. Normalized second-order correlationgout
(2) in the outgo-

ing two-photon wave packet. A typical feature of the correlations
the double dip feature with zero two-photon coincidence occurr
at nonzero time delays62 ln 2/G. gout

(2) approaches 1/2 beyond th
double dip feature, sincegout

(2)51/2 is a statistical property of the
single-mode two-photon input state.
01380
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For x18<x1 andx28<x2, the components ofu(x1 ,x2 ;x18 ,x28)
read

u(i)~x1 ,x2 ;x18 ,x28!5uprop~x1 ;x18!•uprop~x2 ;x28!,

u(ii) ~x1 ,x2 ;x18 ,x28!5uprop~x1 ;x18!•uabs~x2 ;x28!

1uabs~x1 ;x18!•uprop~x2 ;x28!,

u(iii) ~x1 ,x2 ;x18 ,x28!5uabs~x1 ;x18!•uabs~x2 ;x28!

1DuNonlin~x1 ,x2 ;x18 ,x28!. ~53!

Therefore, the output wave packetCout(x1 ,x2) can be ex-
panded as

Cout~x1 ,x2!5Cout
(i) ~x1 ,x2!1Cout

(ii) ~x1 ,x2!1Cout
(iii) ~x1 ,x2!,

whereC (i) – (iii) is given by

Cout
(i) –(iii) ~x1 ,x2!5E

2`

`

dx18dx28

3u(i) –(iii) ~x1 ,x2 ,x18 ,x28!•C in~x18 ,x28!.

~54!

For the rectangular input wave packet, the output wave fu
tion in the interval 0<xi<L( i 51,2) is given by

Cout
(i) ~x1 ,x2!5

1

L
,

Cout
(ii) ~x1 ,x2!5

1

L
~2e2(G/c)(L2x1)22!

1
1

L
~2e2(G/c)(L2x2)22!,

Cout
(iii) ~x1 ,x2!5

4

L
~e2(G/c)(L2x1)21!~e2(G/c)(L2x2)21!

1DCNonlin~x1 ,x2!. ~55!

Figure 8~a! shows the correlations ofCout
(i) –(iii) (x1 ,x2) at x2

510c/G for an input pulse length ofL520c/G. The dotted
line shows the amplitude corresponding to process~i!, where
both of two photons are transmitted without absorption
the atom. Likewise, the short dashed line shows the am
tude corresponding to process~ii !, where one photon is ab
sorbed and then reemitted and another photon is transm
without absorption. The thin line shows the amplitude cor
sponding to process~iii !, where both photons are absorbe
and then reemitted. Figure 8~b! shows the superposition o
all the amplitudes. This superposition is equal to the out
amplitudeCout(x1 ,x2510c/G). Therefore Fig. 8~b! is iden-
tical with Fig. 5~b!. Note that the discontinuities of the ou
put wave functionCout at xi50 and xi520c/G originate
from the direct transmission of the rectangular input wa
packet inCout

i and Cout
ii . As mentioned in Sec. VI, thes

discontinuities represent changes of the amplitude that
extremely fast on a time scale of 1/G, but would be continu-

s
g
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FIG. 8. Analysis of the interaction processes of two photons and the atom for an input pulse length ofL520c/G. In ~a!, the dotted line
shows the amplitude atx2510c/G corresponding to process~i!, where both photons are transmitted without absorption. The short da
line shows the amplitude corresponding to process~ii !, where one photon is absorbed and then reemitted while the another pho
transmitted without absorption. The thin line shows the amplitude corresponding to process~iii !, where both photons are absorbed and th
reemitted. The superposition of all the amplitudes is shown in~b!. Note that~b! is identical to Fig. 5~b!.
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ous at a much shorter time scale of 1/k. They, therefore,
approximately represent the linear response of the at
cavity system at time resolutions sufficiently longer than
time scale 1/k of the cavity dynamics.

In the long pulse limitL@c/G, the amplitudes describe
by Eq. ~55! can be approximated as

Cout
(i) ~x1 ,x2!5

1

L
,

Cout
(ii) ~x1 ,x2!.2

4

L
,

Cout
(iii) ~x1 ,x2!.

4

L
1DCNonlin~x1 ,x2!,

whereDCNonlin~x1 ,x2!52
4

L
e2 ~G/c! ux12x2u. ~56!

To understand the details of the two time correlations,
now examine the effect of the nonlinear contributi
DCout

Nonlin(x1 ,x2) in the superposition. The nonlinear contr
bution only depends on the relative distanceux22x1u which
corresponds to the difference between the detection time
the two photons. When the relative distanceux22x1u is much
larger than the dipole relaxation lengthc/G, the nonlinear
contributionDCout

Nonlin is nearly equal to zero and the doub
absorption amplitudeCout

(iii) is close to 4/L. On the other
hand, when the relative distanceux22x1u is much smaller
than the dipole relaxation lengthc/G, the nonlinear contri-
bution DCout

Nonlin is nearly equal to24/L and the double ab
sorption amplitudeCout

(iii) is close to zero. As noted prev
ously, DCout

Nonlin represents the absence of simultaneo
double absorption. The time dependence ofDCout

Nonlin there-
01380
-
e

e

of

s

fore describes the saturation dynamics of the two-level at
Since the no-absorption amplitudeCout

(i) and the single-
absorption amplitudeCout

(ii) are independent of the saturatio
and their amplitudes are 1/L and 24/L, respectively, the
total amplitudeCout is obtained by adding a constant valu
of 23/L to Cout

(iii) . The resulting total amplitudeCout is then
close to 1/L for relative distancesux22x1u@c/G and drops
to 23/L for relative distancesux22x1u!c/G. The total am-
plitude 23/L for relative distancesux22x1u!c/G is associ-
ated with the bunching effect in the second-order corre
tions. The total amplitude then changes from positive
negative values continuously, depending only on the rela
distance between the two photonsux22x1u. Precisely speak-
ing, the total amplitudeCout is positive if the relative dis-
tance isux22x1u.2 ln(2)c/G and negative if the relative dis
tance isux22x1u,2 ln(2)c/G @see Fig. 8~b!#. That is, in the
region with ux22x1u,2 ln(2)c/G, the interaction of the two
photons causes a phase flip ofp. This phase flip can be
understood as evidence on the quantum level for the reso
nonlinearity discussed in Ref.@4#. The antibunching atux2
2x1u52 ln(2)c/G originates fromCout passing through zero
as the sign of the total amplitude changes from negative
positive. In this way, both the bunching and the antibunch
effects in the two-photon correlation can be explained
terms of interference effects between the quantum cohere
contributions from the different interaction processes.

IX. CONCLUSIONS

We have presented a fully quantum-mechanical mode
the nonlinear interaction of two photons at a two-level ato
The experimental realization of such an interaction can
implemented using a one-sided cavity and single-pho
sources. Our theory allows us to determine the effects o
3-12
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atomic nonlinearity on the spatiotemporal coherence o
two-photon state. By applying the general results to rect
gular input wave packets, we have shown that the nonlin
interaction of two photons at the atom causes bunching
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