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Finite-resolution measurement of the nonclassical polarization statistics of entangled photon pair
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Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

~Received 29 August 2000; published 16 March 2001!

By limiting the resolution of quantum measurements, measurement-induced changes of the quantum state
can be reduced, permitting subsequent measurements of variables that do not commute with the initially
measured property. It is then possible to determine correlations between noncommuting variables experimen-
tally. The application of this method to the polarization statistics of entangled photon pairs reveals that negative
conditional probabilities between nonorthogonal polarization components are responsible for the violation of
Bell’s inequalities. Such negative probabilities can also be observed in finite-resolution measurements of the
polarization of a single photon. The violation of Bell’s inequalities therefore originates from local properties of
the quantum statistics of single-photon polarization.
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I. INTRODUCTION

Perhaps the most convincing proof of the nonclassical
ture of quantum statistics is the violation of Bell’s inequa
ties by a pair of entangled spin-1/2 particles@1#. Several
experimental tests of these inequalities have been perfor
on pairs of entangled photons generated either by t
photon emission@2,3# or by parametric downconversio
@4,5#. These experimental tests compare the polarization
relations of photon pairs emitted at the same time for diff
ent sets of orthogonal polarizations. While no informati
about the relationship between nonorthogonal polariza
directions of the single photon are revealed in such meas
ments, the statistics obtained correspond to the quant
theoretical prediction. Since the quantum formalism fro
which the violation of Bell’s inequalities is derived is wide
accepted, one might wonder whether it should not be p
sible to obtain a clearer understanding of the origin of t
nonclassical effect by investigating the unique statistical c
nection between noncommuting quantum variables in m
detail. In particular, finite-resolution measurements can p
vide quantitative information about a quantum variable wi
out destroying the quantum coherence between diffe
eigenstate components of that variable@6#. By applying
finite-resolution measurements, it is therefore possible
identify the nonclassical correlations between noncommu
variables directly@7,8#. In the following, an experiment is
proposed to determine the correlations between nonorth
nal polarizations of entangled photon pairs. It is shown t
the violation of Bell’s inequalities results from the negati
joint probabilities arising from local nonclassical correlatio
of the photon polarization. It is then possible to give a lo
interpretation of entanglement based on standard quan
mechanics.

The rest of the paper is organized as follows. In Sec.
the application of finite resolution measurements to the
larization of a single photon is discussed, and fundame
nonclassical correlations are derived. In Sec. III, the exp
mental setup for a measurement of entangled photon pai
presented and the statistical results of such a measure
are derived. In Sec. IV, the nonclassical features of the
tistics are identified, and implications concerning the nat
1050-2947/2001/63~4!/042106~9!/$20.00 63 0421
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of entanglement are discussed. Finally, the conclusions
summarized in Sec. V.

II. FINITE-RESOLUTION MEASUREMENTS

A. Generalized measurement postulate

A measurement assigns a quantity to a system prop
based on the observable action of the system on some m
surement device. The uncertainty principle of quantum m
chanics requires that this interaction between the system
the measurement setup introduces noise into properties
do not commute with the measured variable. Therefore,
classical ideal of a complete determination of all syst
properties is unattainable. Nevertheless it is possible to
tain quantitative information on the correlations betwe
noncommuting variables by limiting the measurement re
lution. Such a finite-resolution measurement is described
the generalized measurement operatorP̂ds(sm), which as-
signs a continuous measurement valuesm to the operatorŝ
@6#. It reads

P̂ds~sm!5~2pds2!21/4expS 2
~sm2 ŝ!2

4ds2 D . ~1!

For a given initial stateuc in&, the probabilityP(sm) of ob-
taining a measurement resultsm, and the stateucout& after the
measurement, are then given by

P~sm!5^c inuP̂ds
2 ~sm!uc in&,

~2!

ucout&5
1

AP~sm!
P̂ds~sm!uc in&.

