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Nonclassical correlations of phase noise and photon number in quantum
nondemolition measurements
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The continuous transition from a low resolution quantum nondemolition measurement of light field intensity

to a precise measurement of photon number is described using a generalized measurement postulate. In the
intermediate regime, quantization appears as a weak modulation of measurement probability. In this regime,
the measurement result is strongly correlated with the amount of phase decoherence introduced by the mea-
surement interaction. In particular, the accidental observation of half integer photon numbers preserves phase
coherence in the light field, while the accidental observation of quantized values increases decoherence. The
guantum mechanical nature of this correlation is discussed and the implications for the general interpretation of
guantization are considered.

PACS numbds): 42.50.Dv, 42.50.Lc, 03.65.Bz

[. INTRODUCTION and photon number. There is a trade off, then, between the
noise introduced and the resolution achieved, which requires

In classical measurements, infinite precision is always dethe definition of a much larger class of ideal quantum mea-
sirable. Therefore there is no need for a fundamental megurements. By generalizing the conventional projective mea-
surement theory describing limited resolution. Instead, théurement postulate, it is possible to investigate this class of
lack of precision in any actual measurement is either neideal quantum measurement, focussing especially on the
glected or considered to be an error that degrades the valdgnsitional regime between classical low noise measure-
of the measurement data obtained. In quantum mechanicg!€nts at low resolution and the extreme quantum regime of
however, measurement precision always comes at a price. {H!ly resolved quantization and complete dephasing. It is

particular, infinite precision requires a measurement interac:§hown in the following, that the statistical properties of such

tion that completely randomizes some of the unobserved Syérjtermedlate resolution measurements include nonclassical

tem properties. Consequently, limited precision may actua"}porrelatlons between the measured photon number and the

be desirable in qUANtUM Measurements phase noise introduced in the measurement, which can only
; quan ' ... be observed in this transitional regime.
For instance, a single mode of the electromagnetic fiel

ith ll-defined ph b h letel In Sec. ll, a theoretical description of photon number
with a well-defined photon number must have a completelyy, o ¢ rements with variable resolution is given and the ef-

random phase. Therefore a precise photon number measuigetive measurement postulate is derived. In particular, the

ment destroys phase coherence and all associated interfefaasurement operator provides a description of the dephas-
ence properties of the field mode with other coherent modesng caused by the measurement interaction.

If phase coherence and interference properties are preserve(? In Sec. lll, the statistics of the measurement results are
the intensity of the field mode can only be determined with ayptained. The transition from the classical limit to the quan-
precision too low to resolve single photons. On the othekym |imit is discussed by pointing out the appearance of
hand, quantization emerges only when phase coherence jignclassical correlations between the measurement result
lost. Nevertheless a complete characterization of the lighfnd the coherence after the measurement.

field dynamiCS requires both information about the intenSity In Sec. IV, the correlations are Compared to fundamental
and the phase distributions. In general, it is therefore rea|i5ti9roperties of the operator formalism. It is shown that the
to consider a compromise between phase uncertainty and iRtatistics of the measurement results correspond to a specific
tensity uncertainty. operator ordering in the evaluation of correlations.

In quantum nondemoltion measurements of photon num-" |n Sec. V, the results are summarized and possible impli-
ber, information about the photon numberis obtained cations are discussed. It is argued that the measurement sta-
through the interaction of the measured field with a probdistics reveal that there is more to quantum reality than the
field [1,2] or with probe atom$3,4]. This interaction intro- integer photon number. By providing coherence, half-integer
duces phase noise into the measured system, as required jpilyoton numbers or “fuzzy” photon numbers also contribute
the uncertainty relationfb,6]. Since the purpose of the pro- to observable fact.
cedure is a measurement of photon number, it is very tempt-
ing to assume that a perfect resolution of photon number is  I1I. VARIABLE RESOLUTION IN IDEAL PHOTON
the ideal case and therefore more desireable than a limited NUMBER MEASUREMENTS
resolution. However, Kitagawa and coworkel§] have
pointed out that even if photon number states are not re-
solved, a quantum nondemolition measurement of photon Based on the application of lasers, modern quantum op-
number may produce a minimum uncertainty state of phas#cs has provided a characterization of the quantum mechani-

A. Light field quantization and measurement precision
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cal light field, which is much closer to a classical theory oferror in this procedure. Assuming Gaussian noise, the prob-
noisy fields than the operator formalism would sugd@$t  ability distribution of n,,, subject to an uncertainty ofn

