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Finite-resolution measurement of the nonclassical polarization statistics of entangled photon pairs
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By limiting the resolution of quantum measurements, measurement-induced changes of the quantum state
can be reduced, permitting subsequent measurements of variables that do not commute with the initially
measured property. It is then possible to determine correlations between noncommuting variables experimen-
tally. The application of this method to the polarization statistics of entangled photon pairs reveals that negative
conditional probabilities between nonorthogonal polarization components are responsible for the violation of
Bell’s inequalities. Such negative probabilities can also be observed in finite-resolution measurements of the
polarization of a single photon. The violation of Bell's inequalities therefore originates from local properties of
the quantum statistics of single-photon polarization.
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[. INTRODUCTION of entanglement are discussed. Finally, the conclusions are
summarized in Sec. V.
Perhaps the most convincing proof of the nonclassical na-

ture of quantum statistics is the violation of Bell's inequali- Il. FINITE-RESOLUTION MEASUREMENTS
ties by a pair of entangled spin-1/2 particlgly. Several
experimental tests of these inequalities have been performed
on pairs of entangled photons generated either by two- A measurement assigns a quantity to a system property
photon emission[2,3] or by parametric downconversion based on the observable action of the system on some mea-
[4,5]. These experimental tests compare the polarization cosurement device. The uncertainty principle of quantum me-
relations of photon pairs emitted at the same time for differchanics requires that this interaction between the system and
ent sets of orthogonal polarizations. While no informationthe measurement setup introduces noise into properties that
about the relationship between nonorthogonal polarizatiolo not commute with the measured variable. Therefore, the
directions of the single photon are revealed in such measurélassical ideal of a complete determination of all system
ments, the statistics obtained correspond to the quantunfroperties is unattainable. Nevertheless it is possible to ob-
theoretical prediction. Since the quantum formalism fromtain quantitative information on the correlations between
which the violation of Bell's inequalities is derived is widely noncommuting variables by limiting the measurement reso-
accepted, one might wonder whether it should not be pogution. Such a finite-resolution measurement is described by
sible to obtain a clearer understanding of the origin of thisthe generalized measurement operai’qg(sm), which as-

nonclassical effect by investigating the unique statistical congjgns a continuous measurement vadyeto the operatos
nection between noncommuting quantum variables in moreg] it reads

detail. In particular, finite-resolution measurements can pro-

A. Generalized measurement postulate

vide quantitative information about a quantum variable with- R (Sm—S)2
out destroying the quantum coherence between different P ss(Sm) = (285%) " Y4ex -—— D
eigenstate components of that variahg. By applying 40s

or a given initial staté;,), the probabilityP(s,,) of ob-
aining a measurement resgj, and the statéy,, ) after the
@easurement, are then given by

identify the nonclassical correlations between noncommutin
variables directly{7,8]. In the following, an experiment is

proposed to determine the correlations between nonorthog
nal polarizations of entangled photon pairs. It is shown that

finite-resolution measurements, it is therefore possible t%

52
the violation of Bell's inequalities results from the negative P(Sm) = {#inl P3s(8m) [ i)
joint probabilities arising from local nonclassical correlations @
of the photon polarization. It is then possible to give a local | foud = 1 B (s ) i)
interpretation of entanglement based on standard quantum out JP(sm) ostemIin/
mechanics.

The rest of the paper is organized as follows. In Sec. lINote that this generalized measurement postulate does not
the application of finite resolution measurements to the porestrict the values of an operator variable to the eigenvalues
larization of a single photon is discussed, and fundamentadf that operator. Eigenvalues emerge only in infinitely pre-
nonclassical correlations are derived. In Sec. lll, the expericise measurements. One of the fundamental problems in the
mental setup for a measurement of entangled photon pairs discussion of quantum mechanics is that eigenvalues are of-
presented and the statistical results of such a measuremeen identified with “elements of reality9,10] regardless of
are derived. In Sec. IV, the nonclassical features of the stahe measurement context discussed. By assigning a continu-
tistics are identified, and implications concerning the natur@us measurement value to the operator variable in a finite-
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resolution measurement this identification is avoided, allow- D;t;ctor
; ; ; ot Beam Polarization . ay
ing a determlna}tlon of quantitative results beyond the Displacer Rotation Polarizer

spectrum of its eigenvalues.

