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Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

Holger F. Hofmann and Ortwin Hess
Theoretical Quantum Electronics, Institute of Technical Physics, DLR Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

~Received 1 July 1998!

We present quantum Maxwell-Bloch equations~QMBE! for spatially inhomogeneous semiconductor laser
devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction
of the light field with the quantum states of the electrons and the holes near the band gap. By taking into
account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects, which
cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous
emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities.
The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting
lasers, providing a starting point for the detailed analysis of spatial coherence in the near-field and far-field
patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission
described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency
and carrier density dependent spontaneous emission factorb and the evolution of the far-field pattern near
threshold are derived.@S1050-2947~99!02803-6#

PACS number~s!: 42.55.Px, 42.50.Lc
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I. INTRODUCTION

The spatiotemporal dynamics of semiconductor lasers
be simulated successfully by semiclassical Maxwell-Blo
equations without including any quantum effects in the lig
field ~for an overview of the theory and modeling see@1# and
references therein!. The classical treatment of the light fiel
is justified by the high intensity of the laser light well abo
threshold. However, the incoherent noise required by the
certainty principle in both the electrical dipole of the sem
conductor medium and the light field itself is of significa
importance when several cavity modes compete or when
laser is close to threshold.

Photon rate equations for multimode operation of se
conductor lasers show that the spontaneous emission t
may contribute significantly to the spectral characteristics
the light field emitted by the laser@2,3#. Such models assum
a fixed mode structure determined entirely by the empty c
ity. This assumption does not apply to gain guided lasers
to unstable resonators, however@4–6#. In these cases it is
therefore desirable to explicitly describe the spatial coh
ence of spontaneous emission.

The spatial coherence of spontaneous emission and
plified spontaneous emission is even more important in
vices close to threshold or devices with a light field outp
dominated by spontaneous emission such as superlum
cent diodes and ultralow threshold semiconductor las
@7,8#. Ultralow threshold lasers may actually operate in
regime of negative gain where spontaneous emission is
only source of radiation@7#. A description of the light field
emitted by such devices therefore requires an explicit
scription of the spatial coherence in spontaneous emissio
well.

An approach to the consistent inclusion of the quant
noise properties of the light field in the dynamics of sem
conductor laser diodes using nonequilibrium Green’s fu
tions has been presented in@9–11#. In this approach, the
linear optical response of the medium is varied as a func
PRA 591050-2947/99/59~3!/2342~17!/$15.00
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of the time-dependent electron-hole distributions. Althou
the nonequilibrium Green’s function presents an elegant
lution for the description of many-body effects@9#, the rep-
resentation of the interband dipole dynamics by Gree
functions causes a non-Markovian memory effect, which
difficult to handle and is therefore usually neglected@10#.
Moreover, the need to determine the Green’s function co
sponding to the dynamically varying carrier distribution r
quires a computational effort far greater than that requi
for the integration of the corresponding Maxwell-Bloc
equations. Therefore, as stated in@11#, an exact analytical
investigation of the spatial mode structures in realistic ca
ties using nonequilibrium Green’s functions is out of reac
In order to simulate the spatiotemporal dynamics of mu
mode operation, of lasers near threshold, low threshold la
or superluminescent diodes, it is therefore desireable to
mulate an alternative approach to the problem of sponta
ous emission and amplified spontaneous emission in s
devices which is based on Maxwell-Bloch equations. By
cluding the spatiotemporal dynamics of the interband dip
in such equations, non-Markovian terms are avoided and
quantum mechanical equations may be integrated in
straightforward manner.

The starting point for our description of quantum noi
effects is the dynamics of quantum mechanical operator
the field and carrier system. Since the operator dynamic
the carrier system have been investigated in the contex
Maxwell-Bloch equations before@12# and the light field
equations correspond exactly to the classical Maxwe
equations, it is possible to focus only on the local ligh
matter interaction. Once the properties of this interaction
formulated in terms of the expectation values of field-fie
correlations, dipole-field correlations, carrier densities, fiel
and dipoles, the dynamics of the carrier system and the l
field propagation may be added.

In Sec. II, the quantum dynamics of the interaction b
tween the light field and the carrier system is formulated
terms of Wigner distributions for the carriers and of spatia
2342 ©1999 The American Physical Society
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continuous amplitudes for the light field. The equations
formulated for both bulk material and for quantum we
including the effects of anisotropic coupling to the polariz
tion components of the light field. Section III summarizes t
effects of the dynamics of the electron-hole system in
semiconductor material. The light field dynamics are int
duced in Sec. IV. By quantizing Maxwell’s equation, th
coupling constantg0 introduced in Sec. II is expressed
terms of the interband dipole matrix element. The compl
set of quantum Maxwell-Bloch equations is presented in S
V. Based on this general formulation, specific approxim
versions for quantum well edge emitting and vertical cav
surface emitting lasers are derived. The possibility of inclu
ing two-time correlations in the quantum Maxwell-Bloc
equations is discussed and equations are given for the ca
vertical cavity surface emitting lasers. In Sec. VI, analytic
results for the spectra of gain and spontaneous emissio
quantum wells as well as the spontaneous emission factb
and the far-field pattern of amplified spontaneous emissio
broad area quantum well lasers are presented. Section
concludes the paper.

II. DYNAMICS OF THE LIGHT-CARRIER INTERACTION

A. Hamiltonian dynamics of densities and fields

In the following, we will describe the active semicondu
tor medium in terms of an isotropic two-band model whe
for the case of the holes, a suitably averaged effective m
is taken@12#. A generalization to more bands is straightfo
ward. In terms of the local annihilation operators for photo
(b̂R), electrons (ĉR), and holes (d̂R), the Hamiltonian of the
light-carrier interaction can be written as

ĤcL5\g0 (
R

~ b̂R
† ĉRd̂R1b̂RĉR

† d̂R
† !. ~1!

The operator dynamics associated with this Hamiltonian
then given by

]

]t
b̂RU

cL

52 ig0ĉRd̂R , ~2a!

]

]t
ĉRd̂R8U

cL

5 ig0~ b̂Rd̂R
† d̂R81b̂R8ĉR8

† ĉR2b̂RdR,R8!,

~2b!

]

]t
ĉR

† ĉR8U
cL

52 ig0~ b̂R8ĉR
† d̂R8

†
2b̂R

† ĉR8d̂R!, ~2c!

]

]t
d̂R

† d̂R8U
cL

52 ig0~ b̂R8ĉR8
† d̂R

† 2b̂R
† ĉRd̂R8!. ~2d!

The discrete positionsR correspond to the lattice sites of th
Bravais lattice describing the semiconductor crystal. E
lattice site actually represents the spatial volumen0 of the
Wigner-Seitz cell of the lattice. For zinc-blende crystal stru
ture, this volume is equal to one-quarter of the cubed lat
constant. In the case of Al12xGaxAs structures the lattice
constant is about 5.65310210 m and n0'4.5310229 m3
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@13#. The photon annihilation operatorb̂R therefore describes
the annihilation of a photon within a volumen0 . Here, we
will focus on the light-carrier interaction and the quantu
noise contributions responsible for spontaneous emiss
For that purpose, we extend the semiclassical description
including not only the expectation values of the field a
dipole operators,̂ b̂R& and ^ĉRd̂R8&, respectively, but also
the field-field correlationŝb̂†

Rb̂R8& and the field-dipole cor-
relation^b̂R

† ĉR8d̂R9&. The factorized equations of motion the
read

]

]t
^b̂R

† b̂R8&U
cL

52 ig0~^b̂R
† ĉR8d̂R8&2^b̂R8

† ĉRd̂R&* !,

~3a!

]

]t
^b̂R

† ĉR8d̂R9&U
cL

5 ig0~^b̂R
† b̂R8&^d̂R8

† d̂R9&1^b̂R
† b̂R9&^ĉR9

† ĉR8&

2^b̂R
† b̂R8&dR8,R9!1 ig0^ĉR

† ĉR8&^d̂R
† d̂R9&,

~3b!

]

]t
^ĉR

† ĉR8&U
cL

5 ig0~^b̂R
† ĉR8d̂R&2^b̂R8

† ĉRd̂R8&* !, ~3c!

]

]t
^d̂R

† d̂R8&U
cL

5 ig0~^b̂R
† ĉRd̂R8&2^b̂R8

† ĉR8d̂R&* !. ~3d!

Note that this set of equations already represents a clo
description of the field dynamics. If, as in many experimen
configurations, the absolute phase of the light field and
pole operators may be considered unknown, these equa
are sufficient for a description of the light-carrier interactio
However, when two-time correlations are of interest or in t
case of coherent excitation by injection of an external lase
may also be necessary to additionally consider the dynam
of the field and dipole expectation values, i.e.,

]

]t
^b̂R&U

cL

52 ig0^ĉRd̂R&, ~3e!

]

]t
^ĉRd̂R8&U

cL

5 ig0~^b̂R&^d̂R
† d̂R8&

1^b̂R8&^ĉR8
† ĉR&2^b̂R&dR,R8!. ~3f!

