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Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
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We present quantum Maxwell-Bloch equatioi@MVBE) for spatially inhomogeneous semiconductor laser
devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction
of the light field with the quantum states of the electrons and the holes near the band gap. By taking into
account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects, which
cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous
emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities.
The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting
lasers, providing a starting point for the detailed analysis of spatial coherence in the near-field and far-field
patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission
described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency
and carrier density dependent spontaneous emission fgctond the evolution of the far-field pattern near
threshold are derivedS1050-294{09)02803-9

PACS numbd(s): 42.55.Px, 42.50.Lc

[. INTRODUCTION of the time-dependent electron-hole distributions. Although
the nonequilibrium Green’s function presents an elegant so-
The spatiotemporal dynamics of semiconductor lasers calution for the description of many-body effedi], the rep-
be simulated successfully by semiclassical Maxwell-Blochresentation of the interband dipole dynamics by Green’'s
equations without including any quantum effects in the lightfunctions causes a non-Markovian memory effect, which is
field (for an overview of the theory and modeling §@¢and  difficult to handle and is therefore usually neglectdd.
references thereinThe classical treatment of the light field Moreover, the need to determine the Green'’s function corre-
is justified by the high intensity of the laser light well above sponding to the dynamically varying carrier distribution re-
threshold. However, the incoherent noise required by the unquires a computational effort far greater than that required
certainty principle in both the electrical dipole of the semi-for the integration of the corresponding Maxwell-Bloch
conductor medium and the light field itself is of significant equations. Therefore, as stated[il], an exact analytical
importance when several cavity modes compete or when thiavestigation of the spatial mode structures in realistic cavi-
laser is close to threshold. ties using nonequilibrium Green’s functions is out of reach.
Photon rate equations for multimode operation of semidn order to simulate the spatiotemporal dynamics of multi-
conductor lasers show that the spontaneous emission termsode operation, of lasers near threshold, low threshold lasers
may contribute significantly to the spectral characteristics obr superluminescent diodes, it is therefore desireable to for-
the light field emitted by the las¢2,3]. Such models assume mulate an alternative approach to the problem of spontane-
a fixed mode structure determined entirely by the empty caveus emission and amplified spontaneous emission in such
ity. This assumption does not apply to gain guided lasers andevices which is based on Maxwell-Bloch equations. By in-
to unstable resonators, howedr—6]. In these cases it is cluding the spatiotemporal dynamics of the interband dipole
therefore desirable to explicitly describe the spatial coherin such equations, non-Markovian terms are avoided and the
ence of spontaneous emission. quantum mechanical equations may be integrated in a
The spatial coherence of spontaneous emission and arstraightforward manner.
plified spontaneous emission is even more important in de- The starting point for our description of quantum noise
vices close to threshold or devices with a light field outputeffects is the dynamics of quantum mechanical operators of
dominated by spontaneous emission such as superluminethe field and carrier system. Since the operator dynamics of
cent diodes and ultralow threshold semiconductor laserthe carrier system have been investigated in the context of
[7,8]. Ultralow threshold lasers may actually operate in aMaxwell-Bloch equations befor¢l2] and the light field
regime of negative gain where spontaneous emission is thequations correspond exactly to the classical Maxwell's
only source of radiatiofi7]. A description of the light field equations, it is possible to focus only on the local light-
emitted by such devices therefore requires an explicit dematter interaction. Once the properties of this interaction are
scription of the spatial coherence in spontaneous emission d#grmulated in terms of the expectation values of field-field
well. correlations, dipole-field correlations, carrier densities, fields,
An approach to the consistent inclusion of the quantunmand dipoles, the dynamics of the carrier system and the light
noise properties of the light field in the dynamics of semi-field propagation may be added.
conductor laser diodes using nonequilibrium Green’s func- In Sec. Il, the quantum dynamics of the interaction be-
tions has been presented [if—11]. In this approach, the tween the light field and the carrier system is formulated in
linear optical response of the medium is varied as a functioterms of Wigner distributions for the carriers and of spatially
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continuous amplitudes for the Iight field. The equations arg13]. The photon annihilation operatbg, therefore describes
formulated for both bulk material and for quantum wells (1o annihilation of a photon within a volume,. Here, we

including the effects of anisotropic coupling to the polariza-ij focus on the light-carrier interaction and the quantum
tion components of the light field. Section Ill summarizes thegise contributions responsible for spontaneous emission.

effects of the dynamics of the electron-hole system in thg-q that purpose, we extend the semiclassical description by
semiconductor material. The light field dynamics are 'ntro'including not only the expectation values of the field and

duced in Sec. IV. By quantizing Maxwell's equation, the . - ~ A .
coupling constang, introduced in Sec. Il is expressed in dipole operators{bg) and {(crdr/), respectively, but also

terms of the interband dipole matrix element. The completdhe field-field correlationgbzbr:) and the field-dipole cor-
set of quantum Maxwell-Bloch equations is presented in Sedaelation(b%cg dr.). The factorized equations of motion then
V. Based on this general formulation, specific approximataead

versions for quantum well edge emitting and vertical cavity

surface emitting lasers are derived. The possibility of includ- Jata . fpa oA ft oA~

ing two-time c%rrelations in the quantLE)m Maxv)\;eII-BIoch E<bLbR'> :_'gO(<bJFr?CR’dR’>_<bJFr%’CRdR>*)’
equations is discussed and equations are given for the case of ot (39
vertical cavity surface emitting lasers. In Sec. VI, analytical

results for the spectra of gain and spontaneous emission iy
guantum wells as well as the spontaneous emission fgctor —<chR,dR”)
and the far-field pattern of amplified spontaneous emission in

broad area quantum well lasers are presented. Section VI ~yn L g ~t A
concludes thqe paper. P - <b1F;bR/>6R',R”) + IgO<C1F.QCR'><d1F;dR”>’

(3b)

=igo((bkbr/)(dL, drr)+ (BEBRA(Ch.Cr/)

cL

II. DYNAMICS OF THE LIGHT-CARRIER INTERACTION
. S AR At oaoA
=igo({(bfcr dr)—(bf Crdr/)*), (30

A. Hamiltonian dynamics of densities and fields ﬁ(f:LE:R,)
cL

In the following, we will describe the active semiconduc-
tor medium in terms of an isotropic two-band model where, P
for the case of the holes, a suitably averaged effective mass  —(dldg/)
is taken[12]. A generalization to more bands is straightfor- at
ward. In terms of the local annihilation operators for photons

(BR)’ electrons éR)’ and holesfaR), the Hamiltonian of the Note .that this set.of equatio.ns alread_y represents a closed
light-carrier interaction can be written as description of the field dynamics. If, as in many experimental

configurations, the absolute phase of the light field and di-
. A pole operators may be considered unknown, these equations
He-=%go >, (bicrdr+DbrChdl). (1) are sufficient for a description of the light-carrier interaction.

R However, when two-time correlations are of interest or in the
gase of coherent excitation by injection of an external laser it
may also be necessary to additionally consider the dynamics
of the field and dipole expectation values, i.e.,

=igo((bfCrdr)— <6;/6R’aR>*)- (3d)

cL

The operator dynamics associated with this Hamiltonian ar
then given by

d A ~ A
—bgr| =-igoCrdR, (28 Jd A
Al TR S(BR)| = —igo(Cadr), (39
cL
0 | =igo(Brdldns + Brrth Sr—Drorr), i . o
Jt cL E<CRdR’> =igo((br)(drdr/)
(2b) cL
oo ot +(Br (S Cr) = (BR)rr). (30
EC;CR/ = - igO(bR’CEdR’_ bECerR), (ZC)
cL B. Physical background of the factorization
N P VP In the following, we will briefly discuss the implications
5idrAr/|  =—igo(brCq dr—DRCrAR/).  (2d)  of the factorization performed in the derivation of Ega).
cL In order to formulate the dynamics of the light-matter inter-

action without including higher-order correlations, three
terms have been factorized in the time derivative of the field-
Iﬂcliipole correlation(3b). The factorizations are

The discrete positionR correspond to the lattice sites of the
Bravais lattice describing the semiconductor crystal. Eac
lattice site actually represents the spatial volumeof the
Wigner-Seitz cell of the lattice. For zinc-blende crystal struc- BTR At A N\ _/RtE ot A

turg, this volume is equal to one-quarter of the C?J/bed lattice (bRbRrCr/Crr) = (bRbR){Cr Crr), “4a
constant. In the case of Al,GaAs structures the lattice fio At oA fto At A

constant is about 5.6510 '° m and vy~4.5x 1072 m3 (brbg:dg, drr)~(brbr/}(dg/drr), (4b)
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“ta AatA ~ta at A Thus, if a calculation does not fulfill this requirement, par-

CnCr/dndrr)~{ChCr/ {drdrn). 4 ’ q » P

(Crr trOr) =(Crlr){drdr) (4o ticle density correlations additionally have to be taken into
account.

