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Uncertainty characteristics of generalized quantum measurements
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The effects of any quantum measurement can be described by a collection of measurement eﬁﬁb@tors
acting on the quantum state of the measured system. However, the Hilbert space formalism tends to obscure the
relationship between the measurement results and the physical properties of the measured system. In this paper,
a characterization of measurement operators in terms of measurement resolution and disturbance is developed.
It is then possible to formulate uncertainty relations for the measurement process that are valid for arbitrary
input states. The motivation of these concepts is explained from a quantum communication viewpoint. It is
shown that the intuitive interpretation of uncertainty as a relation between measurement resolution and distur-
bance provides a valid description of measurement back action. Possible applications to quantum cryptography,
guantum cloning, and teleportation are discussed.
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. INTRODUCTION measurement described by a set of opergthts,} are char-
acterized in terms of the physical properties of the measured

One of the most intriguing problems of quantum mechan-system. This characterization is based on the reliability of
ics is the interpretation of the measurement pro¢gssThe  quantitative estimates for various physical properties of the
reason for this central role of the measurement process is ttsystem before the measurement. Using these definitions, the
absence of fundamental “elements of reality” that would si- uncertainty relations for measurement resolution and distur-
multaneously characterize both the dynamics and the medance can be derived, thereby establishing the validity of the
surement resultg2—4). It is therefore not possible to trace uncertainty principle for generalized quantum measurements.
the measurement interaction back to microscopic trajectoriedt is then possible to translate Heisenberg’s original argument
Instead, only a summary of the total statistical effects of dnto a form closer to present problems in quantum informa-
measurement is available. Originally, this property of quaniion theory. In particular, it is shown that the concept of
tum mechanics was explained by Heisenberg in terms of aqlsturbance can be understood in terms of a loss of informa-
uncontrollable disturbance in one variable caused by th&0n about the input state caused by the measurement back
measurement of another varialit. However, this explana- action. This interpretation can then be applleql to problems
tion was still based on a classical model of the measuremeﬁPCh as guantum cryptography, quantum cloning, and quan-
interaction. Consequently, the general validity of Heisen-UM teleportation.
berg’s original argument has been questioned by a number of
researcher§6,7]. In particular, there appear to be some un- 1I. QUANTITATIVE ESTIMATES AND MEASUREMENT
resolved issues concerning the derivation of uncertainties us- RESOLUTION
ing correlations between the system and the measurement

device[8—10. While classical physics allows a direct identification of

measurement results with objective properties of the system,

On the other hand, the investigation of various methqu t? e existence of which is thought to be independent of the
prepare and control quantum states, especially in the field g0 5\, rement process, quantum mechanics is formulated in

quantum optics, has motivated the development of a geneLy, apgiract probabilistic space from which the measurement
alized measurement theory based on the Hilbert space repregisiics must be derived indirectly. Therefore, a special
sentation of quantum states. This formalism allows an exXheory is necessary to identify and define the connection be-
pression of all relevant statistical properties of a quantumyeen a measurement outcomeand the quantum state of
measurement in an extremely compact fdria]. Unfortu-  yhe system. In general, this can be achieved by using a set of

ly, thi f h lationshi ~ .
nately, this compact form tends to obscure the relationship easurement operatofl,,,}. These operators describe both

between physical properties of the system and the measurﬁ%e measurement probabilitieém) for each outcomen and
ment process. In particular, the relationship of this general- » P it u

ized formulation of measurement with Heisenberg’s originalthe chan.ge of the qgantum sta.te causeg by the measurement
discussion of the uncertainty principle as a relation betweeRack action. For an input density operafgy,
measurement resolution and the disturbance of a conjugate
variable may not be entirely cle]. _ p(m)=tr{piM I M},
In this paper, the measurement effects of a generalized
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Note that the properties &l ,, are only restricted by the fact Sults, itis used to “retrodict” properties of the inp{#2,13.
that the sum of all probabilities must be one for any inputln particular, the quantitative estimatég, and the measure-
state, that is, ment errorﬁAﬁ1 are now defined as expectation values of the