In particular, the classical property of light field coherence isreads
much easier to control than the nonclassical property of
quantized photon number. It is indeed difficult to measure

the exact photon number of a single, well-defined light field
mode. In multimode open systems such as lasers, Langevin
equations offer a better description of the light field dynam-.

ics than photon number rate equations, even in the presen(-:repls distribution applies to a photon number eigenstate. In

of amplitude squeezingg]. This dominance of the classical order to describe the effects of a measurement on superposi-
P q ' tions of photon number states, it is necessary to define an

wave properties in lasers has motivated a new kind of criti- torP h that th | effect of
cism of the photon picture, expressed especially in the notiofiPerate an(Nm), such that the general effect of a measure-

of “lasing without photons” by Siegmani9,10]. Even in me_nt_r.esul'nm With.a qgantumAmechanical uncertainiy_o.n

the light of conventional quantum mechanics, it is question@n initial state ¢;) is given byP s,(nm) ). The probability

able whether the concept of photon number has any meanirfyf ©Ptaining the resuln, and the statgy¢(ny)) after the

before it is definitely measured. In particular, Heisenbergh€asurement are then given by

emphasized that no value can be assigned to a physical prop-

erty if the system is not in an eigenstate of that_ propgtty. P(Nm) = (] ﬁgn(nm)ﬁ)m(nmﬂ i)

After all, what photon number should be assigned to a co-

herent superposition of photon number states? It should be .

obvious that one cannot just pick out one eigenvalue while |1(nm)) =[NP 1P sn(N) [ 4) ()

neglecting the others. Nevertheless, this point is so contrary

to our natural intuition that it still raises controversies among Note that the measurement thus described is ideal, since a

physicists[12]. pure state remains pure and no additional decoherence is
In a quantum nondemolition measurement of photorintroduced. It is assumed that the measurement system is

number, a nonlinear coupling mechanism is utilized to shift gorepared in a well-defined quantum state and that the readout

noisy and continuous pointer variable by an amount proporis accurate. The source of the uncertainty in the measurement

tional to the photon number. As a consequence, the measuris- the quantum noise in the pointer varialblg before the

ment readout of the photon number measurement is genemeasurement interaction takes place. By increasing this

ally both noisy and continuous. The discreteness of théoise, the phase noise introduced in the measurement inter-

photon number eigenvalues only emerges if the noise in thaction is reduced and vice versa. In a realistic situation, there

pointer variable is sufficiently low. Thus, the actual measuremay be additional measurement uncertainties due to an inac-

ment result obtained is usually a continuous variable and ndturate readout of the pointer or due to additional phase noise

a discrete one. In order to study the emergence of photowt_roduced in the measurement interaction. Such additional

number quantization, one should therefore examine the propﬁ?'se sources cause decoherence and change the pure state

erties of quantum measurements with variable resolution an f(nm)_> Into a mlxture that Wogld have to be rgpresented by

cominuous alues for he photon number measurement & SETELY A 1 e OIowng, howener LS s

sults. If the reality of integer photon numbers is somehow '

“created” in the measurement, there should be a transitiorﬁ

from classical fields to quantized fields depending only on

the measurement resolution. While the basic tools for such

an analysis are indeed provided by the standard quantum R

theory of measurementl3,6], the axiomatic nature of the P&n(nm)Z(ZWfSnz)_MeXP( -

mathematical approach often obscures the intuitive classical

limit. Therefore, it is useful to formulate a generalized mea-

surement postulate taking into account the limited measureFhis operator describes the relation of the photon number

ment resolution. This measurement postulate summarizes thgeratorn with the valuen,, obtained in the measurement.

conventional results while illustrating the fundamental as-Thus the connection between the guantum system and the

pects of coherence and decoherence more clearly, providingassical measurement readout is established. Although the

_ 2
_M)_ W

P(n,)=(2mén?)~Y2ex
(Nm)=( ) o’

ossible to deduce the correct measurement operator by
omparing equationg€l) and(2). It reads

(N—np)?

