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Information and noise in quantum measurement

Holger F. Hofmann
Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
(Received 7 July 1999; revised manuscript received 30 November 1999; published 6 July 2000

Even though measurement results obtained in the real world are generally both noisy and continuous,
guantum measurement theory tends to emphasize the ideal limit of perfect precision and quantized measure-
ment results. In this article, a more general concept of noisy measurements is applied to investigate the role of
guantum noise in the measurement process. In particular, it is shown that the effects of quantum noise can be
separated from the effects of information obtained in the measurement. However, quantum noise is required to
“cover up” negative probabilities arising as the quantum limit is approached. These negative probabilities
represent fundamental quantum-mechanical correlations between the measured variable and the variables af-
fected by quantum noise.

PACS numbd(ps): 03.65.Bz, 03.6%a

[. INTRODUCTION nates cannot be recovered—classical physics is the physics
of low precision and noisy observations, just as nonrelativis-
The interpretation of quantum-mechanical measurementsc physics is the physics of low velocities. The mathematical
and the connection between the classical regime and thepresentation of classical coordinates in terms of real num-
guantum regime still remains somewhat of a mystery, eveters is therefore an approximation of the quantum-
after nearly a century of quantum physidd. When intro-  mechanical reality of finite precision.
ducing quantum mechanics, most textbooks and university In order to illustrate the transition from the classical
courses tend to throw out all classical physics and start witkinoisy) world to the world of quantization, it seems to be
mathematical axioms instead. Although no one would doubtiesirable to include the precision of measurements in the
that the concepts of classical physics are still successful itheasurement theory. Indeed, several discussions of measure-
describing most of our everyday experience, there seems f@ents with limited precision have been presented, usually
be no gradual approach that introduces quantum modificasased on the standard measurement postulate and an inter-
tions to an otherwise unaltered classical world. In fact, recent,qogiate system. Much of the focus has been on continuous
controversie$2] suggest that many physicists are meanwhile easurements, which can be described by quantum trajecto-
prepared to consider the classical limit as a somewhat speci%LS [5-7]. Some rather remarkable properties obtained by
case justified only as a crude approximation or even as éombining weak (i.e., low-precision measurements with

Sl::tjggg:)/e[?:]llujﬁﬂ(eehge'ér'{] Otfhtﬁegngé?lrtrgnvaergizvsoirslﬁemt?&)_standard projective measurements have been pointed out by
b X PTOD"Aharonov and co-workerg8,9]. In the following, the con-

lem of “measurement.” Classical theories were able to ig- t of K tis tak ten further by th
nore the problem, because one could always assum £pt OF weak measurement 1S taken one step further by the

knowledge of all facts. In quantum mechanics, there is a{ntroduction of a generalized measurement postulate for both

disturbing separation between the continuous deterministi¥v¢ak and strong measurements. This eliminates the require-
evolution of a system state and the random selection of quaffent of distinguishing qualitatively between two situations
tized results in the measurement. and allows a more direct approach to the transition from
The practical problems of interpreting the physical mean<lassical  low-precision =~ measurements to quantum-
ing of quantum states are solved by the statistical interpretanechanical precision. Moreover, the generalized measure-
tion provided through the measurement postulate. Howevenent postulate can be applied directly to the quantum system
no such postulate exists in classical physics. What woulgonsidered, without the introduction of a measurement sys-
then be the analogy between quantum measurement and cldsm.
sical measurement? In the early days of quantum physics, The generalized measurement postulate can be interpreted
such considerations resulted in the formulation of the well-entirely in terms of classical measurement processes. There-
known uncertainty principl¢4]. All measurements must in- fore, the noise introduced into the system during the mea-
troduce some noise into the system in order to preserve th&urement interaction can be separated from the information
uncertainty relations. If the precision of a measurement apebtained. If the precision of the measurement is sufficiently
proaches the quantum limit, the noise introduced during théow to avoid a resolution of quantization, this separation al-
measurement process completely obscures the original valbws a classical interpretation of the information obtained in
ues of all physical properties that are not eigenvalues of théhe measurement. As precision increases, however, the noise
observed state. If the precision of the measurement is fagffect is required to “cover up” negative probabilities pre-
below the quantum limit, the noise introduced into the meadicted by the information-induced change in the system state.
sured system may be negligibly small and the classical situThese negative probabilities can then be interpreted as non-
ation is reproduced in most respects. It should be noted;lassical correlations between the measurement result and
however, that the assumption of infinitely precise coordi-the quantum fluctuations in the observed system.

