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Nonclassical correlations of phase noise and photon number in quantum
nondemolition measurements

Holger F. Hofmann
Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

~Received 7 September 1999; published 16 February 2000!

The continuous transition from a low resolution quantum nondemolition measurement of light field intensity
to a precise measurement of photon number is described using a generalized measurement postulate. In the
intermediate regime, quantization appears as a weak modulation of measurement probability. In this regime,
the measurement result is strongly correlated with the amount of phase decoherence introduced by the mea-
surement interaction. In particular, the accidental observation of half integer photon numbers preserves phase
coherence in the light field, while the accidental observation of quantized values increases decoherence. The
quantum mechanical nature of this correlation is discussed and the implications for the general interpretation of
quantization are considered.

PACS number~s!: 42.50.Dv, 42.50.Lc, 03.65.Bz
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I. INTRODUCTION

In classical measurements, infinite precision is always
sirable. Therefore there is no need for a fundamental m
surement theory describing limited resolution. Instead,
lack of precision in any actual measurement is either
glected or considered to be an error that degrades the v
of the measurement data obtained. In quantum mecha
however, measurement precision always comes at a pric
particular, infinite precision requires a measurement inte
tion that completely randomizes some of the unobserved
tem properties. Consequently, limited precision may actu
be desirable in quantum measurements.

For instance, a single mode of the electromagnetic fi
with a well-defined photon number must have a complet
random phase. Therefore a precise photon number mea
ment destroys phase coherence and all associated inte
ence properties of the field mode with other coherent mod
If phase coherence and interference properties are prese
the intensity of the field mode can only be determined wit
precision too low to resolve single photons. On the ot
hand, quantization emerges only when phase coherenc
lost. Nevertheless a complete characterization of the l
field dynamics requires both information about the intens
and the phase distributions. In general, it is therefore real
to consider a compromise between phase uncertainty an
tensity uncertainty.

In quantum nondemoltion measurements of photon nu
ber, information about the photon numbern̂ is obtained
through the interaction of the measured field with a pro
field @1,2# or with probe atoms@3,4#. This interaction intro-
duces phase noise into the measured system, as require
the uncertainty relations@5,6#. Since the purpose of the pro
cedure is a measurement of photon number, it is very tem
ing to assume that a perfect resolution of photon numbe
the ideal case and therefore more desireable than a lim
resolution. However, Kitagawa and coworkers@6# have
pointed out that even if photon number states are not
solved, a quantum nondemolition measurement of pho
number may produce a minimum uncertainty state of ph
1050-2947/2000/61~3!/033815~10!/$15.00 61 0338
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and photon number. There is a trade off, then, between
noise introduced and the resolution achieved, which requ
the definition of a much larger class of ideal quantum m
surements. By generalizing the conventional projective m
surement postulate, it is possible to investigate this clas
ideal quantum measurement, focussing especially on
transitional regime between classical low noise measu
ments at low resolution and the extreme quantum regime
fully resolved quantization and complete dephasing. It
shown in the following, that the statistical properties of su
intermediate resolution measurements include nonclass
correlations between the measured photon number and
phase noise introduced in the measurement, which can
be observed in this transitional regime.

In Sec. II, a theoretical description of photon numb
measurements with variable resolution is given and the
fective measurement postulate is derived. In particular,
measurement operator provides a description of the dep
ing caused by the measurement interaction.

In Sec. III, the statistics of the measurement results
obtained. The transition from the classical limit to the qua
tum limit is discussed by pointing out the appearance
nonclassical correlations between the measurement re
and the coherence after the measurement.

In Sec. IV, the correlations are compared to fundamen
properties of the operator formalism. It is shown that t
statistics of the measurement results correspond to a spe
operator ordering in the evaluation of correlations.

In Sec. V, the results are summarized and possible im
cations are discussed. It is argued that the measuremen
tistics reveal that there is more to quantum reality than
integer photon number. By providing coherence, half-inte
photon numbers or ‘‘fuzzy’’ photon numbers also contribu
to observable fact.