45n2 ) ®

a shortcut to the derivation of quantum noise features. standard measurement postulate as formulated by von Neu-
mann[13] can be recovered by either lettinfp approach
B. Generalized measurement postulate for pointer zero or by applyingls,;n(nm) many times, the generalized
measurements

concept of measurement represented®hy(n,,) describes a

In a quantum nondemolition measurement, a pointer varimuch wider range of physical situations and is definitely
ablen,, of the probe system is shifted by an amount correcloser to the kind of perception we know from everyday
sponding to the photon numberof the light field. However, experience. In particular, it describes the classical limit of the
since the pointer variabla,, is itself noisy, there is some uncertainty relations in the case of low resolution>1.
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FIG. 1. Photon number measurement statistics of a coherent ) (¢)
state with an average amplitude @f 3 at a photon number reso- )
lution of Sn=0.7. (3) shows the probability distribution over mea- ﬁ%
surement results,,,. Quantization is not resolved yet. The dashed 1.5 flass.

fay

curve corresponds to the approximate result using a Gaussian phao
ton number distribution as explained in the teXt) shows the ex-

pectation value(a); after the measurement as a function of the

measurement resuit,,. The dashed curve is the result obtained by 0.5 P(rm)
multiplying a coherent amplitude oh{,+ 1/2)%2 with the dephas- Folags. (nm=9)
ing factor.
7.5 8 8.5 9 9.5 10 10.5
C. Photon number squeezing and phase noise Nom

Although, strictly speaking, the phase of a light field .
mode is not an observable since no phase operator can be FIG._ 2. Photon number_ measurement statistics of a coherent
constructed, approximate operators and phase space distrigtjate With an average amplitude @3 at a photon number reso-
tions show that there is an uncertainty relation between phddtion of n=0.4. (&) shows the probability distribution over mea-
ton number and phase given Bpd¢=1/2[14,15. The role ~ surement results ar@) shows the expectation valge);(n,,) after _
of this uncertainty in quantum nondemolition measurementéhe measurement. The dashed curves correspond to the approximate
of photon number has been investigated in the context ofermulas given in the text(c) shows details of the quantum me-
measurements using the optical Kerr effgg]. It will be chanical modulations of measurement probability and coherence af-

shown in the following that the generalized measuremen??r the measurement nea,ﬁzg,Anormalized by the respective clas-
operatorP 5, (n,) faithfully reproduces these experimentally Sica! reSultsPias(Nm=9) and(@)+,ass(Nm="9).

confirmed results. The overall averagéa);(av.) of the field expectation value
Since the phase itself cannot be represented by an opergs gea)lav.) P
I - . . ter the measurement is given by

tor, it is more realistic to illustrate the decoherence induced

by the phase noise by analyzing the reduction in the expec-

tation value of the complex field amplitud@). Adding (a)f(av.):J (gr(nm)lal g (nm))P(npy)dng,
Gaussian phase noise with a varianceS¢f to an arbitrary
field state reduces the initial expectation value of the ampli-

tude (a); to a final value of

2
<é>f:exl{ - %

= f <¢|| lsﬁn(nm)é-ﬁ)b‘n(nmﬂ ¢i>dnm

- B B 1 Al
()i - (4) —eXP( 85n2><¢.lall/f.>- (5)
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FIG. 4. Photon number measurement statistics of a coherent
state with an average amplitude @& 3 at a photon number reso-
lution of 5n=0.2. (a) shows the probability distribution over mea-
surement results. The dashed curve corresponds to the approximate
formulas given in the text.(b) shows the expectation value
(é)f(nm) after the measurement. The dashed curve shows the clas-

sical result(a)r gass(Nm) -

__fa)y(om)
(C) (a>f,class. (nm=9)

/

PIJ'E_:%) noise may originate not only from an additional source of
s decoherence, but also from an inaccurate readout of the

7.5 8 8.5 9 9.5 10 10.5 . .
pointer variable.
Nm
FIG. 3. Photon number measurement statistics of a coherent ll. THE EMERGENCE OF QUANTIZATION

state with an average amplitude @3 at a photon number reso-

lution of 5n=0.3.(a) to (c) are as in the previous figure. A. Measurement of a coherent state

If the initial state|;) is a coherent statpa) with the

According to equatiortd), this reduction in amplitude corre- photon number state expansion
sponds to a Gaussian phase noise with a variance of

w-od -3 JS S, @

then the measurement statistics defined by equé®preads
Thus the amount of phase noise introduced in the measure-
ment corresponds to the minimum noise required by the un-
certainty relation of phase and photon number for a measure-

S (6)
4

on?’

