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Causality in quantum teleportation: Information extraction and noise effects
in entanglement distribution
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Quantum teleportation is possible because entanglement allows a definition of precise correlations between
the noncommuting properties of a local system and corresponding noncommuting properties of a remote
system. In this paper, the exact causality achieved by maximal entanglement is analyzed and the results are
applied to the transfer of effects acting on the entanglement distribution channels to the teleported output state.
In particular, it is shown how measurements performed on the entangled system distributed to the sender
provide information on the teleported state while transferring the corresponding backaction to the teleported
quantum state.
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I. INTRODUCTION

Quantum teleportation is one of the most fundamental
plications of entanglement between well separated phys
systems@1–5#. The transmission of a quantum state throu
local measurements and classical communications illustr
some of the essential features of quantum physics. It is th
fore of great interest to analyze the transmission process
detail, especially in realistic circumstances where entan
ment may not be maximal@6–12#. In this paper, the prin-
ciples of quantum teleportation are reviewed and a repre
tation of the teleportation process emphasizing the pre
causality implied by maximal entanglement is proposed. T
representation is especially useful to investigate the tran
of effects on the entanglement distribution channels to
teleported output state. The general theory of this transfe
formulated and the results are applied to measurement
the entangled signal sent from the source of entangleme
the sender. Such measurements could be used by a
party to extract information during the teleportation proce
e.g., for the purpose of eavesdropping. Moreover, the eff
of this measurement illustrate the distribution of informati
and noise in the teleportation process, providing insights
the dynamics of quantum information processes.

II. PROPERTIES OF ENTANGLEMENT

Entanglement is the quantum-mechanical property
makes teleportation possible. As was already pointed ou
Schrödinger @13#, the essential feature of entanglement
that all of the relative properties of two systems can be
fined with precision if the individual properties are max
mally uncertain. In teleportation, the quantum state in
input can therefore be reconstructed in the output by ex
sively referring to these precise relations between the
tems, while avoiding any direct measurement of individu
properties.

In order to express entanglement in terms of the rela
between physical properties in the two systems, it is usefu
1050-2947/2002/66~3!/032317~7!/$20.00 66 0323
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write the maximally entangled state in a common basisun&.
Maximal entanglement between twoN-level systems,R and
B, can then be expressed by the quantum state

uEmax&R,B5
1

AN
(
n50

N21

~Û0un&)R^ un&B . ~1!

The precise properties of this quantum state are defined
the unitary transformationÛ0. Specifically, any observable
propertyÔB of systemB corresponds to an observableÔR in
systemR, such that the measurement values obtained forÔB
will always be equal to the measurement values obtained
ÔR . Û0 defines the relation betweenÔB andÔR as

ÔR5Û0ÔB
TÛ0

21 , ~2!

where the transposeÔB
T is defined with respect to the bas

un&. It is then possible to formulate the unusual properties
entanglement in the spirit of the Einstein-Podolsky-Ros
paradox@14,15# as an apparent violation of local uncertain
relations by nonlocal correlations. Given two noncommuti
properties of systemB, X̂B andŶB , measurement results fo
both these properties can be predicted by an observerR

from measurements of the corresponding propertiesX̂R and
ŶR since the maximally entangled state is an eigenstate of
two operator properties

~X̂B2X̂R!uEmax&R,B50

and ~ŶB2ŶR!uEmax&R,B50

with X̂R5Û0X̂B
TÛ0

21

and ŶR5Û0ŶB
TÛ0

21 . ~3!

Any measurement result ofX̂R in R must be equal to the
measurement result forX̂B in B, and any measurement resu
of ŶR in R must be equal to the measurement result forŶB in
B. Interestingly, this property has a quite intuitive classic
©2002 The American Physical Society17-1
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interpretation. Effectively, the reference systemR is a mirror
image of systemB. In classical physics, this property is n
unusual, since all properties of both systems can be defi
with precision: uncertainty is a specifically nonclassical fe
ture of quantum-mechanics. Entanglement is only difficult
understand because we cannot explain the connection
tween the local uncertainty expressed by product states
the nonlocal uncertainty expressed by inseparable entan
states. Using the precisely defined relation between phys
properties in systemsR and B, it is therefore possible to
explain quantum teleportation without using any pure
quantum-mechanical terminology.