II. VARIABLE RESOLUTION IN IDEAL PHOTON
NUMBER MEASUREMENTS

A. Light field quantization and measurement precision

Based on the application of lasers, modern quantum
tics has provided a characterization of the quantum mech
©2000 The American Physical Society15-1
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HOLGER F. HOFMANN PHYSICAL REVIEW A61 033815
cal light field, which is much closer to a classical theory
noisy fields than the operator formalism would suggest@7#.
In particular, the classical property of light field coherence
much easier to control than the nonclassical property
quantized photon number. It is indeed difficult to meas
the exact photon number of a single, well-defined light fie
mode. In multimode open systems such as lasers, Lang
equations offer a better description of the light field dyna
ics than photon number rate equations, even in the pres
of amplitude squeezing@8#. This dominance of the classica
wave properties in lasers has motivated a new kind of c
cism of the photon picture, expressed especially in the no
of ‘‘lasing without photons’’ by Siegmann@9,10#. Even in
the light of conventional quantum mechanics, it is questi
able whether the concept of photon number has any mea
before it is definitely measured. In particular, Heisenb
emphasized that no value can be assigned to a physical p
erty if the system is not in an eigenstate of that property@11#.
After all, what photon number should be assigned to a
herent superposition of photon number states? It should
obvious that one cannot just pick out one eigenvalue w
neglecting the others. Nevertheless, this point is so cont
to our natural intuition that it still raises controversies amo
physicists@12#.

In a quantum nondemolition measurement of pho
number, a nonlinear coupling mechanism is utilized to shi
noisy and continuous pointer variable by an amount prop
tional to the photon number. As a consequence, the meas
ment readout of the photon number measurement is ge
ally both noisy and continuous. The discreteness of
photon number eigenvalues only emerges if the noise in
pointer variable is sufficiently low. Thus, the actual measu
ment result obtained is usually a continuous variable and
a discrete one. In order to study the emergence of pho
number quantization, one should therefore examine the p
erties of quantum measurements with variable resolution
continuous values for the photon number measuremen
sults. If the reality of integer photon numbers is someh
‘‘created’’ in the measurement, there should be a transit
from classical fields to quantized fields depending only
the measurement resolution. While the basic tools for s
an analysis are indeed provided by the standard quan
theory of measurement@13,6#, the axiomatic nature of the
mathematical approach often obscures the intuitive class
limit. Therefore, it is useful to formulate a generalized me
surement postulate taking into account the limited meas
ment resolution. This measurement postulate summarize
conventional results while illustrating the fundamental
pects of coherence and decoherence more clearly, provi
a shortcut to the derivation of quantum noise features.

B. Generalized measurement postulate for pointer
measurements

In a quantum nondemolition measurement, a pointer v
ablenm of the probe system is shifted by an amount cor
sponding to the photon numbern of the light field. However,
since the pointer variablenm is itself noisy, there is some
03381
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error in this procedure. Assuming Gaussian noise, the p
ability distribution of nm subject to an uncertainty ofdn
reads

P~nm!5~2pdn2!21/2expS 2
~n2nm!2

2dn2 D . ~1!

This distribution applies to a photon number eigenstate
order to describe the effects of a measurement on superp
tions of photon number states, it is necessary to define
operaterP̂dn(nm), such that the general effect of a measu
ment resultnm with a quantum mechanical uncertaintydn on
an initial stateuc i& is given byP̂dn(nm)uc i&. The probability
of obtaining the resultnm and the stateuc f(nm)& after the
measurement are then given by

P~nm!5^c i uP̂dn
† ~nm!P̂dn~nm!uc i&

uc f~nm!&5@1/AP~nm!# P̂dn~nm!uc i&. ~2!

Note that the measurement thus described is ideal, sin
pure state remains pure and no additional decoherenc
introduced. It is assumed that the measurement syste
prepared in a well-defined quantum state and that the rea
is accurate. The source of the uncertainty in the measurem
is the quantum noise in the pointer variablenm before the
measurement interaction takes place. By increasing
noise, the phase noise introduced in the measurement i
action is reduced and vice versa. In a realistic situation, th
may be additional measurement uncertainties due to an i
curate readout of the pointer or due to additional phase n
introduced in the measurement interaction. Such additio
noise sources cause decoherence and change the pure
uc f(nm)& into a mixture that would have to be represented
a density matrix. In the following, however, it is assum
that such additional noise sources can be avoided. It is t
possible to deduce the correct measurement operato
comparing equations~1! and ~2!. It reads

P̂dn~nm!5~2pdn2!21/4expS 2
~ n̂2nm!2

4dn2 D . ~3!