1050-2947/2000/62)/0221039)/$15.00 62 022103-1 ©2000 The American Physical Society



HOLGER F. HOFMANN PHYSICAL REVIEW A62 022103

Il. THE GENERALIZED MEASUREMENT POSTULATE In order to obtain a measurement value in a back action
evasion measurement, the observed system must be coupled

) o ] ] . to a measurement apparatus. Ideally, a meter varialdé
The axiomatic introduction to quantum mechanics givenihe measurement device is shifted by an amount equal to the

€.g., in von Neumann'Sathematical Foundations of Quan- system variabléd. This interaction is described by the uni-

tum Mechanic$10] usually emphasizes the beauty and sim- & which ¢ he ei A of th
plicity of the mathematical structure. It is therefore not sur—tar_y operatoiS which transforms the eigenstatasA) of the

prising that the measurement postulate does not include tHPinter variablex and the system variable according to
possibility of uncertainty in the measurement result that is L _

emphasized by Heisenberg in highysical Principles of S A)=Ix+AA). @
Quantum Theory11]. Instead, von Neumann merely shows A ) _

that the measurement postulate based on an infinitely precidg'® shift inx may also be expressed using the conjugate
observation of eigenvalues is consistent with equally precis@eter variablep, which is defined by the operator property
indirect measurement performed by letting the system inter- o

act with a meter. However, the uncertainty relations require Xp—px=i. 2
that infinitely precise knowledge of one variable can only be

obtained by introducing an infinite amount of uncertainty in The interaction operator then reads

another variable. A precise measurement of position always

requires an infinite uncertainty of momentum, a precise mea- S=exp —ipA). ©)
surement of the intensity of a radio signal would require

complete uncertainty of the phase, and a precise measurgne meter variablg thus acts on all system variables that do
ment of the angular momentum of the moon would require a oA . L
complete delocalization of the moon itself. A large number"©t commute Withé, causing nglse in the system. In o_rd_er to
of similar examples can be constructed, showing that anperform a measurement & with a resolution oféA, itis
quantum-mechanically precise measurement on a macréecessary to prepare the initial meter state in a Gaussian
scopic system would cause macroscopic uncertainties. Thugiave packet with a variance @A? in x. According to the

the projective measurement postulate has no classical limitncertainty principle, this requires a variance of 132 in

and consequently fails to describe some of the most typicab. In order to obtain information about the system, it is nec-
classical measurements performed on macroscopic 0bjeCtSygqary to read out only, thereby eliminating all information
In order to amend this shortcoming and to illustrate the . o~

continuous transition from quantum mechanics to classica?bom the_np]se vanab_lp. .

physics, it is therefore desirable to replace the abstract math- For an initial Gaussian meter state and an arbitrary system
ematical definition of measurement given by von Neumanr?tatelq)5>’ the _entangl_ed state of meter and system after the
with a formulation closer to everyday experience. Actually,meas'urement interaction reads

this can be achieved without any change in the fundamental 5
structure of quantum theory, since the choice of a projection | >:f dxz (2 6A2) Vaexd — (A=X)
on eigenstates was not motivated by physical observations, 4 A & 45A2

but rather by considerations of mathematical simplicity. The

A. Limitations of precise measurements

generalized formalism may appear to be less elegant, but it X(A|Dg)|x;A). (4)
faithfully reproduces all physical results, including a more
natural transition to the classical limit. A measurement readout of the meter variakleelects a
subspace of the total Hilbert space. Within this subspace, the
B. The generalized measurement operator system state corresponding to a measurement readout of

If a careful experimentalist obtains the result that a vari-|X=A) is given by
ableA corresponding to a Hermitian operatlrin quantum

theory ha_s a valu_e oA = SA, then we .negd not assume that ﬁ’aA(K)ICI>s>=Z (2175A2)‘1/4exp( _
the experimentalist performed a projective measurement on A

A and failed to read out the correct result. Instead, the uncer-

tainty of SA may be a consequence of the experimentalist’s X(A|Dg)|A). ®)
attempts to minimize the noise introduced into the system R

according to the uncertainty principle. Typical examples ofThe effect of a measurement Afwith finite resolutionsA is

such measurements are optical back action evasion quantuimerefore described by a set of generalized measurement op-
nondemolition measurements of photon numtier,13 and  eratorsP s, (A) corresponding to the possible measurement
of quadrature components of the light figl#i4,15. In all  oqitsA.