III. PRINCIPLES OF QUANTUM TELEPORTATION

In quantum teleportation, entanglement is applied to
tablish a well-defined relation between an unknown inpuA
and an outputB via the referenceR. Initially, the outputB
and the referenceR are maximally entangled. This mean
that there exists a well-defined relation between the pro
ties ofR and ofB, while the individual properties of the two
systems are completely unknown. The relation between
unknown inputA and the referenceR is then obtained from
the joint measurement~also referred to as a Bell measur
ment! of A and R at the location of the sender. The send
communicates the information obtained on the previou
unknown relation betweenA and R to the receiver, and the
receiver obtains the exact relation of the unknown input inA
and the quantum systemB by linking the measured relatio
betweenA andR with the previously known relation betwee
R and B. Figure 1 illustrates this analysis of teleportatio
The lettersA, R, and B denote a complete set of operat
properties of the respective systems, whilef in and f m repre-
sent the well-defined relations established by the entan
ment resource and the joint measurement.

The main problem with this intuitive approach to quantu
teleportation is that it does not explicitly include the statis
cal properties of the quantum state. To express these as
of quantum teleportation, one should start with an input s
uc in&A in A and the entangled stateuEmax&R,B in R andB. This
product state is then measured in the subspace ofA andR. If
a perfect Bell measurement is performed, the systems
projected into a maximally entangled quantum st
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uP(m)&A,R , where m denotes the measurement result o
tained. This maximally entangled state can be convenie
expressed in terms of theÛ0un& basis inR. It then reads

uP~m!&A,R5Ax~m!

N (
n50

N21

@Û~m!un&] A^ ~Û0un&)R . ~4!

The normalization factorx(m) is necessary to provide th
correct probability for measuringm if a complete set of non-
orthogonal measurements is considered. The relation
tween properties ofR and properties ofA is expressed by the
combination of the unitary transformationsÛ0 and Û(m).
SinceÛ0 represents the relation betweenR andB, the unitary
transformationÛ(m) effectively describes the relation be
tweenA andB necessary for the reconstruction of the qua
tum state. This can be verified by applying the measurem
projection to the input state of the quantum teleportation

FIG. 1. Illustration of causality in the quantum teleportatio
process. The lettersA, R, B denote the physical properties of th
systems. The initial entanglement is described by the relationf in

and the result of the Bell measurement is given bym, corresponding
to a relationf m between the inputA and the referenceR.
~5!
7-2
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The unitary transformationÛ(m) therefore describes th
relation between the unknown input inA and the fluctuating
output B, even though there has been no interaction
other connection betweenA andB. To understand this effect
it is useful to compare the calculation with the explanat
of teleportation illustrated in Fig. 1. This analysis indicat
that the measurement performed onA andR merely obtains
information about the previously unknown state inB.
This information can be represented by a decomposition
the density matrix inB into subensembles correspondin
to the different measurement resultsm. The quan-
tum-mechanical features then arise from the nonclass
properties of density-matrix decompositions. In the pres
case, it is possible to consider a complete Bell measurem
with

(
m

uP~m!&^P~m!uA,R51̂A,R . ~6!

If this condition is fulfilled, the initial density matrix atB can
be decomposed into a mixture of unitary transformations
the input stateuc in& with

r̂B5(
m

x~m!

N2
@Û21~m!uc in&^c inuÛ~m!#B5

1

N
1̂B . ~7!

Because of the properties ofÛ(m) associated with the com
pleteness relation~6!, this decomposition is valid for any
input stateuc in&.