No additional factorizations are necessary in the density dy-
namics of photons, electrons, and holes. The three factoriza-
tions are based on the assumption of statistical independence
between the densities of photons, electrons and holes. Since In order to connect the light-carrier interaction to the
we are not considering fluctuations in the particle densitieshighly dissipative carrier transport equations, it is practical to
this is a necessary assumption. transform the carrier and dipole densities using Wigner trans-
Equations(4a) and(4b) separate the photon density from formations[14]. Replacing the discrete density matrices by
the carrier densities. These terms represent stimulated emisentinuous ones obtained by polynomial interpolation will
sion processes. Therefore, a correlation of the photon densigllow, e.g., for numerical purposes an arbitrary choice of the
with the carrier densities would lead to a modified stimulateddiscretization scales, which generally will be much larger
emission rate. Below threshold, this effect will be small be-than a lattice constant. Analytically, it permits an application
cause the amplified spontaneous emission is distributed ovef differential operators. Physically, the particle densities are
many modes such that the local correlations between photosmooth functions over distances of several lattice constants.
and carrier densities are weak. Above threshold, the photoA coherence length shorter than, e.g., ten lattice constants
number fluctuations in the lasing mode cause relaxation osvould requirek states with|k| of at least one 20th of the
cillations. The photon number fluctuations are nearly 90%Brilloin zone diameter. In typical laser devices, however, the
out of phase with the carrier number fluctuations. Thereforeglectrons and holes all accumulate near the fundamental gap
the time averaged correlation is still negligible. at k=0. Therefore, it is simply a matter of convenience to
Equation (4c) separates the electron and hole densitiesdefine the continuous densities such that
This term represents the spontaneous emission caused by the
simultaneous presence of electrons and holes in the same °(r=R r’:R’)=i<6T6 ) 6a)
location. Although it is reasonable to assume that the high p ’ vy ROR'
rate of scattering at high carrier densities effectively reduce

C. Wigner function formulation

all electron-hole correlations to zero, it is important to note N PO

that the interband dipolécgdg, ) implies a phase correlation pIr=Rr"=R )_v_0<deR'>’ (6b)
between the electrons and the holes. In fact, the spontaneous

emission term factorized accorqing t? EA@[LC) originates dipoler - _ o o/ — o _i “ -

from the dipole-dipole correlatio(n;red;,cR"dRm). Note that P (r=Rr"=R")= y0<cRdR'>' (60)

this term could also be factorized into the product of dipole ) ) )
operatorg Sgdr:)* (Grrdrr). The dynamics of the field-field These continuous functions may then be transformed into

and the field-dipole correlations are then identical to the dy_\Nigner functions by
namics of the products of the fields and dipoles. Therefore,

that factorization corresponds to the approximations of the fe(r,k):f d3r’e‘ikr'pe(r— r_'r+ T , (78
conventional Maxwell-Bloch equations such as described in 2 2
[12], which do not rigorously include spontaneous emission. , ,
Generally, spontaneous emission must always arise from gh _J 3p1 ik’ ( r r
- . r.k)= r r——=,r+—= 7
random phase fluctuations. These are given by the product of (r.k) dr'e p 27 2) (70)
electron and hole densities. While the phase dependent di-
pole relaxes quickly due to scattering events, the carrier den- 3., ik dipole r' !
sities are preserved during scattering. Therefore p(r.k)=| d>r'e r=>.r+5 (79
cedo N (e d (ot af 4 The normalization of these Wigner functions has been cho-
<CRdR/> <CRHdRH/><<CRCRH><dR,dRIH> (5@ g

sen in such a way that a value of one represents the maximal
hase space density possible for Fermions, that is, one par-
cle per state. Since the density of states in the six-
imensional phase space giventgndk is 1/873, a factor

is usually a good assumption in semiconductor systems. No
that this assumption does fail in the case of low carrier dena

smles and hl%hthdlplqleht”}dlljgmg _fl_eldf.dHfowever, th'ts casleof 1/8= will appear whenever actual carrier densities need
only occurs It the fight Tield IS Injected rom an external v, e gptained from the Wigner functions. However, the nor-

source. In semiconductor lasers and in light emitting d'OdeSmalization in terms of the maximal possible phase space den-

the major contribution to the dipole-dipole qqrrelauons stems‘sity is convenient because it represents the probability that a
from the product of electron and hole densities. To check th‘auantum state in a given region of phase space is occupied.

statlstlpal mdepende_nce of photon, electron, and_ hol_e dens\:herefore, the Wigner distribution corresponding to the ther-
ties, it is also convenient to check the corresponding inequal: al equilibrium of a given particle density is directly given

ity for the threfa particle coherence represented by the fieldl—)y the Eermi function.
dipole correlation,

To deal with the light field dynamics in the same manner,
A e o L L the field and field-field correlation variables must also be
(bR Arry* (B Crm Ay <(DEBRm)(Ch, Crm )(dl,drm).  defined on a continuous length scale. In order to obtain pho-
(5b) ton densities, we define
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With these new definitions, the light-carrier interaction dy- *°
namics can now be expressed in a form that considers boﬂif
the position and the momentum of the electrons and holed!
The dynamics of emission and absorption now reads

1. 9 T
E(r=R)=—=(bg), (8a) —&(r) =—lgo—f dkp(r.k), (119
\/V—O< R> at cL 87’
|(r=R-r’=R’):i<6TB ) (8b) J : L P q
, v VWRER/ —p(r,k)| =igevro—s | d® | d3qe'®| e r.k+ =
0 ot oL 8773 2
Finally, the dipole-field correlation must be defined accord- q
ingly, such that +fn r—k+ 5| 1|Er+x). (11f)
@Corr'(r:R'r,:R, I’"=R")=—1 <6T6R/aRn> (9) D. L | roxim t| n

The integrals ovek andq represent seemingly nonlocal
. " r effects introduced by the transformation into Wigner func-
C(r;r’,k)=f d3r"eikr ’@CO”-( rir’'— 5,r’+ E)' tions. This property of the Wigner transformation retains the
(10 coherent effects in the carrier system. For the interaction of
the carriers with the light field, it ensures momentum conser-
vation by introducing a nonlocal phase correlation in the
pole field corresponding to the total momentum of the elec-
ron and hole concentrations involved. Effectively, the inte-
gral overqg converts the momentum part of the Wigner dis-
tributions into a coherence length. This coherence length
then reappears in the spatial structure of the dipole field and

al ap !
E(r,f)

afe k
ﬁ (r,)