Note that this generalized measurement postulate does
restrict the values of an operator variable to the eigenva
of that operator. Eigenvalues emerge only in infinitely p
cise measurements. One of the fundamental problems in
discussion of quantum mechanics is that eigenvalues are
ten identified with ‘‘elements of reality’’@9,10# regardless of
the measurement context discussed. By assigning a con
ous measurement value to the operator variable in a fin
©2001 The American Physical Society06-1
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resolution measurement this identification is avoided, allo
ing a determination of quantitative results beyond
spectrum of its eigenvalues.

B. Finite-resolution measurement of photon polarization

The polarization of a single photon can be described
terms of the Stokes parametersŝi . In terms of the circular
polarization eigenstatesuR& and uL&, the operators of the
three single-photon Stokes parameters may be written a

ŝ15uL&^Ru1uR&^Lu,

ŝ25 i uL&^Ru2 i uR&^Lu, ~3!

ŝ35uR&^Ru2uL&^Lu.

ŝ1 represents the intensity difference between thex and y

polarizations,ŝ2 represents the intensity difference betwe
the polarizations along the diagonals between thex and y

axes, andŝ3 represents the intensity difference between
circular polarizations. Since only one photon is consider
the eigenvalues of each Stokes parameter are61.

A finite-resolution measurement of photon polarizati
can be realized by using a polarization sensitive beam
placer that shifts thex-polarization component relative to th
y-polarization component of the light field. The displaceme
of the photon trajectory in the beam displacer can be in
preted as the action of the one-photon Stokes parameteŝ1.
The polarization of the photon is then described by a c
tinuous values1m of the Stokes parameterŝ1 obtained from
the measurement of the transversal photon position after
beam displacer. The measurement resolution depends o
ratio of the displacement and the width of the input beam
the transversal profile of the light field is Gaussian, the g
eralized measurement postulate describes the single-ph
polarization statistics obtained by measuring t
polarization-dependent displacement of the photon. In te
of the circular polarization eigenstates, the measurement
erator is given by

P̂ds~s1m!5~2pds2!21/4expS 2
s1m

2 11

4ds2 D
3FcoshS s1m

2ds2D ~ uR&^Ru1uL&^Lu!

1sinhS s1m

2ds2D ~ uR&^Lu1uL&^Ru!G . ~4!

This operator describes the changes in the quantum sta
the single-photon polarization conditioned by the finite re
lution measurement of the Stokes parameterŝ1.

C. Joint measurements of nonorthogonal polarizations

In order to measure the correlated nonorthogonal po
ization components of a single photon, the finite-resolut
measurement can be combined with a fully resolved po
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ization measurement. By rotating the polarization by
angle of p/4 and separating thex and y components as
shown in Fig. 1, the eigenvalues of the Stokes parameteŝ2
are measured. Two spatial patterns emerge, correspondi
the conditional distributions of continuous measurement
sults s1m of the Stokes parameterŝ1 associated with a fina
measurement of the eigenvalues11 or 21 of the Stokes
parameterŝ2. The positive operator valued measure~POM!

describing the joint measurement ofŝ1 and ŝ2 is defined by
projections onto the states:

us1m ;s2561&5 P̂ds~s1m!
1

A2
~ uR&6 i uL&). ~5!

The joint probabilitiesP(s1m ;s2561) for measuring a
finite-resolution value ofs1m for the Stokes parameterŝ1
followed by an eigenvalue ofs2561 for the Stokes param
eter ŝ2 is then given by

P~s1m ;s2561!5u^s1m ;s2561uc in&u2

5 1
2 u^RuP̂ds~s1m!uc in&

7 i ^LuP̂ds~s1m!uc in&u2, ~6!

where uc in& is an arbitrary initial state. This POM thus a
signs quantitative results to both Stokes parameters, allow
a derivation of correlations between the polarization com
nents of a single photon.

If the light field entering the measurement setup shown
Fig. 1 is polarized along the diagonal between thex and y
axes, the initial photon state is given by

uc in&5
1

A2
~ uR&1 i uL&). ~7!

