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Information and noise in quantum measurement
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Even though measurement results obtained in the real world are generally both noisy and continuous,
quantum measurement theory tends to emphasize the ideal limit of perfect precision and quantized measure-
ment results. In this article, a more general concept of noisy measurements is applied to investigate the role of
quantum noise in the measurement process. In particular, it is shown that the effects of quantum noise can be
separated from the effects of information obtained in the measurement. However, quantum noise is required to
‘‘cover up’’ negative probabilities arising as the quantum limit is approached. These negative probabilities
represent fundamental quantum-mechanical correlations between the measured variable and the variables af-
fected by quantum noise.

PACS number~s!: 03.65.Bz, 03.67.2a
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I. INTRODUCTION

The interpretation of quantum-mechanical measurem
and the connection between the classical regime and
quantum regime still remains somewhat of a mystery, e
after nearly a century of quantum physics@1#. When intro-
ducing quantum mechanics, most textbooks and univer
courses tend to throw out all classical physics and start w
mathematical axioms instead. Although no one would do
that the concepts of classical physics are still successfu
describing most of our everyday experience, there seem
be no gradual approach that introduces quantum modifi
tions to an otherwise unaltered classical world. In fact, rec
controversies@2# suggest that many physicists are meanwh
prepared to consider the classical limit as a somewhat sp
case justified only as a crude approximation or even a
subjective illusion~e.g., in the popular many-worlds inte
pretation! @3#. At the heart of these controversies is the pro
lem of ‘‘measurement.’’ Classical theories were able to
nore the problem, because one could always ass
knowledge of all facts. In quantum mechanics, there i
disturbing separation between the continuous determin
evolution of a system state and the random selection of qu
tized results in the measurement.

The practical problems of interpreting the physical me
ing of quantum states are solved by the statistical interpr
tion provided through the measurement postulate. Howe
no such postulate exists in classical physics. What wo
then be the analogy between quantum measurement and
sical measurement? In the early days of quantum phys
such considerations resulted in the formulation of the w
known uncertainty principle@4#. All measurements must in
troduce some noise into the system in order to preserve
uncertainty relations. If the precision of a measurement
proaches the quantum limit, the noise introduced during
measurement process completely obscures the original
ues of all physical properties that are not eigenvalues of
observed state. If the precision of the measurement is
below the quantum limit, the noise introduced into the m
sured system may be negligibly small and the classical s
ation is reproduced in most respects. It should be no
however, that the assumption of infinitely precise coor
1050-2947/2000/62~2!/022103~9!/$15.00 62 0221
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nates cannot be recovered—classical physics is the phy
of low precision and noisy observations, just as nonrelativ
tic physics is the physics of low velocities. The mathemati
representation of classical coordinates in terms of real n
bers is therefore an approximation of the quantu
mechanical reality of finite precision.

In order to illustrate the transition from the classic
~noisy! world to the world of quantization, it seems to b
desirable to include the precision of measurements in
measurement theory. Indeed, several discussions of mea
ments with limited precision have been presented, usu
based on the standard measurement postulate and an
mediate system. Much of the focus has been on continu
measurements, which can be described by quantum traje
ries @5–7#. Some rather remarkable properties obtained
combining weak ~i.e., low-precision! measurements with
standard projective measurements have been pointed ou
Aharonov and co-workers@8,9#. In the following, the con-
cept of weak measurement is taken one step further by
introduction of a generalized measurement postulate for b
weak and strong measurements. This eliminates the req
ment of distinguishing qualitatively between two situatio
and allows a more direct approach to the transition fr
classical low-precision measurements to quantu
mechanical precision. Moreover, the generalized meas
ment postulate can be applied directly to the quantum sys
considered, without the introduction of a measurement s
tem.