P(Nm) ={a|P5,(nm)| )

ment resolution ofén. This is a direct consequence of =[exp(—|a|d)/\2men?]

assuming an ideal quantum mechanical measurement, which

does not introduce additional phase noise. In a realistic situ- || (n—n,)?

ation, it is likely that the phase noise introduced is somewhat X 2 T - W ) (8)

higher than this ideal quantum limit. Relatig®) may then
be used to determine how much excess phase noise is intro- R
duced in a given experimental setup. Note that this excesand the coherent amplitude); after the measurement reads
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(a|Pan(NmaP s(ny)| @) The results shown in Figs. 1-4 have been calculated using
o these exact results. However, it is helpful to apply some ap-
(@|P5y(nm)| a) proximations in order to identify the quantization effects.

p( 1 ) For |a|?>1, the photon number distribution may be ap-
=aexp —

(ay(Ny) =

proximated by a Gaussian distribution with a mean photon
number|«|? and a photon number fluctuation f#|. The

( 1 2 application of the measurement operafy,(n,,) then re-
n+ nm)

86n?

sults in a convolution of two Gaussians. If the resolved pho-

D |a|?" expl — 2 ton numbersn is much smaller than the photon number fluc-
nnl 26n? tuation|«/|, then the amplitude of the photon number state
X on 2 . (9 components ofa) does not change much within the mea-
> | exp( _ (N=Nm) ) surement interval oh,,=én and the convolution may be
nont 26n2 approximately factorized into a product reading

|

Gaussian intensity distribution of |a)

- ~

Pan(nm)la>~(27T|a|2)”“eXp( -

(n_nm)z
X 2q76n?) " Pexp| - ——2—
; ( ) P 4.5n*

)exp(—idmﬂn), (10)

decoherence and quantization effects

where the phase is defined bya=|a|exp(—idg).

It is thus possible to separate the state dependent photon number distribution from the fundamental effects of decoherence
and quantization. By applying the approximations of Ed) to the measurement statistics described by Ejsand (9), an
even clearer separation of classical noise properties and quantization effects is obtained. The approximate results read

, : (n,,~|al*)? , , (n—n,,)?
P(n,)~Q2m|al®) Pexp| - —— > (2w6n?) Pexp| - ——2—
) le|*) p 2lal 2 ) P o 11
classical intensity distribution quantization effects
for the probability, and
1 2
i
expl ——— —*
(@) n)~exp(— i)\t 5 I o 2
a)dn,)~exp(—i n,,+ =exp| — 1
£ P 7P| T o 5 (—n)? (12)
-~ - exp| ———
classical amplitude average n P 26n 2

N -

quantization effects

for the coherent amplitude. Note that only the phase of thehat the absolute value of the coherent amplitude should be
coherent amplitude expectation vakss; after the measure- the square root of the intensity.

ment depends on the initial value of The absolute value is ~ The sums that express the quantization effects in B43.
determined by the measurement result and is proportional tand(12) are periodic functions afi,,. In other words, quan-
(nm,+1/2)Y2. This result corresponds to the classical notiontization effects only depend on how close the measurement
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resultn,, is to an integer value. Because of this periodicity, However, it is already a good approximation at the average
the sums can be expressed as Fourier series. Specifically, photon number of nine shown in the examples.
As the quantum limit is approached, the classical results
(n—ny)? are modulated by quantum effects. In the probability distri-
BV bution of measurement results, this modulation appears as a
26n frin imi i
ge pattern similar to that caused by an interference effect.

(2mwon?) Y2y exp( -

At the same time, a complementary fringe pattern emerges in

=1+2> exp —2mw25n2k?)cog 2mkn,,) the coherence after the measurement as givetabyn,,).
k=1 The lowest order contributions to these quantization effects
(13) read

and P(Nm) = Plass(Nm) (1 +2 exg — 27725n2)C03277nm))
1-2 exgd — 2mw?6n?)cog 27Nyy)

1 )2 . .
n—=—ny = ) .
( 2 (@)1(Nm) =@ 1 ctasd M)~ exp — 2m28n%)cog 2 Ny)
26n? (16)

