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Causality in quantum teleportation: Information extraction and noise effects
in entanglement distribution
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Quantum teleportation is possible because entanglement allows a definition of precise correlations between
the noncommuting properties of a local system and corresponding noncommuting properties of a remote
system. In this paper, the exact causality achieved by maximal entanglement is analyzed and the results are
applied to the transfer of effects acting on the entanglement distribution channels to the teleported output state.
In particular, it is shown how measurements performed on the entangled system distributed to the sender
provide information on the teleported state while transferring the corresponding backaction to the teleported
qguantum state.
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[. INTRODUCTION write the maximally entangled state in a common béasjs
Maximal entanglement between twélevel systemsR and
Quantum teleportation is one of the most fundamental apB, can then be expressed by the quantum state

plications of entanglement between well separated physical 1 N2
systemg 1-5]. The transmission of a quantum state through Emadrs=—= > (Ugln))r@[n)s. (1)
local measurements and classical communications illustrates \/_ =0

some of the essential features of quantum physics. It is there- _ ) _ )

fore of great interest to analyze the transmission processes i€ Precise properties of this quantum state are defined by
detail, especially in realistic circumstances where entanglethe unitary transformatiotJ,. Specifically, any observable
ment may not be maximdb—12. In this paper, the prin- propertyOg of systemB corresponds to an observalfk in
ciples of quantum teleportation are reviewed and a represerystemR, such that the measurement values obtaine@(_{,)r
tation of the teleportation process emphasizing the precisgill always be equal to the measurement values obtained for

causality im_plie_d by ma>§imal entanglement i; proposed. Thi%R_ 00 defines the relation betweeth and ()R as
representation is especially useful to investigate the transfer

of effects on the entanglement distribution channels to the Or=U,080,1, 2
teleported output state. The general theory of this transfer is R
formulated and the results are applied to measurements owhere the transpos®g is defined with respect to the basis
the entangled signal sent from the source of entanglement {®). It is then possible to formulate the unusual properties of
the sender. Such measurements could be used by a thigtanglement in the spirit of the Einstein-Podolsky-Rosen
party to extract information during the teleportation processparadox 14,15 as an apparent violation of local uncertainty
e.g., for the purpose of eavesdropping. Moreover, the effect€lations by nonlocal cprrelatigns. Given two nhoncommuting
of this measurement illustrate the distribution of informationproperties of systerB, Xg andYg, measurement results for
and noise in the teleportation process, providing insights intdoth these properties can be predicted by an observBr in
the dynamics of quantum information processes. from measurements of the corresponding propeitigsand
Yk since the maximally entangled state is an eigenstate of the
two operator properties

II. PROPERTIES OF ENTANGLEMENT N ~
(Xg—Xr)|Emayr =0

Entanglement is the quantum-mechanical property that

makes teleportation possible. As was already pointed out by and (Y~ YR)|Emayre=0
Schralinger [13], the essential feature of entanglement is ’
that all of the relative properties of two systems can be de- with  Xep= UOXTUSI

fined with precision if the individual properties are maxi-
mally uncertain. In teleportation, the quantum state in the
input can therefore be reconstructed in the output by exclu-
sively referring to these precise relations between the sys- o
tems, while avoiding any direct measurement of individualAny measurement re§ult_ g in R must be equal to the
properties. measurement result fofg in B, and any measurement result
In order to express entanglement in terms of the relatiomf Yg in R must be equal to the measurement resultffgin
between physical properties in the two systems, it is useful t@. Interestingly, this property has a quite intuitive classical

and ?R: 00?;061 . (3)
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interpretation. Effectively, the reference systBnis a mirror Input A
image of systenB. In classical physics, this property is not

unusual, since all properties of both systems can be defined ’ ‘
with precision: uncertainty is a specifically nonclassical fea- \/

ture of quantum-mechanics. Entanglement is only difficult to
understand because we cannot explain the connection be:| Measurement Information m Qutput relation:
tween the local uncertainty expressed by product states anc ——
the nonlocal uncertainty expressed by inseparable entanglec A= fm(F) A= fm (fin(B))
states. Using the precisely defined relation between physical ’\ /‘
properties in system® and B, it is therefore possible to \\ //
explain quantum teleportation without using any purely Reference R Output B
guantum-mechanical terminology.