operator and fluctuations of the statistical operﬁtgr,
St LA B
% MIM,=1. () An=tr{AR},
In this formulation, the information obtained about the A2 =tr{A’R,} — A2 (7)
. m m m*
measured system is represented by the dependence of the

measurement probabilify(m) on the input statgi,. In or-  The analogy between the statistical oper&grand the den-
der to characterize the measurement information obtainegity operator indicates that the same uncertainty relations that
about an observabld, it is necessary to examine how the apply to quantum state preparation also apply to the simul-
probability p(m) varies for different eigenstates 8f Sup- taneous measurement of noncommuting propefses the

pose that the input state is an unknown eigenstate of th&ppendix for a general derivation of uncertainty relations
observableA. It is then possible to estimate the eigenvalueSpeC'f'Ca"y’ the uncertainty limit of the measurement errors

~ 2 2 . ~ 2,
of A based on the measurement resulAssuming that each oA and 6By, of two noncommuting observablésandB is

. - : . h iven b
eigenstate oA is equally likely to be the input, the probabil- given by
ity p(A|m) thatm was obtained as a result &fis given by 1
5A§55§>Z|tr{Rm[A,B]}|2. )

AMIM A AMIM A
(Al A (A A) -

SAAIMEN AN MM This uncertainty relation applies to cases where the same
measurement procedure is used to estimate both input eigen-

In order to provide a single quantitative estimate of the inpuyalues ofA and input eigenvalues @& when no additional
eigenvalueA, it is necessary to assign a measurement valugnformation on the input state is available. An example of
An, to each possible outconme. The reliability of this esti-  such a situation can be given in terms of a quantum cryptog-
mate can be characterized by the average quadratic error ofaphy protocol, where a message can be either encoded in the

p(Alm)=

tained from the probabilitiep(A|m), eigenvalues ofA or in the eigenvalues oB. Uncertainty
PN relation (8) then defines a quantitative limitation on eaves-
t{(Amn—=A)"M M} dropping attempts. An important feature of this measurement

2 _ _AN2 _
6An= ; (Am=A)*p(A[m) tr{|\7IT |\7|m} ' uncertainty is that it does not depend on the input state at all.
m

(4) Instead, the uncertainty limit is defined by an expectation

value of the statistical matriR,, that characterizes the infor-
The best possible estimate is then obtained by minimizingnation obtained in the measurement. In general, this expec-
this quadratic error. The result of this optimization is thetation value can itself be interpreted as an estimate of a

average value oA in the input state distributiop(A|m), physical property of the measured system. The characteriza-
tion of measurement uncertainty is thus achieved entirely in
t{AMI M} terms of information obtained in the measurement, avoiding

5 any ambiguities of assumptions about the physical reality
represented by the input state. Nevertheless, uncertainty re-

Th t out then be identified with lation (8) also has implications for the interpretation of the
€ measurement outconne can then be ioentmed with a6 55 rement back action, as will be explained in the follow-

quantitative measurement of the observaBlewhere the ing section.
measurement result is given by, and the measurement
resolution is given bysA?Z .

This procedure can be applied to any observable. The
measurement resut, therefore provides information about  The measurement operatdt,, not only describes the
all physical properties of the measured system. The informameasurement information obtained from the measurement
tion obtained from the measurement resai¢an be summa-  resultm, but also the measurement back action effects that
rized by the normalized statistical measurement opeRtpr change the input state into the output state. In order to char-

m ; p(A|m) T

I1l. BACK ACTION AND DISTURBANCE

given by acterize this change in terms of physical properties, it is nec-
essary to find a useful definition of the disturbance of an
. MM, observablé3 caused by the measuremdit, . In the follow-
Rm:tr{l\?IT I\A/lm}. (6) ing, the definition of disturbance will be based on the mea-
m

surement error obtained when the input eigenvalu® d$

This operator is essentially a time-reversed version of th@stimated by the outcome of a precise projective measure-
density matrix. Instead of predicting future measurement rement ofB performed on the output of the measuremny.
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The disturbance then corresponds to a loss of informatiothe measurement resuitis related to the disturbanceB?

about the property suffered as a consequence of the mea-of a noncommuting propert by
surement back action.