(2w6n2)*1’2; exp| —

[

J The accuracy of this approximation i t f@ t
=1-2>, exp—2w28n%k?)cog 2mkny,). uracy of this approximation is worst {@)(ny) a
k=1

integer or half-integer values af,,,. At these points, it is
accurate to within 1% fo¥wn=0.27 and accurate to within
(14) 10% for 6n=0.23. Thus, the reliability of the lowest order

approximation is generally very high aboda~0.25. Figure

Note that the Fourie'r coefficientg are Gaussians in the moduy' ooy the probability distribution and the coherent ampli-
lation frequency variablé. The high frequency components y e after the measurement at a resolutiosof= 0.4. This

of the periodic modulations are therefore strongly SUP-asolution corresponds to a modulation factor of

pressed. Depending on the measurement resoldimrit is 2 exp(—27°6n?)=0.085. The modulation is still very weak

[st?nable_r:]q limit tlhetz_ exr()jansmg tot ct)nly thfr‘ f'rStf f;W (Iion'and the likelihood of obtaining an integer result is only about
ributions. -1 nis resoiution dependent truncation ot th€ Fouy 5 tjyeg higher than the likelihood of obtaining a half inte-
rier series defines the transition from the classical regime t

; %er result. Nevertheless, the quantization fringe®{m,,)
the quantum regime. . ~ .
and the decoherence fringes(ia):(n,,) are clearly visible.
The anticorrelation of the probability peaks and the coher-
ence maxima is illustated in Fig(@, which shows the re-

In the classical limit, all Fourier components wikt» 1 spective modulations near,=9, normalized using the clas-
are negligible. The measurement probability and the expecsical results atn,,=9. Figure 3 shows the probability
tation value of the coherent field after the measurement readistribution and the coherent amplitude after the measure-

ment at a resolution ofn=0.3. This resolution corresponds
(nm—|a|2)2) to a modulation factor of 2 exp(27%)=0.338. The like-

B. From the classical limit to full quantization

lihood of obtaining an integer result is about twice as high as
that of obtaining a half-integer result and the reduction in the
. coherent amplitude is about four times greater for integer
2 _ 1 s _ than for half-integem,,,. At an average decoherence factor
(@) tctas ) = Vit + 112 X8 |¢)exp( 85n2)' of exp(—1/(86n?))=0.25, the average coherent amplitude
(15) after the measurement is still quite significant. A measure-
ment resolution oBn= 0.3 thus combines aspects of photon
These results correspond to the classical assumption of conumber quantization and aspects of phase coherence, defin-
tinuous light field intensity and equally continuous Gaussiaring the center of the transitional regime between continuous
noise in the light field phase and amplitude. A typical ex-field intensities and quantized photon numbers.
ample is shown in Fig. 1 for a coherent state with an ampli- Between a resolution ofn=0.3 and a resolution ofn
tude of a=3. The measurement resolution is &t=0.7, =0.2, the approximation given by E(L6) breaks down. For
guite close to the quantum limit. Nevertheless, the approxion<0.2, the probability distribution is given by isolated
mate results of Eq915) correspond quite well to the more Gaussians centered around integer measurement ragults
precise results of Eq$8) and(9). Indeed, the main discrep- Half-integer results become extremely unlikely. However, if
ancy between the probability distributidd(n,,) given by  such an unlikely result is obtained, there still is coherence
Eq. (15) and the exact result is due to the asymmetry of theeven in extremely precise measurments. This fact is usually
Poissonian photon number distribution which has been nesbscured by the assumption of infinite precision inherent in
glected by assuming a Gaussian photon number distributiothe conventional projective measurement postulate. Figure 4
in Egs.(11) and (12). This deviation gets much smaller as shows the probability distribution and the coherence after the
the average photon number of the coherent state is increasedeasurement for a resolution 6h=0.2. Note that the ap-

Pclass(nm) = (27T| a|2)1’2exp< -

033815-6



NONCLASSICAL CORRELATIONS OF PHASE NOIS. .. PHYSICAL REVIEW A 61 033815

proximation given by Eq(16) is still very good for the prob-
ability distribution. However, the relative error in the peak
values of the coherent amplitude); after the measurement

is nearly 100%. Therefore, the dashed curve in Fig) does
not show the approximate result, but instead shows the cIas-J%—lL