By obtaining the measurement informationm, the receiver
identifies the subensemble of the density matrix accord
to its relation with the teleported state. This selection proc
can be understood entirely in analogy with classical phys
In quantum mechanics, however, there is no fundame
decomposition of the density matrix simultaneously va
for all possible input states. The selection of a subensem
density matrix therefore appears to be a choice betw
mutually exclusive possibilities. Interpretational problem
arise if one tries to reconcile different decompositio
with each other. Quantum teleportation provides
input state dependent decomposition of the maximally mi
density matrix inB. It is this dependence of the decompo
tion of the density matrix inB on the quantum state inA
which appears to introduce a nonlocal effect beyond the c
sical nonlocality of statistical correlations between rem
objects. Nevertheless, each subensemble is always p
tially contained in the initial mixed state ofB, and an ob-
server inB will not be able to identify a specific decompo
sition without information about the measurement perform
on R.

In the case of ideal quantum teleportation described
this section, no information whatsoever is obtained about
03231
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properties of the teleported state. Both the information i
tially available and the information obtained in the Bell me
surement are about relations between the systems; neith
about individual systems. However, this condition is on
fulfilled if maximal entanglement is available. Any modifi
cation to the entangled state ofR andB changes the dynam
ics of teleportation by modifying the information about th
individual systemsR andB, as well as the implications of the
Bell measurement for systemA. In the following, the effects
of such modifications will be investigated.

IV. TRANSFER OF EFFECTS FROM ENTANGLEMENT
DISTRIBUTION TO THE OUTPUT STATE

The entanglement distribution channels may be subjec
a variety of effects, such as measurements, decoherenc
unitary transformations@8,16,17#. Such effects can be de

scribed by operatorsÊR andF̂B acting on the quantum state

of these channels.ÊR andF̂B can represent any combinatio
of unitary operations and measurement projections. Deco
ence effects can be represented by random mixtures of
operators. The general transfer properties derived in the
lowing, therefore apply to all kinds of interactions with th
entanglement distribution channels.

As shown in Fig. 2, the effects on the entanglement d
tribution channels will be transferred to a single effect on

output state, described by the output operatorT̂out. This out-
put operator can be obtained by an analysis similar to the
applied to the ideal teleportation case in Eq.~5!,

FIG. 2. Illustration of the transfer of effects from entangleme

distribution channels to the output state. The output effectT̂out is a

function of the input effectsÊR , F̂B , and of the measuremen
resultm.
7-3



HOLGER F. HOFMANN PHYSICAL REVIEW A66, 032317 ~2002!
~8!
in

th

b

d
in
t
fe
te

m

rly
-
we
e
n
nt
or
os

he
in
ti

gen-
ion
r the
sed
he
any

a
ems
fect
an

on
er-

he
nce
re-
-
m

ack-

tput
tion
the

ea-
an-

n is

ely,
ns-

tion
o a
ion
ence
The total effect on the teleported state can be separated
contributions fromF̂B and fromÊR . The effect ofF̂B is only
modified by the unitary transformationÛ(m), since this
transformation represents the only physical change of
output B after the application ofF̂B . The effectÊR on the
reference channelR is transferred toB by the properties of
entanglement since there is no direct physical interaction
tweenR andB. The contribution ofÊR to T̂out is equal to the
operatorÊB in B corresponding toÊR according to Eq.~2!.
The effects onR are thus transferred toB by the precise
correlations between the two systems. Effectively, any mo
fication of the referenceR can be understood as a change
the relation betweenR andB. Since nothing is known abou
the individual systems, it does not matter whether the ef
really acts onR or on B. The effect on the teleported sta
can then be written as a sequence of effects onB transformed
by Û(m),

~9!

It may be interesting to note thatÊB acts beforeF̂B , indicat-
ing that entanglement always connects the past of systeB

to systemR, regardless of the actual sequence ofÊR andF̂B
in time.