lll. PRINCIPLES OF QUANTUM TELEPORTATION \\ //

. . . Entanglement
In quantum teleportation, entanglement is applied to es-

tablish a well-defined relation between an unknown injut R = fin(B)
and an outpuB via the referencdR. Initially, the outputB
and the refe!'encR are mQX|maIIy eptangled. This means FIG. 1. lllustration of causality in the quantum teleportation
that there exists a W.ell-defllne('j 'relatlon bet\l\{een the Propeisyocess. The letters, R, B denote the physical properties of the
ties of R and ofB, while the individual properties of the two gystems. The initial entanglement is described by the relatjon
systems are completely unknown. The relation between thgng the resuit of the Bell measurement is givembyorresponding
unknown inputA and the referenc® is then obtained from g 3 relationf,, between the input and the referenck.
the joint measuremer(also referred to as a Bell measure-
menj of A andR at the location of the sender. The sgnder|p(m)>A’R, where m denotes the measurement result ob-
communicates the information obtained on the previously,ineq This maximally entangled state can be conveniently
unknown relation betweeA andR to the receiver, and the . - L
receiver obtains the exact relation of the unknown inpukin expressed in terms of tHa,|n) basis inR. It then reads
and the quantum systeBiby linking the measured relation
betweerA andR with the previously known relation between mat .
R and B. Figure 1 illustrates this analysis of teleportation. |P(M))ar= TE [U(M)[n)]a®(UgIn))g. (4)
The lettersA, R, and B denote a complete set of operator n=0
properties of the respective systems, whileand f, repre-
sent the well-defined relations established by the entang|
ment resource and the joint measurement.

The main problem with this intuitive approach to quantum

The normalization factog(m) is necessary to provide the
Torrect probability for measuring if a complete set of non-
orthogonal measurements is considered. The relation be-

o . Lo O .. 'tween properties dR and properties of is expressed by the
teleportation is that it does not explicitly include the statisti- prop prop P y

cal properties of the quantum state. To express these aspembination of the unitary transformatiots, and U(m).

of quantum teleportation, one should start with an input stat&inceU, represents the relation betweRrandB, the unitary
|4in)a in A and the entangled staf,,.0rg i RandB. This  transformationU(m) effectively describes the relation be-
product state is then measured in the subspageasfdR. If tweenA andB necessary for the reconstruction of the quan-
a perfect Bell measurement is performed, the systems atem state. This can be verified by applying the measurement
projected into a maximally entangled quantum stateprojection to the input state of the quantum teleportation.
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The unitary transformatioﬂ](m) therefore describes the | Yin)a Tout(m) | ¥in)e
relation between the unknown input #and the fluctuating

output B, even though there has been no interaction or H
other connection betweehandB. To understand this effect, \/

it is useful to compare the calculation with the explanation classical
of teleportation illustrated in Fig. 1. This analysis indicates Measurement communication
that the measurement performed Arand R merely obtains U (m)
information about the previously unknown state B Output =m
This information can be represented by a decomposition of ,\ /‘
the density matrix inB into subensembles corresponding \\ //
to the different measurement results. The quan- - A
tum-mechanical features then arise from the nonclassical 2 Fp
properties of density-matrix decompositions. In the present \\ //
case, it is possible to consider a complete Bell measurement
with Source of
Entanglefnent
> [P(M))YP(M)|ar=1ar- (6) _
m FIG. 2. lllustration of the transfer of effects from entanglement

distribution channels to the output state. The output eﬁ'%gis a
function of the input eﬁectd%R, IEB, and of the measurement
If this condition is fulfilled, the initial density matrix & can  resultm.
be decomposed into a mixture of unitary transformations of
the input statey;,) with

properties of the teleported state. Both the information ini-
A x(m) . A 1. tially available and the information obtained in the Bell mea-
PE= 5 [U~Ym)| i) in]U(m)]g= —1g. (7)  surement are about relations between the systems; neither is
m N N about individual systems. However, this condition is only
fulfilled if maximal entanglement is available. Any modifi-
cation to the entangled state Rfand B changes the dynam-

Because of the properties Bf(m) associated with the com- €S ©f teleportation by modifying the information about the
pleteness relatior6), this decomposition is valid for any individual system®k andB, as well as the |mpI|cat|ons of the
input state] ;). Bell measurement for systeml In thg following, the effects
By obtaining the measurement informationthe receiver ~ Of such modifications will be investigated.