0.06

sical apprommaﬂor(a}hdass,g|ven by Eq.(15). This com- oo

parison illustrates the relatively high coherence at half- 0 02

integer measurement resultsn,,. At half-integer

measurement results,, the expectation valuea>f class, Of 0

the coherent amplitude is equal to.{+ 1/2)*%/2, or one half 0 0.1 02 03 04 05 06 0.7
of the amplitude corresponding to a classical light field in- n

tensity of n,+1/2. This result is valid for allbn<0.2, re-

gardless of the average dephasing induced by the measure-FIG. 5. Normalized anticorrelation of the quantizatiQrof the

ment interaction. Therefore, the peak values of the coherenaaeasurement resuit,, and the coherencga)(n,,) after the mea-

after the measurement are much higher than the classicalirement as a function of measurement resolugion

results, while the minima at integer photon number are actu-

ally closer to zero than the classical interpretation of dephassible to evaluate the correlation between the quantization
ing would suggest. In the case 6h=0.2 shown in Fig. 4, observed and the coherence after the measurement by aver-
the classical approximation predicts an average decohereneging the product,

factor of ex{— 1/(86n?))=0.044. However, the peak values
of coherence at half-integer photon number are more than ten
times higher and the minima at integer photon number are
more than ten times lower than the classically expected co-

Q(a)i= | dn, Q(np){a)(nm)P(ny)

herence after dephasing. Since the likelihood of integer re- B 202

sults is about ten times higher than the likelihood of half- = —exp—2moon )exp( B 85n2) @

integer results, the main contribution to the average

coherence after the measurement still originates from half- =—Q(a)¢(av). (19

integer photon number results. Even at fully resolved quan-
tization, the half-integer photon number results thus providerhe average of the product of quantization and coherence is

a contribution to the dephasing statistics. exactly equal to the negative product of the averages. There-
fore, quantization and coherence are strongly anticorrelated.
C. Correlation between quantization and dephasing The correlationC(Q,(a);) is given by
The discussion above reveals a clear qualitative difference A AT =
between measurement resufts of integer photon number C(Q.(a)r)=Q(a);—Q(a)i(av)
and of half-integer photon number. To obtain a quantitative =L
S . o =—-2Q(a)(av)
expression, it is necessary to define a measure of quantiza
tion associated with each measurement rasgylt In the fol- 1
lowing, the quantizatiorQ of a measurement resutt,, is =—2exp—2mon)exp — —— | a.
therefore defined as 84n
20
Q(ny) =cos2mny). (17) @0

Figure 5 shows this correlation as a function of measurement
Thus, the quantizatio@ of integer values ofi,, is +1 and  resolutionsn. The correlation is maximal atn=1/(2\),
the quantization of half-integer values-sl. In the classical which is a resolution of about 0.282 photons. At this point,

case, this results in an average quantization of zero. Thg,e average quantlzatlo@ is equal to expfm/2)=0.208

average quantizatio® of the measurement results is given and the average coherent amplity@e,(av.) after the mea-
by surement is equal to exp@/2)=0.208 times the original
amplitudea.
— There appears to be a well-defined transition from the
Q:j A Q(Nm) P(Nim) classical limit to the quantum limit of measurement resolu-
tion at sn=1/(2\/7r), which is characterized by statistical
properties not observable in either the extreme quantum limit
or in the classical limit. Since it should be possible to obtain
. these statistical properties from experimental results, some
SinceQ depends only ordn, it may be used as an experi- measure of reality must be attributed to the concept of vari-
mental measure of the resolution obtained in quantum nornable quantizatiol®. Specifically, even though it is clear that
demolition measurements of photon number. It is now posenly measurement results of full quantizatiQr=1 remain

=exp(—2mw?on?). (18
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as the resolution is increased, the reduced decoherence at B. Ambiguous correlations in the operator formalism
Q= —1 demonstrates that such results cannot be interpreted The correlation given in Eq22) is of course a result of

as measurement errors due to either a higher or a lower phese gpecific order in which the operators have been applied.
ton number. This measurement scenario thus highlights the.

problem of assuming the existence of an integer photon nunincell? is always one, there is no correlation as soon as
ber before the photon number is actually measured. ObviPoth pan:[y operators are placed on the same side of the field
ously, quantization is not a property of the system, which isoperatora. In principle, it is not possible to determine the
simply hidden by the noise of the low precision measuremengorrelation between noncommuting quantum variables di-
in the classical limit. Some very real physical properties argectly from the operator formalism because of this ambiguity
associated with noninteger values of photon number meaoncerning the ordering of the operators.

surement results. Possibly, it is necessary to consider opera- In particular, the case of photon number quantization and
tor values other than the eigenvalues as part of the physic@irity belongs to a general class of correlations based on the
reality associated with quantum mechanical operator variinequality

ables.