The measurement sequence defined by an initial measure- 5Ar2an Bmf/ |<rmf|[A B]|rmf>|2. (14)
ment resulm followed by a final measurement result®f is
characterized by a statistical matf, given by This relation takes into account the final measurement result
. B; and may include correlations between the error of the
mf=[Fm)(Fmi ~ With estimateA,, and the final resulB;. Therefore, a complete
characterization oM, requires the determination of mea-

MT|Bf>_ 9) surement resolutiongA,,; and disturbance®,,; for each

1
o) = /<B N EB,) final resultB; .
f m In order to obtain a single expression for the disturbance

This statistical matrix determines the optimal estimates foff B caused by the measuremelt,, it is necessary to
the input eigenvalues of botA and B obtained from the average over all final measurement resalfs For this pur-

measurement resulta and B; , pose, the statistical matan for the measurement ain
given by Eq.(6) can be expressed in terms of the eigenstate
Amf:<rmf|A|rmf>! Irm) Of the statistical matrixR,; for the joint measurement

given by Eq.(9),
mf:<rmf|é|rmf>- (10

. IAqmzz Wm(Bf)|rmf><rmf| with
The measurement errors are given by By

mf_<rmf|A |rmf> Amf' —<Bf|M Mm|Bf>
Wmn(Bs) = : (19
tr{MmM m
mf_<rmf|B |rmf> Bmf (11) . .. .. A
This decomposition shows that the statistical maRjxcan
The proper uncertainty relation for the estimateAadnd B be interpreted as an average over the statistical matrices

. - - _|rme){rm¢ of each possible final outcon& with the appro-
obtained from an initial measuremevit, followed by a pre priate statistical weighte/,,(Bs). If no other information on

cise measurement & therefore reads the input state is availabley,,(B;) is the conditional prob-
ability of obtaining the final resulB; following an initial
SAZ 5B2 = I(rmfI[A,é]lrmf>|2. (12 ~ measurement result of. Since the errors of the estimag,

obtained from the measurement resmitare given by an
_ _ _ _ _ _ expectation value of the statistical matrix, it follows from
Since this uncertainty relation applies to the best estimates ®qs. (15) and (4) that
A andB, it is obvious that it is also fulfilled for estimates of

A based only orm and estimates d8 given directly by the

final measurement valug; . In particular, the actual distur- -

banceAB2 can be written as :%‘4 Win(BO)(I mel (Am=A) %)
f

SAZ =tr{(Am—A)?R )}

2
ABR=(mil (Bt B)?r mi) = 8B+ (Br—Bpmo)?, 13 =; Win(By) OAZ ¢ (16)
f

where the difference between the measurement rBsidhd  The measurement erro?AZ obtained forM is therefore
the optimal estimat8,,;=(r ¢ B|r ) corresponds to a sys- equal to the statistical average over the measurement errors
tematic error caused by the measurement back action. Thg;o\Zf obtained for the measurement sequen¢Bs M,

disturbance can thus be separated into a random@ﬁiﬁ;’g Likewise, the averaged disturbance®fssociated with the
limiting the possibility to estimate the initial value Bf and  measurement resulh can be obtained by

a well-defined shift o8 given by the difference between the

output valueB; and the best possible estimadg,; of the ABﬁFZ Win(Br)AB2
unknown input value based on all the available measurement B
informations.
With the definitions given above, it is possible to formu- = > Wn(B)l(rmeBi)|?(B—B;)?
late Heisenberg’s uncertainty principle with respect to the Bi .By
measurement resolutiodA,,; and the disturbance\B2 ; ~ 2
caused by the measurement back action. In this form, it — W( —B,)2 17)
states that the erra¥A2; of an estimate oA obtained from BB tr{M M}
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This definition of measurement disturbance corresponds teeparable connection between physics and information that
an average of the squared difference between the final valusay be one of the most characteristic features of quantum
B; and the initial valueB; over all possible input and output mechanics. Consequently, a complete characterization of

values ofB. This average can be obtained experimentallyguantum measurements must always include both the infor-
and corresponds well with the intuitive idea of disturbance aghation aspects given by the measurement resolution and the
a random change d3. dyr‘]’?vn;lcs?:naslse:;agr:;/ elr(]asb}:)lfhehglt?)trLlJ rgﬁrr%ct;eér measurements
Since 56AZ and AB2, can both be expressed as averages P! P ' P
5 o M : i may help to illustrate the different aspects of measurements
over 6A7,; andAB;, it is now possible to derive an uncer-