The joint probabilities of the measurement resultss1m ands2
can then be determined using Eq.~6!. In its most compact
form, this reads

FIG. 1. Schematic representation of the experimental setup f
joint measurement of nonorthogonal polarizations. The beam
placer separates the incoming light into two parallel beams.
polarization is then rotated by an angle ofp/4 before the light beam
is split at the polarizer. The overlapping transversal profile of
beams is illustrated at the detector arrays.
6-2



o
e
r

t
v
s

es
a

in
a-
rv-

ce
an
the
s.

the
li-
ally
a-

cer-
on

or-
me-

ent
ffect
o-
rob-

ssi-
les

t
ent
ea-
es
ns

e

d
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P~s1m ;s2511!5~2pds2!21/2

3expS 2
s1m

2 11

2ds2 D cosh2S s1m

2ds2D ,

~8!

P~s1m ;s2521!5~2pds2!21/2

3expS 2
s1m

2 11

2ds2 D sinh2S s1m

2ds2D .

Note that P(s1m50;s2521) is always exactly equal to
zero, even ifds is larger than 1. Obviously, this result is to
exact to be explained in terms of a random measurem
error superimposed on classical statistics. The result fo
measurement resolution ofds50.6 is illustrated in Fig. 2.
The peaks inP(s1m ;s2521) are shifted to values of abou
61.1, and the asymmetry of the peaks seems to favor e
higher values. These results can hardly be explained by
tistics originating only from the eigenvalues ofs1561.

D. Negative conditional probabilities and nonclassical
correlations in the polarization of single photons

The nonclassical features of the joint probabiliti
P(s1m ;s2561) can be analyzed by expressing the result
a sum of shifted normalized Gaussian distributions:

FIG. 2. Probability distributionP(s1m ;s2) for an initial eigen-
state ofs2511 at a resolution ofds50.6. Note the asymmetry an
the shifted maxima obtained fors2521.
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Gds~s1m2d!ª~2pds2!21/2expS 2
~s1m

2 2d!2

2ds2 D . ~9!

In terms of these Gaussians, the joint probabilities read

P~s1m ;s2511!5
1

4
Gds~s1m11!

1expS 2
1

2ds2D 1

2
Gds~s1m!

1
1

4
Gds~s1m21!,

~10!

P~s1m ;s2521!5
1

4
Gds~s1m11!

2expS 2
1

2ds2D 1

2
Gds~s1m!

1
1

4
Gds~s1m21!.

Each Gaussian contribution to the joint probabilities given
Eqs.~10! can be identified with elements of the density m
trix of the original state in the eigenstate basis of the obse
able ŝ1. As discussed in a previous paper@6#, the measure-
ment ofs1m modifies each matrix element by a decoheren
factor given by the difference of the eigenvalues, and
information factor depending on the difference between
measurement results1m and the average of the eigenvalue
If the modified density matrix is reexpressed in terms of
eigenstates ofs2 , the diagonal elements yield the probabi
ties given. It thus becomes possible to separate conceptu
the contributions of the decoherence factor and the inform
tion factor to the terms in Eq.~10!.

The decoherence factor exp@21/(2ds2)# is a result of the
quantum noise in the measurement required by the un
tainty principle. In the case of a beam displacer acting
single photons, it is the uncertainty of the wave-vect
dependent time the photon spends in the birefringent
dium which randomly rotates the Stokes vector around thes1
axis. Since this noisy interaction is statistically independ
of the measurement result, it is possible to separate its e
from the information obtained about the system. A hyp
thetical noise free measurement then reveals negative p
abilities of s2521 for measurement resultss1m close to
zero@6#. These negative probabilities describe the noncla
cal correlations between noncommuting operator variab
@7,8#.