)

B. Finite-resolution measurement of photon polarization

The polarization of a single photon can be described in P(s1m; 52 = +1)

terms of the Stokes parametess In terms of the circular
polarization eigenstateR) and |L), the operators of the

three single-photon Stokes parameters may be written as Detector
Array \_W_/ P(s1m; 52 = —1)
S1=|L)(RI+[R)(LI,
§2: i|LY(R|—i|RY(L], ®) FIG. 1. Schematic representation of the experimental setup for a
joint measurement of nonorthogonal polarizations. The beam dis-
§3=|R><R|—|L)<L|. placer separates the incoming light into two parallel beams. The

polarization is then rotated by an anglem® before the light beam
%1 represents the intensity difference between xthand y is split gt 'the polarizer. The overlapping transversal profile of the
. - . . . beams is illustrated at the detector arrays.
polarizations s, represents the intensity difference between
the polar|Azat|ons along the.dlagolnals. between sthend y ization measurement. By rotating the polarization by an
axes, ands; represents the intensity difference between theyngle of 7/4 and separating the and y components as

;:rllrcul_ar polallrlzatlofns. Shlnscte l?nly one pﬁogl IS Cons'deredshown in Fig. 1, the eigenvalues of the Stokes paransster
€ elgenvaiues ot each Slokes parameler-ale are measured. Two spatial patterns emerge, corresponding to

A f|n|te-r¢solut|on measurement 9f pho“’f‘. pOI""r'z"’mohthe conditional distributions of continuous measurement re-
can be realized by using a polarization sensitive beam dis-

placer that shifts the-polarization component relative to the SUltSSim Of the Stokes paramets; associated with a final
y-polarization component of the light field. The displacementméasurement of the _e_|genvalueﬂ or —1 of the Stokes
of the photon trajectory in the beam displacer can be interparameters,. The positive operator valued measyROM)

preted as the action of the one-photon Stokes pararsgter describing the joint measurement &f ands, is defined by
The polarization of the photon is then described by a conprojections onto the states:

tinuous values,,, of the Stokes parametég obtained from

the megsurement of the transversal photon position after the |SimiSp=*1)= ﬁﬁs(slm)i(|R>ii|L>)- (5)
beam displacer. The measurement resolution depends on the N

ratio of the displacement and the width of the input beam. If

the transversal profile of the light field is Gaussian, the genThe joint probabilities P(s;,;s,=*1) for measuring a
eralized measurement postulate describes the single-photéinite-resolution value ofs;,, for the Stokes parametes;

polarization  statistics obtained by measuring thefollowed by an eigenvalue af,= =1 for the Stokes param-
polarization-dependent displacement of the photon. In terméterg2 is then given by
of the circular polarization eigenstates, the measurement op-

erator is given by P(Sim;S2= * 1) =[(S1m;S2= £ 1| ¢hin) |2
= %|<R||€)&s(slm)|win>

Ii<|-|ls&s.(slm)llpin”za (6)

2
B simt1

4552

P ss(Sm) = (27 8s?) ~1/4 exp(

X cos}‘( Stm (IRYR|+|LYL]) where|#;,) is an arbitrary initial state. This POM thus as-
255? signs quantitative results to both Stokes parameters, allowing
a derivation of correlations between the polarization compo-
| Sim nents of a single photon.
+sm)—( 2552> (IRY(LI+ILXRI | @ If the light field entering the measurement setup shown in

Fig. 1 is polarized along the diagonal between xhandy
This operator describes the changes in the quantum state gfes, the initial photon state is given by

the single-photon polarization conditioned by the finite reso-
lution measurement of the Stokes paramsier 1

|i//in>zﬁ(|R>+i|L>)- (7
C. Joint measurements of nonorthogonal polarizations

In order to measure the correlated nonorthogonal polarThe joint probabilities of the measurement resalig ands,
ization components of a single photon, the finite-resolutiorcan then be determined using E@). In its most compact
measurement can be combined with a fully resolved polarform, this reads
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P(81m;82 = +1)