. . 5 2 : expressed by resolution and disturbance. Conventional pho-
tainty relation forAr, andA B, from relations(14) for each 14 getection usually requires the absorption of all photons.

2 2 . . .
6Am andABy,;. As shown in the Appendix, the uncertainty The detection of a single photon can therefore be represented
of a statistical mixture can be derived directly from the indi- by the operatol,_,=|n=0)(n=1|. This operator has a
. :

V"?‘“‘f’" uncertainties by averaging the corresponding uncer|5erfect measurement resolution 6A?=0, but its distur-
tainties as well,

bance is given byAn?=1. On the other hand, a quantum
nondemolition measurement of photon number is repre-

; Wm(Bf)éArznf>(§ Wm(Bf)ABfnf) sented by a measurement operakb,=3,M(n)[n)(n|.

! ! This operator commutes with, and therefore has a distur-

_ 1 oA 2 bance ofAn?=0. However, the coefficientdl ,(n) are usu-

=2 ;f Win(B) [(rmd [ABI[rmp)| | - (18 ally given by a slowly varying function ofi and the corre-
sponding measurement resolution is very lo@n¥1).

The uncertainty limit on the right side of the equation can belhese examples show that the measurement resolution and

simplified by noting that the disturbance of a single property are not usually connected

in any way. Interestingly, uncertaint{20) does establish

such a connection for noncommuting properties.

2
(; wm<Bf>|<rmf|[A,é]|rmf>|) =[tr{R[A,B]}?.

(19 IV. APPLICATION TO PROBLEMS IN QUANTUM

. L e e I . COMMUNICATION
With this simplification, it is now possible to formulate the

uncertainty given by Eq18) without any explicit sums over ~ The application of quantitative concepts to quantum com-

the final resultsB;. For any measurement described by amunication may appear to be a bit unusual. Theoretically, it
measurement operatdil ., the measurement erraﬁAﬁq of does not make a difference whether the eigenvalue difference

_ - ) : of two orthogonal states used in a quantum code is large or
the best estimate ok obtained fromm and the disturbance gma)| However, the quantitative aspect may be reintroduced
AB;, in the propertyB caused by the measurement backby the specific physical implementation. In multilevel sys-
action ofl\7|m obey the uncertainty relation tems, a reasonable choice of operator properties will then

represent the fact that weak interactions with the environ-
a2 L a A, ment are more likely to cause transitions between eigenstates
5AmABm>Z|tr{Rm[A' BI}*. (200 ifthe eigenvalue difference is small. In the presence of noise,
it is then optimal to encode information in such a way that
This limit shows that the uncertainty principle does indeedthe more likely errors causing small changes in the eigenval-
apply to the relation between measurement resolution andes of A or B are less serious than the comparatively un-
disturbance, contrary to the statement found in the otherwiskkely errors involving large changes. Such codes will have a
excellent book by Nielsen and Chuaf&]. Moreover, it sug-  quantitative character similar to that of analog signals. In
gests that reports on possible violations of measurement uract, this kind of situation is well known in the case of con-
certainty[ 7,9,10,14 are based on definitions of measurementtinuous variable quantum optics, where the concept of uncer-
resolution and disturbance that are not consistent with thoseinty can be applied directly to implementations of quantum
given here. The definition of uncertainties in terms of thecryptography{15,16.
information obtained about unknown input states given in A quantum cryptography protocol for the general case of

Egs. (4) and (17) may therefore be closer to the original noncommuting variabled and B may be implemented as