these experimental realizations, the measurement resolution ’

(A—A)?
45A?

was finite and the coherence between eigenstates was re- (A—A)2
duced but not lost due to the measurement interaction Pa(A)=(278A%) Yexg — ——— (6)
[16,17. 45A?
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Instead of projecting the system state into an eigenstae of measurement resolutiodA is considered to be a property

this operator modifies the statistical weight of each eigencharacterizing the measurement effect on the system rather

state, while preserving as much coherence as podgiBle  than a property of the external measurement setup. It is then
The probability distributiorp(K) over possible measure- possible to focus on the system properties as the source of

— . . - . the measurement statistics.
ment resultsA corresponding to a given initial state;) is

given by C. Density matrix formulation
P(A) = (| PTAAI P sa(A)| 1) It is a straightforward matter to apply the generalized
measurement postulate to an initial mixed state density ma-
= (][ P sa(A) 12| ). (7)  trix p;. The probability and the effect of the measurement

. G ) resultA on the density matrix read
This probability distribution may be characterized by the av-

erages(A) and (A%). These averages are related to the P(A)=TH{P sa(A)piPIA(A)}
guantum-mechanical expectation values by o
L =Tr{[Psa(A)]%pi},
(A)=(A),
_ 1 _ _
_ R ~ A B ~ 5t
<A2>:<A2>+ 5A2 (8) Pf(A) p(K)PﬁA(A)pIPzSA(A) (10)

Thus the average results of the general measurement posiysing the density matrix formulation, the physical effect of
late correspond to the expectation value and the total varihe measurement interaction on the system may be deter-

ance is equal to the sum of the variance in the system and tnﬁined by mixing the final state density matric,ég(K) ac-

squared uncertainty of the measurement. di hei . istical wei
It is important to understand that the additional fluctua-cOrding to their respective statistical weigipteA),

tions in the measurement result do not correspond to addi- S
tional noise in the system. Instead, increasing the noise in the ’Bf(mtab:f dAp(A)E»f(A)
measurement result decreases the noise introduced in the sys-

tem according to the uncertainty principle. After the mea- L
surement, the system state will have changed to zf dAP s7(A) piPEA(A). (1)
—\_ s This density matrix represents the system between the mea-
[1(A)) = (K)P5A(A)|¢'>' ©) surement interaction and the readout of the measurement re-
P sult. It therefore describes tHaverage noise effect caused

This is still a pure state. The extent to which it differs from by the measurement interaction. In particular, the elements
the initial state is determined both by the decomposition of the density matrix that describe coherence between eigen-

the initial state] ;) in terms of eigenstates @, and by the States ofA are reduced by
uncertainty§A? of the measurement. For very large uncer-

.. . . 2
tainties, the changes in the system state are only wealk, illus- - _ _ (A1—Az) -
trating the low level of noise in the measurement interaction. (Aalpy(totah|Az)=ex 85A2 (AdlpilAa),
For infinitely precise measurements, the properties of the (12)

generalized measurement operator correspond to the proper-

ties of the_ projection operator. The projgctive measuremenyhere|A,) and|A,) are eigenstates @ with eigenvalues of
postulate is thus reproduced WA—0. Since most actual A, andA,, respectively. Thus there is a gradual decrease of
measurements have a finite resolution, however, the generaipherence depending only on the separation of the eigenval-
ized measurement operat®pa(A) provides a more realistic uesA; andA,. The Gaussian dependence of the suppression
description of measurements than the original projection postactor on the difference of the eigenvalues indicates that the
tulate. Discussions of quantum-mechanical phenomena majecoherence effect is extremely sensitive to the relationship
be simplified considerably by accepting the validity of the between the eigenvalue differenp®, — A,| and the resolu-
generalized measurement postulate without requiring the fottion SA of the measurement. Indeed, the decoherence factor
mal derivation given above. In particular, the relationshipis greater than 0.88 fdA; — A,|<SA and lower than 0.14
between the measurement information obtained and the noiser |A,— A,|>465A. This rapid transition from almost no
introduced in the measurement can be investigated in fagecoherence to almost complete decoherence corresponds to
greater detail, directly revealing fundamental properties othe notion that the ability to distinguish the eigenvaldgs