The information aboutŝ1 obtained in the measuremen
modifies the statistical weight of each density-matrix elem
by a Gaussian function of the difference between the m
surement results1m and the average of the two eigenvalu
of the density-matrix element. In particular, the Gaussia
centered arounds1m50 represent contributions from th
quantum coherence between thes1511 and thes1521
6-3
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HOLGER F. HOFMANN PHYSICAL REVIEW A63 042106
eigenstates conditioned by a measurement ofs1m . Measure-
ment results close tos1m50 enhance the coherence and
crease the probability ofs2511 to values above 1, while
measurement results far away froms1m50 reduce the coher
ence, lowering the probability ofs2511 to values below 1.
In order to explain this nonclassical correlation betweens1
ands2, some measure of reality must be attributed tos150,
even though it is not an eigenvalue ofŝ1 @7#. Since the width
of the Gaussians represents the effect of random noise in
readout of the finite-resolution measurement, it is reason
to identify each Gaussian contribution with its average va
of s1m . The continuum of measurement valuess1m can then
be represented by a discrete set of three values ats1561
ands150. The joint probabilities for these three values ofs1
and the two eigenvalues ofs2 read

P~s1521;s2521!51/4, P~s1521;s2511!51/4,

P~s150;s2521!521/2, P~s150;s2511!51/2,

P~s1511;s2521!51/4, P~s1511;s2511!51/4.
~11!

These joint probabilities explain the nonclassical features
the quantum statistics obtained from the single-photon po
ization measurement setup shown in Fig. 1 for any value
the measurement resolutionds.

It should be noted that the measurement setup itself
fines an asymmetry betweenŝ1 and ŝ2, since the noneigen
value of zero appears only in the statistics of the initial fini
resolution measurement ofŝ1. This dependence on the ord
of measurement is reflected in the operator order depend
of quantum-mechanical expectation values. In order to id
tify the operator properties responsible for the appearanc
negative probabilities in the statistical properties, it is use
to characterize the measurement statistics in terms of
correlation betweens1m

2 ands2,

C~s1m
2 ,s2!5^s1m

2 s2&2^s1m
2 &^s2&

522~^s1m
2 &2ds2!^s2&

522 expS 2
1

2ds2D , ~12!

where ^ & denotes statistical averages over actual meas
ment results. This correlation may be expressed in term
the operator expectation values ofuc in& as

C~s1
2 ,s2!5expS 2

1

2ds2D ~^c inuŝ1ŝ2ŝ1uc in&

2^c inuŝ1
2uc in&^c inuŝ2uc in&!. ~13!

As explained above, the exponential factor expresses the
domization ofŝ2 induced by the measurement ofŝ1 accord-
ing to the uncertainty principle. Fords→`, the noise intro-
duced in the measurement ofŝ1 goes to zero, and the
correlation is given by the operator expectation values of
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initial state. Due to the operator ordering, the anticorrelat
betweens1

2 ands2 is an inherent statistical property ofuc in&,
even thoughuc in& is an eigenstate ofŝ2. Thus operator or-
dering allows a correlation between fluctuating propert
and seemingly well-defined operator variables of the qu
tum state.

This property implies that even the eigenvalues of a qu
tum state do not represent ‘‘elements of reality.’’ Cons
quently, it is wrong to assign measurement values to phys
properties before the measurementeven if the measuremen
result can be predicted with certainty. Since the violation of
Bell’s inequalities depends on the assignment of such
ments of reality, it is not surprising that it can be violated
quantum theory. In the following, it will be shown how th
violation of Bell’s inequalities can be explained in terms
negative joint probabilities obtained from finite-resolutio
measurements.

III. MEASUREMENT OF POLARIZATION
ENTANGLEMENT

A. Entangled photons

Entangled photon pairs can be created in two-pho
emission@2,3# or in parametric downconversion@4,5#. The
precise polarization statistics may vary depending on the
ometry of the setup. In order to express the violation
Bell’s inequalities in terms of the Stokes parametersŝ1 and
ŝ2, it is useful to rotate the polarizations of the two photo
in such a way that the quantum state is given by

uca,b&5
1

A2
F uR;L&1expS 2 i

p

4 D uL;R&G . ~14!

FIG. 3. Schematic representation of the experimental setup f
measurement of polarization correlations on entangled photons.
setup of the branchesa andb are as shown in Fig. 1. Coincidenc
counts are registered in one of four channels as illustrated.
6-4
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This state is an eigenstate of two polarization correlation

1

A2
~ ŝ1~a!1 ŝ2~a!! ŝ1~b!uca,b&5uca,b&,

~15!