The generalized measurement postulate can be interpr
entirely in terms of classical measurement processes. Th
fore, the noise introduced into the system during the m
surement interaction can be separated from the informa
obtained. If the precision of the measurement is sufficien
low to avoid a resolution of quantization, this separation
lows a classical interpretation of the information obtained
the measurement. As precision increases, however, the n
effect is required to ‘‘cover up’’ negative probabilities pre
dicted by the information-induced change in the system st
These negative probabilities can then be interpreted as
classical correlations between the measurement result
the quantum fluctuations in the observed system.
©2000 The American Physical Society03-1
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II. THE GENERALIZED MEASUREMENT POSTULATE

A. Limitations of precise measurements

The axiomatic introduction to quantum mechanics giv
e.g., in von Neumann’sMathematical Foundations of Quan
tum Mechanics@10# usually emphasizes the beauty and si
plicity of the mathematical structure. It is therefore not s
prising that the measurement postulate does not include
possibility of uncertainty in the measurement result tha
emphasized by Heisenberg in hisPhysical Principles of
Quantum Theory@11#. Instead, von Neumann merely show
that the measurement postulate based on an infinitely pre
observation of eigenvalues is consistent with equally pre
indirect measurement performed by letting the system in
act with a meter. However, the uncertainty relations requ
that infinitely precise knowledge of one variable can only
obtained by introducing an infinite amount of uncertainty
another variable. A precise measurement of position alw
requires an infinite uncertainty of momentum, a precise m
surement of the intensity of a radio signal would requ
complete uncertainty of the phase, and a precise meas
ment of the angular momentum of the moon would requir
complete delocalization of the moon itself. A large numb
of similar examples can be constructed, showing that
quantum-mechanically precise measurement on a ma
scopic system would cause macroscopic uncertainties. T
the projective measurement postulate has no classical
and consequently fails to describe some of the most typ
classical measurements performed on macroscopic obje

In order to amend this shortcoming and to illustrate
continuous transition from quantum mechanics to class
physics, it is therefore desirable to replace the abstract m
ematical definition of measurement given by von Neuma
with a formulation closer to everyday experience. Actua
this can be achieved without any change in the fundame
structure of quantum theory, since the choice of a projec
on eigenstates was not motivated by physical observati
but rather by considerations of mathematical simplicity. T
generalized formalism may appear to be less elegant, b
faithfully reproduces all physical results, including a mo
natural transition to the classical limit.

B. The generalized measurement operator

If a careful experimentalist obtains the result that a va
ableA corresponding to a Hermitian operatorÂ in quantum
theory has a value ofĀ6dA, then we need not assume th
the experimentalist performed a projective measuremen
A and failed to read out the correct result. Instead, the un
tainty of dA may be a consequence of the experimentali
attempts to minimize the noise introduced into the syst
according to the uncertainty principle. Typical examples
such measurements are optical back action evasion qua
nondemolition measurements of photon number@12,13# and
of quadrature components of the light field@14,15#. In all
these experimental realizations, the measurement resolu
was finite and the coherence between eigenstates wa
duced but not lost due to the measurement interac
@16,17#.
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In order to obtain a measurement value in a back ac
evasion measurement, the observed system must be cou
to a measurement apparatus. Ideally, a meter variablex̂ of
the measurement device is shifted by an amount equal to
system variableÂ. This interaction is described by the un
tary operatorŜ which transforms the eigenstatesux;A& of the
pointer variablex̂ and the system variableÂ according to

Ŝux;A&5ux1A;A&. ~1!

The shift in x̂ may also be expressed using the conjug
meter variablep̂, which is defined by the operator propert

x̂p̂2 p̂x̂5 i . ~2!

The interaction operator then reads

Ŝ5exp~2 i p̂Â!. ~3!

The meter variablep̂ thus acts on all system variables that
not commute withÂ, causing noise in the system. In order
perform a measurement ofÂ with a resolution ofdA, it is
necessary to prepare the initial meter state in a Gaus
wave packet with a variance ofdA2 in x̂. According to the
uncertainty principle, this requires a variance of 1/(2dA)2 in
p̂. In order to obtain information about the system, it is ne
essary to read out onlyx̂, thereby eliminating all information
about the noise variablep̂.

For an initial Gaussian meter state and an arbitrary sys
stateuFS&, the entangled state of meter and system after
measurement interaction reads

uc f&5E dx(
A

~2pdA2!21/4expS 2
~A2x!2

4dA2 D
3^AuFS&ux;A&. ~4!

A measurement readout of the meter variablex̂ selects a
subspace of the total Hilbert space. Within this subspace,
system state corresponding to a measurement readou
ux5Ā& is given by

P̂dA~Ā!uFS&5(
A

~2pdA2!21/4expS 2
~A2Ā!2

4dA2 D
3^AuFS&uA&. ~5!