This operator describes the relation of the photon num
operatorn̂ with the valuenm obtained in the measuremen
Thus the connection between the quantum system and
classical measurement readout is established. Although
standard measurement postulate as formulated by von N
mann @13# can be recovered by either lettingdn approach
zero or by applyingP̂dn(nm) many times, the generalize
concept of measurement represented byP̂dn(nm) describes a
much wider range of physical situations and is definite
closer to the kind of perception we know from everyd
experience. In particular, it describes the classical limit of
uncertainty relations in the case of low resolution,dn@1.
5-2
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NONCLASSICAL CORRELATIONS OF PHASE NOISE . . . PHYSICAL REVIEW A 61 033815
C. Photon number squeezing and phase noise

Although, strictly speaking, the phase of a light fie
mode is not an observable since no phase operator ca
constructed, approximate operators and phase space dis
tions show that there is an uncertainty relation between p
ton number and phase given bydndf>1/2 @14,15#. The role
of this uncertainty in quantum nondemolition measureme
of photon number has been investigated in the contex
measurements using the optical Kerr effect@5,6#. It will be
shown in the following that the generalized measurem
operatorP̂dn(nm) faithfully reproduces these experimental
confirmed results.

Since the phase itself cannot be represented by an op
tor, it is more realistic to illustrate the decoherence induc
by the phase noise by analyzing the reduction in the exp
tation value of the complex field amplitudêâ&. Adding
Gaussian phase noise with a variance ofdf2 to an arbitrary
field state reduces the initial expectation value of the am
tude ^â& i to a final value of

^â& f5expS 2
df2

2 D ^â& i . ~4!

FIG. 1. Photon number measurement statistics of a cohe
state with an average amplitude ofa53 at a photon number reso
lution of dn50.7. ~a! shows the probability distribution over mea
surement resultsnm . Quantization is not resolved yet. The dash
curve corresponds to the approximate result using a Gaussian
ton number distribution as explained in the text.~b! shows the ex-

pectation valuê â& f after the measurement as a function of t
measurement resultnm . The dashed curve is the result obtained
multiplying a coherent amplitude of (nm11/2)1/2 with the dephas-
ing factor.
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The overall averagêâ& f(av.) of the field expectation value
after the measurement is given by

^â& f~av.!5E ^c f~nm!uâuc f~nm!&P~nm!dnm

5E ^c i uP̂dn~nm!âP̂dn~nm!uc i&dnm

5expS 2
1

8dn2D ^c i uâuc i&. ~5!

nt

ho-

FIG. 2. Photon number measurement statistics of a cohe
state with an average amplitude ofa53 at a photon number reso
lution of dn50.4. ~a! shows the probability distribution over mea

surement results and~b! shows the expectation value^â& f(nm) after
the measurement. The dashed curves correspond to the approx
formulas given in the text.~c! shows details of the quantum me
chanical modulations of measurement probability and coherenc
ter the measurement nearnm59, normalized by the respective clas

sical resultsPclass.(nm59) and^â& f ,class.(nm59).
5-3
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HOLGER F. HOFMANN PHYSICAL REVIEW A61 033815
According to equation~4!, this reduction in amplitude corre
sponds to a Gaussian phase noise with a variance of

df25
1

4dn2
. ~6!

Thus the amount of phase noise introduced in the meas
ment corresponds to the minimum noise required by the
certainty relation of phase and photon number for a meas
ment resolution ofdn. This is a direct consequence o
assuming an ideal quantum mechanical measurement, w
does not introduce additional phase noise. In a realistic s
ation, it is likely that the phase noise introduced is somew
higher than this ideal quantum limit. Relation~6! may then
be used to determine how much excess phase noise is i
duced in a given experimental setup. Note that this exc

FIG. 3. Photon number measurement statistics of a cohe
state with an average amplitude ofa53 at a photon number reso
lution of dn50.3. ~a! to ~c! are as in the previous figure.
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noise may originate not only from an additional source
decoherence, but also from an inaccurate readout of
pointer variable.