:_igoﬂf d3k(C(r;r',k)—C*(r’;r,k)) the electromagnetic field generated by the carrier distribu-
cL 8 tion. However, the coherence length in the carrier system is
(118 usually much shorter than the optical wavelength. It can
therefore be approximated by a spafifdinction. Here, we
d 1 _ do this by noting that
—C(r;r' k) =i90\/V—o_J d3XJ dqe’ ™
ot oL 873 1 .
q — f d3ge' ™= 5(x). (12)
x| fe ' k+ o 87
2
If the effects of the momentum shidt in the Wigner func-
+fhlr, —k+ a)_ 1}I(r;r’+x) tions is neglected, the integrals may then be solved, yielding
2 only local interactions between the carrier system and the
1 light field:
m J
(') =—igo—vgfd3k(C(r;r’,k)—C*(r’;r,k)),
ol T e A T 8 " . o
A T T (133
(11b J
—C(r5r" k)| =igoVwel fo(r' k) + (', —k) = 1]1(r;r")
\/— 1 f 3 f 3~ ai0x ~ oL
=i —— | d°x [ d°ge
LoVt q +igonrod(r—r ) fe(r k) fh(r, — k),
a q (13b
X|C r+x;r,k+§ —-C* r+x;r,k+§ ,
d .
(119 S frk)] =igoVue(C(rir k)= C*(rir k) (139
cL
d _ 1 .
Z00K0)| =igovre— | 4% [ @ae ;
a oL 8 (K| =igovro(C(rir, k)= C*(r;r,~ k),
cL
x|C r+x;r,—k+g (130
J o[,
2 cL 8m
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d d
TPk =igoVue(fo(r k) +f(r,— k)~ DE). StP(rLkp| =igoro(fe(r) ky)
cL

cL

(13f) A
HEr =k = DEr) —g. (146
These equations now provide a compact description of the

light-carrier interaction in a three-dimensional semiconduc- _ .
tor medium, including the incoherent quantum noise termNOte that the value of, will usually be slightly lower than
which is the source of spontaneous emission the bulk value because the overlap of the spatial wave func-

tions of the electrons and the holes in the lowest subbands is
less than one. The equations derived above represent the in-
teraction of a single conduction band and a single valence
Similar equations may also be formulated for a quanturrPand with a single scalar light field. Neither the spin degen-
well structure by replacing the phase space density of3/8 eracy of the carriers nor the polarization of the light field has
with 1/47?, reducing the spatial coordinates of the carrierbeen considered.
system to two dimensions, and introducing dunction for
the coordinate perpendicular to the quantum well at the
points where field coordinates correspond to dipole coordi-
nates. Of course, the electromagnetic field remains three- Since the geometry of light field emission is highly de-
dimensional, even though the dipole it originates from ispendent on polarization effects such effects should also be
confined to two dimensions. In particular, the correlationtaken into account in the framework of this theory. The basic
C(r;r',k) has both a three dimensional coordinatand a interaction between a single conduction band, a single va-
two-dimensional coordinate’. It is therefore useful to dis- lence band and a single light field polarization are accurately
tinguish the two-dimensional and the three-dimensional corepresented by Eq§l3a—13f and(14a—14f. By adding the
ordinates. In the following, the two-dimensional carrier co-contributions of separate transitions, any many band system
ordinates will be marked with the indéix Note that, in some may be described based on these equations. In semiconduc-
cases, botl andr appear in the equations. In those casesfor quantum wells the situation is considerably simplified if
the in-plane coordinatess, andr, are equal, while the per- only the lowest subbands are considered. Then there are only
pendicular coordinate, must be equal to the quantum well two completely separate transitions involving circular light
coordinatez,. The equations for the interaction of the three- field polarizations coupled to a single one of the two electron
dimensional light field with the two-dimensional electron- and hole bands. The quantum well structure does not interact
hole system in a single quantum well subband then read with light fields that are linearly polarized in the direction
perpendicular to the plane of the quantum well. The equa-
tions for quantum wells are therefore completed by adding
an index of+ or — to each variable.
The situation in the bulk system is much more involved.
—Cx(r';ry k) 6(r,—2zo)), (148  The transitions occur between the twofold degenerate spin
1/2 system of the electrons and the fourfold degenerate spin
3/2 system of the holes. All three polarization directions of
=igo\/v_0(fe(r’H Kp) the light field are equally possible, connecting each of the
L electron bands with three of the four hole bands. However,
R — k)= DI, since the effective mass of the two heavy-hole bands is much
(R © T larger than the effective mass of the light holesg. by a
; o _ factor of 8 in GaA$, only a small fraction of the holes will
+igoVod(ry—1') 8(r,~ 2o) be in the light-hole band@bout 6% in GaAs for equilibrium
xcte(ry kpfhry, —kp, (14p  distributions. Consequently, the carrier subsystem can again
be separated into two pairs of bands. However, the light field
polarization emitted by the electron-heavy hole transitions in
:igo\/v_o(C(r;rH Kr =2, bulk material is circularly polarized with respect to the rela-
cL tive momentum R of the electron and the heavy hole. Since
—Cr (KD =) (149 usually _the_re i_s no strong qlirectional anisotropy in the
=z space distribution of the carriers, it can be assumed that one
third of thek space volume contributes to each polarization
. ] direction and the equations may be formulated accordingly.
ﬁfh(r” kp)| =igovro(C(rir| = KDr =2 In the following, we will assume that the Wigner distri-
ot butions of the two pairs of bands considered are approxi-
—C*(r;rH,—kH)rZ=ZO), (14d  mately equal at all times. Note that this means that hole
burning effects in the spin and polarization dynamics that
Jro may occur in vertical cavity surface emitting Igsél§]' are
:_igo_gf d2kyp(ry ,ky) 8(r ,— 2o), ignored. However, such effects have been investigated in
A several other studig46—19 and are found to be fairly weak
(14e in some device$20].

E. Light-carrier interaction for quantum wells

F. Spin degeneracy and light field polarization

~ng
:"9047” A2k (C(r3r "k (r; = Zo)

’ I(r;r")
—I(r;r
ot oL

a !
EC(I’,T” ,k“)

c

(9 €
Sk

d
&0

cL
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-1

The complete set of dynamical equations can now be for- 22
mulated by adding the carrier dynamics and the linear part of fgg‘(r,k)z ex T h —u®hry | |+1]
Maxwell's equations to the light-carrier interaction. B\ 2mgi

(18)

'l. CARRIER DYNAMICS wheremSy; are the effective masses of electrons and heavy

Modeling the carrier dynamics of a semiconductor systenholes, respectively. The chemical potenji"(r) is a func-
can be a formidable task all by itself. A number of approxi-tion of the carrier densityN(r). A useful estimate of this
mations and models have been developed to deal with theelationship is given by the Pade approximatifi®,23.
effects of many-particle interactions and correlations andSpectral hole burning may be taken into account by introduc-
with the dissipation caused by the electron-phonon interacing a relaxation timer, and converting the dynamics of the
tions[21,22. In the following, we choose a simple diffusion distribution function due to the light-carrier interaction into a
model. Many-particle effects such as the band-gap renormadieviation from the equilibrium distribution by adiabatic
ization or the Coulomb enhancement are not mentioned exelimination of the relaxation dynamics:
plicitly, but can be added in a straightforward manfigd 2].

We assume that the electron and hole densities will be fe'h(r,k):fg'c:](l',k)'FigO\/v—OTr
kept equal by the Coulomb interaction, which will induce a
current whenever charges are separated. Therefore, it is pos- . e
sible to define the ambipolar carrier densityr) with XZi [Carir.zk) = Ci(rir.xk)]. (19

1 1 Finally, the carrier dynamics of the dipofgr,k) and the
N(r)= FJ d>kfe(r k)= FJ d®kf"(r.k). (15  dipole part of the field-dipole correlatio®(r:r’,k) needs to

. ™ be formulated. Since both depend on a correlation of the
lectrons with the holes, they will necessarily relax rather

ickly at a rate of"(k), which should be of the same order

of magnitude as ¥ . Physically,I'(k) may be interpreted as
éhe total momentum dependent scattering rate in the carrier
System. The remainder of the dynamics can be derived from
the single-particle dynamics. This unitary contribution to the
evolution of the dipole may be expressed by a momentum
dependent frequencf (k). For parabolic bands and isotro-

:igogf dgk}i: [Ci(rir,K)—Ck(r;r,k)] pic effective massemZ}}, this frequency is given by
cL

Note that the twofold degeneracy of the electron and heavy(-3
hole bands has been included by choosing a density of stat
of 1/472 instead of 1/&3. This includes the assumption that
the Wigner distribution does not depend on the spin variabl
of the electrons and holes as mentioned above.