The effect of a measurement ofÂ with finite resolutiondA is
therefore described by a set of generalized measuremen
eratorsP̂dA(Ā) corresponding to the possible measurem
resultsĀ,

P̂dA~Ā!5~2pdA2!21/4expS 2
~Â2Ā!2

4dA2 D . ~6!
3-2
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INFORMATION AND NOISE IN QUANTUM MEASUREMENT PHYSICAL REVIEW A62 022103
Instead of projecting the system state into an eigenstate oÂ,
this operator modifies the statistical weight of each eig
state, while preserving as much coherence as possible@18#.

The probability distributionp(Ā) over possible measure
ment resultsĀ corresponding to a given initial stateuc i& is
given by

p~Ā!5^c i uP̂dA
† ~Ā!P̂dA~Ā!uc i&

5^c i u@ P̂dA~Ā!#2uc i&. ~7!

This probability distribution may be characterized by the a
erages^Ā& and ^Ā2&. These averages are related to t
quantum-mechanical expectation values by

^Ā&5^Â&,

^Ā2&5^Â2&1dA2. ~8!

Thus the average results of the general measurement p
late correspond to the expectation value and the total v
ance is equal to the sum of the variance in the system and
squared uncertainty of the measurement.

It is important to understand that the additional fluctu
tions in the measurement result do not correspond to a
tional noise in the system. Instead, increasing the noise in
measurement result decreases the noise introduced in the
tem according to the uncertainty principle. After the me
surement, the system state will have changed to

uc f~Ā!&5
1

Ap~Ā!
P̂dA~Ā!uc i&. ~9!

This is still a pure state. The extent to which it differs fro
the initial state is determined both by the decomposition
the initial stateuc i& in terms of eigenstates ofÂ, and by the
uncertaintydA2 of the measurement. For very large unce
tainties, the changes in the system state are only weak, i
trating the low level of noise in the measurement interacti

For infinitely precise measurements, the properties of
generalized measurement operator correspond to the pro
ties of the projection operator. The projective measurem
postulate is thus reproduced bydA→0. Since most actua
measurements have a finite resolution, however, the gen
ized measurement operatorP̂dA(Ā) provides a more realistic
description of measurements than the original projection p
tulate. Discussions of quantum-mechanical phenomena
be simplified considerably by accepting the validity of t
generalized measurement postulate without requiring the
mal derivation given above. In particular, the relationsh
between the measurement information obtained and the n
introduced in the measurement can be investigated in
greater detail, directly revealing fundamental properties
the operator formalism in the measurement data. Note tha
the following, the generalized measurement postulate wil
applied without further reference to the actual physical int
action by which the measurement resultĀ is obtained. The
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measurement resolutiondA is considered to be a propert
characterizing the measurement effect on the system ra
than a property of the external measurement setup. It is t
possible to focus on the system properties as the sourc
the measurement statistics.

C. Density matrix formulation

It is a straightforward matter to apply the generaliz
measurement postulate to an initial mixed state density
trix r̂ i . The probability and the effect of the measureme
result Ā on the density matrix read

p~Ā!5Tr$P̂dA~Ā!r̂ i P̂dA
† ~Ā!%

5Tr$@ P̂dA~Ā!#2r̂ i%,

r f̂~Ā!5
1

p~Ā!
P̂dA~Ā!r̂ i P̂dA

† ~Ā!. ~10!

Using the density matrix formulation, the physical effect
the measurement interaction on the system may be de
mined by mixing the final state density matricesr̂ f(Ā) ac-
cording to their respective statistical weightsp(Ā),

r̂ f~ total!5E dĀp~Ā!r̂ f~Ā!

5E dĀP̂dA~Ā!r̂ i P̂dA
† ~Ā!. ~11!

This density matrix represents the system between the m
surement interaction and the readout of the measuremen
sult. It therefore describes the~average! noise effect caused
by the measurement interaction. In particular, the eleme
of the density matrix that describe coherence between eig
states ofÂ are reduced by

^A1ur̂ f~ total!uA2&5expS 2
~A12A2!2

8dA2 D ^A1ur̂ i uA2&,

~12!