III. THE EMERGENCE OF QUANTIZATION

A. Measurement of a coherent state

If the initial state uc i& is a coherent stateua& with the
photon number state expansion

ua&5expS 2
uau2

2 D(
n

an

An!
un&, ~7!

then the measurement statistics defined by equation~2! reads

P~nm!5^auP̂dn
2 ~nm!ua&

5@exp~2uau2!/A2pdn2#

3(
n

uau2n

n!
expS 2

~n2nm!2

2dn2 D , ~8!

and the coherent amplitude^â& f after the measurement read

nt

FIG. 4. Photon number measurement statistics of a cohe
state with an average amplitude ofa53 at a photon number reso
lution of dn50.2. ~a! shows the probability distribution over mea
surement results. The dashed curve corresponds to the approx
formulas given in the text.~b! shows the expectation valu

^â& f(nm) after the measurement. The dashed curve shows the

sical result,̂ â& f ,class.(nm).
5-4
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NONCLASSICAL CORRELATIONS OF PHASE NOISE . . . PHYSICAL REVIEW A 61 033815
^â& f~nm!5
^auP̂dn~nm!âP̂dn~nm!ua&

^auP̂dn
2 ~nm!ua&

5a expS 2
1

8dn2D

3

(
n

uau2n

n!
expS 2

S n1
1

2
2nmD 2

2dn2
D

(
n

uau2n

n!
expS 2

~n2nm!2

2dn2 D . ~9!
th
-

l
on

03381
The results shown in Figs. 1–4 have been calculated u
these exact results. However, it is helpful to apply some
proximations in order to identify the quantization effects.

For uau2@1, the photon number distribution may be a
proximated by a Gaussian distribution with a mean pho
number uau2 and a photon number fluctuation ofuau. The
application of the measurement operatorP̂dn(nm) then re-
sults in a convolution of two Gaussians. If the resolved ph
ton numberdn is much smaller than the photon number flu
tuation uau, then the amplitude of the photon number sta
components ofua& does not change much within the me
surement interval ofnm6dn and the convolution may be
approximately factorized into a product reading
oherence

ead
~10!

where the phasef is defined bya5uauexp(2if).
It is thus possible to separate the state dependent photon number distribution from the fundamental effects of dec

and quantization. By applying the approximations of Eq.~10! to the measurement statistics described by Eqs.~8! and~9!, an
even clearer separation of classical noise properties and quantization effects is obtained. The approximate results r

~11!

for the probability, and

~12!
be

ent
for the coherent amplitude. Note that only the phase of
coherent amplitude expectation value^â& f after the measure
ment depends on the initial value ofa. The absolute value is
determined by the measurement result and is proportiona
(nm11/2)1/2. This result corresponds to the classical noti
e

to

that the absolute value of the coherent amplitude should
the square root of the intensity.

The sums that express the quantization effects in Eqs.~11!
and~12! are periodic functions ofnm . In other words, quan-
tization effects only depend on how close the measurem
5-5
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HOLGER F. HOFMANN PHYSICAL REVIEW A61 033815
resultnm is to an integer value. Because of this periodici
the sums can be expressed as Fourier series. Specifical

~2pdn2!21/2(
n

expS 2
~n2nm!2

2dn2 D
5112(

k51

`

exp~22p2dn2k2!cos~2pknm!

~13!

and

~2pdn2!21/2(
n

expS 2

S n2
1

2
2nmD 2

2dn2
D

5122(
k51

`

exp~22p2dn2k2!cos~2pknm!.

~14!

Note that the Fourier coefficients are Gaussians in the mo
lation frequency variablek. The high frequency componen
of the periodic modulations are therefore strongly su
pressed. Depending on the measurement resolutiondn, it is
reasonable to limit the expansion to only the first few co
tributions. This resolution dependent truncation of the F
rier series defines the transition from the classical regim
the quantum regime.

B. From the classical limit to full quantization

In the classical limit, all Fourier components withk.1
are negligible. The measurement probability and the exp
tation value of the coherent field after the measurement r

Pclass.~nm!5~2puau2!21/2expS 2
~nm2uau2!2

2uau2 D
^â& f ,class.~nm!5Anm11/2 exp~2 if!expS 2

1

8dn2D .

~15!