the operator formalism in the measurement data. Note that ignd A, requires decoherence between the corresponding
the following, the generalized measurement postulate will bejgenstates. If the separation of eigenvallids—A,| is
applled without further reference to the actual physical inteHarge' even a very weak measurement that otherwise pre-
action by which the measurement res@ilis obtained. The serves microscopic coherences will destroy the coherence
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between the eigenstates Af and A,. It is therefore much The measurement may be interpreted as a two-step pro-
more difficult to preserve the quantum coherence betweeness. In the first step, decoherence is caused by the physical
states with quantitatively different physical properties than tanteraction between the system and the measurement setup,

preserve coherence between quantitatively similar Statea'\anging the density matrix from, to p(total). In the sec-

[19]. ond step, information about the system is obtained without

Since Eq.(11) makes no reference to the measurememfa\ny(additiona} interaction. This step may actually occur far

resuIF ac.tually qbta!ned, I r_epresents only the eﬁectg Qaway from the system. While the first step involves well-
physical interaction involved in the measurement. Thus it is| .. .

. o . defined physical processes, the second step relates to a
equivalent to a description of decoherence in open system

interacting with an unknown environment. However, in thecﬁwange in the probabilistic expression of the system state due

case of a quantum measurement, the meter takes the pIaceth'morm""“On gam.ed abOl_{t the system. Eq.uaﬁbh) shows
the environment, and the meter information is recovered ithat the total density matrip(total) can be interpreted as a
the measurement. Consequently, it is not possible to averaggixture of all possible final density matricgs(A), so it is

over the meter state, and interpretational problems related tﬁossible to consider the change frgntotal) to p;(A) as a

the entanglement of system and meter can arise as S00N &jection of a reality that existed before the information was

the actual information obtained in the measurement is COMaptained. It therefore seems that the classical separation of

sidered. Specifically, the measurement readout requires Fformation and physical interaction has been preserved.

interpretation ofp(total) as a mixture corresponding to the Lo o
different possible measurement results, while the simpler all_—|owever, the properties gfg(total) have been modified by

ternative of assuming random phase noise in the coherenége degoherence n step 1, and |t_|s |mp_oss_;|ble to remove this
bet , tates Af b q step without violating the uncertainty principle. In particular,
etween eigenstates afcannot be recovered. the entanglement between system and meter ensures that the

noise introduced into the system can never be compensated
Ill. SEPARATION OF INFORMATION AND NOISE once a measurement readout is obtained.

A. Formal separation

The total effect of a measurement resultof SA on the B. Simulation of noise-free measurements
density matrix elementA,|p;|A,) is given by Eq.(10). In

. ) N The only difference between the classical measurement
terms of matrix elements of the eigenstatesiat reads y

situation and the quantum-mechanical situation is the uncer-
1 tainty in the measurement interaction. Except for the re-
_— quired relationship between decoherence and measurement
V27 SA%p(A) resolution, the two measurement steps can be separated. In a
— classical situation, the noise added in the measurement inter-
Xexp( _ (At A2 A] action is both undesirable and avoidable. It is assumed that
25A2 the information obtained in the measurement refers to a re-
ality of A that exists as an element of reality regardless of the

(Aqlpi(A)| A=

wexd — (A1—Ay)? (A |A-|A ) measurement. By examining the quantum-mechanical ver-
85A2 Lpilf sion of a noise-free measurement, it is possible to find out
- “what is wrong with these classical elements of reality”
1 [(Aj+A,)2—A]? [20].
- V27 6A2p(A) exp ~ 2 5A2 The procedure for selecting a subensemble density matrix

R E)f(A) from the total density matriﬁb(total) described by Eq.
X(Aq|ps(total)|Az). (13 (11) can be applied directly to the initial density matfix. It
is then possible to reverse the actual sequence of steps in the
Since the effect of decoherence given in Efjl) can be  measurement process in order to investigate the changes in
identified with the Gaussian factor changing the matrix elethe system state caused by the information obtained before
ment of the initial density matriyp; to the corresponding quantum noise is added. In a noise-free measurement, the

matrix element ofp;(total), the remaining factor should de- initial density matrixp; is decomposed in analogy with Eq.
scribe the effect of a noise-free measurement. This factorizg41),

tion of the decoherence factor and the factor associated with

the measurement result obtained allows an unambiguous

separation of information and noise in quantum measure- ;,i:J dAP(A)py(A). (14)
ments, even though these two aspects are connected by the

requirements of the uncertainty relations. It is therefore pos-

sible to overcome the uncertainty limitations and to examine R

the structure of quantum-mechanical reality which is hiddenlhe matrix elements of the density matyix(A) describing
beneath the noise. the effects of measurement without noise then read
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C. lllustration of negative probabilities in a two-level system