The light carrier interaction of this carrier density is

Jd
EN(r)

_ 52 . Q(k)=( h + h )k2. (20)
__E i Iii(rlr)CLi (16) 2mgff 2m2ff

where the index denotes the component of the light field or Many-particle effects due to the Coulomb interaction be-
dipole density corresponding to the linear polarization directWeen the carriers may be included by introducing a carrier
tion of i =x,y,z. In the case o€;;(r;r’ k) the indexi refers ~ density dependence ir[k,N(r)] and Q[k,N(r)]. Such
to the field polarization and the second indegenotes the renorma_llzatlon_terms representing the mean fleld effects.of
vector component of the dipole vector. Equatid®) shows the carrier-carrier interaction havg been derived an_d dis-
how the field-dipole correlation converts electron-hole pairscussed, €.9., in12]. In the following, this many-particle

into photons. The total carrier density dynamics can now b&enormalization will not be mentioned explicitly, although it
formulated as can be included in a straightforward manner.

With the rated"(k) andQ (k) the dipole dynamics reads

iN(r)=D AN +j(r)—yN(r)+ig E d
ot am J Y 04773 Ecij(r;r’,k) :—[F(k)+iQ(k)]Cij(r;r/,k)y

’ 21
xfd3k2 [Cii(r;r,k)—Cx(r;r,k)], (17) s

J
—pi(r,k)| =—[T'(k)+iQ(k)]pi(r,k). 21b
whereD ,,,, IS the ambipolar diffusion constant(r) is the ot Pi(r-k) c LT () Ipicr.k) (210

injection current density, ang is the rate of spontaneous
recombinations by nonradiative processes and/or spontanblote that the phase dynamics is formulated relative to the
ous emission into modes not consideredjigr,r'), e.g., if  band-gap frequency,. The real physical phase oscillations
the paraxial approximation is applied. of p(r,k) would include an additional phase factor of
The k dependence of the distribution functiof§(r,k) exf —iwgt]. However, the only physical effect of this oscil-
andf"(r,k) may be approximated by assuming that the eleclation is to establish resonance with the corresponding fre-
trons and holes will always be in thermal equilibrium. The quency range in the electromagnetic field, the dynamics of
distribution functions are then given by Fermi functions  which we consider next.
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IV. MAXWELL'S EQUATION 2hwg
Eo(1) = \/ ——2€(r). 27)
€ €p

The Heisenberg equations of motion describing the opera-
tor dynamics of the electromagnetic field operators are iden-
tical to the classical Maxwell's equations. In terms of the
electromagnetic fieldE(r) and the dipole densitieR(r), the
equation reads

The dipole densityPy(r) may be expressed in terms of

pP°'%(r.r) and p(r,k) by noting that the density

pd’P°'e(r r) is the dipole density in units of one-half the

atomic dipole given by the interband dipole matrix element

1 P(r)> -0, (22 d., atk=0. The factor of one-half is a logical consequence

€r€g ’ of the property thafcgdg/)<1/2. Thus, a fully polarized

lattice would have a dipole density ofpP°'e(r,r

where ey andc are the dielectric constant and the speed of=1)/(2v,), which must correspond #(r)=d,, /v,. Note

light in vacuum, respectively, ang ¢, is the dielectric con- thatd,, contains an arbitrary phase factor depending only on

stant in the background semiconductor medium. the definition of the states used for its determination. For
Maxwell's equation describes the light field dynamics for convenience, we assume a definition of phases sucldghat

all frequencies. Since we are only interested in frequencie® real. The dipole density(r) may then be written as

near the band-gap frequeney,, it is useful to separate

the phase factor of ekpiwgt], defining E(r)

=ex{d —iwgt]Eq(r). Now Eg(r) can be considered to vary P(r)=2d pdipole:2|dCV|f d3kp(r,k). (28)

slowly in time relative to exp-iwgt]. Therefore, the time « 8 '

derivatives may be approximated by

€ 92
VX[VXE(r)]-l-?E E(r)+

Written in terms of€(r) andp(r,k), the complete field dy-

2 .
J namics now reads

exdi wot]ﬁexq —iwot]Eq(r)

i Jd d . Wo 2
~—w§E0(r)—2leEEo(r). (23) Eﬁ(r)=—l2k%6r{V><[V><€(r)]—erkoé’(r)}
Similarly, Py(r) may be defined such thatP(r) o wo fdel [
=exfd —iwpt]Py(r). The approximation used here may even - 2h €, € ﬁ d*kp(r,k)
be of zero order, since we are primarily interested in the
dynamics of the electromagnetic field: o

2 2kg°6r{VX[V><s<r>]—erk%fr(r)}

Al [,
—|90§J’d kp(r,k). (29

The temporal evolution of the electromagnetic field now

reads
The coupling frequency, introduced in Eq.(1) may be

wg expressed in terms of the dipole matrix elemdgt

J
—Eqy(r)=—i VX[V XEq(r
ot o(r) > (Z)Gr{ [ o(r]
20|y (30)
9=\ 57— .
—ErkéEo(I‘)}—i 22)06 Po(r), (25) 2h e eqrg’ <
r€o

where ko=, /c is the vacuum wave-vector length corre- With this equation, the operator dynamics of the light field

sponding towy. In Eq. (25), the field dynamics is described CPerator bg corresponds to the field dynamics of the
in terms of electromagnetic units, that is the fields represerf!@xWell-Bloch equations for classical fields. By applying
forces acting on charges. To switch scales to the photon ded€ linéar propagation dynamics of the fieldlif(r;r’) and
sities represented b§(r), energy densities have to be con- Cij(r:r",K) as well, it is now possible to formulate a com-
sidered. Since the energy of each photon will be close to th8!€te set of quantum Maxwell-Bloch equations.

band-gap energf wg, the energy density of the electromag-

netic field is given by V. QUANTUM MAXWELL-BLOCH EQUATIONS

€€, . A. Quantum Maxwell-Bloch equations for a three-dimensional
haof* (r)&(r)= 5 o (NEg (). (26) gain medium

On the basis of the discussion in the previous sections, the
Therefore, the field may be expressed as photon density amuantum Maxwell-Bloch equations for a bulk gain medium
plitude using in three dimensions read
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J In order to describe a realistic diode one needs to describe
i N =DampAN(r) +(r) = yN(r) not only the volume of the active region but also the propa-
gation of light out of this region. This may either be achieved
by defining realistic boundary conditions or by setting all
+|go—f d3k2 [Cii(r;r,k)—Cii (r;r, k)], material properties equal to zero outside a finite active vol-
ume and calculating the light field propagation into the out-
(319 side medium by varying, in space.

iC Kk B. Three-dimensional quantum Maxwell-Bloch equations

ot ij(Fr7.K) for quantum wells

=—[T(K) +iQ(K)]C; (r;r' k) Next, we will formulate the equations for a quantum well
structure. For this case, we will also describe different cavity
structures and the appropriate paraxial approximations pos-

—'—2 2 &T r ar C.,(r r',k) sible for the various types of laser devices. Using the termi-
2kg nology of Egs. (14a-14f, the quantum Maxwell-Bloch
equations for a multi-quantum-well structure wigh quan-
—2 a_r ; <9r Ck]( r',k)+kaCi;(r;r’ k) tum wells read

+igo \/—[f q(k N(r')) —N(r)=DampANC(r|)+j(r)—yN(r))

o
+f2q(k;N(f’))—1]|ij(r;f’) +|go4—2J dzan (CiiH(r;r”ka)rZ=ZO
ar
o 2Vv
+igo—3 O5(r—r’)§ijf§q(k;N(r))fgq(k;N(r)), — G (K= 2)s (329
(31D
uH(r rykp)
I ppne—ifos [ a9 9 a9
(= IZkS; (arker e ory ar{() :—[F(ku)+'9('<H)]C|1H(fif’||'ku)
L ) J -1 d _-_ o
J 0 _ = -
xlkj(r;r')——,er1—,|ik(r;r')) E ar € &r CkJH(r ri k|)+koCu(f'f|’k))
arj " ary

+i96Q Vo eQ(k" (Q)) fe (k’N(Q ))_1}

X111 =2 F190Q v d(r|— 1) 8(r ,— 2)

i \/V—O ! * !
—|go§f d*k(Cij(r;r’ k)= CH(r";r,k)),

(310
e[, N )) ( N(r ||))
fe lk: £ Lk — b
p(r = [T (0+1 20k Jpi(r k) gl e‘*( FTQ e g (320
\/_ P P PR P
+|gO [f (k N(r) El”(r;r’):_.;; ( rkfflm—yeflaw
k k
+th(k N(r))—1]1&(r), (310 5 5
Xlij(r;r’)+i%2 (a—rierlmlkj(r;r’)
—S(r)—l (E — 5(r) ; ; -
——e " ,|ik(|’;f’))_igo—2
9 arj  arg 4w
- —e ! - f,’k(r)+k25(r)>

X f d?ky(Cij (rir") . ky) 8(r; = 20)

. Yo
_|90§f dskpi(rak)- (319 JIH(r r” k||)5(r —ZO)) (32C)
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longitudinal mode. Effectively, this corresponds to a light
field £(r) with the following properties:

5X(I')==50(rx)§(ry,l'z), (333
E,(r):=0, (33b)

J ) J
yygy(f) = &_rxg"(r)' (3309

The envelope functiog(ry,r,) describes both the propaga-
tion along they direction and the confinement along the

FIG. 1. Schematic representation of the edge emitter geometrydirection. It represents an approximate solution of the wave

The laser field is mostly confined to the plane of the quantum wel
and propagates along tlyeaxis.