These results correspond to the classical assumption of
tinuous light field intensity and equally continuous Gauss
noise in the light field phase and amplitude. A typical e
ample is shown in Fig. 1 for a coherent state with an am
tude of a53. The measurement resolution is atdn50.7,
quite close to the quantum limit. Nevertheless, the appro
mate results of Eqs.~15! correspond quite well to the mor
precise results of Eqs.~8! and~9!. Indeed, the main discrep
ancy between the probability distributionP(nm) given by
Eq. ~15! and the exact result is due to the asymmetry of
Poissonian photon number distribution which has been
glected by assuming a Gaussian photon number distribu
in Eqs. ~11! and ~12!. This deviation gets much smaller a
the average photon number of the coherent state is increa
03381
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However, it is already a good approximation at the avera
photon number of nine shown in the examples.

As the quantum limit is approached, the classical res
are modulated by quantum effects. In the probability dis
bution of measurement results, this modulation appears
fringe pattern similar to that caused by an interference eff
At the same time, a complementary fringe pattern emerge
the coherence after the measurement as given by^â& f(nm).
The lowest order contributions to these quantization effe
read

P~nm!5Pclass.~nm!„112 exp~22p2dn2!cos~2pnm!…

^â& f~nm!5^â& f ,class.~nm!
122 exp~22p2dn2!cos~2pnm!

112 exp~22p2dn2!cos~2pnm!
.

~16!

The accuracy of this approximation is worst for^â& f(nm) at
integer or half-integer values ofnm . At these points, it is
accurate to within 1% fordn>0.27 and accurate to within
10% for dn>0.23. Thus, the reliability of the lowest orde
approximation is generally very high abovedn'0.25. Figure
2 shows the probability distribution and the coherent am
tude after the measurement at a resolution ofdn50.4. This
resolution corresponds to a modulation factor
2 exp(22p2dn2)50.085. The modulation is still very wea
and the likelihood of obtaining an integer result is only abo
1.2 times higher than the likelihood of obtaining a half int
ger result. Nevertheless, the quantization fringes inP(nm)
and the decoherence fringes in^â& f(nm) are clearly visible.
The anticorrelation of the probability peaks and the coh
ence maxima is illustated in Fig. 2~c!, which shows the re-
spective modulations nearnm59, normalized using the clas
sical results atnm59. Figure 3 shows the probability
distribution and the coherent amplitude after the measu
ment at a resolution ofdn50.3. This resolution correspond
to a modulation factor of 2 exp(22p2dn2)50.338. The like-
lihood of obtaining an integer result is about twice as high
that of obtaining a half-integer result and the reduction in
coherent amplitude is about four times greater for integernm
than for half-integernm . At an average decoherence fact
of exp„21/(8dn2)…50.25, the average coherent amplitu
after the measurement is still quite significant. A measu
ment resolution ofdn50.3 thus combines aspects of photo
number quantization and aspects of phase coherence, d
ing the center of the transitional regime between continu
field intensities and quantized photon numbers.

Between a resolution ofdn50.3 and a resolution ofdn
50.2, the approximation given by Eq.~16! breaks down. For
dn,0.2, the probability distribution is given by isolate
Gaussians centered around integer measurement resultsnm .
Half-integer results become extremely unlikely. However
such an unlikely result is obtained, there still is coheren
even in extremely precise measurments. This fact is usu
obscured by the assumption of infinite precision inheren
the conventional projective measurement postulate. Figu
shows the probability distribution and the coherence after
measurement for a resolution ofdn50.2. Note that the ap-
5-6
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NONCLASSICAL CORRELATIONS OF PHASE NOISE . . . PHYSICAL REVIEW A 61 033815
proximation given by Eq.~16! is still very good for the prob-
ability distribution. However, the relative error in the pe
values of the coherent amplitude^â& f after the measuremen
is nearly 100%. Therefore, the dashed curve in Fig. 4~b! does
not show the approximate result, but instead shows the c
sical approximation̂ â& f ,class.given by Eq.~15!. This com-
parison illustrates the relatively high coherence at h
integer measurement resultsnm . At half-integer
measurement resultsnm , the expectation valuêâ& f ,class.of
the coherent amplitude is equal to (nm11/2)1/2/2, or one half
of the amplitude corresponding to a classical light field
tensity of nm11/2. This result is valid for alldn,0.2, re-
gardless of the average dephasing induced by the mea
ment interaction. Therefore, the peak values of the cohere
after the measurement are much higher than the clas
results, while the minima at integer photon number are a
ally closer to zero than the classical interpretation of deph
ing would suggest. In the case ofdn50.2 shown in Fig. 4,
the classical approximation predicts an average decoher
factor of exp„21/(8dn2)…50.044. However, the peak value
of coherence at half-integer photon number are more than
times higher and the minima at integer photon number
more than ten times lower than the classically expected
herence after dephasing. Since the likelihood of integer
sults is about ten times higher than the likelihood of ha
integer results, the main contribution to the avera
coherence after the measurement still originates from h
integer photon number results. Even at fully resolved qu
tization, the half-integer photon number results thus prov
a contribution to the dephasing statistics.