The mathematical properties of the formalism clea
show that actions onR andB have equivalent effects. How
ever, the entanglement distribution channels are usually
separated in space, and sometimes even in time. It is th
fore interesting to trace the causality connecting actions oR
to the output inB in more detail. Since the most importa
aspect of quantum teleportation is the distribution of inf
mation, it is convenient to focus this discussion on the p
sibility of extracting information in the reference channelR
by minimal back-action measurements.

V. MEASUREMENTS ON AN ENTANGLEMENT
DISTRIBUTION CHANNEL

In ideal quantum teleportation, no information about t
teleported quantum state is obtained in the process. S
any quantum measurement has a corresponding backac
03231
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changing the original state unless it happens to be an ei
state of the measurement operator, this lack of informat
about the teleported state is a necessary requirement fo
precise transfer of any unknown quantum state. As discus
in Sec. III, this requirement is fulfilled because neither t
original entanglement nor the Bell measurement reveals
information on the individual systems. Instead, there is
perfect connection of precise relations between the syst
defined by entanglement properties. However, this per
connection can be broken at any point. For example,
eavesdropper might decide to ‘‘listen in’’ on the teleportati
by tapping the entanglement distribution line for the ref
enceR. Since the density matrix ofR is completely random,
the information initially obtained is pure noise. However, t
measurement result provides information on the refere
used in the Bell measurement. By combining the measu
ment informationm with the noisy result from the entangle
ment distribution line, information on the teleported quantu
state is obtained. At the same time, the measurement b
action has changed the relation betweenR andB, making it
impossible to reconstruct the exact input state. The ou
state is therefore modified by a measurement backac
equal to the effects of a direct measurement performed on
input state.

Figure 3 illustrates this eavesdropping scheme. The m
surement performed on the entanglement distribution ch
nel is represented by the self-adjoint operatorsÊR( l ) corre-
sponding to the measurement resultsl of a minimal back-
action measurement@18#. According to Eq.~9!, the effect of
this measurement on the output state of the teleportatio
described by the output operator

P̂~ l ,m!5
Ax~m!

N
Û~m!@Û0

21ÊR~ l !Û0#TÛ21~m!. ~10!

This operator is also self-adjoint, indicating thatP̂( l ,m) also
represents a minimal back-action measurement. Effectiv
the operator acting on the teleported state is a unitary tra
formation of the original measurement operatorÊR( l ). The
measurement performed on the entanglement distribu
channelR, therefore, converts the teleportation process int
measurement of the unknown input state. The informat
obtained in this measurement is described by the depend
of the probability of the measurement resultsl andm on the
input state
7-4



ed
a

ifi-
he
d
st

ed
a

tio
e

te

ta
ve
ap

ure-
-
tal
s,

s-

re
be-

state
on

tail.

m

-

t
te in

is

tion

m
is
ure

e

re
e

m

CAUSALITY IN QUANTUM TELEPORTATION: . . . PHYSICAL REVIEW A 66, 032317 ~2002!
p~ l ,m!5^c inuP̂2~ l ,m!uc in&

5
x~m!

N2
^c inuÛ~m!@Û0

21ÊR
2~ l !Û0#TÛ21~m!uc in&.

~11!

Equation~11! describes the information extraction achiev
by the measurement on the entanglement distribution ch
nel R by combining the informationl obtained fromR with
the informationm obtained in the Bell measurement. Spec
cally, P̂2( l ,m) is the positive operator valued measure of t
eavesdropping process, and different input states may be
tinguished by the eavesdropper according to the relative
tistical weight assigned to them by this measure@19#.

Equation~10! shows that the backaction on the teleport
state is minimal. It is therefore possible to realize an optim
eavesdropping scheme by performing minimal back-ac
measurements on the entanglement distribution chann
The precise effect of eavesdropping on the teleported sta
given by

ucout&5
1

Ap~ l ,m!
P̂~ l ,m!uc in&. ~12!