J
= Piy (1 k) = = (k) +1QCkp) sy (1K)

+igoQ\/V—o

NCry)
Q

e[, . N
feq( Ky )

Q

+f2q kH; )_1}gi(r)rz=zov (32d)

d
71_ )
r g’

i“’—°2<2 9

K ark

— 1 (K
z?riE' ar, k(r) +ko&i(r)

o
—|904—7Tgf d2k||piH(rH:kH)ﬁ(rz_zo)- (32¢

Note thatN(r|) is the total carrier density. Therefore, the
density per qguantum well that determines the chemical po-
tential of the carrier distribution functions i8i(r)/Q.
Again, the structure of an external cavity may be considered
either by boundary conditions or by spatially varyiag In
particular, laser diodes may be described by distinguishing
between reflective and nonreflective edges. If the reflective
surface is perpendicular to the plane of the quantum wells,
the laser is an edge emitter. If the reflectivity is very high on

the surface planes parallel to the quantum wells, the laser is|0(rx.r1):
X

a vertical cavity surface emitting laséVCSEL).

C. One-dimensional quantum Maxwell-Bloch equations
for edge emitting lasers

In an edge emitting laser, the laser light field propagates
in the plane of the quantum well. Since thalirection is
already defined as the one perpendicular to the quantum well
we will define they direction as the direction along which
the laser light propagates. A schematic representation of this

lequation in theyz plane normalized by

f drydr|&(ry,r)|?=1. (330

The equations are then limited to light field modes with the
two-dimensional envelopé(r,,r,). Spontaneous emission
into other light field modes must be considered by including
the rate of emission in the carrier recombination rate
Since the lengthL of the laser in they direction is also an
important property of the device, it is included by consider-
ing the openness of the optical cavity. With the reflectivities
of the laser mirrors given bR; andR,, the light field in the
cavity is damped by losses through the mirrors at a rate of

C
— IN[RyR,].

2L e,

The new one-dimensional variables are now defined as fol-
lows:

(34

K= —

(353

NlD(rx):f dryN(ry),

Colreitiok) = [ drdradréry )

X EX(r

/r/:

yrz

ZO)Cxx(r; r '” ,k”), (35b)

fdrydrzdr)’,drgg(ry,rz)g*(r§,r;)lxx(r;r’),

(350

pO(rx1kH):J dryg*(ryvrzzzo)px(r\\1kH)i (350

Eo(ry)= j drydrzg*(ry T2 E(T).

(359

type of laser geometry is shown in Fig. 1. It is possible toThe carrier density is now given in terms of a one-
drastically reduce the dimensionality of the equation describdimensional density. To obtain the two-dimensional carrier
ing the edge emitting laser geometry by noting that the lighdensity per quantum well, this density is to be divided by
field polarization of the amplified fields will be in the plane QL. Note that the intensity is also given in terms of photons
of the quantum well and by limiting the analysis to a singleper unit length. The dynamics of the edge emitter then reads
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2

[? .
NlD(rx) Damb(yr Nip(ry)+Lj(ry)—yNip(ry) current contact
- |— dielectric
. \/V— ] mirrors
+ I904_71_(2)f d2k||(C0(rX T ’k”) Z active layer

X

FIG. 2. Schematic representation of a typical VCSEL geometry.
The laser field propagates perpendicularly to the quantum well

J
Eco(rx;r)’( K==L (k) +iQ(k)ICo(ry;ry.Kp)

—KColryiry Kp) along thez axis. The length of the optical resonator approximately
2 corresponds to the wavelenth.
@0 d
2ko€r XCO(rX’ x oK) D. Two-dimensional quantum Maxwell-Bloch equations
, for VCSEL'’s

+igoovo| 8 (k” ; NlD(rx)) In a VCSEL the light field is strongly confined by highly
d QL reflective mirrors above and below the quantum wells. The
Nyp(r!) light field propagates pgrpendicular to the quantum V\_/eII
+f2q k”;&) } o(ryirh) structure as shown in Fig. 2. Therefore both the possible
QL polarization directions and the spatial dynamics remain two

dimensional. Only the direction may be eliminated by av-
eraging over a single longitudinal mode. Coupling terms be-

+igoo\rpd(r—ry)

Nyp(ry) Nyp(ry) tween the polarization directions should be taken into ac-
X fgq K T) fh ( I oL ) count, even if they are small. For VCSEL's, the assumptions
read
(36b) ~
5 E(r)=&(ré&(ry), (389
tlo(rir)==2«lo(riry) 290\/—
z(r) E(r)+

wo /az 2

—i lo(ry;ry)
2k06r\ 2 &r)'(2> oetx

X J d?k &(r,— zo) py(r ,k))
29070

4w,

. Vo 2 ’
—|go—2j dok(Colry;ry Ky J
4 —— &N+
ary

—Co(re:rx.kp). (360
J X j dzk“é(rz—zo)py(r” ,k|)> (38b
Epo(fx.ku):—(F(ku)+iﬂ(ku))Po(fx,k”)
The latter condition takes into account the divergenc&(of

_ R N1ip(ry) caused by the polarizatiop(r,kj). This is an important
+'900\/V_0 feql K3 QL contribution to the quantum Maxwell-Bloch equations, since
it coherently couples orthogonal polarizations. The proper-
Nip(ry) ties of the envelope functio&(r,) are defined as
+f2q( k;Q—LX) —1}So<rx>, (360 ’
2 f dr,|&(r,)|*=1, (380

0 e (1= — kEy(r )+ —2 L e (v )
— = —x 9 -
ot o\ x o\l x 2k36r c?l’)z( o\l x )

\/V—O f(rz)'\’_k g(rz) (38d)
~igo 3| dpolrokp. (369
a
The cavity loss rat is defined as in Eq.34). However, the
whereo is the confinement factor that determines the overexperimentally observed polarization stability is taken into
lap between the quantum wells and the light field mode, —account by using slightly different reflectivities for tkeand
y polarizations. The cavity loss rate is therefore giveny

_ 2 and «y. Experlmental results[20] suggest that £,
U—Qf dry|&(ry,r,=20)|% (37) — k)l (kx) ~ 10731072 A birefringence ofdw,, is also
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included to denote the difference between the band-gap fres _
guency and the longitudinal frequencies of the confined Iightﬁcij(f;f',k)

field for the two polarization directions. The birefringence
dwy— dwy is usually in the GHz range. Since all coordinates
are two dimensional, the index that marked the two-

dimensional coordinates in the quantum well equations will
the two-dimensional variables are

be omitted. Instead,
marked with a tilde. All indices and coordinates of such vari-

ables are only defined in two dimensions. The variables are

defined as

N(r)=N(r)), (399

6ij(r;r/1k):f drzf(rz)f*(rézzo)ciju(r;r'” K,

(39b)

Ti,-(r;r’)=J drdryé(rp)&* (ryl(rir’), (399
Pi(r k) =& (r,=2o)pi (1) K, (39
E(r)=fdrz§*<rz>a<r>. (399

Note that the dipole variablpi”(ru ,K)) is rescaled by the
field density of the envelope functiof(r,) atr,=z,. The

dipole given byp;(r,k) is therefore the average dipole den-
sity within the whole cavity, not just within the quantum
wells. The quantum Maxwell-Bloch equations for the
VCSEL now read

d - . -
N =DamAN(T) +j(r) = yN(r)