identifies the subensemble of the density matrix according
to its relation with the teleported state. This selection process
can be understood entirely in analogy with classical physics.
In quantum mechanics, however, there is no fundamental
decomposition of the density matrix simultaneously valid
for all possible input states. The selection of a subensemble o )
density matrix therefore appears to be a choice between Th_e entanglement distribution channels may be subject to
mutually exclusive possibilities. Interpretational problems@ variety of effects, such as measurements, decoherence, or
arise if one tries to reconcile different decompositionsunitary transformation$8,16,17. Such effects can be de-
with each other. Quantum teleportation provides anscribed by operator§g andFg acting on the quantum states

input state dependent decomposition of the maximally mixegyt these channel€y andF g can represent any combination

density matrix inB. It is this dependence of the decomposi- ot nitary operations and measurement projections. Decoher-
tlon of the densﬂy matrix irB on the quantum state iA ence effects can be represented by random mixtures of such
which appears to introduce a nonlocal effect beyond the CIag(iperators. The general transfer properties derived in the fol-

S|c_al nonlocality of statistical correlations b_etween remthowing, therefore apply to all kinds of interactions with the
objects. Nevertheless, each subensemble is always poten-

tially contained in the initial mixed state d&, and an ob- entanglement. d|s§r|but|on channels. .
server inB will not be able to identify a specific decompo- _ . AS. shown in Flg._2, the effects on the gntanglement dis-
sition without information about the measurement performedrioution channels will be transferred to a single effect on the
onR. output state, described by the output operdigg. This out-

In the case of ideal quantum teleportation described irput operator can be obtained by an analysis similar to the one
this section, no information whatsoever is obtained about thapplied to the ideal teleportation case in E9),

IV. TRANSFER OF EFFECTS FROM ENTANGLEMENT
DISTRIBUTION TO THE OUTPUT STATE
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The total effect on the teleported state can be separated inthhanging the original state unless it happens to be an eigen-

contributions fromF g and fromEg . The effect ofFg is only
modified by the unitary transformatiod(m), since this
transformation represents the only physical change of th
output B after the application of:B. The ef'fectIAER on the
reference channdR® is transferred tdB by the properties of

state of the measurement operator, this lack of information
about the teleported state is a necessary requirement for the
E]recise transfer of any unknown quantum state. As discussed
Sec. lll, this requirement is fulfilled because neither the
original entanglement nor the Bell measurement reveals any
information on the individual systems. Instead, there is a

entanglement since there is no direct physical interaction bgerfect connection of precise relations between the systems

tweenR andB. The contribution of to T, is equal to the

operatorEB in B corresponding t(fER according to Eq(2).
The effects onR are thus transferred tB by the precise
correlations between the two systems. Effectively, any modi
fication of the referenc® can be understood as a change in
the relation betweeR andB. Since nothing is known about

defined by entanglement properties. However, this perfect
connection can be broken at any point. For example, an
eavesdropper might decide to “listen in” on the teleportation
by tapping the entanglement distribution line for the refer-
enceR. Since the density matrix d® is completely random,
the information initially obtained is pure noise. However, the

measurement result provides information on the reference

the individual systems, it does not matter whether the eﬁec&sed in the Bell measurement. By combining the measure-

really acts onR or on B. The effect on the teleported state
can then be written as a sequence of effectB transformed

by U(m),
Vx(m)

N

(m)Eg(Uy EqUo) 0 (m)
e ¥

T U

out

9

It may be interesting to note th&i; acts beford=, indicat-
ing that entanglement always connects the past of syBtem
to systemR, regardless of the actual sequencéqfandFg
in time.

The mathematical properties of the formalism clearly
show that actions oR andB have equivalent effects. How-

ment informationm with the noisy result from the entangle-
ment distribution line, information on the teleported quantum
state is obtained. At the same time, the measurement back-
action has changed the relation betwé&eand B, making it
impossible to reconstruct the exact input state. The output
state is therefore modified by a measurement backaction
equal to the effects of a direct measurement performed on the
input state.

Figure 3 illustrates this eavesdropping scheme. The mea-
surement performed on the entanglement distribution chan-

nel is represented by the self-adjoint operatggl) corre-
sponding to the measurement resultsf a minimal back-
action measuremefd8]. According to Eq.(9), the effect of
this measurement on the output state of the teleportation is

ever, the entanglement distribution channels are usually wetlescribed by the output operator

separated in space, and sometimes even in time. It is ther
fore interesting to trace the causality connecting actionR on
to the output inB in more detail. Since the most important
aspect of quantum teleportation is the distribution of infor-
mation, it is convenient to focus this discussion on the pos
sibility of extracting information in the reference chanifkel
by minimal back-action measurements.