2 _d 2
G(;S(Slm—d)=:(27T632)‘1’2exp< - M) .9

25s?
0.15 ] In terms of these Gaussians, the joint probabilities read
1
0.1 ] P(Slm;32:+1):ZG§s(slm+l)
0.05 1 111 )
+exp ——— | 5Gs(s
2552 2 55( m
0
-3 -2 -1 0 1 2 3 1
S1m + ZGst(Slm_l),
(10)
P Sim; 82 = -1 1
(31m; ) P(31m§52:_1)22655(51m+1)
0.14 ]
0.12 ] 111
—exp — =Gs5s(S1m)
0.1 - p( 2552)2 ostAm
0.08 ] 1
0.06 ] + 7Gss(S1m— 1)
0.04
0.02 Each Gaussian contribution to the joint probabilities given in
) Egs.(10) can be identified with elements of the density ma-
0 : trix of the original state in the eigenstate basis of the observ-

-3 -2 -1 0 1 2

w

ables;. As discussed in a previous pagéil, the measure-
ment ofs;,, modifies each matrix element by a decoherence
FIG. 2. Probability distributiorP(s,,;s,) for an initial eigen-  factor given by the difference of the eigenvalues, and an
state ofs,=+1 at a resolution obs=0.6. Note the asymmetry and information factor depending on the difference between the
the shifted maxima obtained fep=—1. measurement result ., and the average of the eigenvalues.
If the modified density matrix is reexpressed in terms of the
eigenstates aof,, the diagonal elements yield the probabili-
( St ) ties given. It thus becomes possible to separate conceptually

P(Sim;S,=+1)=(278s?) 172

2
Simt+1 I :
Xexp( _im 5 cosht the contributions of the decoherence factor and the informa-
20s

2557 tion factor to the terms in Eq10).
(8 The decoherence factor dxpl/(25s?)] is a result of the
P(Sym;So=—1)=(2m5s%) 12 guantum noise in the measurement required by the uncer-
tainty principle. In the case of a beam displacer acting on
stntl) Sim single photons, it is the uncertainty of the wave-vector-
xXexp — 5552 25s2] dependent time the photon spends in the birefringent me-

dium which randomly rotates the Stokes vector aroundsthe
Note that P(s;,=0;s,=—1) is always exactly equal to axis. Since this noisy interaction is statistically independent
zero, even ifss is larger than 1. Obviously, this result is too Of the measurement result, it is possible to separate its effect
exact to be explained in terms of a random measuremeritom the information obtained about the system. A hypo-
error superimposed on classical statistics. The result for thetical noise free measurement then reveals negative prob-
measurement resolution dis=0.6 is illustrated in Fig. 2. abilities of s,=—1 for measurement results,, close to

The peaks irP(s;m;S,=—1) are shifted to values of about zero[6]. These negative probabilities describe the nonclassi-
+1.1, and the asymmetry of the peaks seems to favor evetal correlations between noncommuting operator variables
higher values. These results can hardly be explained by st&7,8].

tistics originating only from the eigenvalues &f=+1. The information abous, obtained in the measurement
) N o ) modifies the statistical weight of each density-matrix element
D. Negative conditional probabilities and nonclassical by a Gaussian function of the difference between the mea-
correlations in the polarization of single photons surement resul$, ,, and the average of the two eigenvalues

The nonclassical features of the joint probabilitiesof the density-matrix element. In particular, the Gaussians
P(s1m:S,==*1) can be analyzed by expressing the result asgentered arounds;,=0 represent contributions from the
a sum of shifted normalized Gaussian distributions: quantum coherence between thge=+1 and thes;=—1
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eigenstates conditioned by a measuremers; gf Measure- initial state. Due to the operator ordering, the anticorrelation
ment results close te;,=0 enhance the coherence and in- betweens? ands, is an inherent statistical property [ofi,),

crease the probability af,=+1 to values above 1, while gyen though ¢;,) is an eigenstate of,. Thus operator or-
measurement results far away fra, =0 reduce the coher-  dering allows a correlation between fluctuating properties
ence, lowering the probability af,= +1 to values below 1. and seemingly well-defined operator variables of the quan-
In order to explain this nonclassical correlation betwsen tym state.