=]

+igo— | d%k
g04772

> [Cu(rr k) =Cx(rir k)]

+> ——| d?r's(r—r’)
i koe

2

r

X C,J(r r',k)—

Eﬁ(r’;r,k)>),

(409

ar,rJ

—[T(K)+iQK)IC;j(r;r" k)

— (k=1 8T (11" k) =i ——A,Cyj(r;r' k)
0€r
+igOU\/V—O|:fgq( k;N(Ir ))
+f2q< k; Ng ))—1}Tij(r;r')
N(r) N(r)
+|900'\/—5(r r)5|1 eq( ; Q )fgq(k;T),
(40b)
= Ti(r;r)
:—(Ki+Kj)Ti,-(r;r')—| > (A —A)Ti(rsr")

0€
_i904_\/V—2J d2k<Eij(r;r’,k)—é;‘i(r’;r,k)
T

2

P
C,*k(r’;r,k))),
Ik

02
( et |k(l’l’ K)—

k kger
(400
-~ ~
Epi(r,k)=—[F(k)+i0(k)]pi(r,k)
N(r)
+'9°“r{ eq( Q )
+f | k; L)—l}?}(r) (40d)
eq Q I 1
0~
Eé’i(r)z (K +|5w)5(r)+| AE(r)
Oer
—igor@J d2k<5i<r,k>
2
@ anr i k)) (408
0r

with o being the confinement factor along theirection,

o=Qlé(r,~ 7).

Equationq40) present a starting point for the study of spatial
polarization patterns and fluctuations in VCSEL's. For more
realistic models, it may also be desirable to include a spatial

(42)



PRA 59 QUANTUM MAXWELL-BLOCH EQUATIONS FOR.. .. 2353

dependence of the birefringence and the dichroism. Alsation of t’>t is then given by an additional pair of equations

nonlinear effects may be introduced, e.g., by separating thihat depends on the carrier dynamics given by the solution of

carrier densities for right and left circular polarizatiftb). the original system of quantum Maxwell-Bloch equations as
presented above. In the case of VCSEL's these additional

equations supplementing Eq40) read
E. Statistical interpretation and two-time correlations

Using the equations presented above, it is now possible to iN--(r k.t
calculate the emergence of a spatially coherent light field in Y
semiconductor laser diodes both above and below threshold.

Note that the average light fiel(r) will remain zero at all = —(F(k)+iQ(k))Eij(r,t;r’,k,t’)
times due to the random phases of spontaneous emission

processes. Th@verage spatial coherence of the light field, N oo £ N(f t')
however, does not vanish and is fully described by the non- g0 feq T Q

local field-field correlations(r;r'), which emerge due to the

propagation and/or amplification of the originally incoherent

local spontaneous emissions. This emergence of coherence

as a concequence of incoherent emissions has been discussed

in a temporal context using nonequilibrium Green’s func-

tions in[11]. J .
In order to understand the physical implications of the — —1i;(r,t;r',t")

well known absence of an average light field in lasers, it at

should be recalled that all the results of the quantum

Maxwell-Bloch equations represent averages that have to be

interpreted in terms of statistical physics. For example, the wg 5

field-field correlationl(r;r’) represents a variance of the i ——Aply(r,tr,t’)

probability distribution with respect to the possible spatial 2kge

electromagnetic field values. The coherent field observed in \/—

experimental time-resolved measurements will vary ran- _igoﬂf d2kC;i (r.t;r' k,t")

domly from measurement to measurement according to this 4772 .

probability distribution. Indeed, the intensity distribution it-

self will vary depending on the random phase interference of . \/— az

the eigenmodes given bi(r;r’). The calculated average —Igo J

spatial intensity distributioni(r;r) only describes the aver-

age near field pattern, which is likely to be close to but not (42b

identical with the one actually observed. The fluctuations of

the actual intensity distribution around this average, hovx{]f the carrier density changes slowly, the equations describe

ever, are disregarded as a consequence of the factorizatu?lqe linear response of the medium caused by the initial in-
performed in Sec. Il. Moreover, the fluctuations in the carrier

density distribution induced by spatial hole burning associ{€nsity distributionl;;(r,t;r’,t) and the initial field-dipole
ated with these fluctuations of the intensity distribution havé:orrelatlonC”(r,t,r k,t) determined from Eqg40). In this
also been disregarded. case it is possible to derive the spectrum and the gain from
While the average spatial coherence of the light field isthe eigenmodes and the associated eigenvalues of the quasis-
fully described by the quantum Maxwell-Bloch equations, tationary linear optical system. Note that the eigenmodes of
the average expected tempora| coherence has not yet beﬁ]@ linearized dynamics are not necessarily identical with the
explicitly considered. Indeed, it is not necessary to consideeigenmodes of the intensity distributiari](r,t;r’,t), since
temporal coherence in the closed sets of quantum Maxwellfast variations in the carrier density distribution may have
Bloch equations given above because all the information reinduced phase locking between the dynamical eigenmodes.
quired to obtain the correct emission and absorption rates are In general, the frequency spectra of the light field are
incorporated in the field-dipole correlatio@(r;r’,k). As  given by Fourier transforms of the two-time correlations ob-
shown in Sec. VI, the spectra of gain and spontaneous emisained from Eqs(42). However, as noted above, such spectra
sion are implicitly given by the coherent dipole dynamics,do not comprise any effects which arise from carrier density
which enters into the temporal evolution of this field-dipole fluctuations. These effects are known to be quite significant.
correlation. If explicit information about the two-time corre- Well known examples of carrier fluctuation effects in the
lations is desired, however, such correlations may be infrequency spectrum of semiconductor lasers are the line-
cluded in the dynamics by noting that the temporal evolutiorwidth enhancement phenomenologically described by the
of the two-time correlations of the fieldr,t;r’,t") and the linewidth enhancement factar and the relaxation oscilla-
two-time correlations of the field-dipole correlation tion sidebands observed in stable single mode operation.
C(r,t;r',k,t") is equivalent to the dynamics of the field and Moreover, spatial carrier density fluctuations may also sig-
dipole expectation valud®5]. While the quantum Maxwell- nificantly modify the multimode spectra of semiconductor
Bloch equations for the correlations &tt’ remain un- laser devices, as pointed out recently for the case of semi-
changed, the evolution of the two time correlations as a funceonductor laser array24].

+10,

Ntk o
k;T —1{l(r,tr'st") (4239

=—(Kj+i5wj)~|ij(l’,t;r'.t,)

Ik(r,t,r k,t").

/ !
OEr Mk
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VI. AMPLIFIED SPONTANEOUS EMISSION J
PROPERTIES: ANALYTICAL RESULTS OF THE Eci,—(r;r',k)
QUANTUM MAXWELL-BLOCH EQUATIONS

spontaneous 5(r_r’)5ijfe(k)fh(k)
IR+ (0 — 1]

J
A. Gain and spontaneous emission Ecij(r;r/:k)
For a given carrier distributioi®"(k), the dynamics of stimulated (45)

the optical fieldE(r) and the dipole densitp(r) are linear.