Intention .O.f Heisenberg's argument than thea"?ma“"e.s- follows. Alice will randomly choose either an eigenstateiof
A significant feature of uncertainty relatid@0) is that it ) . ; ) . )
genstate d8 to send her information. Likewise, Bob

characterizes the actual changes in a physical property’ an €l nation
caused by the measurement given by the disturbmﬁfﬁ_ chooses randomly whether to measirer B. By later ex-
This disturbance is given in terms of information that may bechanging data on their choices éf or B, they can then
available before and after the measurement, but it does natlect the valid communication attempts. An eavesdropper
directly refer to the information obtained in the measurementan now try to optimize the simultaneous extraction of infor-

process itself. By relating this disturbanceBnto the mea- mation about the eigenvalues &f and of B by choosing
surement resolution iA, uncertainty(20) establishes an in- various measurement strategi{d@ mt with the appropriate
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resolutionssA7, and 5B7,. However, this eavesdropping at- A, while the disturbanceAB2 quantifies the teleportation
tempt WI" cause addltlor_1al noise m_the commun_lcanon beerror inB. A particularly simple example is given by the
tween Alice and Bob. This noise is given by the disturbanceg|assical limit of continuous-variable teleportation, where a
AA} and AB}, and may lead to the detection of the eaves-pair of uncorrelated vacuum fields is used instead of the en-
dropper by Alice and Bob. In fact, Alice and Bob can deter-tangled pair[19]. The teleportation procedure then corre-
mine the average disturbances by exchanging informatiosponds to a measurement projection on a coherent|state
about the initial eigenvalues sent by Alice and the final ei-followed by the preparation of a corresponding state in the
genvalues received by Bob. From randomly selected subsetaitput. This method can also be used for quantum cloning or
of the valid communication attempts, Alice and Bob can theras an eavesdropping strategy. In all cases, the procedure can
estimate the maximal resolution#\?, and 6B that could ~be represented by the-dependent measurement operators
have been obtained by the eavesdropper. If these resolutions
are sufficient to decode the information encoded in eigen- i|a><a|
states ofA and B, the line is not safe. On the other hand, J '
security can be established if the noise levels given by the
disturbance are low enough to prevent the required measurdhese operators can now be characterized using the quadra-
ment resolution. ture components of the light fields and y, with [Xx,y]
Another application of measurement uncertainties is the=i/2, and the definitions of optimized estimates and uncer-
quantum cloning problem. If it is known that the state to betainties given by Eq<7) and(17). The results for the opera-

cloned is either an eigenstateAfor an eigenstate @, itis  torsM(«) then read
possible to define a quantitative cloning error equal to the

M(a)= (21)

- . X, iy, =a,
average quadratic deviation of the clone’s propektyr B o Wa=a
from the eigenvalue of the original. This cloning error can Sx2=5y2=1/4
then be used to evaluate cloning strategies based on a quan- * * ’
tum measuremeriV .} on the original and a quantum state AX2=Ay?=1/2. (22)

preparatior s,y for the clones. In this case, the disturbance

caused by the measuremél@lm} characterizes the unavoid- These uncertainties now define the noise levels in the mea-
able damage done to the original in the cloning process, resurements and in the transmitted signal. Note that the distur-
sulting in an irreversible loss of information about the origi- bances are twice as high as the measurement resolutions.
nal properties of the cloned state. If the cloning procesdhis is a typical feature of the classical teleportation limit
extracts the maximal amount of information from the origi- [19]. In an eavesdropping scenario, this strategy therefore
nal system by effectively projecting the system onto a pureextracts maximal information, but makes it easy for Alice
state, it is also possible to define a set of cloning operatorgnd Bob to detect the eavesdropping attempt.