R 1
(Alpm(A)|Ag) = ———e— At this point, a specific example should help to illustrate
2mOATP(A) the case of negative probabilities after the measurement. If
the system concerned is a sgirsystem system described by
the two orthogonal eigenstates of tEgcomponent,|+Z>
and|—2Z), then all physical properties can be described in
terms of the operators of the spin components,

1 _2
[Eun+Aa—A}

xXexp 5 5A2

X(AdlpilA2). (15) i
s=3(1+2)(=Z|+[-2)(+2)),

Indeed, the statistical weight factor modifying the density

matrix looks harmless enough. The matrix element is en- i

hanced or suppressed depending on the closeness of the av- fe,y: —=(|+2Z{(=2Z]-|-2)(+Z]),
erage quantum numbeA(+ A,)/2 of the matrix element to 2

the measurement result. This effect would correspond to
the classically expected modification iA{+A,)/2 were
somehow to represent tHelassical value of A associated
with the matrix element. However, the matrix element indi- o o ] ~
cates a coherent superposition of two different eigenvaluelf the initial state is given by the eigenstate gf with the
A, andA, of A. Therefore the modification of its statistical eigenvalue+ 3, | +X), then the initial density matrix reads
weight should be represented by separate contributions from

A; andA,. Since this is not so, however, a serious problem~ _ ; vy _ B
arises concerning the relation pi=z(+ 20+ 2|+ -2} (= Z|+[+Z)(-Z|+| Z><+%|1)9')

s,=3 (| +2)(+Z|-|-2)(-Z)). (18)

(A1l ol A2)(Agl prnl ALy < (Aq] prol AL) (Agl prml As), The probabilityp(s,) of obtaining a measurement result of

's,+ &8s, can be determined according to EJ) using the
corresponding generalized measurement operator. It reads
which guarantees that all probabilities obtained as expecta-

tion values of the density matriixm are positive. Condition

s 2
(16) is fulfilled only if p(s) = B O R
“ J2mss?|2 2682

Adlpil A2)(As| pil A Ai—A,)? s, 2

( 1|f7|| 2 2|f’|| l><exp< (A 22) 17 +Eex (5, +112)

(Adlpil Ar)(Aal pil A) 46A 2 2582

— —

Thus the decoherence factor of E¢2) and(13) reappears ! exn — s;t1/4 cos 52 . (20
in a requirement that can be fulfilled only if the coherence of N 25s? 25

the density matrixp; is sufficiently low. If the coherence of

pi is high, however, conditiorf16) is violated and conse- Spin quantization clearly emerges in this probability distri-
quently negative probabilities are obtained for some of thébution if s, is smaller thans. The noise-free part of the
possible coherent superpositions of the eigensf#tgsand  measurement changes the density matrix to

|A2).

The difference between quantum mechanics and classical _
physics thus emerges as the measurement information ob- .~ — 1 S,
tained at low resolution is not only information on eigenval- Pm(sz)_z cost@;z/Z&si) ex 2553

I-2)(-Z|

ues of A, but also on the average values of off-diagonal o
matrix elements. Negative probabilities arise naturally, be- S,
cause there may be no possible eigenvalues corresponding to Texp - 2552
(A1+A,)/2. Nevertheless, measurement results close to Sz
(A1+A,)/2 indicate that the coherent contribution of the cor- p(
+ex

|+2Z)(+Z|

responding off-diagonal matrix element is greater than that
of the associated diagonal elements. In classical physics, the
reality of A would be well defined. In the quantum formal-

|+2)(~Z|

8652

ism, however, the eigenvalues,éfrepresent only an incom-

e _ ' [=2)(+2
plete description of the reality of the operator variaBle

. (21

8652
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(3.) L 1 s,
pilsy)= = exp = |1+2)(+Z|
3 2 coslis,/28s%) 2552
+ 2 |=Z)(~Z|+|+Z){~Z]|
exp — —Z){— -
2652
=1 0 1 Az
: : (e} +|-2)(+2]]. 23
The expectation values given by this density matrix read

=

o1 s,
(5)1==/1—tankf| —= |,
2 2552
FIG. 1. lllustration of the expectation values of the séimys- z
tem after the noise-free measuremesitipse and after the com-

plete measuremerttircle) for a measurement uncertainty 6§, <Sy>f:O|
1

=5.