The eavesdropping attempt thus modifies the output s
reducing the fidelity of quantum teleportation. A quantitati
expression for this loss of fidelity is given by the overl
between the input state and the output state,

F~ l ,m!5u^coutuc in&u25
u^c inuP̂~ l ,m!uc in&u2

p~ l ,m!
. ~13!

FIG. 3. Measurement on the reference channel of entanglem

distribution. P̂( l ,m) is the effective measurement operator rep
senting both the information about the quantum state and the m
surement backaction associated with the combined measure
resultsl andm.
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In general, this overlap may strongly depend on the meas
ment outcome. Equation~13! is therefore a conditional fidel
ity @10#. If the measurement results are not known, the to
fidelity is given by the average over all possible outcome

F total5(
l ,m

u^c inuP̂~ l ,m!uc in&u2. ~14!

Thus the measurement operatorsP̂( l ,m) given in equation
~10! fully characterize the loss of fidelity due to the eave
dropping attempt.

Two particularly interesting features of this scheme a
the distribution of information about the teleported state
tween the two measurement resultsm andl, and the origin of
the measurement backaction on the teleported quantum
from a lack of information concerning the the actual relati
between the input state inA and the outputB. In the follow-
ing section, these features will be analyzed in greater de

VI. DISTRIBUTION OF INFORMATION AND NOISE

Equation ~11! describes the information extracted fro
the teleported state in terms of the joint probabilityp( l ,m) of
obtaining a measurement result ofl in R, followed by a Bell
measurement result ofm. The individual probabilities for
measuringl and m can be determined from this joint prob
ability by

p~ l !5(
m

p~ l ,m!

and p~m!5(
l

p~ l ,m!. ~15!

It is obvious thatp( l ) should not depend on the inpu
state, since there is no relation between the entangled sta
R,B, and the input state inA before the Bell measurement
performed. This independence ofp( l ) from input state prop-
erties can be verified by applying the completeness rela
in Eq. ~7! to the sum overm,

p~ l !5(
m

x~m!

N2
^c inuÛ~m!@Û0

21ÊR
2~ l !Û0#TÛ21~m!uc in&

5TrH (Û0
21ÊR

2( l )Û0)T

3S (
m

x~m!

N2
Û21(m)uc in&^c inuÛ~m!D J

5
1

N
Tr$ÊR

2~ l !%. ~16!

Note that this probability may also be derived directly fro
the local density matrix inR before the measurements. Th
density matrix may also be expressed in terms of the mixt
given for r̂B in Eq. ~7!. Therefore, the sum overm restores
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-
a-
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the situation before the Bell measurement inR, providing the
input independent probabilityp( l ).

The probabilityp(m) can be derived by making use of th
completeness relation of the minimal back-action meas
ment of l,

(
l

ÊR
2~ l !51̂R . ~17!

In terms of the measurement backaction on the quantum
in R, this completeness relation implies that the density m
trix in R after the measurement ofl is still equal to 1ˆ R /N if
the measurement result is unknown. Therefore, the stati
of the Bell measurement is unchanged and the probab
p(m) does not depend on the input state either. In acc
dance with this observation, the result of the summation o
l reads

p~m!5
x~m!

N2
^c inuÛ~m!F Û0

21S (
l

ÊR
2~ l ! D Û0GT

3Û21~m!uc in&

5
x~m!

N2
. ~18!

Since the measurement inR does not change the overall st
tistics of the Bell measurement, an eavesdropping atte
using a minimal back-action measurement onR cannot be
detected by the sender, even if some statistical propertie
a-

o
vi

ea

se

t

no

e
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the input states are known. By itself, the measurement re
m does not provide any information on the input state. Su
information is only obtained by combining the measurem
resultsm with the measurement resultsl from the entangle-
ment distribution channelR.