2
1

A2
~ ŝ1~a!2 ŝ2~a!! ŝ2~b!uca,b&5uca,b&.

The sum of these two eigenvalues violates a Bell’s inequa
of the form

K5s1~a!s1~b!1s2~a!s1~b!2s1~a!s2~b!1s2~a!s2~b!<2.
~16!

It is therefore not possible to interpret the polarization sta
tics by assigning eigenvalues of61 to each Stokes param
eter. However, as indicated by the results of finite-resolut
measurements on the polarization of single photons
cussed in Sec. II above, such an identification of phys
properties with their eigenvalues is not even consistent w
the correlated statistics of local single-photon properties.
nonclassical statistical properties responsible for the vio
tion of Bell’s inequality@Eq. ~16!# can be derived in detail by
applying the finite-resolution measurement setup introdu
above to realize a polarization measurement on the entan
photon pairs given by Eq.~14!.
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B. Experimental setup and measurement statistics

Figure 3 shows the experimental setup for a measurem
of the correlations in Bell’s inequality@Eq. ~16!#. The detec-
tor arrays record coincidence counts between the right-
left-hand sides. Each detector array corresponds to an ei

value measurement ofŝ2. The spatial coordinate at which th
photon is registered corresponds to the continuous meas

ment values1m of ŝ1. Each measurement result can then
identified with a point in one of four two-dimensiona
graphs. The probability distribution for the measurement o
comes of the joint measurements may be determined by
jections onto the nonorthogonal, non-normalized set of sta

us1m~a!;s1m~b!;s2~a!561;s2~b!561&

5 P̂ds„s1m~a!) P̂ds~s1m~b!…1
2 „uR;R&

1s2~a!i uL;R&1s2~b!i uR;L&

2s2~a!s2~b!uL;L&…. ~17!

In their most compact form, the joint probabilities of th
measurement resultss1m(a), s1m(b), s2(a), and s2(b) for
the entangled input stateuc(a,b)&, given by Eq.~14!, read
P„s1m~a!;s1m~b!;s2~a!561;s2~b!561…

5
A2

16pds2
expS 2

s1m~a!21s1m~b!212

2ds2 D
3F2sinhS s1m~a!s2~b!2s1m~b!s2~a!

2ds2 D coshS s1m~a!s2~b!1s1m~b!s2~a!

2ds2 D
1„A21s2~a!s2~b!…cosh2S s1m~a!s2~b!1s1m~b!s2~a!

2ds2 D
1„A22s2~a!s2~b!…sinh2S s1m~a!s2~b!2s1m~b!s2~a!

2ds2 D G . ~18!
ies
zed

lity
nt

q.
uss-
Figure 4 shows the results for a measurement resolutio
ds50.6. At this intermediate resolution, quantum
mechanical interference effects are especially visible@7#. In
particular, separate peaks can be resolved clearly, but q
tum interference effects are visible in the asymmetric p
shapes and in the zero probability valleys in thes1m'0 re-
gions separating the peaks. As in the single-photon case
cussed in Sec. II above, it is indeed possible to interpret th
features entirely in terms of Gaussian distributions. Ho
ever, negative probability contributions centered around v
ues of s1m50 have to be included in order to explain th
of

n-
k

is-
se
-
l-

asymmetries and the regions of extremely low probabilit
nears1m50 separating the peaks corresponding to quanti
results arounds1m561.

C. Violation of Bell’s inequality by the finite-resolution
measurement statistics

As in the one-photon case, the regions of low probabi
at values ofs1m(a/b)50 can be traced back to negative joi
probabilities. The measurement probabilities given by E
~18! may be expressed as a sum of shifted normalized Ga
ian distributions:
6-5
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Gds~s1m~a!2da ;s1m~b!2db!ª~2pds2!21 expS 2
„s1m~a!22da…

21„s1m~b!22db…
2

2ds2 D . ~19!