ands,, some measure of reality must be attributedte 0, This property implies that even the eigenvalues of a quan-
even though it is not an eigenvaluegf[7]. Since the width  tum state do not represent “elements of reality.” Conse-
of the Gaussians represents the effect of random noise in ttguently, it is wrong to assign measurement values to physical
readout of the finite-resolution measurement, it is reasonablproperties before the measuremenen if the measurement
to identify each Gaussian contribution with its average valugesult can be predicted with certaint@ince the violation of

of s;m. The continuum of measurement valigs, can then  Bell's inequalities depends on the assignment of such ele-
be represented by a discrete set of three valueg-at-1 ments of reality, it is not surprising that it can be violated by
ands; =0. The joint probabilities for these three valuespf quantum theory. In the following, it will be shown how the

and the two eigenvalues &§ read violation of Bell's inequalities can be explained in terms of
negative joint probabilities obtained from finite-resolution
P(si=—1:5,=—1)=1/4, P(s;=-1;5,=+1)=1/4, measurements.
P(,=0;5,=~1)=—1/2, P(s,=0;5,=+1)=1/2, lll. MEASUREMENT OF POLARIZATION
ENTANGLEMENT
P(s;=+1;5,=~1)=1/4, P(s;=+1;5,=+1)=1/4. G
(11 A. Entangled photons

These joint probabilities explain the nonclassical features of ENtangled photon pairs can be created in two-photon
the quantum statistics obtained from the single-photon polar@Mission[2,3] or in parametric downconversida,5]. The

ization measurement setup shown in Fig. 1 for any value oPrecise polarization statistics may vary depending on the ge-
the measurement resolutidis. ometry of the setup. In order to express the violation of

It should be noted that the measurement setup itself deBell's inequalities in terms of the Stokes parametgraind

fines an asymmetry between ands,, since the noneigen- S, it is useful to rotate the polarizations of the two photons
value of zero appears only in the statistics of the initial finite-in such a way that the quantum state is given by

resolution measurement sf. This dependence on the order

of measurement is reflected in the operator order dependence _ 1 R:L D( ; 77) .

: . . =—||R;L)y+expg —i—]||L;R)|. 14
of quantum-mechanical expectation values. In order to iden- [a) J2 IR.L) 4 ILiR) (14
tify the operator properties responsible for the appearance of
negative probabilities in the statistical properties, it is useful| ppoton a
to characterize the measurement statistics in terms of th¢ Pair — = -
correlation betwees?,, ands,, Source [ (W

b
C(Sim 1Sp) = <Sim32> - <S§m><52>
== 2(<Sim>_ 552)<52> |:—‘| —

$1m(a)

1
=-2 - , 12
exp{ 2532> (12) sl"‘(a)\l/

where () denotes statistical averages over actual measure T
ment results. This correlation may be expressed in terms o
the operator expectation values|af,,) as

Coincidence Counts

11 $1m (D) ss(a) = -1 sofa) = +1
2 L) = =% @ o
C(s1,s)=ex T s ((¥inl S15251| Yin)

— (Wil ST 0 inl Sal tin)) - (13

As explained above, the exponential factor expresses the rar

QOmlzatlon ofs, m_duced. by, the measurementsq_f_ aCC,Ord' FIG. 3. Schematic representation of the experimental setup for a
ing to the uncertainty principle. Fafs—, the noise intro-  neasyrement of polarization correlations on entangled photons. The
duced in the measurement sf goes to zero, and the setup of the branchesandb are as shown in Fig. 1. Coincidence
correlation is given by the operator expectation values of theounts are registered in one of four channels as illustrated.