whereuA1& anduA2& are eigenstates ofÂ with eigenvalues of
A1 andA2, respectively. Thus there is a gradual decrease
coherence depending only on the separation of the eigen
uesA1 andA2. The Gaussian dependence of the suppress
factor on the difference of the eigenvalues indicates that
decoherence effect is extremely sensitive to the relations
between the eigenvalue differenceuA12A2u and the resolu-
tion dA of the measurement. Indeed, the decoherence fa
is greater than 0.88 foruA12A2u,dA and lower than 0.14
for uA12A2u.4dA. This rapid transition from almost no
decoherence to almost complete decoherence correspon
the notion that the ability to distinguish the eigenvaluesA1
and A2 requires decoherence between the correspond
eigenstates. If the separation of eigenvaluesuA12A2u is
large, even a very weak measurement that otherwise
serves microscopic coherences will destroy the cohere
3-3
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HOLGER F. HOFMANN PHYSICAL REVIEW A62 022103
between the eigenstates ofA1 and A2. It is therefore much
more difficult to preserve the quantum coherence betw
states with quantitatively different physical properties than
preserve coherence between quantitatively similar st
@19#.

Since Eq.~11! makes no reference to the measurem
result actually obtained, it represents only the effects
physical interaction involved in the measurement. Thus i
equivalent to a description of decoherence in open syst
interacting with an unknown environment. However, in t
case of a quantum measurement, the meter takes the pla
the environment, and the meter information is recovered
the measurement. Consequently, it is not possible to ave
over the meter state, and interpretational problems relate
the entanglement of system and meter can arise as soo
the actual information obtained in the measurement is c
sidered. Specifically, the measurement readout require
interpretation ofr̂ f(total) as a mixture corresponding to th
different possible measurement results, while the simpler
ternative of assuming random phase noise in the coher
between eigenstates ofÂ cannot be recovered.

III. SEPARATION OF INFORMATION AND NOISE

A. Formal separation

The total effect of a measurement result ofĀ6dA on the
density matrix element̂A1ur̂ i uA2& is given by Eq.~10!. In
terms of matrix elements of the eigenstates ofÂ it reads

^A1ur̂ f~Ā!uA2&5
1

A2pdA2p~Ā!

3expS 2
@~A11A2!/22Ā#2

2dA2 D
3expS 2

~A12A2!2

8dA2 D ^A1ur̂ i uA2&

5
1

A2pdA2p~Ā!
expS 2

@~A11A2!/22Ā#2

2dA2 D
3^A1ur̂ f~ total!uA2&. ~13!

Since the effect of decoherence given in Eq.~11! can be
identified with the Gaussian factor changing the matrix e
ment of the initial density matrixr̂ i to the corresponding
matrix element ofr̂ f(total), the remaining factor should de
scribe the effect of a noise-free measurement. This factor
tion of the decoherence factor and the factor associated
the measurement result obtained allows an unambigu
separation of information and noise in quantum measu
ments, even though these two aspects are connected b
requirements of the uncertainty relations. It is therefore p
sible to overcome the uncertainty limitations and to exam
the structure of quantum-mechanical reality which is hidd
beneath the noise.
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The measurement may be interpreted as a two-step
cess. In the first step, decoherence is caused by the phy
interaction between the system and the measurement s

changing the density matrix fromr̂ i to r̂ f(total). In the sec-
ond step, information about the system is obtained with
any ~additional! interaction. This step may actually occur fa
away from the system. While the first step involves we
defined physical processes, the second step relates
change in the probabilistic expression of the system state
to information gained about the system. Equation~11! shows

that the total density matrixr̂ f(total) can be interpreted as

mixture of all possible final density matricesr̂ f(Ā), so it is

possible to consider the change fromr̂ f(total) to r̂ f(Ā) as a
selection of a reality that existed before the information w
obtained. It therefore seems that the classical separatio
information and physical interaction has been preserv

However, the properties ofr̂ f(total) have been modified by
the decoherence in step 1, and it is impossible to remove
step without violating the uncertainty principle. In particula
the entanglement between system and meter ensures tha
noise introduced into the system can never be compens
once a measurement readout is obtained.

B. Simulation of noise-free measurements

The only difference between the classical measurem
situation and the quantum-mechanical situation is the un
tainty in the measurement interaction. Except for the
quired relationship between decoherence and measure
resolution, the two measurement steps can be separated
classical situation, the noise added in the measurement in
action is both undesirable and avoidable. It is assumed
the information obtained in the measurement refers to a
ality of A that exists as an element of reality regardless of
measurement. By examining the quantum-mechanical
sion of a noise-free measurement, it is possible to find
‘‘what is wrong with these classical elements of reality
@20#.