V. MEASUREMENTS ON AN ENTANGLEMENT
DISTRIBUTION CHANNEL

© Vx(m)

N

P, O(m)[Ug*Er(1)Ue]™0~Y(m). (10)

m)=

This operator is also self-adjoint, indicating ttigti,m) also

represents a minimal back-action measurement. Effectively,
the operator acting on the teleported state is a unitary trans-
formation of the original measurement operatgy(!). The

measurement performed on the entanglement distribution
channelr, therefore, converts the teleportation process into a
measurement of the unknown input state. The information

In ideal quantum teleportation, no information about theobtained in this measurement is described by the dependence
teleported quantum state is obtained in the process. Sinasf the probability of the measurement resul&ndm on the
any quantum measurement has a corresponding backactidnput state
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[ ¥in)a P(l,m) | ¢in)n In general, this overlap may strongly depend on the measure-
ment outcome. Equatiofi3) is therefore a conditional fidel-
/\ ity [10]. If the measurement results are not known, the total
\/ ’ ‘ fidelity is given by the average over all possible outcomes,
) classi?al
Measurement oo A Fiow= 2 [(winl PCLM) i) (14
U(m) I,m
Output = m

[\ /I Thus the measurement operat®€,m) given in equation
\\ (10) fully characterize the loss of fidelity due to the eaves-
Enll dropping attempt.
0 ; : : .
Two particularly interesting features of this scheme are

¢ \\ the distribution of information about the teleported state be-
tween the two measurement resuttgindl, and the origin of

lassical :
infzraxizsionl Source of the measurement backaction on the teleported quantum state
from a lack of information concerning the the actual relation
Entanglement between the input state i and the outpuB. In the follow-

ing section, these features will be analyzed in greater detail.
FIG. 3. Measurement on the reference channel of entanglement

distribution. P(I,m) is the effective measurement operator repre- VI. DISTRIBUTION OF INFORMATION AND NOISE

senting both the information about the quantum state and the mea-

surement backaction associated with the combined measurement Equation (11) describes the information extracted from

resultsl andm. the teleported state in terms of the joint probabifify,m) of
obtaining a measurement resultlah R, followed by a Bell
measurement result ah. The individual probabilities for

_ 52
P(1m) = (ginl PECL M) i) measuring andm can be determined from this joint prob-
x(m) A o o ability by
="z (Bl U(m[Ug ER(DUo] U (m)] ).
)= I,m
an p(h=2 p(l,m)
Equation(11) describes the information extraction achieved and p(m)=z o(l,m). (15)

by the measurement on the entanglement distribution chan- [

nel R by combining the informatioth obtained fromR with

the informationm obtained in the Bell measurement. Specifi- It is obvious thatp(l) should not depend on the input

cally, |52(| ,m) is the positive operator valued measure of thestate, since there is no relation between the entangled state in

eavesdropping process, and different input states may be di& B, and the input state iA before the Bell measurement is

tinguished by the eavesdropper according to the relative st@erformed. This independence pfl) from input state prop-

tistical weight assigned to them by this measiir@]. erties can be verified by applying the completeness relation
Equation(10) shows that the backaction on the teleportedin Eq. (7) to the sum ovem,

state is minimal. It is therefore possible to realize an optimal

eavesdropping scheme by performing minimal back-action x(m) N PP o

measurements on the entanglement distribution channels.p“):% V(‘PinW(m)[Uo ER(D U] "0 (m) | i)

The precise effect of eavesdropping on the teleported state is

given by o A

=Tr[ (Up *ER(NUQ)"

1.
ou) = ———P(1,m)|¢,). 12
| ou D) (1,m)[in) 12

2 X(NT)O1(m)|¢in><wm|0(m>)]

The eavesdropping attempt thus modifies the output state, .
reducing the fideli_ty of quantum _tele_por?ation. A quantitative =NTr{E2R(I )} (16)
expression for this loss of fidelity is given by the overlap

between the input state and the output state, . . . :
P P Note that this probability may also be derived directly from

R the local density matrix irR before the measurements. This
[(inl P(1,m) | )| 2 density matrix may also be expressed in terms of the mixture

p(l,m) (13 given for[JB in Eq. (7). Therefore, the sum oven restores

F(Iim):|<¢outl ¢in>|2:
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the situation before the Bell measuremenRjrproviding the  the input states are known. By itself, the measurement result
input independent probabilitg(l). m does not provide any information on the input state. Such
The probabilityp(m) can be derived by making use of the information is only obtained by combining the measurement
completeness relation of the minimal back-action measureresultsm with the measurement resultsrom the entangle-
ment ofl, ment distribution channe®.
As shown in Eq(7), the main effect of the Bell measure-
E E2(1)=1 (17) men; is_ the.decomposition_ of the maximally mixed density
™ R R matrix in B in terms of unitary transformations of the un-
known input state. For a maximally entangled state, this de-
In terms of the measurement backaction on the quantum stag@mposition is equally possible for any input state. However,
in R, this completeness relation implies that the density mathe measurement dfin R provides information about the

trix in R after the measurement bis still equal to k/N if  decomposition opg which is independent of the input state.