51 (b) s2(a) = -1 so(a) = +1
— % ss®) =+1| |[sa(®) =1
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This state is an eigenstate of two polarization correlations: B. Experimental setup and measurement statistics

1 . - - Figure 3 shows the experimental setup for a measurement
E(Sl(a“sz(a)) $1(b)[¥a,0) = tha 0, of the correlations in Bell's inequalityEq. (16)]. The detec-

(15) tor arrays record coincidence counts between the right- and

left-hand sides. Each detector array corresponds to an eigen-

- - - value measurement ég. The spatial coordinate at which the
- E(Sl(a)_sz(a)) So(b)| a0y =|than)- photon is registered corresponds to the continuous measure-

ment values,, of 5;. Each measurement result can then be
The sum of these two eigenvalues violates a Bell's inequalitydentified with a point in one of four two-dimensional
of the form graphs. The probability distribution for the measurement out-
_ comes of the joint measurements may be determined by pro-
K=s1(a)s1(b) +s5(a)s1(b) =81(a)$(b) +52(2)S2(D)<2.jections onto the nonorthogonal, non-normalized set of states

(16)

It is therefore not possible to interpret the polarization statis-
tics by assigning eigenvalues dfl to each Stokes param-

eter. However, as indicated by the results of finite-resolution
measurements on the polarization of single photons dis-

|S1m(@);S1m(b);sp() = £ 1;5,(b) = + 1)

=P 55(S1m(@)) P ss(S1m(b) 3 | R;R)

cussed in Sec. Il above, such an identification of physical +s,(a)i|L;R) +s,(b)i|R; L)
properties with their eigenvalues is not even consistent with
the correlated statistics of local single-photon properties. The —sy(a)sy(b)[L;L)). 17

nonclassical statistical properties responsible for the viola-

tion of Bell's inequality[Eq. (16)] can be derived in detail by

applying the finite-resolution measurement setup introduceth their most compact form, the joint probabilities of the
above to realize a polarization measurement on the entangledeasurement results,(a), Sim(b), S>(a), ands,(b) for
photon pairs given by Eq14). the entangled input state/(a,b)), given by Eq.(14), read

P(sim(@);81m(b);sy(a)=*1;s(b)==*1)
V2 % %ﬁ@hﬁmwﬁ+ﬂ
exp —

:1677552 252
. ’_(slm(a)sz(b)—slm(b)sz(a)) r(slm(a)sz(b)+slm(b)sz(a))
X|2sin cos
252 2552

Smﬁﬁﬂm+&AM%w»

+(V2+ 52(a)Sz(b))C°SHZ( 2552

smmnxm—&wm%mw .

255?

+(ﬁ—sz(a)s2(b))sinh?(

Figure 4 shows the results for a measurement resolution aisymmetries and the regions of extremely low probabilities
5s=0.6. At this intermediate resolution, quantum- nears;,=0 separating the peaks corresponding to quantized
mechanical interference effects are especially vidile In results around;,, =+ 1.

particular, separate peaks can be resolved clearly, but quan-

tum interference effects are visible in the asymmetric peak C. Violation of Bell's inequality by the finite-resolution

shapes and in the zero probability valleys in thg~0 re- measurement statistics

gions separating the peaks. As in the single-photon case dis- As in the one-photon case, the regions of low probability
cussed in Sec. Il above, it is indeed possible to interpret thesgt values 06, ,(a/b) =0 can be traced back to negative joint
features entirely in terms of Gaussian distributions. How-probabilities. The measurement probabilities given by Eq.
ever, negative probability contributions centered around val{18) may be expressed as a sum of shifted normalized Gauss-
ues ofs;,=0 have to be included in order to explain the ian distributions:
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2*d 2 b 2*d 2
Gas(slm(a)—da;slm(b)—db)==(2w652)1exp(—(slm(a) a)25+(231m( S - (19
S

Since the shiftsl, andd, may be—1, 0, or+ 1, respectively, each of the four sums has nine components associated with joint
probabilities of the four Stokes parameters. The probability distribution of the measurement results is then given by the sum