B. Physical background of the factorization

In the following, we will briefly discuss the implication
of the factorization performed in the derivation of Eq.~3a!.
In order to formulate the dynamics of the light-matter inte
action without including higher-order correlations, thr
terms have been factorized in the time derivative of the fie
dipole correlation~3b!. The factorizations are

^b̂R
† b̂R9ĉR9

† ĉR8&'^b̂R
† b̂R9&^ĉR9

† ĉR8&, ~4a!

^b̂R
† b̂R8d̂R8

† d̂R9&'^b̂R
† b̂R8&^d̂R8

† d̂R9&, ~4b!
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^ĉR
† ĉR8d̂R

† d̂R9&'^ĉR
† ĉR8&^d̂R

† d̂R9&. ~4c!

No additional factorizations are necessary in the density
namics of photons, electrons, and holes. The three facto
tions are based on the assumption of statistical independ
between the densities of photons, electrons and holes. S
we are not considering fluctuations in the particle densit
this is a necessary assumption.

Equations~4a! and~4b! separate the photon density fro
the carrier densities. These terms represent stimulated e
sion processes. Therefore, a correlation of the photon den
with the carrier densities would lead to a modified stimula
emission rate. Below threshold, this effect will be small b
cause the amplified spontaneous emission is distributed
many modes such that the local correlations between ph
and carrier densities are weak. Above threshold, the pho
number fluctuations in the lasing mode cause relaxation
cillations. The photon number fluctuations are nearly 9
out of phase with the carrier number fluctuations. Therefo
the time averaged correlation is still negligible.

Equation ~4c! separates the electron and hole densit
This term represents the spontaneous emission caused b
simultaneous presence of electrons and holes in the s
location. Although it is reasonable to assume that the h
rate of scattering at high carrier densities effectively red
all electron-hole correlations to zero, it is important to no
that the interband dipolêĉRd̂R8& implies a phase correlatio
between the electrons and the holes. In fact, the spontan
emission term factorized according to Eq.~4c! originates
from the dipole-dipole correlation̂ĉR

† d̂R8
† ĉR9d̂R-&. Note that

this term could also be factorized into the product of dip
operatorŝ ĉRd̂R8&* ^ĉR9d̂R-&. The dynamics of the field-field
and the field-dipole correlations are then identical to the
namics of the products of the fields and dipoles. Therefo
that factorization corresponds to the approximations of
conventional Maxwell-Bloch equations such as described
@12#, which do not rigorously include spontaneous emissi

Generally, spontaneous emission must always arise f
random phase fluctuations. These are given by the produ
electron and hole densities. While the phase dependen
pole relaxes quickly due to scattering events, the carrier d
sities are preserved during scattering. Therefore

^ĉRd̂R8&* ^ĉR9d̂R-&!^ĉR
† ĉR9&^d̂R8

† d̂R-& ~5a!

is usually a good assumption in semiconductor systems. N
that this assumption does fail in the case of low carrier d
sities and high dipole inducing fields. However, this ca
only occurs if the light field is injected from an extern
source. In semiconductor lasers and in light emitting diod
the major contribution to the dipole-dipole correlations ste
from the product of electron and hole densities. To check
statistical independence of photon, electron, and hole de
ties, it is also convenient to check the corresponding ineq
ity for the three particle coherence represented by the fi
dipole correlation,

^b̂R
† ĉR8d̂R9&* ^b̂R-

† ĉR-8d̂R-9&!^b̂R
† b̂R-&^ĉR8

† ĉR-8&^d̂R9
† d̂R-9&.

~5b!
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Thus, if a calculation does not fulfill this requirement, pa
ticle density correlations additionally have to be taken in
account.

C. Wigner function formulation

In order to connect the light-carrier interaction to th
highly dissipative carrier transport equations, it is practica
transform the carrier and dipole densities using Wigner tra
formations@14#. Replacing the discrete density matrices
continuous ones obtained by polynomial interpolation w
allow, e.g., for numerical purposes an arbitrary choice of
discretization scales, which generally will be much larg
than a lattice constant. Analytically, it permits an applicati
of differential operators. Physically, the particle densities
smooth functions over distances of several lattice consta
A coherence length shorter than, e.g., ten lattice const
would requirek states withuku of at least one 20th of the
Brilloin zone diameter. In typical laser devices, however, t
electrons and holes all accumulate near the fundamental
at k50. Therefore, it is simply a matter of convenience
define the continuous densities such that

re~r5R,r 85R8!5
1

n0
^ĉR

† ĉR8&, ~6a!

rh~r5R,r 85R8!5
1

n0
^d̂R

† d̂R8&, ~6b!

rdipole~r5R,r 85R8!5
1

n0
^ĉRd̂R8&. ~6c!

These continuous functions may then be transformed
Wigner functions by

f e~r ,k!5E d3r 8e2 ikr 8reS r2
r 8
2

,r1
r 8
2 D , ~7a!

f h~r ,k!5E d3r 8e2 ikr 8rhS r2
r 8
2

,r1
r 8
2 D , ~7b!

p~r ,k!5E d3r 8e2 ikr 8rdipoleS r2
r 8
2

,r1
r 8
2 D . ~7c!

The normalization of these Wigner functions has been c
sen in such a way that a value of one represents the max
phase space density possible for Fermions, that is, one
ticle per state. Since the density of states in the s
dimensional phase space given byr andk is 1/8p3, a factor
of 1/8p3 will appear whenever actual carrier densities ne
to be obtained from the Wigner functions. However, the n
malization in terms of the maximal possible phase space d
sity is convenient because it represents the probability th
quantum state in a given region of phase space is occup
Therefore, the Wigner distribution corresponding to the th
mal equilibrium of a given particle density is directly give
by the Fermi function.

To deal with the light field dynamics in the same mann
the field and field-field correlation variables must also
defined on a continuous length scale. In order to obtain p
ton densities, we define
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E~r5R!5
1

An0

^b̂R&, ~8a!

I ~r5R;r 85R8!5
1

n0
^b̂R

† b̂R8&. ~8b!

Finally, the dipole-field correlation must be defined acco
ingly, such that

Qcorr.~r5R;r 85R8,r 95R9!5
1

An0
3 ^b̂R

† ĉR8d̂R9&, ~9!

C~r ;r 8,k!5E d3r 9e2 ikr 9Qcorr.S r ;r 82
r 9
2

,r 81
r 9
2 D .

~10!

With these new definitions, the light-carrier interaction d
namics can now be expressed in a form that considers
the position and the momentum of the electrons and ho
The dynamics of emission and absorption now reads

]

]t
I ~r ;r 8!U

cL

52 ig0

An0

8p3E d3k„C~r ;r 8,k!2C* ~r 8;r ,k!…

~11a!

]

]t
C~r ;r 8,k!U

cL

5 ig0An0

1

8p3E d3xE d3qeiqx

3F f eS r 8,k1
q

2D
1 f hS r 8,2k1

q

2D21G I ~r ;r 81x!

1 ig0An0

1

8p3E d3qeiq~r2r8!

3 f eS r1r 8
2

,k1
q

2D f hS r1r 8
2

,2k1
q

2D ,

~11b!

]

]t
f e~r ,k!U

cL

5 ig0An0

1

8p3E d3xE d3qeiqx

3FCS r1x;r ,k1
q

2D2C* S r1x;r ,k1
q

2D G ,
~11c!

]

]t
f h~r ,k!U

cL

5 ig0An0

1

8p3E d3xE d3qeiqx

3FCS r1x;r ,2k1
q

2D
2C* S r1x;r ,2k1

q

2D G , ~11d!
-

-
th
s.

]

]t
E~r !U

cL

52 ig0

An0

8p3E d3kp~r ,k!, ~11e!

]

]t
p~r ,k!U

cL

5 ig0An0

1

8p3E d3xE d3qeiqxF f eS r ,k1
q

2D
1 f hS r ,2k1

q

2D21GE~r1x!. ~11f!

D. Local approximation

The integrals overx andq represent seemingly nonloca
effects introduced by the transformation into Wigner fun
tions. This property of the Wigner transformation retains t
coherent effects in the carrier system. For the interaction
the carriers with the light field, it ensures momentum cons
vation by introducing a nonlocal phase correlation in t
dipole field corresponding to the total momentum of the el
tron and hole concentrations involved. Effectively, the in
gral overq converts the momentum part of the Wigner d
tributions into a coherence length. This coherence len
then reappears in the spatial structure of the dipole field
the electromagnetic field generated by the carrier distri
tion. However, the coherence length in the carrier system
usually much shorter than the optical wavelength. It c
therefore be approximated by a spatiald function. Here, we
do this by noting that

1

8p3E d3qeiqx5d~x!. ~12!

If the effects of the momentum shiftq in the Wigner func-
tions is neglected, the integrals may then be solved, yield
only local interactions between the carrier system and
light field:

]

]t
I ~r ;r 8!U

cL

52 ig0

An0

8p3E d3k„C~r ;r 8,k!2C* ~r 8;r ,k!…,

~13a!