§<ABZ+ B2A)+(BAB), (23
IV. FUNDAMENTAL PROPERTIES OF THE OPERATOR

FORMALISM where A and B represent arbitrary noncommuting operator

A. Quantization and the parity operator variables. The operator orderifgAB allows correlations

The generalized measurement operd&gy(n,,) describes even if the quantum state is an eigenstaté\adr B2. This

both classical and quantum mechanical features of measurBrOPerty definitely contradicts any assumption of classical
ments in terms of a quantum mechanical operator. ClassPtatistics. Nevertheless, such correlations can be obtained in

cally, it would be possible to distinguish between the mea&Xperiment, even though the outcome of a direct measure-

surement resu“nm and the actual photon number In ment OfA or é performed on the initial state would be per-

quantum mechanics, however, the photon nuntbes an fectly predictable. Thus the quantum nondemolition mea-
' X surement discussed in this paper represents an example of a

operator which does not have a well-defined value unless th .
field is in a photon number eigenstate. Therefore, the relalOr€ general class of measurements revealing fundamental

tionship between the measurement resyjtand the photon nonclassical properties of quantum statistics.

number operatoﬁ is quite different from the classical rela-
tionship between a noisy measurement result and the true C. Operator ordering and physical reality

value of the measured quantity. _ In the theory of quantum mechanics, the classical values

A quantum mechanical property that may provide a con¢ physical variables are replaced by operators. Conse-
nection between the definition of quantizatiQrbased onthe o antiy it is not possible to assign a well-defined value to an
measurement resuit, and the properties of the photon num- e rator variable if the system is not in an eigenstate of the

ber operaton is the parityfI defined as operator. This situation calls for a review of our concepts of
R X physical reality, as can be seen from the arguments concern-
m=(-1" (21)  ing entanglement and the debate of hidden varigldl2sl§.

Quantum mechanical uncertainty is definitely quite different
from a classical lack of knowleddd 7], and this difference

The square of the paritﬁz may then be associated with the is revealed in the correlations between noncommuting vari-
quantizationQ. Of course, the quantum mechanical value ofables. For instance, th'e EPR argum'ent basmally_uses the en-
quantization is always one. However, by “breaking apart” tanglement of two particles to establish a correlation between
the square of the parity, a correlation between quantizatioR©Sition and momentum of the same particle—thus trying to

and coherent field amplitude may be established. It reads Circumvent the restrictions imposed by uncertainty on Ein-
steins arguments in the Bohr-Einstein dialoda&]. How-

ever, as Bell has shown, the correlations between noncom-
muting variables thus obtained cannot be represented by a
classical probability distributiofi19]. Since this paradox is

an inherent property of the operator formalism, it should be
A _ . possible to trace its origin directly to the fundamental non-
If (I1%) is identified with Q and (a) is identified with  classical properties of quantum mechanical measurements,
(a)s(av.), this correlation corresponds to the one given in In principle it would be desirable to know the value of a
Eq. (20). The relationship between coherence and quantizacorrelation between noncommuting variables such as the par-
tion can thus be traceq to the aAnticommutation between Pafgy IT and the coherent amplituc without reference to a

ity and field amplitude]In= —nII. One could indeed argue measurement. If there were hidden variables defining classi-
that the correlation that appears in the measurement is hiddexal values for both operators, there should also be a well-
in the commutation relations of the operator formalism. defined correlation. However, the formalism itself introduces

(TTall) — (112)(a) = — 2(T12)(a). 22

033815-8



NONCLASSICAL CORRELATIONS OF PHASE NOIS. .. PHYSICAL REVIEW A 61 033815

an ambiguity. A formal calculation of correlations based oninstead, the statistics of physical properties should be based
the expectation values of operator products raises the quesn the measurement results obtained in a specific measure-
tion of operator ordering. A particularly striking ambiguity is ment setup. The ambiguity in the formalism can then be

represented by Eq22), since it permits a correlation d12  resolved by applying the appropriate generalized measure-
with the coherent amplitude even though the eigenvalues dhent postulate.