P(sim(@);S1m(b);sy(a)=*1;s,(b)=*+1)
_2+1
162

\/_

[G(‘)‘s(slm(a) +1; S1m( b) + 1)+ G (Ss(slm( a) 1 Slm( b) 1)]
[Gés(slm(a) +1; Slm(b) 1)+ G&s(slm( a) 1; Slm(b) + 1)]
) 2 S2(D)[Gss(S1m(@) +1;51m(0)) = G ss(S1m(@) — 1;51m(b))]

258

1
S2(8)$2(0) G 55(S1m(@);S1m((b))- (20)

f
+exp<

p( ) =S5(a)[ G 55(S1m(@);S1m( D) + 1) — G ss(S1m(@) ; S1m(b) — 1)]
ol

& 52/4\2

se(a) = -1, s2(b) = +1 sa2(a) = +1, s2(b) = +1

FIG. 4. Contour plot of the probability distri-
bution P[s1,(2);S1m(b);s2(2);5,(b)] at a reso-
lution of 6s=0.6. While the major peaks appear
to be close to the eigenvalues st,= *1, the
shape of the peaks and the separation between
them reveals the same nonclassical statistical ef-
fects seen in Fig. 3.

S1m(@) S1m(a)
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so(a) = =1, s3(b) = +1 39(a) = +1, sa(b) = +1

FIG. 5. Contour plot of the probability distri-
bution P[s;1,(2);S1m(b);s2(a);5,(b)] at a reso-
lution of ds=2. The peaks fos,(a)= —s,(b)
are ats;p(a)=s;m(b)==1.383. The contribu-
tion to the average value & at these points is
3.68.

S1m(@) S1m(a)

Using this decomposition, it is a straightforward matter tointerpretation of the measurement results for both high and
determine the averages corresponding to the correlations ¢dw resolutions, it is necessary to identify the decoherence
Bell's inequality [EqQ. (16)] by summing overs,(a) and factor exg1/(25s%)) with the quantum-noise-induced reduc-

sz(b) and integrating over the continuous ressis(a) and  tion of the expectation values sh(a) ands,(b). It is then

S1m(P). The result reads possible to remove the effects of noise and of finite measure-
2 ment resolution from the measurement statistics, tracing the
(Ky= 1+exp( 1 21) violation of Bell's inequality directly to the appearance of
f 2552 negative probabilities in the joint probabilities fax(a),
s,(a), sq1(b), ands,y(b).
This expectation value exceeds the maximal value of 2 al-

lowed by inequality(16) for measurement resolutions 6§ IV. DISENTANGLING ENTANGLEMENT:
>1.143. The violation of Bell's inequality can therefore be INTERPRETATION OF THE NONCLASSICAL
obtained directly from the measurement statistics for suffi- STATISTICS

ciently low resolutions of the;, measurements. An example
for this direct violation of Bell's inequality is shown in Fig.
5 for a measurement resolution 66=2. At this low reso- As in the case of single-photon polarization discussed in
lution, quantization effects are not resolved. The nonclassicébec. Il, the sum of Gaussians given in E20) can be inter-
properties of the statistics are observable in the shift of th@reted in terms of joint probabilities f@;(a), s,(a), s1(b),
peak maxima fos,(a)= —s,(b) to values greater thasy,,  ands,(b) by identifying the average of each Gaussian with
=+1 or lower thans;,,=—1. Specifically, the maximum the appropriate value ;. The joint probabilities for all 36
probability density fors,(a)=+1 and s,(b)=—1 is at combinations of the six contributions from(a) ands,(a),
S1m(@) =S1,(b)=1.383 and the maximum fa,(a)=—1,  with the six contributions frons;(b) ands,(b) characteriz-
ands,(b)=+1 is ats;y(a) =s;y(b)=—1.383. The value ing the statistics of the entangled stéte, ,), are shown in
of K at these points would be equal to 3.68. Table I. From these probabilities, the statistical weight of
While it might be tempting to interpret the statistics in different contributions to the sum correlatiéhin inequality
terms of polarization components greater thah or smaller  (16) can be determined.
than—1, the high-resolution results of Fig. 4 and the analy- The joint probabilities can be classified according to
sis of single-photon polarization in Sec. Il suggests that thevhether the values of;(a) ands;(b) are zero or not. There
true reason for the shifted peaks are negative probabilitieare 16 contributions with botls;(a) and s;(b) nonzero.
arounds;,(a)=s;m(b)=0. In order to obtain a consistent These cases correspond to the classical expectation that the

A. Negative conditional probabilities in photon entanglement
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TABLE |. Table of conditional probabilities derived from the results shown in Fig. 4. Note that the
negative probabilities roughly coincide with regions of zero probability in the measurement statistics.