]

]t
C~r ;r 8,k!U

cL

5 ig0An0@ f e~r 8,k!1 f h~r 8,2k!21#I ~r ;r 8!

1 ig0An0d~r2r 8! f e~r ,k! f h~r ,2k!,

~13b!

]

]t
f e~r ,k!U

cL

5 ig0An0„C~r ;r ,k!2C* ~r ;r ,k!… ~13c!

]

]t
f h~r ,k!U

cL

5 ig0An0„C~r ;r ,2k!2C* ~r ;r ,2k!…,

~13d!

]

]t
E~r !U

cL

52 ig0

An0

8p3E d3kp~r ,k! ~13e!
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]

]t
p~r ,k!U

cL

5 ig0An0„f
e~r ,k!1 f h~r ,2k!21…E~r !.

~13f!

These equations now provide a compact description of
light-carrier interaction in a three-dimensional semicond
tor medium, including the incoherent quantum noise te
which is the source of spontaneous emission.

E. Light-carrier interaction for quantum wells

Similar equations may also be formulated for a quant
well structure by replacing the phase space density of 1/p3

with 1/4p2, reducing the spatial coordinates of the carr
system to two dimensions, and introducing ad function for
the coordinate perpendicular to the quantum well at
points where field coordinates correspond to dipole coo
nates. Of course, the electromagnetic field remains th
dimensional, even though the dipole it originates from
confined to two dimensions. In particular, the correlati
C(r ;r 8,k) has both a three dimensional coordinater and a
two-dimensional coordinater 8. It is therefore useful to dis-
tinguish the two-dimensional and the three-dimensional
ordinates. In the following, the two-dimensional carrier c
ordinates will be marked with the indexi . Note that, in some
cases, bothr and r i appear in the equations. In those cas
the in-plane coordinatesr x and r y are equal, while the per
pendicular coordinater z must be equal to the quantum we
coordinatez0 . The equations for the interaction of the thre
dimensional light field with the two-dimensional electro
hole system in a single quantum well subband then read

]

]t
I ~r ;r 8!U

cL

52 ig0

An0

4p2E d2ki„C~r ;r 8i ,ki!d~r z82z0!

2C* ~r 8;r i ,ki!d~r z2z0!…, ~14a!

]

]t
C~r ;r i8 ,ki!U

cL

5 ig0An0„f
e~r 8i ,ki!

1 f h~r i8 ,2ki!21…I ~r ;r 8!r
z85z0

1 ig0An0d~r i2r 8i!d~r z2z0!

3 f e~r i ,ki! f h~r i ,2ki!, ~14b!

]

]t
f e~r i ,ki!U

cL

5 ig0An0„C~r ;r i ,ki!r z5z0

2C* ~r ;r i ,ki!r z5z0
…, ~14c!

]

]t
f h~r i ,ki!U

cL

5 ig0An0„C~r ;r i ,2ki!r z5z0

2C* ~r ;r i ,2ki!r z5z0
…, ~14d!

]

]t
E~r !U

cL

52 ig0

An0

4p2E d2kip~r i ,ki!d~r z2z0!,

~14e!
e
-
,

r

e
i-
e-
s

-
-

,

-

]

]t
p~r i ,ki!U

cL

5 ig0An0„f
e~r i ,ki!

1 f h~r i ,2ki!21…E~r !r z5z0
. ~14f!

Note that the value ofg0 will usually be slightly lower than
the bulk value because the overlap of the spatial wave fu
tions of the electrons and the holes in the lowest subband
less than one. The equations derived above represent th
teraction of a single conduction band and a single vale
band with a single scalar light field. Neither the spin dege
eracy of the carriers nor the polarization of the light field h
been considered.

F. Spin degeneracy and light field polarization

Since the geometry of light field emission is highly d
pendent on polarization effects such effects should also
taken into account in the framework of this theory. The ba
interaction between a single conduction band, a single
lence band and a single light field polarization are accura
represented by Eqs.~13a–13f! and~14a–14f!. By adding the
contributions of separate transitions, any many band sys
may be described based on these equations. In semicon
tor quantum wells the situation is considerably simplified
only the lowest subbands are considered. Then there are
two completely separate transitions involving circular lig
field polarizations coupled to a single one of the two elect
and hole bands. The quantum well structure does not inte
with light fields that are linearly polarized in the directio
perpendicular to the plane of the quantum well. The eq
tions for quantum wells are therefore completed by add
an index of1 or 2 to each variable.

The situation in the bulk system is much more involve
The transitions occur between the twofold degenerate s
1/2 system of the electrons and the fourfold degenerate
3/2 system of the holes. All three polarization directions
the light field are equally possible, connecting each of
electron bands with three of the four hole bands. Howev
since the effective mass of the two heavy-hole bands is m
larger than the effective mass of the light holes~e.g. by a
factor of 8 in GaAs!, only a small fraction of the holes wil
be in the light-hole bands~about 6% in GaAs for equilibrium
distributions!. Consequently, the carrier subsystem can ag
be separated into two pairs of bands. However, the light fi
polarization emitted by the electron-heavy hole transitions
bulk material is circularly polarized with respect to the re
tive momentum 2k of the electron and the heavy hole. Sin
usually there is no strong directional anisotropy in thek
space distribution of the carriers, it can be assumed that
third of thek space volume contributes to each polarizati
direction and the equations may be formulated according

In the following, we will assume that the Wigner distr
butions of the two pairs of bands considered are appro
mately equal at all times. Note that this means that h
burning effects in the spin and polarization dynamics t
may occur in vertical cavity surface emitting lasers@15# are
ignored. However, such effects have been investigated
several other studies@16–19# and are found to be fairly weak
in some devices@20#.
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The complete set of dynamical equations can now be
mulated by adding the carrier dynamics and the linear par
Maxwell’s equations to the light-carrier interaction.

III. CARRIER DYNAMICS

Modeling the carrier dynamics of a semiconductor syst
can be a formidable task all by itself. A number of appro
mations and models have been developed to deal with
effects of many-particle interactions and correlations a
with the dissipation caused by the electron-phonon inte
tions @21,22#. In the following, we choose a simple diffusio
model. Many-particle effects such as the band-gap renorm
ization or the Coulomb enhancement are not mentioned
plicitly, but can be added in a straightforward manner@1,12#.

We assume that the electron and hole densities will
kept equal by the Coulomb interaction, which will induce
current whenever charges are separated. Therefore, it is
sible to define the ambipolar carrier densityN(r ) with

N~r !5
1

4p3E d3k f e~r ,k!5
1

4p3E d3k f h~r ,k!. ~15!

Note that the twofold degeneracy of the electron and hea
hole bands has been included by choosing a density of s
of 1/4p3 instead of 1/8p3. This includes the assumption th
the Wigner distribution does not depend on the spin varia
of the electrons and holes as mentioned above.

The light carrier interaction of this carrier density is

]

]t
N~r !U

cL

5 ig0

An0

4p3E d3k(
i

@Cii ~r ;r ,k!2Cii* ~r ;r ,k!#

52
]

]t (
i

I i i ~r ;r !cL , ~16!

where the indexi denotes the component of the light field
dipole density corresponding to the linear polarization dir
tion of i 5x,y,z. In the case ofCi j (r ;r 8,k) the indexi refers
to the field polarization and the second indexj denotes the
vector component of the dipole vector. Equation~16! shows
how the field-dipole correlation converts electron-hole pa
into photons. The total carrier density dynamics can now
formulated as

]

]t
N~r !5DambDN~r !1 j ~r !2gN~r !1 ig0

An0

4p3

3E d3k(
i

@Cii ~r ;r ,k!2Cii* ~r ;r ,k!#, ~17!

whereDamb is the ambipolar diffusion constant,j (r ) is the
injection current density, andg is the rate of spontaneou
recombinations by nonradiative processes and/or spont
ous emission into modes not considered inI i j (r ,r 8), e.g., if
the paraxial approximation is applied.

The k dependence of the distribution functionsf e(r ,k)
and f h(r ,k) may be approximated by assuming that the el
trons and holes will always be in thermal equilibrium. T
distribution functions are then given by Fermi functions
r-
of

-
he
d
c-

l-
x-

e

os-

y-
tes

le

-

s
e

e-

-

f eq
e,h~r ,k!5S expF 1

kBTS \2k2

2me f f
e,h

2me,h~r !D G11D 21

,

~18!

whereme f f
e,h are the effective masses of electrons and he

holes, respectively. The chemical potentialme,h(r ) is a func-
tion of the carrier densityN(r ). A useful estimate of this
relationship is given by the Pade approximation@12,23#.
Spectral hole burning may be taken into account by introd
ing a relaxation timet r and converting the dynamics of th
distribution function due to the light-carrier interaction into
deviation from the equilibrium distribution by adiabat
elimination of the relaxation dynamics:

f e,h~r ,k!5 f eq
e,h~r ,k!1 ig0An0t r

3(
i

@Cii ~r ;r ,6k!2Cii* ~r ;r ,6k!#. ~19!