The procedure for selecting a subensemble density ma

r̂ f(Ā) from the total density matrixr̂(total) described by Eq.

~11! can be applied directly to the initial density matrixr̂ i . It
is then possible to reverse the actual sequence of steps i
measurement process in order to investigate the change
the system state caused by the information obtained be
quantum noise is added. In a noise-free measurement

initial density matrixr̂ i is decomposed in analogy with Eq
~11!,

r̂ i5E dĀp~Ā!r̂m~Ā!. ~14!

The matrix elements of the density matrixr̂m(Ā) describing
the effects of measurement without noise then read
3-4
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INFORMATION AND NOISE IN QUANTUM MEASUREMENT PHYSICAL REVIEW A62 022103
^A1ur̂m~Ā!uA2&5
1

A2pdA2p~Ā!

3expS 2

F1

2
~A11A2!2ĀG2

2dA2
D

3^A1ur̂ i uA2&. ~15!

Indeed, the statistical weight factor modifying the dens
matrix looks harmless enough. The matrix element is
hanced or suppressed depending on the closeness of th
erage quantum number (A11A2)/2 of the matrix element to
the measurement resultĀ. This effect would correspond to
the classically expected modification if (A11A2)/2 were
somehow to represent the~classical! value of Â associated
with the matrix element. However, the matrix element in
cates a coherent superposition of two different eigenva
A1 andA2 of Â. Therefore the modification of its statistica
weight should be represented by separate contributions f
A1 andA2. Since this is not so, however, a serious probl
arises concerning the relation

^A1ur̂muA2&^A2ur̂muA1&<^A1ur̂muA1&^A2ur̂muA2&,
~16!

which guarantees that all probabilities obtained as expe
tion values of the density matrixr̂m are positive. Condition
~16! is fulfilled only if

^A1ur̂ i uA2&^A2ur̂ i uA1&

^A1ur̂ i uA1&^A2ur̂ i uA2&
<expS 2

~A12A2!2

4dA2 D . ~17!

Thus the decoherence factor of Eqs.~12! and~13! reappears
in a requirement that can be fulfilled only if the coherence
the density matrixr̂ i is sufficiently low. If the coherence o
r̂ i is high, however, condition~16! is violated and conse
quently negative probabilities are obtained for some of
possible coherent superpositions of the eigenstatesuA1& and
uA2&.

The difference between quantum mechanics and clas
physics thus emerges as the measurement information
tained at low resolution is not only information on eigenv
ues of Â, but also on the average values of off-diagon
matrix elements. Negative probabilities arise naturally,
cause there may be no possible eigenvalues correspondi
(A11A2)/2. Nevertheless, measurement results close
(A11A2)/2 indicate that the coherent contribution of the co
responding off-diagonal matrix element is greater than t
of the associated diagonal elements. In classical physics
reality of A would be well defined. In the quantum forma
ism, however, the eigenvalues ofÂ represent only an incom
plete description of the reality of the operator variableÂ.
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C. Illustration of negative probabilities in a two-level system

At this point, a specific example should help to illustra
the case of negative probabilities after the measuremen
the system concerned is a spin-1

2 system system described b
the two orthogonal eigenstates of theŝz component,u1Z&
and u2Z&, then all physical properties can be described
terms of the operators of the spin components,

ŝx5 1
2 ~ u1Z&^2Zu1u2Z&^1Zu!,

ŝy52
i

2
~ u1Z&^2Zu2u2Z&^1Zu!,

ŝz5
1
2 ~ u1Z&^1Zu2u2Z&^2Zu!. ~18!

If the initial state is given by the eigenstate ofŝx with the
eigenvalue1 1

2 , u1X&, then the initial density matrix reads

r̂ i5
1
2 ~ u1Z&^1Zu1u2Z&^2Zu1u1Z&^2Zu1u2Z&^1Zu!.

~19!

The probabilityp( s̄z) of obtaining a measurement result
sz̄6dsz can be determined according to Eq.~7! using the
corresponding generalized measurement operator. It rea

p~ s̄z!5
1

A2pdsz
2 F1

2
expS 2

~ s̄z21/2!2

2dsz
2 D

1
1

2
expS 2

~ s̄z11/2!2

2dsz
2 D G

5
1

A2pdsz
2

expS 2
s̄z

211/4

2dsz
2 D coshS s̄z

2dsz
2D . ~20!