C=|¢m){ 4| for the optimal cloning procedure. This set of

operators represents a projective measurement of the input V. CONCLUSIONS
system followed by a preparation df copies of the corre- .
s)p/)onding quantumysta?e. FI)\lote that it isppossible to produce The effects of quantum [neasurements descrlbgd by- sets
any number of clones in this manner, siigg,) is precisely of measurement .operat0|{sM m} can be characterized in
defined by the classical measurement informationThe  terms of the physical properties of the measured system by
total output statistics of the cloning process is then given bygvaluating the effects of the measurement on eigenstates of
a mixture of the product states b, with the respective the_correspo_ndl_ng Herm|t|a_n operators. It is then possible to
statistical weight given by the measurement probabilitiel€fine quantitative expressions for the concepts of measure-
p(m) for the original input state. However, the cloning errors ment resolu_t|on and d|§turbance cqrrespondlng to the notions
for each individual clone can be estimated directly from the€xPressed in the earliest discussions of quantum measure-

disturbances caused by the cloning operétosince it rep- ment [5]. These definitions allow a derivation of Heisen-

7 . . erg’s uncertainty principle, demonstrating the general valid-
resents both the sensitivity Of the cloning process to the mpui?y of uncertainty for all possible measurement strategies. In
and the resulting output statistics of all the clones.

Finallv. it is also possible to apply this quantitative char- particular, it can be shown that the back action of a general-
1aty, P . PPy quantit ized measurement is indeed uncertainty limited. A complete
acterization to errors and information extraction in quantum N . -
.cparacterlzatlon of generalized quantum measurements in

teleportation. In this case, the measurement made on the joi . -
P | ?erms of measurement resolutions and disturbances for each

gjtelr)neosfetsseit:cguttostar\(t)e Srr':i?asorc])(fa &Zrtuﬂkwswinzﬁngleg&:%Ievant physical property may therefore provide practical
y prop P insights into the nature of quantum measurements.

€.g., because the entanglement is nonmaximal. This effect Since the definitions of measurement uncertainties have

can be described by a set of transfer operaigsvith prop-  peen based on quantitative estimates of an unknown eigen-
erties equivalent to the measurement operatdfs, state input, they can also be applied to evaluate errors in
[16,17,18. The measurement resolutieﬂ;ﬁ\ﬁq then character- various quantum communication scenarios. For example,
izes the information extracted about the input eigenvalue oéavesdropping strategies for quantum cryptography may re-
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quire an optimization of both the measurement resolutionss the well-known formulation of uncertainty for pure states,
SA2 and 8B2, for simultaneous estimates &f and B, and

. . . 1

the corresponding disturbanca#\% andAB?Z,. Similar con- A —A)2 B —B)Y )= — A-B 2

siderations may also be useful in the discussion of quantum SM( nA) WZ w'( n=b) WZ 4|(lﬂ|[ Bl

cloning and quantum teleportation. 642 582 (A3)
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where the averaged uncertainties are given by
APPENDIX: DERIVATION OF UNCERTAINTY
RELATIONS FOR STATISTICAL MIXTURES 5A2:Z p(i)&AiZ,
Although the basic derivation of uncertainty relations for '
guantum states and density matrices is well knd@h it
may be useful to review it in the general context of statistical 5B?= E p(i)b‘Biz. (A5)
mixtures in order to provide a more precise justification of :
the measurement uncertainties discussed in this paper. |t then follows that:
The basic derivation of uncertainty relations for pure L
states is obtained from the Cauchy-Schwarz inequalities for 2 em2_ S 2 2 2 a2
the two Hilbert space vectors given by OA"0B _Iz;f P()p(])7 (6A7 6B} + 6A] 6B7)

(An=A)[g) and (By—B)|y). (AL) =2, p(i)p(j) 9A; 3B, 5A, 5B,
i

Since the product of the squared length of these vectors must

be larger or equal to the squared inner product of the vectors, ) 2
it follows that = 2 PO . (A6)
(| (Am—A)?| ) (| (Bm—B)?| ) It is therefore possible to derive an uncertainty relation for
R R 5 the statistical mixture defined y(i) by averaging over the
=[(4|(An—A)(Bn—B)|4)|°. (A2)  uncertaintiesU; . This derivation can be applied to derive

. . . . uncertainties for statistical operators such as ([Byby rep-
The uncertainty relations are then obtained by tak'”q Onlyresenting the statistical operator as a mixture of pure states.

the imaginary part of the inner product into account. SiAce  However, it can also be useful in a more general context, as
and B are the Hermitian operators, this imaginary part isseen in the derivation of the back action uncertaif2i).
given by one half of the commutation relation, and the result
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