Finally, the carrier dynamics of the dipolep(r ,k) and the
dipole part of the field-dipole correlationC(r ;r 8,k) needs to
be formulated. Since both depend on a correlation of
electrons with the holes, they will necessarily relax rath
quickly at a rate ofG(k), which should be of the same orde
of magnitude as 1/t r . Physically,G(k) may be interpreted as
the total momentum dependent scattering rate in the ca
system. The remainder of the dynamics can be derived f
the single-particle dynamics. This unitary contribution to t
evolution of the dipole may be expressed by a moment
dependent frequencyV(k). For parabolic bands and isotro
pic effective massesme f f

e/h , this frequency is given by

V~k!5S \

2me f f
e

1
\

2me f f
h D k2. ~20!

Many-particle effects due to the Coulomb interaction b
tween the carriers may be included by introducing a car
density dependence inG@k,N(r )# and V@k,N(r )#. Such
renormalization terms representing the mean field effect
the carrier-carrier interaction have been derived and
cussed, e.g., in@12#. In the following, this many-particle
renormalization will not be mentioned explicitly, although
can be included in a straightforward manner.

With the ratesG(k) andV(k) the dipole dynamics read

]

]t
Ci j ~r ;r 8,k!U

c

52@G~k!1 iV~k!#Ci j ~r ;r 8,k!,

~21a!

]

]t
pi~r ,k!U

c

52@G~k!1 iV~k!#pi~r ,k!. ~21b!

Note that the phase dynamics is formulated relative to
band-gap frequencyv0 . The real physical phase oscillation
of p(r ,k) would include an additional phase factor
exp@2iv0t#. However, the only physical effect of this osci
lation is to establish resonance with the corresponding
quency range in the electromagnetic field, the dynamics
which we consider next.
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IV. MAXWELL’S EQUATION

The Heisenberg equations of motion describing the op
tor dynamics of the electromagnetic field operators are id
tical to the classical Maxwell’s equations. In terms of t
electromagnetic fieldE(r ) and the dipole densitiesP(r ), the
equation reads

“3@“3E~r !#1
e r

c2

]2

]t2S E~r !1
1

e re0
P~r ! D50, ~22!

wheree0 and c are the dielectric constant and the speed
light in vacuum, respectively, ande re0 is the dielectric con-
stant in the background semiconductor medium.

Maxwell’s equation describes the light field dynamics f
all frequencies. Since we are only interested in frequen
near the band-gap frequencyv0 , it is useful to separate
the phase factor of exp@2iv0t#, defining E(r )
5exp@2iv0t#E0(r ). Now E0(r ) can be considered to var
slowly in time relative to exp@2iv0t#. Therefore, the time
derivatives may be approximated by

exp@ iv0t#
]2

]t2
exp@2 iv0t#E0~r !

'2v0
2E0~r !22iv0

]

]t
E0~r !. ~23!

Similarly, P0(r ) may be defined such thatP(r )
5exp@2iv0t#P0(r ). The approximation used here may ev
be of zero order, since we are primarily interested in
dynamics of the electromagnetic field:

exp@ iv0t#
]2

]t2
exp@2 iv0t#P0~r !'2v0

2P0~r !. ~24!

The temporal evolution of the electromagnetic field no
reads

]

]t
E0~r !52 i

v0

2k0
2e r

$“3@“3E0~r !#

2e rk0
2E0~r !%2 i

v0

2e re0
P0~r !, ~25!

where k05v0 /c is the vacuum wave-vector length corr
sponding tov0 . In Eq. ~25!, the field dynamics is describe
in terms of electromagnetic units, that is the fields repres
forces acting on charges. To switch scales to the photon
sities represented byE(r ), energy densities have to be co
sidered. Since the energy of each photon will be close to
band-gap energy\v0 , the energy density of the electroma
netic field is given by

\v0E* ~r !E~r !5
e re0

2
E0* ~r !E0* ~r !. ~26!

Therefore, the field may be expressed as photon density
plitude using
a-
n-

f

s

e

nt
n-

e

m-

E0~r !5A2\v0

e re0
E~r !. ~27!

The dipole densityP0(r ) may be expressed in terms o
rdipole(r ,r ) and p(r ,k) by noting that the density
rdipole(r ,r ) is the dipole density in units of one-half th
atomic dipole given by the interband dipole matrix eleme
dcv at k50. The factor of one-half is a logical consequen
of the property that̂ ĉRd̂R8&<1/2. Thus, a fully polarized
lattice would have a dipole density ofrdipole(r ,r
51)/(2n0), which must correspond toP(r )5dcv /n0 . Note
thatdcv contains an arbitrary phase factor depending only
the definition of the states used for its determination. F
convenience, we assume a definition of phases such thadcv
is real. The dipole densityP0(r ) may then be written as

P~r !52dcvrdipole5
2udcvu

8p3 E d3kp~r ,k!. ~28!

Written in terms ofE(r ) andp(r ,k), the complete field dy-
namics now reads

]

]t
E~r !52 i

v0

2k0
2e r

$¹3@¹3E~r !#2e rk0
2E~r !%

2 iA v0

2\e re0

udcvu

8p3E d3kp~r ,k!

52 i
v0

2k0
2e r

$¹3@¹3E~r !#2e rk0
2E~r !%

2 ig0

An0

8p3E d3kp~r ,k!. ~29!

The coupling frequencyg0 introduced in Eq.~1! may be
expressed in terms of the dipole matrix elementdcv :

g05A v0

2\e re0n0
udcvu. ~30!

With this equation, the operator dynamics of the light fie
operator b̂R corresponds to the field dynamics of th
Maxwell-Bloch equations for classical fields. By applyin
the linear propagation dynamics of the field toI i j (r ;r 8) and
Ci j (r ;r 8,k) as well, it is now possible to formulate a com
plete set of quantum Maxwell-Bloch equations.

V. QUANTUM MAXWELL-BLOCH EQUATIONS

A. Quantum Maxwell-Bloch equations for a three-dimensional
gain medium

On the basis of the discussion in the previous sections,
quantum Maxwell-Bloch equations for a bulk gain mediu
in three dimensions read
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]

]t
N~r !5DambDN~r !1 j ~r !2gN~r !

1 ig0

An0

8p3E d3k(
i

@Cii ~r ;r ,k!2Cii* ~r ;r ,k!#,

~31a!

]

]t
Ci j ~r ;r 8,k!

52@G~k!1 iV~k!#Ci j ~r ;r 8,k!

2 i
v0

2k0
2S (k

]

]r k
e r

21 ]

]r k
Ci j ~r ;r 8,k!

2(
k

]

]r i
e r

21 ]

]r k
Ck j~r ;r 8,k!1k0

2Ci j ~r ;r 8,k! D
1 ig0

2An0

3
@ f eq

e
„k;N~r 8!…

1 f eq
h
„k;N~r 8!…21#I i j ~r ;r 8!

1 ig0

2An0

3
d~r2r 8!d i j f eq

e
„k;N~r !…f eq

h
„k;N~r !…,

~31b!

]

]t
I i j ~r ;r 8!52 i

v0

2k0
2 (

k
S ]

]r k
e r

21 ]

]r k
2

]

]r k8
e r

21 ]

]r k8
D

3I i j ~r ;r 8!1 i
v0

2k0
2 (

k
S ]

]r i
e r

21 ]

]r k

3I k j~r ;r 8!2
]

]r j8
e r

21 ]

]r k8
I ik~r ;r 8!D

2 ig0

An0

8p3E d3k„Ci j ~r ;r 8,k!2Cji* ~r 8;r ,k!…,

~31c!

]

]t
pi~r ,k!52@G~k!1 iV~k!#pi~r ,k!

1 ig0

2An0

3
@ f eq

e
„k;N~r !…

1 f eq
h
„k;N~r !…21#Ei~r !, ~31d!

]

]t
Ei~r !5 i

v0

2k0
2S (k

]

]r k
e r

21 ]

]r k
Ei~r !

2
]

]r i
e r

21 ]

]r k
Ek~r !1k0

2Ei~r ! D
2 ig0

An0

8p3E d3kpi~r ,k!. ~31e!
In order to describe a realistic diode one needs to desc
not only the volume of the active region but also the prop
gation of light out of this region. This may either be achiev
by defining realistic boundary conditions or by setting
material properties equal to zero outside a finite active v
ume and calculating the light field propagation into the o
side medium by varyinge r in space.

B. Three-dimensional quantum Maxwell-Bloch equations
for quantum wells

Next, we will formulate the equations for a quantum we
structure. For this case, we will also describe different cav
structures and the appropriate paraxial approximations p
sible for the various types of laser devices. Using the ter
nology of Eqs. ~14a–14f!, the quantum Maxwell-Bloch
equations for a multi-quantum-well structure withQ quan-
tum wells read

]

]t
N~r i!5DambDN~r i!1 j ~r i!2gN~r i!

1 ig0

An0

4p2E d2ki(
i

~Cii i
~r ;r i ,ki!r z5z0

2Cii i
* ~r ;r i ,ki!r z5z0

!, ~32a!

]

]t
Ci j i

~r ;r 8i ,ki!