Spin quantization clearly emerges in this probability dist
bution if dsz is smaller than1

2 . The noise-free part of the
measurement changes the density matrix to

r̂m~ s̄z!5
1

2 cosh~ s̄z/2dsz
2!

FexpS s̄z

2dsz
2D u1Z&^1Zu

1expS 2
s̄z

2dsz
2D u2Z&^2Zu

1expS 1

8dsz
2D u1Z&^2Zu

1expS 1

8dsz
2D u2Z&^1ZuG . ~21!
3-5
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HOLGER F. HOFMANN PHYSICAL REVIEW A62 022103
This density matrix violates condition~17! and predicts
negative probabilities for several spin directions. The ne
tive probabilities can be illustrated by the expectation val
of the spin components,

^ŝx&m5
exp~1/8dsz

2!

2 cosh~ s̄z/2dsz
2!

5
1

2
expS 1

8dsz
2DA12tanh2S s̄z

2dsz
2D ,

^ ŝy&m50,

^ŝz&m5
1

2
tanhS s̄z

2dsz
2D . ~22!

Figure 1 shows the expectation values in thexz plane for a
measurement uncertainty ofdsz

25 1
4 . Except at̂ ŝx&50, the

length of the average spin vector is larger than1
2 , indicating

negative probabilities. In particular, a result ofs̄z50 in-
creases the expectation value of1

2 in ŝx to 1
2 exp@1/(8dsz

2)#.
This corresponds to a probability greater than 1 foru1X&
and a corresponding negative probability foru2X&. Note that
this result seems to be related to the observation of s
components larger than the permitted eigenvalue limit
ported in@8#, even though actual measurements of the s
componentŝx are not considered in the present context.

Of course, negative probabilities cannot be observed
measurement. They represent a statistical tool which is c
nected with the unavoidable presence of quantum noise
order to recover the final density matrixr̂ f( s̄z) after the mea-
surement, quantum noise must be added. This reduces
coherence to normal levels, resulting in the pure state den
matrix

FIG. 1. Illustration of the expectation values of the spin-1
2 sys-

tem after the noise-free measurement~ellipse! and after the com-
plete measurement~circle! for a measurement uncertainty ofdsz

5
1
2 .
02210
-
s

in
-

in

a
n-
In

the
ity

r̂ f~ s̄z!5
1

2 cosh~ s̄z/2dsz
2!

FexpS s̄z

2dsz
2D u1Z&^1Zu

1expS 2
s̄z

2dsz
2D u2Z&^2Zu1u1Z&^2Zu

1u2Z&^1ZuG . ~23!

The expectation values given by this density matrix read

^ ŝx& f5
1

2A12tanh2S s̄z

2dsz
2D ,

^ ŝy& f50,

^ŝz& f5
1

2
tanhS s̄z

2dsz
2D , ~24!

as shown in Fig. 1. In particular, the expectation value ofŝx

for s̄z50 is reduced to1
2 . Thus, quantum noise is necessa

in order to ‘‘cover up’’ any negative probabilities and an
excessive expectation values arising in the noise-free form
ism.

D. Interpretation of negative probabilities

The example above shows that negative probabilities
compensate the decoherence caused by the noisy mea
ment interaction. It could therefore be said that negat
probabilities represent nonclassical information beyond
limits of uncertainty. Indeed, the density matrixr̂m may be
‘‘purer’’ than a pure state. The trace of the square of a p
state density matrix is 1. For a mixed state, it is smaller th
1. For r̂m , however, it may indeed be greater than 1. Th
with the purityPm of r̂m defined as

Pm5tr$r̂m
2 %, ~25!

the density matrixr̂m( s̄z50) given in the example of Sec
III C above has a purity of

Pm~ s̄z50!5
1

2
1

1

2
expS 1

4dsz
2D , ~26!

which is greater than 1 in all cases. Note that there is
upper limit toPm(0). However, its increase does depend
the decrease in the likelihood of observings̄z50.

Note that the ‘‘superpurity’’ of the noise-free density m
trix r̂m corresponds to the classical notion that any new
formation gained about a physical system should reduce
uncertainty of the state. Therefore, obtaining informati
about any state has to increase the purity of this state. N
tive probabilities allow such an increase in purity even fo
pure state. While ‘‘superpure’’ states are of course unphy
3-6
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cal by themselves, they can be used to provide a local in
pretation of entanglement. In particular, entangled states
always be interpreted as a mixture of ‘‘superpure’’ produ
states. Classical probability theory then explains why
tanglement cannot be utilized to transfer information inst
taneously without physical interaction. Thus, the generali
measurement operator may explain the physical nature
entanglement in a far more intuitive way than the conv
tional formalism.