In this case, it is possible to integrate thg equations .of mMotiomn this equationd(r—r'); corresponds to a photon density
to obtain a Green’s function for the field dynamlCS. TheOf one photon per mode. The Spectra| density of the Sponta-

equation for bulk material reads neous emission may therefore be obtained by replacing
[fe(k) + f(k)— 1] with fé(k)f"(k) in Egs.(44a and(44b),
iE(r 1) =g? Yo j dskfdee_[r(k)HQ(k)]T respectively, and multiplying the resulting rates with twice
at ! oL 0123 0 the density of light field modes that couple to the medium

. (the factor of 2 being a result of considering intensities in-
X(fe(k)+f(k)—1)&(r,t—7). (438  stead of fields At the band edge frequenay,, the density
of light field modes per volume and frequency interval in a
Correspondingly, the equation for a multi-quantum-well COntinuous medium is

structure ofQ quantum wells has the form )
Wo

Plight="" 3 € - (46)
9 2Qro 2 | e (Tkp+i(k me
—&(r,1) =go—25(rz—zo)f d k”f dre” (NkpFiQdgnr
at cL Am 0 The density of the spontaneous emission rate for bulk mate-
X (Fo(kp) + £ (kp) = 1) E(r t= 7). (a3p "1l Shun(@) thus reads
Yo
An expression for the rat€(w) at which a light field mode Sbu|k(w):Pngmg(2)F
of frequencyw is amplified can be derived by solving the ™
integral overr using&(r,t— 7)~e'“7&(r,t). The real part of (k)
the result is the gain spectrum given in terms of amplification X J’ d3k fe(k) (k).
per unit time,G(w). For bulk material, this amplification I2(k)+(Q(k) — w)?
rate is given by (473
T'(k For quantum wells, the density of modes is only 2/3 of
_2 Yo 3 (k) ' . ' .
Gpui(®w) =g J d°k— > piight. since the dipole component perpendicular to the
127 I'“(k) +(Q (k) — ) quantum well is zero. Also, thé function 8(r ,— z,) may be

omitted to obtain the emission density per area. The sponta-

e h _
X[ +17(k) —1], (443 neous emission densi§ow(w) is then given by
and for quantum wells, the corresponding amplification rate 2 ,Qug
reads SQ\/\/(w)nglightgo—25(fz—Zo)
2
Qo j ’ I(ky) oL h
G =gi——6(r,—z X [ d%k ek (k).
o @) 9, > (r;—2o) HFZ(kH)Jr(Q(k”)—w)Z I I
47h
[a Mk 47
HFZ(kHH(Q(k”)_w)Z The total rate of spontaneous emission per unit volume or
. area may be obtained by integrating over all frequencies.
X[fe(kp + (k) —11. (44b  This integral removes the dependence Iogk). For bulk

material,

The gain per unit length can be obtained by dividing the rate
G(w) by the speed of light in the semiconductor medium, f _ Zif 3 ce h
ce, V2. However, in order to establish the connection be- doSpun( @) Piighto 5 a7k T(k)
tween the gain spectrum and the spectral density of sponta- (483
neous emission, it is more convenient to use the amplifica-
tion rate as a starting point. and for quantum wells,

The quantum Maxwell-Bloch equations for the field- 9
dipole correlationC;;(r;r’,k) show that the ratio between J’ _ 2~V B J’ 21 ce h
the spontaneous contributions and the stimulated contribu dwSow @) =Pigh90 37 Arz=2o) | d7kq (k) TRCky).
tions is (48b)
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For zero temperature, the spontaneous emission rate may be 0.75
derived by noting that®(k) f"(k) = fé(k)=f"(k). The inte- 0.5
gral overk may thus be solved, resulting in ’/ s o

) fe( L) £h 3 "‘Ol g 0

d3kfe(k)f"(k)=47°N (4939 - a1
for bulk material and -0.5 o g5
J k() (k) = 2N 49b o
T Tk) =" (490 Er oz 40 0 80
h (mev)

for quantum wells. For both bulk and quantum wells the

density of spontaneous emission now may be expressed as FIG. 3. Spectra of gain and spontaneous emission for a quantum
well structure ofQ=5 quantum wells given relative 16 ,,=2.5

X10" cms 18(r,—z0) andSy.=2.7X10" cm 2. The five spec-
tra shown are the gain atN=0 (go), the gain at N
=10' cm 2 (g,), the spontaneous emission bit=102 cm 2
(s, the gain aN=5x10"? cm 2 (g5) and the spontaneous emis-
sion atN=5x 10" cm™2 (s5).

_ N
StotaI_T_Sv

(50

where 1f is the rate of spontaneous emission given by

1

Ts

2 )
= ?Plightgoyo- (51 7h M+ mgff
=9 e (54)
Using Eq.(30), the rate of spontaneous emission may also be MetMets
expressed in terms of the dipole matrix elemegt, The spectral density of spontaneous emission is thus given

4 by

4
1w 1 @

2:
ﬁ(l)o r 47760 3C3|dcv|

Pradv (52)
ha 2Qug MG Mi

3Th e+ mb

Q
arcta

SQW((‘)):plightgg
whereP, .4 is the classical power radiated by an oscillating
dipole of the amplitudel., . Note that the factor of 4/wg is
consistent with a quantum noise interpretation of spontane-
ous emission such as the one represented by the semiclassi-
cal Langevin equations. According to this interpretation, the

X T

T (595

w
+arcta

fluctuations of each dipole are given bjdg |2 because both

the real and the imaginary parts of the dipole contribute. Th(?

spontaneous emission of an excited atom is then compos a
of one-half amplified field noise and one-half dipole fluctua
tions. Therefore, each one of the two dipole components co

tributes one-quarter of the total spontaneous emission of
excited state. Numerical values @d.,| and g, for GaAs
may be determined by assuming a spontaneous lifetime
7s=3 NS, a band gap dfwy=1.5 eV ande, = 12. The dipole
matrix element is thend,,|=4.3x 10 2°Cm which corre-
sponds to a distance of %70 ° m times the electron

charge and the coupling frequencygg=2.1x 10'° s~ 1.

For quantum wells at zero temperature, the integrals ov

k, can be solved analytically using E(RO) and assuming
thatI" is independent ok;. The resulting gain spectrum is
then given by

r1/2G )= Erllzgz Quo MEr My St 20)
— Y0 == Y% e ..n 9Uz74%
¢ C TU27h mé i+ mi
—w ar
X| 2 arcta T + arcta T~ 3

(53

a

Typical spectra of gain and spontaneous emission of an
active layer containin)=>5 quantum wells obtained from

e analytic approximation&éb3) and (55), respectively, are

% esented in Fig. 3 for characteristic values of the carrier
nd_ensity. For the spectra in Fig. 3 we have assumed a total
spontaneous emission lifetime af=3 ns and a band gap of
wo=1.5 eV. Other parameters are the effective mass of
Slectrons (ng;=0.06Mmy) and holes l(n*e‘ff=0.053n_o),
given in units of the electron mass, as well as the dipole
damping rateil’=8 meV, and dielectric constanrt=12.
Gain and spontaneous emission are both displayed relative to
the peak valuesSy.,=2.7<10" cm 2 and Gpa=(2.5

X 10" cms 1) 8(r,— z,). The gain value may be interpreted

eltr)y calculating the gain of a light beam of width~*

=105 cm with an incidence perpendicular with respect to
the quantum well and traveling at a speed of®26ms ! in

the plane of the quantum well. The maximal gain is then
given by 250 cm?. The five spectra displayed in Fig. 3 are
the gain atN=0 (g,), the gain aN=10'> cm? (g,), the
spontaneous emission Bt=10'? cm 2 (s,), the gain aiN
=5x10" cm 2 (gs) and the spontaneous emission Nt
=5x10' cm 2 (ss). Figure 3 clearly shows the influence
of the carrier densityN. In the absence of charge carriers
(go), the laser is purely absorptive. With increasing carrier
density N, transparency is reached =102 cm? (g,).

where(); is the transition frequency at the Fermi surface of This density is characterized by vanishing géie., there is
the electrons and holes. It is related to the carrier demgity neither gain nor absorptiomt a frequency ofiw=0. At the

by

same time, however, there is a significant contribution of
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spontaneous emissiors;() with a maximum at a frequency 1 RS
of Aw~4 meV. Finally, at high values of the carrier density
(N=5x10" cm2), both gain @s) and spontaneous emis- 0.8 ()
sion (ss5) have a maximum above the band-gap frequency.
B 0.6 (a)
B. Spontaneous emission factor and far-field pattern Bo 4 4
of an edge emitting laser

In the optical cavity of a laser the equations for gain and 0.2
spontaneous emission are modified by the mode structure. In
particular, the total linear response of an electromagnetic 0 1 2 3 4 5 6
field mode inside the cavity includes the cavity loss rate Qs
For the edge emitting semiconductor laser, the gain function x+T

of the cavity modes is given by FIG. 4. Carrier density dependence of the spontaneous emission

factor 8 for three modes with frequencies above the band-gap fre-

GlD(w):g(Z)_O'f o2 H (k) + « quency given by(@ »=0, (b)) w=0.5T+«), and (c) w=I
41 (T(k))+ K)%+ (Q(kp) — )2 + k. Bo=B(w=N=0) is determined by the geometry of the laser.
The carrier density is given in terms of the transition frequency at
X[ fe(k)) + (k) — 1], (56)  the Fermi edgd); .