C. Correlation between quantization and dephasing

The discussion above reveals a clear qualitative differe
between measurement resultsnm of integer photon numbe
and of half-integer photon number. To obtain a quantitat
expression, it is necessary to define a measure of quan
tion associated with each measurement resultnm . In the fol-
lowing, the quantizationQ of a measurement resultnm is
therefore defined as

Q~nm!5cos~2pnm!. ~17!

Thus, the quantizationQ of integer values ofnm is 11 and
the quantization of half-integer values is21. In the classical
case, this results in an average quantization of zero.
average quantizationQ̄ of the measurement results is give
by

Q̄5E dnm Q~nm!P~nm!

5exp~22p2dn2!. ~18!

SinceQ̄ depends only ondn, it may be used as an exper
mental measure of the resolution obtained in quantum n
demolition measurements of photon number. It is now p
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sible to evaluate the correlation between the quantiza
observed and the coherence after the measurement by
aging the product,

Q^â& f5E dnm Q~nm!^â& f~nm!P~nm!

52exp~22p2dn2!expS 2
1

8dn2D a

52Q̄^â& f~av.!. ~19!

The average of the product of quantization and coherenc
exactly equal to the negative product of the averages. Th
fore, quantization and coherence are strongly anticorrela
The correlationC(Q,^â& f) is given by

C~Q,^â& f !5Q^â& f2Q̄^â& f~av.!

522Q̄^â& f~av.!

522 exp~22p2dn2!expS 2
1

8dn2D a.

~20!

Figure 5 shows this correlation as a function of measurem
resolutiondn. The correlation is maximal atdn51/(2Ap),
which is a resolution of about 0.282 photons. At this poi
the average quantizationQ̄ is equal to exp(2p/2)50.208
and the average coherent amplitude^â& f(av.) after the mea-
surement is equal to exp(2p/2)50.208 times the original
amplitudea.

There appears to be a well-defined transition from
classical limit to the quantum limit of measurement reso
tion at dn51/(2Ap), which is characterized by statistica
properties not observable in either the extreme quantum l
or in the classical limit. Since it should be possible to obta
these statistical properties from experimental results, so
measure of reality must be attributed to the concept of v
able quantizationQ. Specifically, even though it is clear tha
only measurement results of full quantizationQ51 remain

FIG. 5. Normalized anticorrelation of the quantizationQ of the

measurement resultnm and the coherencêâ& f(nm) after the mea-
surement as a function of measurement resolutiondn.
5-7
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as the resolution is increased, the reduced decoheren
Q521 demonstrates that such results cannot be interpr
as measurement errors due to either a higher or a lower
ton number. This measurement scenario thus highlights
problem of assuming the existence of an integer photon n
ber before the photon number is actually measured. O
ously, quantization is not a property of the system, which
simply hidden by the noise of the low precision measurem
in the classical limit. Some very real physical properties
associated with noninteger values of photon number m
surement results. Possibly, it is necessary to consider op
tor values other than the eigenvalues as part of the phys
reality associated with quantum mechanical operator v
ables.