the measurement result is unknown. Therefore, the statistiq§ is therefore interesting to analyze the decompositioﬁEpf

of the Bell measurement is unqhanged and.the probability, the presence of the measurementRThe total decom-
p(m) does not depend on the input state either. In accor; osition can be obtained froﬁﬁ(l,m) if the conditional uni-

dance with this observation, the result of the summation oveP . )
| reads tary transformatiorlJ (m) of the output is reversed. It then

reads
T

x(m) . {1( ) )A
p(m)="— (| O(m)| O > EZ() |0 . . X . X
Nz A p3=§1 O~ Lm)P(1,m)| in) (o] P(L,m) O (M)

Xoil(m)|¢in> 1.
=—-1p. (19
x(m) N
= N (18

The decomposition into contributions with differentepre-
Since the measurement Ridoes not change the overall sta- Se€nts the information obtained through the measurement of
tistics of the Bell measurement, an eavesdropping attemgt. While the teleportation effects are represented by the de-
using a minimal back-action measurement Rrcannot be ~ composition into differenin. This sequence of the decompo-
detected by the sender, even if some statistical properties sftion can be expressed by writing as

U om) | i) hia O (m) | [0 E(DUo]"
B

—ip/N (20)

pp=2 [05 ' Ex (0] | 2 %’”)

~

Thus the measurement bfirst decomposes the density ma- surement. It is therefore a particularly simple example and
trix in B according to the information obtained frofonly.  may help to illustrate some of the general features of the
The measurement aoh then decomposes the components ofinformation distribution caused by the measuremenRin
each result according to the same statistical weights previ-The projective measurement R decomposes the density
ously obtained for ideal teleportation in E(7). However, matrix in B into eigenstate$e,) of the variablel g corre-

this decomposition is now modified according to the measponding toIiR according to Eq(2). The measurement im
surement information provided Hyresulting in a distortion  cannot subdivide this decomposition any more, so it merely
of the transformed input state componetds*(m)|¢;,).  provides measurement probabilities,
This distortion reflects the reduction of entanglement caused
by obtaining information on the local systerRsandB. The ~ I'm
local uncertainty introduced int®R by the measurement pe 2| |¢'><¢'|% pcl.m),
backaction is thus transferred to the output state.

It is possible to vary the measurement operatogg!) _ x(m) ~_4q )
continuously between the unit operatos lepresenting no with  p(l,m)= N2 (| U (m) i) |°. (2D)
interaction and precise projections onto a complete orthonor-

mal set of eigenstatek) of a self-adjoint operatdrg. Inthe ~ As the measurement probabilitg(l,m) shows, the Bell
latter case, entanglement is completely removed by the meaneasurement now projects the input states onto unitary
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transformsU(m)| ¢,) of the eigenstates dfg. This corre- Vil. CONCLUSIONS

sponds to a precise measurement of the property

U(m)Lg0~1(m) in A. Only this property can then be repro- ~ Quantum teleportation is an application of the extremely
duced in the output state. The measurement backaction raprecise correlations possible between two entangled systems.
domizes the relation between properties that do not commut€he discussion presented in this paper shows how these cor-
with I:R in Rand their corresponding propertiesBn There-  relations can be identified in the quantum-mechanical for-
fore, the Bell measurement does not provide any informatiormalism using unitary operations and density-matrix decom-
on such variables. This simple example also illustrates thgositions. The resulting formulation is especially convenient
role of | andm in defining the effective measurement per- for tracing the transfer of effects from entanglement distribu-
formed on the teleported state. Knowledgenofletermines tion channels to the output state.

the actual variabl&) (m)LgU ~%(m) defined by the measure-  In the case of a measurement on an entanglement distri-
ment of m, while | provides the measurement outcome forbution channel, the measurement backaction introduces noise
that variable. The measurement resulinitially provides into the teleportation by reducing the precision in the corre-
only information about a physical property of the referencelation between the entangled systems. The information ob-
systemR, and the measurement resnitis necessary to es- tained in the measurement distribution channel may then be
tablish the relation between this propertyRhand a corre- combined with the result of the Bell measurement to provide
sponding property of the inpud. Thus, the Bell measure- information about the teleported quantum state. This ex-
ment randomly  selects the physical  propertyample thus illustrates how the quantum information in the
U(m)LgU~%(m) measured i after the measurement result original input state is distributed between the two measure-
| has been obtained iR. ment results and the teleported quantum state in the output.
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