The change in the density matrix caused by a quan
measurement can now be compared with the changes ca
by information obtained about a classical probability dis
bution. A classical noise-free measurement can change
statistics of physical properties only if the correspond
properties are correlated with the measured variable. In

example given in Sec. III C, however, the statistics ofŝx are
changed by the measurement even though the initial sta

an eigenstate ofŝx . Classically, a well-defined variable can
not be correlated with any other variable. By introduci
negative probabilities, however, this situation is changed
the case above, the measurement reduces the expec

value of ŝx to a very low value if a value ofs̄z close to the
quantized values of6 1

2 is observed. On the other han

negative probabilities appear ifs̄z is close to the averag
between the two quantized values. The original pure sta
retained if one averages over all measurement results
shown by Eq.~14!. Thus, there is a statistical correlatio

between the spin componentŝx and the spin componentŝz ,
which may be expressed by averages over the measure

resultss̄z and the expectation values^ŝx& after the measure
ment as

s̄z
2^ŝx&2 s̄z

2^ŝx&52 1
4 ^ ŝx&. ~27!

In words, the measurement of a quantized value ofŝz is
correlated with the nonvanishing possibility of a negat

value ofŝx , while the measurement of a value ofŝz between
the quantized values is correlated with a negative probab

for ŝx,0, indicating that such negative values are ‘‘mo
than impossible.’’

E. Nonclassical correlations as fundamental operator
properties

Usually, entanglement is analyzed in terms of opera
properties. In particular, nonclassical features of spin-1

2 sta-
tistics can often be traced to the anticommutation of the s
components. Using the generalized projection opera
P̂dA(Ā), it is possible to derive an analytical expression
the correlation ofs̄z

2 and ^ŝx& given in Eq.~27!. In general,

the correlation between the squared measurement resuĀ2

and a variableB̂ after the measurement is given by
02210
r-
an
t
-
-
d
of
-

m
sed
-
he

e

is
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tion

is
as

ent

ty

r

in
or
r

C~Ā2;^B̂&!5Ā2^B̂&2Ā2^B̂&

5E dĀp~Ā!Tr$r f~Ā!B̂%Ā2

2Tr$r f~ total!B̂%@dA21Tr$r f~ total!Â2%#.

~28!

By solving the integral overĀ, the correlation may be ex
pressed entirely in terms of expectation values of the fi
state density matrixr̂ f(total). It reads

C~Ā2;^B̂&!5 1
4 ^Â2B̂12ÂB̂Â1B̂Â2& f~ total!

2^Â2& f~ total!^B̂& f~ total!. ~29!

SinceB̂ does not necessarily commute withÂ, this correla-
tion can be nonzero even if the system is in an eigenstat
Â. In the case of the spin-1

2 system discussed above, th
anticommutation ofŝx andŝz is responsible for the result tha

C~ s̄z
2 ;^ ŝx&!52^ŝz

2& f~ total!^ ŝx& f~ total!. ~30!

In the case ofdsz→`, or when removing the noise effec
from the measurement, the final density matrix can be
placed with the initial state. It is then possible to obtain no
zero correlations betweenŝx and ŝz even for the eigenstate
of ŝx . This result suggests that the physically relevant va
of ŝx is not even well defined for eigenstates ofŝx . In the
words of the famous Einstein-Podolsky-Rosen~EPR! paper
@21#, the fact that the outcome of anŝx measurement can b
predicted with certainty does not mean that there exists
element of reality corresponding to thispotential measure-
ment result, unless the measurement isactually performed.
The ŝx fluctuations of an eigenstate ofŝx are revealed in the
noise-induced changes ofŝx if any property other thanŝx
interacts with the environment.