52@G~ki!1 iV~ki!#Ci j i
~r ;r 8i ,ki!

2 i
v0

2k0
2S (k

]

]r k
e r

21 ]

]r k
Ci j i

~r ;r 8i ,ki!

2(
k

]

]r i
e r

21 ]

]r k
Ck j i

~r ;r i8 ,ki!1k0
2Ci j i

~r ;r i8 ,ki! D
1 ig0QAn0F f eq

e S ki ;
N~r 8i!

Q D1 f eq
h S ki ;

N~r 8i!

Q D21G
3I i j ~r ;r 8!r

z85z0
1 ig0QAn0d~r i2r i8!d~r z2z0!

3d i j i
f eq

e S ki ;
N~r i!

Q D f eq
h S ki ;

N~r i!

Q D . ~32b!

]

]t
I i j ~r ;r 8!52 i

v0

2k0
2 (

k
S ]

]r k
e r

21 ]

]r k
2

]

]r k8
e r

21 ]

]r k8
D

3I i j ~r ;r 8!1 i
v0

2k0
2 (

k
S ]

]r i
e r

21 ]

]r k
I k j~r ;r 8!

2
]

]r j8
e r

21 ]

]r k8
I ik~r ;r 8!D 2 ig0

An0

4p2

3E d2ki„Ci j i
~r ;r 8i ,ki!d~r z82z0!

2Cji i
* ~r 8;r i ,ki!d~r z2z0!…, ~32c!
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]

]t
pi i

~r i ,ki!52~G~ki!1 iV~ki!!pi i
~r i ,ki!

1 ig0QAn0F f eq
e S ki ;

N~r i!

Q D
1 f eq

h S ki ;
N~r i!

Q D21GEi~r !r z5z0
, ~32d!

]

]t
Ei~r !5 i

v0

2k0
2S (k

]

]r k
e r

21 ]

]r k
Ei~r !

2
]

]r i
e r

21 ]

]r k
Ek~r !1k0

2Ei~r ! D
2 ig0

An0

4p2E d2kipi i
~r i ,ki!d~r z2z0!. ~32e!

Note thatN(r i) is the total carrier density. Therefore, th
density per quantum well that determines the chemical
tential of the carrier distribution functions isN(r i)/Q.
Again, the structure of an external cavity may be conside
either by boundary conditions or by spatially varyinge r . In
particular, laser diodes may be described by distinguish
between reflective and nonreflective edges. If the reflec
surface is perpendicular to the plane of the quantum we
the laser is an edge emitter. If the reflectivity is very high
the surface planes parallel to the quantum wells, the lase
a vertical cavity surface emitting laser~VCSEL!.

C. One-dimensional quantum Maxwell-Bloch equations
for edge emitting lasers

In an edge emitting laser, the laser light field propaga
in the plane of the quantum well. Since thez direction is
already defined as the one perpendicular to the quantum
we will define they direction as the direction along whic
the laser light propagates. A schematic representation of
type of laser geometry is shown in Fig. 1. It is possible
drastically reduce the dimensionality of the equation desc
ing the edge emitting laser geometry by noting that the li
field polarization of the amplified fields will be in the plan
of the quantum well and by limiting the analysis to a sing

FIG. 1. Schematic representation of the edge emitter geom
The laser field is mostly confined to the plane of the quantum w
and propagates along they axis.
-
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longitudinal mode. Effectively, this corresponds to a lig
field E(r ) with the following properties:

Ex~r !ªE0~r x!j~r y ,r z!, ~33a!

Ez~r !ª0, ~33b!

]

]r y
Ey~r !ª2

]

]r x
Ex~r !. ~33c!

The envelope functionj(r y ,r z) describes both the propaga
tion along they direction and the confinement along thez
direction. It represents an approximate solution of the wa
equation in theyz plane normalized by

E drydrzuj~r y ,r z!u251. ~33d!

The equations are then limited to light field modes with t
two-dimensional envelopej(r y ,r z). Spontaneous emissio
into other light field modes must be considered by includ
the rate of emission in the carrier recombination rateg.
Since the lengthL of the laser in they direction is also an
important property of the device, it is included by conside
ing the openness of the optical cavity. With the reflectiviti
of the laser mirrors given byR1 andR2 , the light field in the
cavity is damped by losses through the mirrors at a rate

k52
c

2LAe r

ln@R1R2#. ~34!

The new one-dimensional variables are now defined as
lows:

N1D~r x!5E dryN~r i!, ~35a!

C0~r x ;r x8 ,ki!5E drydrzdry8j~r y ,r z!

3j* ~r y8 ,r z85z0!Cxx~r ;r 8i ,ki!, ~35b!

I 0~r x ;r x8!5E drydrzdry8drz8j~r y ,r z!j* ~r y8 ,r z8!I xx~r ;r 8!,

~35c!

p0~r x ,ki!5E dryj* ~r y ,r z5z0!px~r i ,ki!, ~35d!

E0~r x!5E drydrzj* ~r y ,r z!Ex~r !. ~35e!

The carrier density is now given in terms of a on
dimensional density. To obtain the two-dimensional carr
density per quantum well, this density is to be divided
QL. Note that the intensity is also given in terms of photo
per unit length. The dynamics of the edge emitter then re

y.
ll
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]

]t
N1D~r x!5Damb

]2

]r x
2

N1D~r x!1L j ~r x!2gN1D~r x!

1 ig0

An0

4p2E d2ki„C0~r x ;r x ,ki!

2C0* ~r x ;r x ,ki!…, ~36a!

]

]t
C0~r x ;r x8 ,ki!52@G~ki!1 iV~ki!#C0~r x ;r x8 ,ki!

2kC0~r x ;r x8 ,ki!

2 i
v0

2k0
2e r

]2

]r x
2

C0~r x ;r x8 ,ki!

1 ig0sAn0F f eq
e S ki ;

N1D~r x8!

QL D
1 f eq

h S ki ;
N1D~r x8!

QL D 21G I 0~r x ;r x8!

1 ig0sAn0d~r x2r x8!

3 f eq
e S ki ;

N1D~r x!

QL D f eq
h S ki ;

N1D~r x!

QL D ,

~36b!

]

]t
I 0~r x ;r x8!522kI 0~r x ;r x8!

2 i
v0

2k0
2e r

S ]2

]r x
2

2
]2

]r x8
2D I 0~r x ;r x8!

2 ig0

An0

4p2E d2ki„C0~r x ;r x8 ,ki!

2C0* ~r x8 ;r x ,ki!…. ~36c!

]

]t
p0~r x ,ki!52~G~ki!1 iV~ki!!p0~r x ,ki!

1 ig0sAn0F f eq
e S ki ;

N1D~r x!

QL D
1 f eq

h S ki ;
N1D~r x!

QL D21GE0~r x!, ~36d!

]

]t
E0~r x!52kE0~r x!1 i

v0

2k0
2e r

]2

]r x
2
E0~r x!

2 ig0

An0

4p2E d2kip0~r x ,ki!, ~36e!

wheres is the confinement factor that determines the ov
lap between the quantum wells and the light field mode,

s5QE dryuj~r y ,r z5z0!u2. ~37!
-

D. Two-dimensional quantum Maxwell-Bloch equations
for VCSEL’s

In a VCSEL the light field is strongly confined by highl
reflective mirrors above and below the quantum wells. T
light field propagates perpendicular to the quantum w
structure as shown in Fig. 2. Therefore both the poss
polarization directions and the spatial dynamics remain t
dimensional. Only thez direction may be eliminated by av
eraging over a single longitudinal mode. Coupling terms
tween the polarization directions should be taken into
count, even if they are small. For VCSEL’s, the assumptio
read

E~r !' Ẽ~r i!j~r z!, ~38a!

]

]r z
Ez~r !'2

]

]r x
S Ex~r !1

2g0An0

4pv0

3E d2kid~r z2z0!px~r i ,ki! D
2

]

]r y
S Ey~r !1

2g0An0

4pv0

3E d2kid~r z2z0!py~r i ,ki! D . ~38b!

The latter condition takes into account the divergence ofE(r )
caused by the polarizationpi(r i ,ki). This is an important
contribution to the quantum Maxwell-Bloch equations, sin
it coherently couples orthogonal polarizations. The prop
ties of the envelope functionj(r z) are defined as

E drzuj~r z!u251, ~38c!

]2

]r z
2
j~r z!'2k0

2j~r z!. ~38d!

The cavity loss ratek is defined as in Eq.~34!. However, the
experimentally observed polarization stability is taken in
account by using slightly different reflectivities for thex and
y polarizations. The cavity loss rate is therefore given bykx
and ky . Experimental results@20# suggest that (ky
2kx)/(kx)'102321022. A birefringence ofdvx/y is also

FIG. 2. Schematic representation of a typical VCSEL geome
The laser field propagates perpendicularly to the quantum w
along thez axis. The length of the optical resonator approximate
corresponds to the wavelenth.
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included to denote the difference between the band-gap
quency and the longitudinal frequencies of the confined li
field for the two polarization directions. The birefringen
dvx2dvy is usually in the GHz range. Since all coordinat
are two dimensional, the indexi that marked the two-
dimensional coordinates in the quantum well equations
be omitted. Instead, the two-dimensional variables
marked with a tilde. All indices and coordinates of such va
ables are only defined in two dimensions. The variables
defined as

Ñ~r !5N~r i!, ~39a!