(81(@),5,(b))

(s1(b),s2(b)) (=1-1) (0-1) (1-1) (=1.1) 0,9 1,9
L1 2-1 1 2+1 2-1 1 2+1
@3 1672 " a2 1672 1672 32 1672

0,1 1 I 1 ot

82 4.2 82 8.2 4.2 82

(—1.1) 2+1 1 2-1 2+1 1 2-1
_1 2 1 ‘ ; 1 L
1612 82 16'2 1612 842 1612

(1-1) 2-1 1 2+1 2-1 1 2+1
' 1612 82 16'2 1612 82 1612
(0-1) b 1 1 e
8\2 42 8.2 82 a2 8.2

(—1-1) 2+1 1 2-1 2+1 1 2-1
, 1612 82 1612 1672 82 1612

values ofs; should be equal to the eigenvalues observed in There are four contributions wite, (a) =s;(b)=0. Only
high-resolution measurements. Consequently, they are thte correlation(s,(a)s,(b)) is nonzero in these cases. Two
only contributions that are not diminished by the decohercases hav& =1 and a positive probability of2/8, and two
ence factor for smalbs. Moreover, their probabilities are all cases hav&K=—1 and a negative probability of \J218.
positive. In eight of these 16 cases, three of the four correThis adds a total probability of 35.4% foK=1 and
lations in inequality(16) are equal to+ 1 and one is equal to —35.4% forK=—1.

—1, for atotal ofK =2. The reverse is true for the remaining  The probability distribution over values &f can be sum-
eight cases, resulting in a total &= —2 for the sum of marized as follows:

correlations in inequality16). The probability of each case

is equal to[2+5s;(a)s,(b)y2]/32. Summing up the prob- P(K=2)=103.1%, P(K=-2)=-3.1%,
ability of the eight cases witlK=2 thus results in a total
probability of (4+/2)/8 or roughly 67.7%. The eight cases P(K=1)=35.4%, P(K=-1)=-354%, (22

with K=—-2 have a total probability of (42)/8, or
32.3%. The average value Kffor these “classical” contri-
butions to the joint probability is therefore equal ta/2/ as
evidenced by the limit of Eq21) for §s— 0. Obviously, the
violation of Bell's inequality must originate from the remain-
ing 20 contributions, with at least one value f equal to
zero.

There are 16 contributions with one valuexfequal to
zero and the other value nonzero. Two of the four correla
tions in inequality(16) are then equal to zero, while the other
two may be either+1 or —1 each. In four cases, they are

—92) inai i tation value ofK taken from the measured distributipBq.
both equal to+1 (K=2), in eight cases, they have opposite o . St
sign (K=0), and in the remaining four cases, they are both(18)] shown in Fig. 4 may exceed the classical limit. Even

equal to—1 (K=—2). The probabilities for these cases arethough "%difeCt _observation of.the negat.ive_ prqbabilitie; i_s of
+./2/16. As a result, the total probability for the four cases OUrse impossible, the continuous _distribution Of. finite-
with K=2 is equal toy2/4 or 35.4%, the total probabilities resolution measurement r_esults thus reveals clear evidence of
) ! these nonclassical statistical features.
for the eight cases witlk =0 cancel to zero, and the total
probability for K= —2 is —\/2/4 or —35.4%. This negative
probability more than outweighs the 32.3% of the classical
contributions, explaining the increase of the expectation
value of K beyond the limit of 2. However, the effect is  The negative conditional probabilities shown in Table |
further enhanced by the contributions frosp(a)=s,(b) allow an interpretation of the measurement statistics in terms
=0. of individual measurement results observed separately in

P(K=0)=0%.