IV. FUNDAMENTAL PROPERTIES OF THE OPERATOR
FORMALISM

A. Quantization and the parity operator

The generalized measurement operatorP̂dn(nm) describes
both classical and quantum mechanical features of meas
ments in terms of a quantum mechanical operator. Cla
cally, it would be possible to distinguish between the m
surement resultnm and the actual photon numbern. In
quantum mechanics, however, the photon numbern̂ is an
operator which does not have a well-defined value unless
field is in a photon number eigenstate. Therefore, the r
tionship between the measurement resultnm and the photon
number operatorn̂ is quite different from the classical rela
tionship between a noisy measurement result and the
value of the measured quantity.

A quantum mechanical property that may provide a c
nection between the definition of quantizationQ based on the
measurement resultnm and the properties of the photon num

ber operatorn̂ is the parityP̂ defined as

P̂5~21! n̂. ~21!

The square of the parityP̂2 may then be associated with th
quantizationQ. Of course, the quantum mechanical value
quantization is always one. However, by ‘‘breaking apa
the square of the parity, a correlation between quantiza
and coherent field amplitude may be established. It read

^P̂âP̂&2^P̂2&^â&522^P̂2&^â&. ~22!

If ^P̂2& is identified with Q̄ and ^â& is identified with

^â& f(av.), this correlation corresponds to the one given
Eq. ~20!. The relationship between coherence and quant
tion can thus be traced to the anticommutation between

ity and field amplitude,P̂n̂52n̂P̂. One could indeed argu
that the correlation that appears in the measurement is hid
in the commutation relations of the operator formalism.
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B. Ambiguous correlations in the operator formalism

The correlation given in Eq.~22! is of course a result of
the specific order in which the operators have been appl

Since P̂2 is always one, there is no correlation as soon
both parity operators are placed on the same side of the
operatorâ. In principle, it is not possible to determine th
correlation between noncommuting quantum variables
rectly from the operator formalism because of this ambigu
concerning the ordering of the operators.

In particular, the case of photon number quantization a
parity belongs to a general class of correlations based on
inequality

1

2
^ÂB̂21B̂2Â&Þ^B̂ÂB̂&, ~23!

where Â and B̂ represent arbitrary noncommuting operat
variables. The operator orderingB̂ÂB̂ allows correlations
even if the quantum state is an eigenstate ofÂ or B̂2. This
property definitely contradicts any assumption of classi
statistics. Nevertheless, such correlations can be obtaine
experiment, even though the outcome of a direct meas
ment of Â or B̂ performed on the initial state would be pe
fectly predictable. Thus the quantum nondemolition me
surement discussed in this paper represents an example
more general class of measurements revealing fundame
nonclassical properties of quantum statistics.

C. Operator ordering and physical reality

In the theory of quantum mechanics, the classical val
of physical variables are replaced by operators. Con
quently, it is not possible to assign a well-defined value to
operator variable if the system is not in an eigenstate of
operator. This situation calls for a review of our concepts
physical reality, as can be seen from the arguments conc
ing entanglement and the debate of hidden variables@12,16#.
Quantum mechanical uncertainty is definitely quite differe
from a classical lack of knowledge@17#, and this difference
is revealed in the correlations between noncommuting v
ables. For instance, the EPR argument basically uses the
tanglement of two particles to establish a correlation betw
position and momentum of the same particle—thus trying
circumvent the restrictions imposed by uncertainty on E
steins arguments in the Bohr-Einstein dialogue@18#. How-
ever, as Bell has shown, the correlations between nonc
muting variables thus obtained cannot be represented b
classical probability distribution@19#. Since this paradox is
an inherent property of the operator formalism, it should
possible to trace its origin directly to the fundamental no
classical properties of quantum mechanical measuremen

In principle it would be desirable to know the value of
correlation between noncommuting variables such as the

ity P̂ and the coherent amplitudeâ without reference to a
measurement. If there were hidden variables defining cla
cal values for both operators, there should also be a w
defined correlation. However, the formalism itself introduc
5-8
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NONCLASSICAL CORRELATIONS OF PHASE NOISE . . . PHYSICAL REVIEW A 61 033815
an ambiguity. A formal calculation of correlations based
the expectation values of operator products raises the q
tion of operator ordering. A particularly striking ambiguity

represented by Eq.~22!, since it permits a correlation ofP̂2

with the coherent amplitude even though the eigenvalue

P̂2 are all one. Of course one could argue that it should
be allowed to separate the square of the parity opera
However, such a postulate would not be based on any ph
cal observation but only on preconceived notions of w
reality should be like. It is therefore important to note th
unusual correlations such as the one given by Eq.~22! can
have a real physical meaning in measurement statistics.