Since the shiftsda anddb may be21, 0, or11, respectively, each of the four sums has nine components associated with
probabilities of the four Stokes parameters. The probability distribution of the measurement results is then given by

P„s1m~a!;s1m~b!;s2~a!561;s2~b!561…

5
A211

16A2
@Gds„s1m~a!11;s1m~b!11…1Gds„s1m~a!21;s1m~b!21…#

1
A221

16A2
@Gds„s1m~a!11;s1m~b!21…1Gds„s1m~a!21;s1m~b!11…#

1expS2
1

2ds2D 1

8A2
s2~b!@Gds„s1m~a!11;s1m~b!…2Gds„s1m~a!21;s1m~b!…#

2expS2
1

2ds2D 1

8A2
s2~a!@Gds„s1m~a!;s1m~b!11…2Gds„s1m~a!;s1m~b!21…#

1expS2
1

ds2D 1

4A2
s2~a!s2~b!Gds„s1m~a!;s1m~b!…. ~20!

FIG. 4. Contour plot of the probability distri-
bution P@s1m(a);s1m(b);s2(a);s2(b)# at a reso-
lution of ds50.6. While the major peaks appea
to be close to the eigenvalues ats1m561, the
shape of the peaks and the separation betw
them reveals the same nonclassical statistical
fects seen in Fig. 3.
042106-6
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FIG. 5. Contour plot of the probability distri-
bution P@s1m(a);s1m(b);s2(a);s2(b)# at a reso-
lution of ds52. The peaks fors2(a)52s2(b)
are at s1m(a)5s1m(b)561.383. The contribu-
tion to the average value ofK at these points is
3.68.
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Using this decomposition, it is a straightforward matter
determine the averages corresponding to the correlation
Bell’s inequality @Eq. ~16!# by summing overs2(a) and
s2(b) and integrating over the continuous resultss1m(a) and
s1m(b). The result reads

^K&5
1

A2
F11expS 2

1

2ds2D G 2

. ~21!

This expectation value exceeds the maximal value of 2
lowed by inequality~16! for measurement resolutions ofds
.1.143. The violation of Bell’s inequality can therefore b
obtained directly from the measurement statistics for su
ciently low resolutions of theŝ1 measurements. An examp
for this direct violation of Bell’s inequality is shown in Fig
5 for a measurement resolution ofds52. At this low reso-
lution, quantization effects are not resolved. The nonclass
properties of the statistics are observable in the shift of
peak maxima fors2(a)52s2(b) to values greater thans1m
511 or lower thans1m521. Specifically, the maximum
probability density fors2(a)511 and s2(b)521 is at
s1m(a)5s1m(b)51.383 and the maximum fors2(a)521,
and s2(b)511 is at s1m(a)5s1m(b)521.383. The value
of K at these points would be equal to 3.68.

While it might be tempting to interpret the statistics
terms of polarization components greater than11 or smaller
than21, the high-resolution results of Fig. 4 and the ana
sis of single-photon polarization in Sec. II suggests that
true reason for the shifted peaks are negative probabil
arounds1m(a)5s1m(b)50. In order to obtain a consisten
04210
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interpretation of the measurement results for both high
low resolutions, it is necessary to identify the decohere
factor exp„1/(2ds2)… with the quantum-noise-induced redu
tion of the expectation values ofŝ2(a) and ŝ2(b). It is then
possible to remove the effects of noise and of finite meas
ment resolution from the measurement statistics, tracing
violation of Bell’s inequality directly to the appearance
negative probabilities in the joint probabilities fors1(a),
s2(a), s1(b), ands2(b).

IV. DISENTANGLING ENTANGLEMENT:
INTERPRETATION OF THE NONCLASSICAL

STATISTICS

A. Negative conditional probabilities in photon entanglement

As in the case of single-photon polarization discussed
Sec. II, the sum of Gaussians given in Eq.~20! can be inter-
preted in terms of joint probabilities fors1(a), s2(a), s1(b),
ands2(b) by identifying the average of each Gaussian w
the appropriate value ofs1. The joint probabilities for all 36
combinations of the six contributions froms1(a) ands2(a),
with the six contributions froms1(b) ands2(b) characteriz-
ing the statistics of the entangled stateuca,b&, are shown in
Table I. From these probabilities, the statistical weight
different contributions to the sum correlationK in inequality
~16! can be determined.