The high expectation value & is a result of the negative
probabilities for combinations of;(a), s,(a), s.(b), and
S,(b) with K<0. In the measured probability distributions
described by Eq918) and(20), these negative probabilities
appear as a suppression of the probability for values;of
close to zero, pushing the peak of the probability distribution
beyond the eigenvalue limit of-1. Sinces,,, is not re-

stricted to eigenvalues o, the contributions to the expec-

B. Quantum noise and negative probabilities
in entangled systems
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brancha and branclb. There is neither a need for action at a tation can work without entanglemelrit1,12. The most fun-
distance, nor for nonlocal properties. The nonclassical feadamental property of quantum mechanics is not entangle-
ture required to explain the violation of Bell's inequalities is ment, but local nonclassical correlations represented by the
expressed in the negative probabilities which are possibleperator-ordering dependence of expectation values and the
even in individual quantum systems because the uncertaintyegative conditional probabilities obtained from finite reso-
principle does not allow an isolated measurement of a jointution measurements.
probability of noncommuting variables.

Once the relationship between uncertainty and negative
conditional probabilities is understood, the problem of non-

locality in entangled systems can be resolved by introducing The interpretation of quantum statistics cannot be based
local decompositions of the entangled state density matriy, the assumption that potential measurement results repre-
based on negative probability components of the local dengent “elements of reality” whether the actual measurement
sity matrices. For the state discussed above, one possible herformed or not. This is not only true for entangled sys-
decomposition reads tems, but also for combinations of finite-resolution measure-
ments performed to obtain the correlations between noncom-
muting operator variables in a single quantum system. As a
result, concepts such as photon polarization have to be re-
viewed critically in order to understand the relationship be-
- - - tween eigenvalues and operator variables.
+ m(sl(a)—sz(a))@)sz(b) The experimental approach proposed above allows a di-
rect determination of the nonclassical features of the polar-
1. R ization statistics for both single photons and entangled pairs.
~ 2 S3(8)@s3(b). (23)  its application to the violation of Bell's inequalities reveals
details of the statistical relationships between all four polar-

All by themselves, the Stokes parameter operaspmsould ization components. A full set of conditional probabilities
not qualify as density matrices because of their negative ei€an be obtained from the statistics of a single measurement,
genvalues. Once negative eigenvalue components are permfig/€aling the negative conditional probabilities that are re-
ted, however, the decomposition given above can be inteSPonsible for the violation of Bell's inequalities. A compari-
preted as a separation of the entangled density matrix int8°" with th_e smgle-ph_o_tpn polarization statistics _reveals that
products of local density matrices. The reason why densitpUch negative probabilities are also observable in the polar-
matrices with negative probability eigenvalues may be useéfation of a single photon. The property responsible for the

in the decomposition of entangled states is that any measuyr¥iolation of Bell's inequalities is therefore a local feature of
ment performed on systemmixes contributions to the den- quantum statistics. Once the implications of the operator for-

sity matrix of systemb in such a way that the information malism are accepted, entanglement can be understo_od as a
required to isolate the negative conditional probabilities relo_speC|aI case of the nonclassical features observable in local
resented by the negative eigenvalues is lost. correlations.

Effectively, the uncertainty in systemnecessarily “cov-
ers up” the negative eige_nyalues of th'e dens_it_y—matrix com- ACKNOWLEDGMENTS
ponents of systerb by mixing them with positive compo-
nents. Entanglement can therefore be explained by the local The author would like to acknowledge support from the
properties of quantum measurements described previouslapanese Society for the Promotion of Scietl®P$, and
[6]. In the light of this result, it is not surprising that some thank Dr. Takao Fuji for helpful discussions of the experi-
applications of quantum mechanics such as quantum compuental aspects.

V. CONCLUSIONS

1 1. .
[Vap)¥apl=7L@)O D)+ 5 (1(2) +5(2) @ 51(b)
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