I12 are all one. Of course one could argue that it should not , It seems that the physical property of light field intensity

be allowed to separate the square of the parity operatofiVEN Py the photon number can not be attributed to any

However, such a postulate would not be based on any physfiéasurement independent elements of reality. Possibly, it
cal observation but only on preconceived notions of whafhight be a useful compromise to regard the measurement
reality should be like. It is therefore important to note that'esults n,, as elements of a fundamentally noisy reality,
unusual correlations such as the one given by (B8) can while acknowledging the qualitative dependence of the mea-
have a real physical meaning in measurement statistics. surement result on the resolutid@m. In the classical limit,
Since quantum mechanics does not allow the simultathe identification ofn, with the actual light field intensity is
neous assignment of well-defined physical values to nonusually not problematic. Therefore, our classical concept of
commuting observables, it is not possible to discuss correla€ality survives on the macroscopic level, even though it has
tions between such observables without a definition of théo be abondoned in the microscopic regime. In the quantum
measurement by which such correlations are obtained. THémit, n,, can again be identified with the eigenvalues of the
futility of trying a more general approach is clearly revealedoperatorn. In this manner, a continuous transition between
by the ambiguity of the correlations caused by the commuour classical concept of reality and the mysterious properties

tation relations between operators. of the quantum regime can be described.
V. CONCLUSIONS AND OUTLOOK B. Experimental possibilities
A. Interpretation of the nonclassical correlations The measurement statistics described here should be ob-

The results presented above show that a quantum nOIJ@inable by carefull_y. evaluating the data obtained in any
demolition measurement reveals much more than just thguantum non.demolmon measurement followed by a mea-
surement of field coherence, e.g., by homodyne detection. It

photon number of a light field at an intermediate measure>"" -
ment resolution close t@n=0.3. In this intermediate re- 'S important, however, to keep track of the correlation be-

gime, the property that phase coherence in the field requiretgz\'(""f’n the measuremgnt resnjf and theAcorrespond.mg av-
quantum coherence between neighboring photon numbéage results of the field measuremefas(ny,). This re-
states emerges visibly as a correlation between the contingiires some amount of time resolution, for example in the
ous measurement result, and the coherence after the mea- form of light field pulses or perhaps of solitons in fibé?s.

suremem{é)f. This measurement scenario thus reveals théJnfortunater, it is extremely difficult to realize quantum

difference between quantum mechanical uncertainty and gordemohtu_)rrr\] meaSU(eme?tf, of hl'tgh rtezolr{u;}’%r‘]\ n th(te_”opu-
classical lack of precision. In particular, there is a real physi-ca regime. the experimental resufts cite are st

cal difference between the measurement results of hahweII in the clas_sical regime 0‘.”>1- POSSiny.’ a reali_zation
integer photon number and the measurement results of im@_ased on th? interaction of smg_le atoms \.N'th a microwave
ger photon number, which makes it impossible to argue tha ode[3,4] might be more promising. In particular, the use of
the measurement of half-integer photon number is merely a vgnable number of smglg probe atpm passgd'through the
error. By introducing the variabl® to denote the quantiza- cavity should allow a particularly reliable variation of the

tion of the measurement result, it is possible to evaluate thth_:_tr?n nhurnber resolution g%rarﬂetm. ¢ h
correlation between quantization and decoherence in th e challenge presented by the aspects of quantum theory

measurement. In the operator formalism, the quantizatio iscussed above is to obtain sufﬁuent control_of' quantum

. ) ~ coherence to explore the properties at the very limit of quan-
can be interpreted as the square of the parity opet&tdris  ym mechanical uncertainty. The effects observed in this re-
then possible to denve the observed correlation directly fro”bime should then help to illustrate the quantum mechanical
the operator formalism. o properties utilized for quantum computation, quantum com-

The correlation obtained both from the statistics of themunication, and other aspects of quantum informafy.

quantum nondemolition measurement and from the operatofne continuous transition from the classical aspects of opti-
statistics suggests the reality of half-integer photon numbeg| conherence to the quantum properties of the light field can
results. Depending on the circumstances, quantum measurgrsg serve as a tool to pinpoint the technological require-

ments may therefore reveal physical values of operator variments for more complex implementations of quantum optical
ables, which are quite different from the eigenvalues of thgjeyices.

corresponding operators. At the same time, the ambiguity of
the correlations between operator variables shows that an
identification of neither eigenvalugsnor measurement re-
sultsn,, with elements of reality can be valid. It is therefore  The author would like to acknowledge support from the
not sufficient to extend the range of photon number valueslapanese Society for the Promotion of Scie(t®P3.
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