The joint probabilities can be classified according
whether the values ofs1(a) ands1(b) are zero or not. There
are 16 contributions with boths1(a) and s1(b) nonzero.
These cases correspond to the classical expectation tha
6-7
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TABLE I. Table of conditional probabilities derived from the results shown in Fig. 4. Note that
negative probabilities roughly coincide with regions of zero probability in the measurement statistics.

„s1(a),s2(b)…
„s1(b),s2(b)… (21,21) (0,21) (1,21) (21,1) ~0,1! ~1,1!

~1,1!
A221
16A2 2

1

8A2

A211
16A2

A221
16A2

1

8A2

A211
16A2

~0,1!
1

8A2
2

1

4A2
2

1

8A2

1

8A2

1

4A2
2

1

8A2

(21,1)
A211
16A2

1

8A2

A221
16A2

A211
16A2 2

1

8A2

A221
16A2

(1,21)
A221
16A2 2

1

8A2

A211
16A2

A221
16A2

1

8A2

A211
16A2

(0,21) 2
1

8A2

1

4A2

1

8A2
2

1

8A2
2

1

4A2

1

8A2

(21,21)
A211
16A2

1

8A2

A221
16A2

A211
16A2 2

1

8A2

A221
16A2
i
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in
values ofs1 should be equal to the eigenvalues observed
high-resolution measurements. Consequently, they are
only contributions that are not diminished by the decoh
ence factor for smallds. Moreover, their probabilities are a
positive. In eight of these 16 cases, three of the four co
lations in inequality~16! are equal to11 and one is equal to
21, for a total ofK52. The reverse is true for the remainin
eight cases, resulting in a total ofK522 for the sum of
correlations in inequality~16!. The probability of each cas
is equal to@21s1(a)s1(b)A2#/32. Summing up the prob
ability of the eight cases withK52 thus results in a tota
probability of (41A2)/8 or roughly 67.7%. The eight case
with K522 have a total probability of (42A2)/8, or
32.3%. The average value ofK for these ‘‘classical’’ contri-
butions to the joint probability is therefore equal to 1/A2, as
evidenced by the limit of Eq.~21! for ds→0. Obviously, the
violation of Bell’s inequality must originate from the remain
ing 20 contributions, with at least one value ofs1 equal to
zero.

There are 16 contributions with one value ofs1 equal to
zero and the other value nonzero. Two of the four corre
tions in inequality~16! are then equal to zero, while the oth
two may be either11 or 21 each. In four cases, they a
both equal to11 (K52), in eight cases, they have oppos
sign (K50), and in the remaining four cases, they are b
equal to21 (K522). The probabilities for these cases a
6A2/16. As a result, the total probability for the four cas
with K52 is equal toA2/4 or 35.4%, the total probabilitie
for the eight cases withK50 cancel to zero, and the tota
probability for K522 is 2A2/4 or 235.4%. This negative
probability more than outweighs the 32.3% of the classi
contributions, explaining the increase of the expectat
value of K beyond the limit of 2. However, the effect i
further enhanced by the contributions froms1(a)5s1(b)
50.
04210
n
he
-

-

-

h

l
n

There are four contributions withs1(a)5s1(b)50. Only
the correlation̂ s2(a)s2(b)& is nonzero in these cases. Tw
cases haveK51 and a positive probability ofA2/8, and two
cases haveK521 and a negative probability of2A2/8.
This adds a total probability of 35.4% forK51 and
235.4% forK521.

The probability distribution over values ofK can be sum-
marized as follows:

P~K52!5103.1%, P~K522!523.1%,

P~K51!535.4%, P~K521!5235.4%, ~22!

P~K50!50%.