where the confinement facter is defined according to Eq. integrals may then be solved analytically using E2f)) and

(37). Spontaneous emission into the cavity modes passegssuming thal is independent ok;. For the spontaneous
through the gain medium and is thereby absorbed or ampliemission factoyB, the analytical result reads

fied accordingly. Thus for an edge emitting laser, the rate of

spontaneous emission into a cavity mode of frequendg Blw. Q)= 3o
given by @ 27piight QWL )
2 Yo 2 «| arctah =2 + arctar = 59
SlD(w):zgoﬁUJ'd Ki arctan - —| +arctan gy |- (59
(k) + x The Fermi frequency); is defined by Eq.(54) and ex-
> ” zfe(kH)fh(k”), presses, in particular, the carrier density dependengg. of
[T(kp + ]+ [Q(k) ~ @] For Qs ,w<T + k we recover the result typically given in the

(57) literature (e.g.,[2]), which does not depend d\. Figure 4
shows the deviation of the spontaneous emission factor from
This rate represents the total rate of spontaneous emissidhis value as the Fermi frequendy; passes the point of
events per mode, regardless of the actual width of the lasefesonance with the cavity mode. Figure 4 illustrates, in par-
On the other hand, Eq50) gives the total rate of spontane- ticular, the carrier density dependenceffor three modes

ous emission per quantum well area. with frequencies above the band-gap frequency givefaby
0w=0, (b) w=0.5I"+«), and(c) w=I"+ k. Most notably,
1. Spontaneous emission factor B is always smaller than the usual estimate givenggw
In a laser of length. and total widthW (c.f. Fig. 1), the ={4=0), which is based on the assumption of ideal reso-

spontaneous emission rate into free spade\ié S, . The nance between the transition frequency and the cavity mode.

spontaneous emission faci®r which is generally defined as
the fraction of spontaneous emission being emitted into the o ' _
cavity mode[2], is on the basis of our theory given by the ~ With Egs.(56) and (57), it is possible to find the steady

2. Far-field pattern of a broad area laser

expression state intensityl g of a mode with frequencw,
Sip(w)
TsSip = 17
ﬁ(valo):—WNlD- (58 ls(w) 2k—2Gp(®) " (60

Note that this result may also be obtained directly from Eqgs.

tum well is related to the one-dimensional carrier density362—36& In a wide cavity, the cavity modes are approxi-
Nyp by N;p=LN. The spontaneous emission facferis a mately plarl1e_wave modes and the relation betwkgw)
function of both frequency and carrier density. Conse-2"dlo(r:ry) in that case reads
qguently, the common assumption of the spontaneous emis-
sion factorB being independent of the carrier dendig;7] lo(r r/):f dqeiq(rx—r;)l _ woQ
may be regarded as an approximation similar to the assump- 0h Xt x
tion of linear gain.

An analytical expression for the spontaneous emissiohe steady state intensity distribution is characterized by the
factor may be obtained for zero temperature. Kgpace spatial coherence derived from the intensity distribution of

Note that the two-dimensional carrier dendityin the quan-

) . (61
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the plane wave modes of the cavity. Generally, the intensity
distribution of plane waves corresponds in the far-field to an ~ 9-14
optical field at angles relative to the axis of emission in the  o0.12
plane of the quantum well. The angular distribution of inten- 0.1
sity and coherence in the far field is thus given by ;
i 0.08
Ko e B ~ 0.06
14(0,0")= ZJ drxdrxe'koorx| olry,ry)e iko®'ry o o4
(62) 0.02
Therefore, the far field intensity distribution may be deter- 0_60 ~40 50 A >0 70 50
mined directly from the frequency dependence of the inten- (a) far field angle (deg.)
sities by
3 F
(1)02
1{(0,0)=Wkyls o= 5 |’ (63 2.5}
r

the intensity is given in units of 2% wq per unit angle. 5
For T=0 we may in analogy to Eq59) solve the integral el

in Eqg. (57) by assumingl’ to be independent df. As an h

analytical expression we then obtain for the far-field inten-

sity distribution of a broad area semiconductor laser 0.5l
0 L 4
-60 -40 -20 0 20 40 60
lf(®’®) (o) far field angle (deg.)
Q- w(0) w(0)
arctaréﬁ +arctar6FTK 100
=Wk 1 0~ 0(0) (@)
w R+E —2arctar6ﬁ —arctaré T+x 80
e h 2 60
with R= 2 ettt Mot o @)= “’206 (64 ;
9o%00  MetiMegs € = a0
The parameteR represents the ratio between the cavity loss 20
rate k and the maximum amplification rate of the gain me-
dium. Laser activity is only possible R<1. The classical 0 ]
laser threshold is defined by the carrier density for which the -60 -40  -20 0 20 40 60
denominator ofl{(®,0) is zero for a single specific fre- © far field angle (deg.)

quency »(®). Consequently, the carier density at which o\~ o 601 intensity distributions faR=0.5, % wo=1.5
this occurs is pinned. Figure 5 shows the far field intensity T _ o e e

ST . ) " eV, i(I'+k)=8 meV, ande,=12. The density is pinned &;
distribution for different carrier densities below this pinning

. . . . o . ¥ =1.8805( + «). (a) shows the far-field pattern for carrier densities
density. In Fig. %a), the wide intensity distribution of ampli- of 0.05, 0.10, and 0.15 times pinning density) shows the distri-

fied spontaneous emission for carrier densities is much l10W&J ion for 0.25 0.5. and 0.75 times pinning density &edshows

than the pinning density. The intensity maximum is clearlyye gistribution for 0.90, 0.95, and 0.99 times the pinning density.
|0Cated at@zo. FIgUI’e 561) ShOWS the InteﬂSIty dlStrIbUtIOﬂ The peaks appear at emlsSIO“ anglestdjSO

for carrier densities halfway towards threshold. Already, the
intensity maxima move to angles af15°, corresponding to
the frequency at which the gain spectrum has its maximumever, the strong dissipation prevents squeezing in laser

In the case of Fig. &), the threshold region is very close to systems unless the pump-noise fluctuations are suppressed
the pinning density. The peaks in the far-field pattern narrow2g].

as the laser intensity is increased. Consequently the far-field

pattern indeed is a measure of the spatial coherence—similar VII. CONCLUSIONS

as the linewidth of the laser spectrum is a measure of tem-

poral coherence. It is therefore desirable to consider quantum The quantum Maxwell-Bloch equatio®MBE) for spa-
noise effects in the spatial patterns of optical systems. In théally inhomogeneous semiconductor lasers derived in this
context of squeezing, such patterns have been investigatg@per take into account the quantum mechanical nature of
by Gatti and co-worker§26] based on the general formula- the light field as well as that of the carrier system. The only
tion of Lugiato and Castell[27]. The laser patterns pre- approximation used in the derivation of the intensity and
sented here are based on the same principles. Usually, howerrelation dynamics is that of statistical independence be-
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tween the two carrier systems and the light field. In thetrated by the spectra of gain and spontaneous emission. An
QMBE presented here, the effects of coherent spatiotemporalkample of the spatial coherence characteristics described by
guantum fluctuations, which are generally not considered ithe quantum Maxwell-Bloch equations has been presented
the semiclassical Maxwell-Bloch equations for semiconducby analytically obtaining the spontaneous emission fagtor
tor laser devices have thus been taken into account. and the far-field distribution for the example of a broad area

The spontaneous emission term appears side by side wittdge emitting laser. In general the quantum Maxwell-Bloch
the gain and absorption term in the dynamics of the fieldequations derived for edge emitting and vertical cavity sur-
dipole correlation. In this way the spatial coherence of sponface emitting lasers provide a starting point for a detailed
taneous emission and amplified spontaneous emission is coanalysis of spatial coherence patterns in diverse semiconduc-
sistently described by the quantum Maxwell-Bloch tor laser geometries such as broad area or ultralow threshold
equations. Typical features of the model have been illustasers.
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