F. Negative probabilities and quantization

One of the fundamental consequences of quantum
chanics is the replacement of continuous classical varia
with discrete quantum numbers. In particular, the com
nents of angular momentum have eigenvalues equal to m
tiples of \ and the energies of harmonic oscillators or wa
modes have eigenvalues equal to multiples of\v. One of the
strangest features of quantum mechanics is the inconsist
this introduces into classical arguments. For example
should be necessary to conclude that, ifŝx is equal to6 1

2

and ŝy is equal to6 1
2 , ŝx1 ŝy should be equal to zero o

61. However, the eigenvalues ofŝx1 ŝy are 61/A2. It is
this contradiction of classical arguments based on quant
values that is exploited in the formulation of Bell’s inequa
ties@22#. Usually, one tries to escape the dilemma by argu
that the classical meaning of the quantized observable is
completely. Alternatively, however, one could assume t
eigenvalues donot represent all physical values of the o
3-7
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servable. The observation of quantized values in pre
measurements could instead be explained as a fundam
statistical effect based on the presence of negative proba
ties and quantum correlations.

In the example above, the eigenvalues ofŝz are61. How-
ever, there is a correlation betweens̄z

2 andŝx which suggests

some measure of physical reality for fluctuations ins̄z
2 , es-

pecially for the possibility of nonquantized values nears̄z
50. In the case of light field quantization, the same pr
ciples can be applied to quantum nondemolition meas
ments of photon number@23#, revealing high phase cohe
ence at half-integer photon numbers and low ph
coherence at integer photon numbers. The measurement
cess can now be analyzed in far greater depth. If sepa
quantum states are not resolved, negative probabilities
quantum correlations are hidden by the remaining unc
tainty in the observed variable. If quantization is resolv
quantum correlations modify the statistics of all variab
that do not commute with the observed variable. Such co
lations can only be interpreted in terms of negative probab
ties. However, quantum noise ‘‘covers up’’ the negati
probabilities. Nevertheless, negative probabilities can be
served indirectly in nonclassical correlations.

Recently, the question of what truly characterizes the
ferences between classical physics and quantum physics
been raised in a new context regarding the potential of qu
tum computers@24,25#. It seems that on the quite technic
level represented, e.g., by NMR quantum computation,
statistical relationships between those operator variables
tually utilized are far more important than observable ind
pendent concepts such as entanglement. Possibly, conte
rary quantum theory has paid too little attention to t
observable properties of quantum systems. By interpre
quantum mechanics in terms of nonclassically correlated
servables, a smooth transition between the classical reg
and the quantum regime is possible and the problem of s
denly having to change the vocabulary from physical pr
erties to Hilbert spaces can be avoided. Quantum prope
can then be explored within a framework similar to that
classical physics, with the main quantum correction origin
ing from the nonclassical correlations possible due to
appearance of negative probabilities. It should then be p
sible to identify the correlations required for quantum co
putation and other applications of quantization effects.
So
a
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IV. CONCLUSIONS

In conclusion, a physical interpretation of the measu
ment process based on a separation of information and n
is possible. This separation corresponds exactly to the c
sical notion of a reality unchanged by the measurement
teraction. However, negative probabilities appear in the m
surement decomposition of the initial density matrixr̂ i into
the conditioned density matricesr̂m given by Eq.~14!. These
negative probabilities represent a type of nonclassical in
mation only available in quantum-mechanical systems. T
are responsible for the failure of measurement-independ
concepts of local reality such as the one proposed in the E
paper@21#, and it is likely that this type of nonclassical in
formation is also responsible for the advantages of quan
computing as compared with classical computing. Moreov
the negative probabilities are directly related to quantizat
itself, since they arise from correlations that distinguish b
tween the observation of quantized values and the obse
tion of values between two quantized eigenvalues of the
servable.

These results clearly show that there is much more
quantum measurements than the observation of eigenva
Possibly, the main interpretational problem in quantum m
surement theory is the assumption that physical variab
should be restricted to their eigenvalues. However, nega
probabilities and the real physical consequences of mea
ing a value between two eigenvalues seem to indicate
the effective physical properties of a variable are not
stricted to eigenvalues only. Instead, some measure of ph
cal reality should be attributed to the continuum of valu
between and even beyond the eigenvalues. In particular
off-diagonal matrix elements of the density matrix can
associated with the average of the two associated eigen
ues, even if this average does not correspond to any ac
eigenvalue. Quantum coherence can then be understoo
terms of nonclassical correlations between the physical p
erties of a system. Thus the generalized measurement p
late represents an opportunity for developing new interpre
tional concepts in quantum theory which may allow us
improve our intuitive understanding of the physical nature
quantum effects.
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