Since quantum mechanics does not allow the simu
neous assignment of well-defined physical values to n
commuting observables, it is not possible to discuss corr
tions between such observables without a definition of
measurement by which such correlations are obtained.
futility of trying a more general approach is clearly reveal
by the ambiguity of the correlations caused by the comm
tation relations between operators.

V. CONCLUSIONS AND OUTLOOK

A. Interpretation of the nonclassical correlations

The results presented above show that a quantum
demolition measurement reveals much more than just
photon number of a light field at an intermediate measu
ment resolution close todn50.3. In this intermediate re
gime, the property that phase coherence in the field requ
quantum coherence between neighboring photon num
states emerges visibly as a correlation between the con
ous measurement resultnm and the coherence after the me
surement̂ â& f . This measurement scenario thus reveals
difference between quantum mechanical uncertainty an
classical lack of precision. In particular, there is a real phy
cal difference between the measurement results of h
integer photon number and the measurement results of
ger photon number, which makes it impossible to argue
the measurement of half-integer photon number is merely
error. By introducing the variableQ to denote the quantiza
tion of the measurement result, it is possible to evaluate
correlation between quantization and decoherence in
measurement. In the operator formalism, the quantiza

can be interpreted as the square of the parity operatorP̂. It is
then possible to derive the observed correlation directly fr
the operator formalism.

The correlation obtained both from the statistics of t
quantum nondemolition measurement and from the oper
statistics suggests the reality of half-integer photon num
results. Depending on the circumstances, quantum mea
ments may therefore reveal physical values of operator v
ables, which are quite different from the eigenvalues of
corresponding operators. At the same time, the ambiguit
the correlations between operator variables shows tha
identification of neither eigenvaluesn nor measurement re
sultsnm with elements of reality can be valid. It is therefo
not sufficient to extend the range of photon number valu
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Instead, the statistics of physical properties should be ba
on the measurement results obtained in a specific meas
ment setup. The ambiguity in the formalism can then
resolved by applying the appropriate generalized meas
ment postulate.

It seems that the physical property of light field intens
given by the photon number can not be attributed to a
measurement independent elements of reality. Possibl
might be a useful compromise to regard the measurem
results nm as elements of a fundamentally noisy realit
while acknowledging the qualitative dependence of the m
surement result on the resolutiondn. In the classical limit,
the identification ofnm with the actual light field intensity is
usually not problematic. Therefore, our classical concep
reality survives on the macroscopic level, even though it
to be abondoned in the microscopic regime. In the quan
limit, nm can again be identified with the eigenvalues of t
operatorn̂. In this manner, a continuous transition betwe
our classical concept of reality and the mysterious proper
of the quantum regime can be described.

B. Experimental possibilities

The measurement statistics described here should be
tainable by carefully evaluating the data obtained in a
quantum nondemolition measurement followed by a m
surement of field coherence, e.g., by homodyne detectio
is important, however, to keep track of the correlation b
tween the measurement resultnm and the corresponding av
erage results of the field measurements^â& f(nm). This re-
quires some amount of time resolution, for example in
form of light field pulses or perhaps of solitons in fibers@2#.
Unfortunately, it is extremely difficult to realize quantum
nondemolition measurements of high resolution in the o
cal regime. The experimental results cited here@1,2# are still
well in the classical regime ofdn.1. Possibly, a realization
based on the interaction of single atoms with a microwa
mode@3,4# might be more promising. In particular, the use
a variable number of single probe atom passed through
cavity should allow a particularly reliable variation of th
photon number resolution parameterdn.

The challenge presented by the aspects of quantum th
discussed above is to obtain sufficient control of quant
coherence to explore the properties at the very limit of qu
tum mechanical uncertainty. The effects observed in this
gime should then help to illustrate the quantum mechan
properties utilized for quantum computation, quantum co
munication, and other aspects of quantum information@20#.
The continuous transition from the classical aspects of o
cal coherence to the quantum properties of the light field
also serve as a tool to pinpoint the technological requ
ments for more complex implementations of quantum opti
devices.
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