C̃i j ~r ;r 8,k!5E drzj~r z!j* ~r z85z0!Ci j i
~r ;r 8i ,ki!,

~39b!

Ĩ i j ~r ;r 8!5E drzdrz8j~r z!j* ~r z8!I i j ~r ;r 8!, ~39c!

p̃i~r ,k!5j* ~r z5z0!pi i
~r i ,ki!, ~39d!

Ẽi~r !5E drzj* ~r z!Ei~r !. ~39e!

Note that the dipole variablepi i
(r i ,ki) is rescaled by the

field density of the envelope functionj(r z) at r z5z0 . The

dipole given byp̃i(r ,k) is therefore the average dipole de
sity within the whole cavity, not just within the quantum
wells. The quantum Maxwell-Bloch equations for th
VCSEL now read

]

]t
Ñ~r !5DambDÑ~r !1 j̃ ~r !2gÑ~r !

1 ig0

An0

4p2E d2k

3S (
i

@C̃ii ~r ;r ,k!2C̃ii* ~r ;r ,k!#

1(
i j

1

k0
2e r

E d2r 8d~r2r 8!

3S ]2

]r i8r j8
C̃i j ~r ;r 8,k!2

]2

]r i r j
C̃i j* ~r 8;r ,k!D D ,

~40a!
e-
t

ll
e
-
re

]

]t
C̃i j ~r ;r 8,k!

52@G~k!1 iV~k!#C̃i j ~r ;r 8,k!

2~k i2 idv i !C̃i j ~r ;r 8,k!2 i
v0

2k0
2e r

D rC̃i j ~r ;r 8,k!

1 ig0sAn0F f eq
e S k;

Ñ~r 8!

Q
D

1 f eq
h S k;

Ñ~r 8!

Q
D 21G Ĩ i j ~r ;r 8!

1 ig0sAn0d~r2r 8!d i j f eq
e S k;

Ñ~r !

Q
D f eq

h S k;
Ñ~r !

Q
D ,

~40b!

]

]t
Ĩ i j ~r ;r 8!

52~k i1k j ! Ĩ i j ~r ;r 8!2 i
v0

2k0
2e r

~D r2D r8! Ĩ i j ~r ;r 8!

2 ig0

An0

4p2E d2kS C̃i j ~r ;r 8,k!2C̃j i* ~r 8;r ,k!

1(
k

1

k0
2e r

S ]2

]r j8r k8
C̃ik~r ;r 8,k!2

]2

]r i r k
C̃jk* ~r 8;r ,k!D D ,

~40c!

]

]t
p̃i~r ,k!52@G~k!1 iV~k!# p̃i~r ,k!

1 ig0sAn0F f eq
e S k;

Ñ~r !

Q
D

1 f eq
h S k;

Ñ~r !

Q
D 21G Ẽi~r !, ~40d!

]

]t
Ẽi~r !52~k i1 idv i !Ẽi~r !1 i

v0

2k0
2e r

D Ẽi~r !

2 ig0

An0

4p2E d2kS p̃i~r ,k!

1(
j

1

k0
2e r

]2

]r i r j
p̃ j~r ,k!D , ~40e!

with s being the confinement factor along thez direction,

s5Quj~r z5z0!u2. ~41!

Equations~40! present a starting point for the study of spat
polarization patterns and fluctuations in VCSEL’s. For mo
realistic models, it may also be desirable to include a spa
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dependence of the birefringence and the dichroism. A
nonlinear effects may be introduced, e.g., by separating
carrier densities for right and left circular polarization@15#.

E. Statistical interpretation and two-time correlations

Using the equations presented above, it is now possibl
calculate the emergence of a spatially coherent light field
semiconductor laser diodes both above and below thresh
Note that the average light fieldE(r ) will remain zero at all
times due to the random phases of spontaneous emis
processes. The~average! spatial coherence of the light field
however, does not vanish and is fully described by the n
local field-field correlationsI (r ;r 8), which emerge due to the
propagation and/or amplification of the originally incohere
local spontaneous emissions. This emergence of coher
as a concequence of incoherent emissions has been disc
in a temporal context using nonequilibrium Green’s fun
tions in @11#.

In order to understand the physical implications of t
well known absence of an average light field in lasers
should be recalled that all the results of the quant
Maxwell-Bloch equations represent averages that have t
interpreted in terms of statistical physics. For example,
field-field correlationI (r ;r 8) represents a variance of th
probability distribution with respect to the possible spat
electromagnetic field values. The coherent field observe
experimental time-resolved measurements will vary r
domly from measurement to measurement according to
probability distribution. Indeed, the intensity distribution
self will vary depending on the random phase interference
the eigenmodes given byI (r ;r 8). The calculated averag
spatial intensity distributionI (r ;r ) only describes the aver
age near field pattern, which is likely to be close to but n
identical with the one actually observed. The fluctuations
the actual intensity distribution around this average, ho
ever, are disregarded as a consequence of the factoriz
performed in Sec. II. Moreover, the fluctuations in the carr
density distribution induced by spatial hole burning asso
ated with these fluctuations of the intensity distribution ha
also been disregarded.

While the average spatial coherence of the light field
fully described by the quantum Maxwell-Bloch equation
the average expected temporal coherence has not yet
explicitly considered. Indeed, it is not necessary to cons
temporal coherence in the closed sets of quantum Maxw
Bloch equations given above because all the information
quired to obtain the correct emission and absorption rates
incorporated in the field-dipole correlationC(r ;r 8,k). As
shown in Sec. VI, the spectra of gain and spontaneous e
sion are implicitly given by the coherent dipole dynamic
which enters into the temporal evolution of this field-dipo
correlation. If explicit information about the two-time corre
lations is desired, however, such correlations may be
cluded in the dynamics by noting that the temporal evolut
of the two-time correlations of the fieldI (r ,t;r 8,t8) and the
two-time correlations of the field-dipole correlatio
C(r ,t;r 8,k,t8) is equivalent to the dynamics of the field an
dipole expectation values@25#. While the quantum Maxwell-
Bloch equations for the correlations att5t8 remain un-
changed, the evolution of the two time correlations as a fu
o,
he
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tion of t8.t is then given by an additional pair of equation
that depends on the carrier dynamics given by the solutio
the original system of quantum Maxwell-Bloch equations
presented above. In the case of VCSEL’s these additio
equations supplementing Eqs.~40! read

]

]t8
C̃i j ~r ,t;r 8,k,t8!

52~G~k!1 iV~k!!C̃i j ~r ,t;r 8,k,t8!

1 ig0sAn0F f eq
e S k;

Ñ~r ,t8!

Q
D

1 f eq
h S k;

Ñ~r ,t8!

Q
D 21G Ĩ i j ~r ,t;r 8,t8! ~42a!

]

]t8
Ĩ i j ~r ,t;r 8,t8!

52~k j1 idv j ! Ĩ i j ~r ,t;r 8,t8!

1 i
v0

2k0
2e r

D r8Ĩ i j ~r ,t;r 8,t8!

2 ig0

An0

4p2E d2kC̃i j ~r ,t;r 8,k,t8!

2 ig0

An0

4p2E d2k(
k

1

k0
2e r

]2

]r j8r k8
C̃ik~r ,t;r 8,k,t8!.

~42b!

If the carrier density changes slowly, the equations desc
the linear response of the medium caused by the initial
tensity distribution Ĩ i j (r ,t;r 8,t) and the initial field-dipole
correlationC̃i j (r ,t;r 8,k,t) determined from Eqs.~40!. In this
case it is possible to derive the spectrum and the gain f
the eigenmodes and the associated eigenvalues of the qu
tationary linear optical system. Note that the eigenmodes
the linearized dynamics are not necessarily identical with
eigenmodes of the intensity distributionĨ i j (r ,t;r 8,t), since
fast variations in the carrier density distribution may ha
induced phase locking between the dynamical eigenmod

In general, the frequency spectra of the light field a
given by Fourier transforms of the two-time correlations o
tained from Eqs.~42!. However, as noted above, such spec
do not comprise any effects which arise from carrier dens
fluctuations. These effects are known to be quite significa
Well known examples of carrier fluctuation effects in th
frequency spectrum of semiconductor lasers are the l
width enhancement phenomenologically described by
linewidth enhancement factora and the relaxation oscilla
tion sidebands observed in stable single mode operat
Moreover, spatial carrier density fluctuations may also s
nificantly modify the multimode spectra of semiconduct
laser devices, as pointed out recently for the case of se
conductor laser arrays@24#.
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VI. AMPLIFIED SPONTANEOUS EMISSION
PROPERTIES: ANALYTICAL RESULTS OF THE

QUANTUM MAXWELL-BLOCH EQUATIONS

A. Gain and spontaneous emission

For a given carrier distributionf e/h(k), the dynamics of
the optical fieldE(r ) and the dipole densityp(r ) are linear.
In this case, it is possible to integrate the equations of mo
to obtain a Green’s function for the field dynamics. T
equation for bulk material reads

]

]t
E~r ,t !U

cL

5g0
2 n0

12p3E d3kE
0

`

dte2[G~k!1 iV~k!] t

3~ f e~k!1 f h~k!21!E~r ,t2t!. ~43a!