As shown in Eq.~7!, the main effect of the Bell measure
ment is the decomposition of the maximally mixed dens
matrix in B in terms of unitary transformations of the un
known input state. For a maximally entangled state, this
composition is equally possible for any input state. Howev
the measurement ofl in R provides information about the
decomposition ofr̂B which is independent of the input stat
It is therefore interesting to analyze the decomposition ofr̂B
in the presence of the measurement onR. The total decom-
position can be obtained fromP̂( l ,m) if the conditional uni-
tary transformationÛ(m) of the output is reversed. It the
reads

r̂B5(
l ,m

Û21~m!P̂~ l ,m!uc in&^c inuP̂~ l ,m!Û~m!

5
1

N
1̂B . ~19!

The decomposition into contributions with differentl repre-
sents the information obtained through the measuremen
R, while the teleportation effects are represented by the
composition into differentm. This sequence of the decompo
sition can be expressed by writingr̂B as
~20!
nd
the

y

ely

tary
Thus the measurement ofl first decomposes the density m
trix in B according to the information obtained fromR only.
The measurement ofm then decomposes the components
each resultl according to the same statistical weights pre
ously obtained for ideal teleportation in Eq.~7!. However,
this decomposition is now modified according to the m
surement information provided byl, resulting in a distortion

of the transformed input state componentsÛ21(m)uc in&.
This distortion reflects the reduction of entanglement cau
by obtaining information on the local systemsR andB. The
local uncertainty introduced intoR by the measuremen
backaction is thus transferred to the output state.

It is possible to vary the measurement operatorsÊR( l )
continuously between the unit operator 1ˆ

R representing no
interaction and precise projections onto a complete ortho
mal set of eigenstatesu l & of a self-adjoint operatorL̂R . In the
latter case, entanglement is completely removed by the m
f
-

-

d

r-

a-

surement. It is therefore a particularly simple example a
may help to illustrate some of the general features of
information distribution caused by the measurement inR.
The projective measurement inR decomposes the densit
matrix in B into eigenstatesuf l& of the variableL̂B corre-
sponding toL̂R according to Eq.~2!. The measurement inm
cannot subdivide this decomposition any more, so it mer
provides measurement probabilities,

r̂B5(
l

uf l&^f l u(
m

p~ l ,m!,

with p~ l ,m!5
x~m!

N2
u^f l uÛ21~m!uc in&u2. ~21!

As the measurement probabilityp( l ,m) shows, the Bell
measurement now projects the input states onto uni
7-6
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transformsÛ(m)uf l& of the eigenstates ofL̂B . This corre-
sponds to a precise measurement of the prop
Û(m)L̂BÛ21(m) in A. Only this property can then be repro
duced in the output state. The measurement backaction
domizes the relation between properties that do not comm
with L̂R in R and their corresponding properties inB. There-
fore, the Bell measurement does not provide any informa
on such variables. This simple example also illustrates
role of l and m in defining the effective measurement pe
formed on the teleported state. Knowledge ofm determines
the actual variableÛ(m)L̂BÛ21(m) defined by the measure
ment of m, while l provides the measurement outcome
that variable. The measurement resultl initially provides
only information about a physical property of the referen
systemR, and the measurement resultm is necessary to es
tablish the relation between this property inR and a corre-
sponding property of the inputA. Thus, the Bell measure
ment randomly selects the physical prope
Û(m)L̂BÛ21(m) measured inA after the measurement resu
l has been obtained inR.
, a

r,

.J.

ys

pt
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VII. CONCLUSIONS

Quantum teleportation is an application of the extrem
precise correlations possible between two entangled syst
The discussion presented in this paper shows how these
relations can be identified in the quantum-mechanical f
malism using unitary operations and density-matrix deco
positions. The resulting formulation is especially convenie
for tracing the transfer of effects from entanglement distrib
tion channels to the output state.

In the case of a measurement on an entanglement d
bution channel, the measurement backaction introduces n
into the teleportation by reducing the precision in the cor
lation between the entangled systems. The information
tained in the measurement distribution channel may then
combined with the result of the Bell measurement to prov
information about the teleported quantum state. This
ample thus illustrates how the quantum information in t
original input state is distributed between the two measu
ment results and the teleported quantum state in the out
ys.
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