The high expectation value ofK is a result of the negative
probabilities for combinations ofs1(a), s2(a), s1(b), and
s2(b) with K,0. In the measured probability distribution
described by Eqs.~18! and~20!, these negative probabilitie
appear as a suppression of the probability for values os1
close to zero, pushing the peak of the probability distribut
beyond the eigenvalue limit of61. Sinces1m is not re-
stricted to eigenvalues ofŝ1, the contributions to the expec
tation value ofK taken from the measured distribution@Eq.
~18!# shown in Fig. 4 may exceed the classical limit. Ev
though a direct observation of the negative probabilities is
course impossible, the continuous distribution of finit
resolution measurement results thus reveals clear eviden
these nonclassical statistical features.

B. Quantum noise and negative probabilities
in entangled systems

The negative conditional probabilities shown in Table
allow an interpretation of the measurement statistics in te
of individual measurement results observed separately
6-8
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brancha and branchb. There is neither a need for action at
distance, nor for nonlocal properties. The nonclassical
ture required to explain the violation of Bell’s inequalities
expressed in the negative probabilities which are poss
even in individual quantum systems because the uncerta
principle does not allow an isolated measurement of a jo
probability of noncommuting variables.

Once the relationship between uncertainty and nega
conditional probabilities is understood, the problem of no
locality in entangled systems can be resolved by introduc
local decompositions of the entangled state density ma
based on negative probability components of the local d
sity matrices. For the state discussed above, one pos
decomposition reads

uca,b&^ca,bu5
1

4
1̂~a! ^ 1̂~b!1

1

4A2
„ŝ1~a!1 ŝ2~a!…^ ŝ1~b!

1
1

4A2
„ŝ1~a!2 ŝ2~a!…^ ŝ2~b!

2
1

4
ŝ3~a! ^ ŝ3~b!. ~23!

All by themselves, the Stokes parameter operatorsŝi would
not qualify as density matrices because of their negative
genvalues. Once negative eigenvalue components are pe
ted, however, the decomposition given above can be in
preted as a separation of the entangled density matrix
products of local density matrices. The reason why den
matrices with negative probability eigenvalues may be u
in the decomposition of entangled states is that any meas
ment performed on systema mixes contributions to the den
sity matrix of systemb in such a way that the informatio
required to isolate the negative conditional probabilities r
resented by the negative eigenvalues is lost.

Effectively, the uncertainty in systema necessarily ‘‘cov-
ers up’’ the negative eigenvalues of the density-matrix co
ponents of systemb by mixing them with positive compo
nents. Entanglement can therefore be explained by the l
properties of quantum measurements described previo
@6#. In the light of this result, it is not surprising that som
applications of quantum mechanics such as quantum com
04210
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tation can work without entanglement@11,12#. The most fun-
damental property of quantum mechanics is not entan
ment, but local nonclassical correlations represented by
operator-ordering dependence of expectation values and
negative conditional probabilities obtained from finite res
lution measurements.

V. CONCLUSIONS

The interpretation of quantum statistics cannot be ba
on the assumption that potential measurement results re
sent ‘‘elements of reality’’ whether the actual measurem
is performed or not. This is not only true for entangled sy
tems, but also for combinations of finite-resolution measu
ments performed to obtain the correlations between nonc
muting operator variables in a single quantum system. A
result, concepts such as photon polarization have to be
viewed critically in order to understand the relationship b
tween eigenvalues and operator variables.

The experimental approach proposed above allows a
rect determination of the nonclassical features of the po
ization statistics for both single photons and entangled pa
Its application to the violation of Bell’s inequalities revea
details of the statistical relationships between all four pol
ization components. A full set of conditional probabilitie
can be obtained from the statistics of a single measurem
revealing the negative conditional probabilities that are
sponsible for the violation of Bell’s inequalities. A compar
son with the single-photon polarization statistics reveals t
such negative probabilities are also observable in the po
ization of a single photon. The property responsible for
violation of Bell’s inequalities is therefore a local feature
quantum statistics. Once the implications of the operator
malism are accepted, entanglement can be understood
special case of the nonclassical features observable in l
correlations.
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