Correspondingly, the equation for a multi-quantum-w
structure ofQ quantum wells has the form

]

]t
E~r ,t !U

cL

5g0
2 Qn0

4p2
d~r z2z0!E d2ki E

0

`

dte2~G~ki !1 iV~ki !!t

3~ f e~ki!1 f h~ki!21!E~r ,t2t!. ~43b!

An expression for the rateG(v) at which a light field mode
of frequencyv is amplified can be derived by solving th
integral overt usingE(r ,t2t)'eivtE(r ,t). The real part of
the result is the gain spectrum given in terms of amplificat
per unit time,G(v). For bulk material, this amplification
rate is given by

Gbulk~v!5g0
2 n0

12p3E d3k
G~k!

G2~k!1~V~k!2v!2

3@ f e~k!1 f h~k!21#, ~44a!

and for quantum wells, the corresponding amplification r
reads

GQW~v!5g0
2 Qn0

4p2
d~r z2z0!

3E d2ki
G~ki!

G2~ki!1~V~ki!2v!2

3@ f e~ki!1 f h~ki!21#. ~44b!

The gain per unit length can be obtained by dividing the r
G(v) by the speed of light in the semiconductor mediu
ce r

21/2. However, in order to establish the connection b
tween the gain spectrum and the spectral density of spo
neous emission, it is more convenient to use the amplifi
tion rate as a starting point.

The quantum Maxwell-Bloch equations for the fiel
dipole correlationCi j (r ;r 8,k) show that the ratio betwee
the spontaneous contributions and the stimulated contr
tions is
n

l

n

e

e
,
-
ta-
a-

u-

]

]t
Ci j ~r ;r 8,k!U

spontaneous

]

]t
Ci j ~r ;r 8,k!U

stimulated

5
d~r2r 8!d i j f

e~k! f h~k!

I i j ~r ;r 8!@ f e~k!1 f h~k!21#
.

~45!

In this equation,d(r2r 8)d i j corresponds to a photon densi
of one photon per mode. The spectral density of the spo
neous emission may therefore be obtained by replac
@ f e(k)1 f h(k)21# with f e(k) f h(k) in Eqs.~44a! and~44b!,
respectively, and multiplying the resulting rates with twi
the density of light field modes that couple to the mediu
~the factor of 2 being a result of considering intensities
stead of fields!. At the band edge frequencyv0 , the density
of light field modes per volume and frequency interval in
continuous medium is

r l ight5
v0

2

p2c3
e r

3/2. ~46!

The density of the spontaneous emission rate for bulk m
rial Sbulk(v) thus reads

Sbulk~v!5r l ightg0
2 n0

6p3

3E d3k
G~k!

G2~k!1~V~k!2v!2
f e~k! f h~k!.

~47a!

For quantum wells, the density of modes is only 2/3
r l ight , since the dipole component perpendicular to t
quantum well is zero. Also, thed functiond(r z2z0) may be
omitted to obtain the emission density per area. The spo
neous emission densitySQW(v) is then given by

SQW~v!5
2

3
r l ightg0

2 Qn0

2p2
d~r z2z0!

3E d2ki
G~ki!

G2~ki!1~V~ki!2v!2
f e~ki! f h~ki!.

~47b!

The total rate of spontaneous emission per unit volume
area may be obtained by integrating over all frequenc
This integral removes the dependence onG(k). For bulk
material,

E dvSbulk~v!5r l ightg0
2 n0

6p2E d3k f e~k! f h~k!

~48a!

and for quantum wells,

E dvSQW~v!5r l ightg0
2 Qn0

3p
d~r z2z0!E d2ki f

e~ki! f h~ki!.

~48b!
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For zero temperature, the spontaneous emission rate ma
derived by noting thatf e(k) f h(k)5 f e(k)5 f h(k). The inte-
gral overk may thus be solved, resulting in

E d3k f e~k! f h~k!54p3N ~49a!

for bulk material and

E d2ki f
e~ki! f h~ki!5

2p2

Q
N ~49b!

for quantum wells. For both bulk and quantum wells t
density of spontaneous emission now may be expressed

Stotal5
N

ts
, ~50!

where 1/ts is the rate of spontaneous emission given by

1

ts
5

2p

3
r l ightg0

2n0 . ~51!

Using Eq.~30!, the rate of spontaneous emission may also
expressed in terms of the dipole matrix elementdcv ,

1

ts
5

4

\v0
e r

1/2 1

4pe0

v0
4

3c3
udcvu25

4

\v0
Prad , ~52!

wherePrad is the classical power radiated by an oscillati
dipole of the amplitudedcv . Note that the factor of 4/\v0 is
consistent with a quantum noise interpretation of sponta
ous emission such as the one represented by the semic
cal Langevin equations. According to this interpretation,
fluctuations of each dipole are given by 2udcvu2 because both
the real and the imaginary parts of the dipole contribute. T
spontaneous emission of an excited atom is then comp
of one-half amplified field noise and one-half dipole fluctu
tions. Therefore, each one of the two dipole components c
tributes one-quarter of the total spontaneous emission o
excited state. Numerical values ofudcvu and g0 for GaAs
may be determined by assuming a spontaneous lifetim
ts53 ns, a band gap of\v051.5 eV ande r512. The dipole
matrix element is thenudcvu54.3310229Cm which corre-
sponds to a distance of 2.7310210 m times the electron
charge and the coupling frequency isg052.131015 s21.

For quantum wells at zero temperature, the integrals o
ki can be solved analytically using Eq.~20! and assuming
that G is independent ofki . The resulting gain spectrum i
then given by

e r
1/2

c
GQW~v!5

e r
1/2

c
g0

2 Qn0

2p\

me f f
e me f f

h

me f f
e 1me f f

h
d~r z2z0!

3F2 arctanS V f2v

G D1arctanS v

G D2
p

2 G ,
~53!

whereV f is the transition frequency at the Fermi surface
the electrons and holes. It is related to the carrier densitN
by
be

s

e

e-
ssi-
e

e
ed
-
n-
an

of

er

f

V f5
p\

Q

me f f
e 1me f f

h

me f f
e me f f

h
N. ~54!

The spectral density of spontaneous emission is thus g
by

SQW~v!5r l ightg0
2 2Qn0

3p\

me f f
e me f f

h

me f f
e 1me f f

h

3FarctanS V f2v

G D1arctanS v

G D G . ~55!

Typical spectra of gain and spontaneous emission of
active layer containingQ55 quantum wells obtained from
the analytic approximations~53! and ~55!, respectively, are
presented in Fig. 3 for characteristic values of the car
density. For the spectra in Fig. 3 we have assumed a t
spontaneous emission lifetime ofts53 ns and a band gap o
\v051.5 eV. Other parameters are the effective mass
electrons (me f f

e 50.067m0) and holes (me f f
h 50.053m0),

given in units of the electron massm0 as well as the dipole
damping rate\G58 meV, and dielectric constante r512.
Gain and spontaneous emission are both displayed relativ
the peak valuesSmax52.73107 cm22 and Gmax5(2.5
3107 cm s21)d(r z2z0). The gain value may be interprete
by calculating the gain of a light beam of widths21

51025 cm with an incidence perpendicular with respect
the quantum well and traveling at a speed of 1010 cm s21 in
the plane of the quantum well. The maximal gain is th
given by 250 cm21. The five spectra displayed in Fig. 3 a
the gain atN50 (g0), the gain atN51012 cm22 (g1), the
spontaneous emission atN51012 cm22 (s1), the gain atN
5531012 cm22 (g5) and the spontaneous emission atN
5531012 cm22 (s5). Figure 3 clearly shows the influenc
of the carrier densityN. In the absence of charge carrie
(g0), the laser is purely absorptive. With increasing carr
densityN, transparency is reached atN51012 cm22 (g1).
This density is characterized by vanishing gain~i.e., there is
neither gain nor absorption! at a frequency of\v50. At the
same time, however, there is a significant contribution

FIG. 3. Spectra of gain and spontaneous emission for a quan
well structure ofQ55 quantum wells given relative toGmax52.5
3107 cm s21d(r z2z0) andSmax52.73107 cm22. The five spec-
tra shown are the gain atN50 (g0), the gain at N
51012 cm22 (g1), the spontaneous emission atN51012 cm22

~s1!, the gain atN5531012 cm22 (g5) and the spontaneous emi
sion atN5531012 cm22 ~s5!.
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spontaneous emission (s1) with a maximum at a frequenc
of \v'4 meV. Finally, at high values of the carrier dens
(N5531012 cm22), both gain (g5) and spontaneous emis
sion (s5) have a maximum above the band-gap frequenc

B. Spontaneous emission factor and far-field pattern
of an edge emitting laser

In the optical cavity of a laser the equations for gain a
spontaneous emission are modified by the mode structur
particular, the total linear response of an electromagn
field mode inside the cavity includes the cavity loss ratek.
For the edge emitting semiconductor laser, the gain func
of the cavity modes is given by

G1D~v!5g0
2 n0

4p2
sE d2ki

G~ki!1k

~G~ki!1k!21~V~ki!2v!2

3@ f e~ki!1 f h~ki!21#, ~56!

where the confinement factors is defined according to Eq
~37!. Spontaneous emission into the cavity modes pas
through the gain medium and is thereby absorbed or am
fied accordingly. Thus for an edge emitting laser, the rate
spontaneous emission into a cavity mode of frequencyv is
given by

S1D~v!52g0
2 n0

4p2
sE d2ki

3
G~ki!1k

@G~ki!1k#21@V~ki!2v#2
f e~ki! f h~ki!.

~57!

This rate represents the total rate of spontaneous emis
events per mode, regardless of the actual width of the la
On the other hand, Eq.~50! gives the total rate of spontane
ous emission per quantum well area.

1. Spontaneous emission factor

In a laser of lengthL and total widthW ~c.f. Fig. 1!, the
spontaneous emission rate into free space isLW Stotal . The
spontaneous emission factorb, which is generally defined a
the fraction of spontaneous emission being emitted into
cavity mode@2#, is on the basis of our theory given by th
expression

b~v,N1D!5
tsS1D

WN1D
. ~58!

Note that the two-dimensional carrier densityN in the quan-
tum well is related to the one-dimensional carrier dens
N1D by N1D5LN. The spontaneous emission factorb is a
function of both frequency and carrier density. Cons
quently, the common assumption of the spontaneous e
sion factorb being independent of the carrier density@2,7#
may be regarded as an approximation similar to the assu
tion of linear gain.

An analytical expression for the spontaneous emiss
factor may be obtained for zero temperature. Thek-space
d
In
ic

n

es
li-
f

ion
r.

e

y

-
is-

p-

n

integrals may then be solved analytically using Eq.~20! and
assuming thatG is independent ofki . For the spontaneou
emission factorb, the analytical result reads

b~v,V f !5
3s

2pr l ightQWLV f

3FarctanS V f2v

G1k D1arctanS v

G1k D G . ~59!

The Fermi frequencyV f is defined by Eq.~54! and ex-
presses, in particular, the carrier density dependence ob.
For V f ,v!G1k we recover the result typically given in th
literature~e.g., @2#!, which does not depend onN. Figure 4
shows the deviation of the spontaneous emission factor f
this value as the Fermi frequencyV f passes the point o
resonance with the cavity mode. Figure 4 illustrates, in p
ticular, the carrier density dependence ofb for three modes
with frequencies above the band-gap frequency given by~a!
v50, ~b! v50.5(G1k), and ~c! v5G1k. Most notably,
b is always smaller than the usual estimate given byb(v
5V f50), which is based on the assumption of ideal re
nance between the transition frequency and the cavity mo

2. Far-field pattern of a broad area laser

With Eqs. ~56! and ~57!, it is possible to find the stead
state intensityI s of a mode with frequencyv,

I s~v!5
S1D~v!

2k22G1D~v!
. ~60!

Note that this result may also be obtained directly from E
~36a–36e!. In a wide cavity, the cavity modes are approx
mately plane wave modes and the relation betweenI 0(v)
and I 0(r x ;r x8) in that case reads

I 0~r x ,r x8!5E dqeiq~r x2r x8!I S v5
v0q2

2k0
2e r

D . ~61!

The steady state intensity distribution is characterized by
spatial coherence derived from the intensity distribution

FIG. 4. Carrier density dependence of the spontaneous emis
factor b for three modes with frequencies above the band-gap
quency given by~a! v50, ~b! v50.5(G1k), and ~c! v5G
1k. b05b(v5N50) is determined by the geometry of the lase
The carrier density is given in terms of the transition frequency
the Fermi edgeV f .



si
a

th
n

er
en

n

s
e

th
-
ch
it
g

-
w
rly

th

um
o
o
fie

i
em
tu
th
a
-
-
ho

ser
ssed

this
e of
nly
nd
be-

s

ity.

PRA 59 2357QUANTUM MAXWELL-BLOCH EQUATIONS FOR . . .
the plane wave modes of the cavity. Generally, the inten
distribution of plane waves corresponds in the far-field to
optical field at angles relative to the axis of emission in
plane of the quantum well. The angular distribution of inte
sity and coherence in the far field is thus given by

I f~Q,Q8!5
k0

2pE drxdrx8e
ik0Qr xI 0~r x ,r x8!e2 ik0Q8r x8.

~62!

Therefore, the far field intensity distribution may be det
mined directly from the frequency dependence of the int
sities by

I f~Q,Q!5Wk0I sS v5
v0Q2

2e r
D , ~63!

the intensity is given in units of 2k\v0 per unit angle.
For T50 we may in analogy to Eq.~59! solve the integral

in Eq. ~57! by assumingG to be independent ofk. As an
analytical expression we then obtain for the far-field inte
sity distribution of a broad area semiconductor laser

I f~Q,Q!

5Wk0

arctanS V f2v~Q!

G1k D1arctanS v~Q!

G1k D
pS R1

1

2D22arctanS V f2v~Q!

G1k D2arctanS v~Q!

G1k D ,

with R5
2\k

g0
2n0s

me f f
e 1me f f

h

me f f
e me f f

h
and v~Q!5

v0Q2

2e r
. ~64!

The parameterR represents the ratio between the cavity lo
rate k and the maximum amplification rate of the gain m
dium. Laser activity is only possible ifR,1. The classical
laser threshold is defined by the carrier density for which
denominator ofI f(Q,Q) is zero for a single specific fre
quencyv(Q). Consequently, the carrier density at whi
this occurs is pinned. Figure 5 shows the far field intens
distribution for different carrier densities below this pinnin
density. In Fig. 5~a!, the wide intensity distribution of ampli
fied spontaneous emission for carrier densities is much lo
than the pinning density. The intensity maximum is clea
located atQ50. Figure 5~a! shows the intensity distribution
for carrier densities halfway towards threshold. Already,
intensity maxima move to angles of615°, corresponding to
the frequency at which the gain spectrum has its maxim
In the case of Fig. 5~c!, the threshold region is very close t
the pinning density. The peaks in the far-field pattern narr
as the laser intensity is increased. Consequently the far-
pattern indeed is a measure of the spatial coherence—sim
as the linewidth of the laser spectrum is a measure of t
poral coherence. It is therefore desirable to consider quan
noise effects in the spatial patterns of optical systems. In
context of squeezing, such patterns have been investig
by Gatti and co-workers@26# based on the general formula
tion of Lugiato and Castelli@27#. The laser patterns pre
sented here are based on the same principles. Usually,
ty
n
e
-

-
-

-

s
-

e

y

er

e

.

w
ld
lar
-

m
e

ted

w-

ever, the strong dissipation prevents squeezing in la
systems unless the pump-noise fluctuations are suppre
@28#.

VII. CONCLUSIONS

The quantum Maxwell-Bloch equations~QMBE! for spa-
tially inhomogeneous semiconductor lasers derived in
paper take into account the quantum mechanical natur
the light field as well as that of the carrier system. The o
approximation used in the derivation of the intensity a
correlation dynamics is that of statistical independence

FIG. 5. Far-field intensity distributions forR50.5, \v051.5
eV, \(G1k)58 meV, ande r512. The density is pinned atV f

51.8805(G1k). ~a! shows the far-field pattern for carrier densitie
of 0.05, 0.10, and 0.15 times pinning density,~b! shows the distri-
bution for 0.25, 0.5, and 0.75 times pinning density and~c! shows
the distribution for 0.90, 0.95, and 0.99 times the pinning dens
The peaks appear at emission angles of615°.
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tween the two carrier systems and the light field. In t
QMBE presented here, the effects of coherent spatiotemp
quantum fluctuations, which are generally not considered
the semiclassical Maxwell-Bloch equations for semicond
tor laser devices have thus been taken into account.

The spontaneous emission term appears side by side
the gain and absorption term in the dynamics of the fie
dipole correlation. In this way the spatial coherence of sp
taneous emission and amplified spontaneous emission is
sistently described by the quantum Maxwell-Blo
equations. Typical features of the model have been ill
r-

rs
e
ral
in
-

ith
-
-
n-

-

trated by the spectra of gain and spontaneous emission
example of the spatial coherence characteristics describe
the quantum Maxwell-Bloch equations has been presen
by analytically obtaining the spontaneous emission factob
and the far-field distribution for the example of a broad a
edge emitting laser. In general the quantum Maxwell-Blo
equations derived for edge emitting and vertical cavity s
face emitting lasers provide a starting point for a detai
analysis of spatial coherence patterns in diverse semicon
tor laser geometries such as broad area or ultralow thres
lasers.
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