-1 s,
This density matrix violates conditiofl7) and predicts (sz)f=§tan}‘<2552), (24)
negative probabilities for several spin directions. The nega- z

tive probabilities can be illustrated by the expectation values - . . ~
; as shown in Fig. 1. In particular, the expectation valus,of
of the spin components,

f0r§2=0 is reduced tg. Thus, quantum noise is necessary
in order to “cover up” any negative probabilities and any

2 . . .. . .
(5 exp(1/85s;) excessive expectation values arising in the noise-free formal-
™2 costts,/2552) ism.
1 1 ;Z D. Interpretation of negative probabilities
=_-ex 1—tanif , _ .
2 8535 2 § The example above shows that negative probabilities can

compensate the decoherence caused by the noisy measure-
. ment interaction. It could therefore be said that negative
(Sy)m=0, probabilities represent nonclassical information beyond the
limits of uncertainty. Indeed, the density matpy, may be
— “purer” than a pure state. The trace of the square of a pure
~ 1 Sz state density matrix is 1. For a mixed state, it is smaller than
(Sz>m__tan AN (22) ~ . .
2 27s, 1. Forp.,, however, it may indeed be greater than 1. Thus,

with the purity P,, of p,, defined as

Figure 1 shows the expectation values in ¥zeplane for a pm:tr{;ﬁq}, (25)
measurement uncertainty és2= . Except at(s,)=0, the o
length of the average spin vector is larger tHarndicating  the density matrixp,(s,=0) given in the example of Sec.

negative probabilities. In particular, a result sf=0 in- !l C above has a purity of

creases the expectation valueloin s, to 3 exd1/(85s2)]. 11 1

This corresponds_ to a pro_bability gr(_e_ater than 1 [forX) Pm(gz:0)= Z+lex 51 (26)
and a corresponding negative probability ferX). Note that 2 2 46s;

this result seems to be related to the observation of spin
components larger than the permitted eigenvalue limit rewhich is greater than 1 in all cases. Note that there is no
ported in[8], even though actual measurements of the spirupper limit toP,(0). However, its increase does depend on

componens, are not considered in the present context.  the decrease in the likelihood of observisg=0.

Of course, negative probabilities cannot be observed in a Note that the “superpurity” of the noise-free density ma-
measurement. They represent a statistical tool which is COnRrix ;)m Corresponds to the classical notion that any new in-
nected with the unavoidable presence of quantum noise. Ifbrmation gained about a physical system should reduce the
order to recover the final density matpx(s,) after the mea- uncertainty of the state. Therefore, obtaining information
surement, quantum noise must be added. This reduces tladout any state has to increase the purity of this state. Nega-
coherence to normal levels, resulting in the pure state densityve probabilities allow such an increase in purity even for a
matrix pure state. While “superpure” states are of course unphysi-
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cal by themselves, they can be used to provide a local inter- C(K2'<B>)=K2<é)—x2<é>

pretation of entanglement. In particular, entangled states can ’

always be interpreted as a mixture of “superpure” product - — A

states. Classical probability theory then explains why en- :f dAp(A)Tr{ps(A)B}A

tanglement cannot be utilized to transfer information instan- R )

taneously without physical interaction. Thus, the generalized —Tr{p¢(tota B}[ SA>+Tr{py(tota) A%}].

measurement operator may explain the physical nature of (28)

entanglement in a far more intuitive way than the conven-

tional formalism. By solving the integral oveA, the correlation may be ex-
The change in the density matrix caused by a quantumressed entirely in terms of expectation values of the final

measurement can now be compared with the changes causgdte density matrip(total). It reads

by information obtained about a classical probability distri-

bution. A classical noise-free measurement can change the C(AZ(B))=1(A%B+2ABA+BA?)(total)
statistics of physical properties only if the corresponding R R
properties are correlated with the measured variable. In the —(A?)(total)(B)(total). (29

example given in Sec. lll C, however, the statisticépﬁre . . . ~
changed by the measurement even though the initial state RNceB does not necessarily commute wit this correla-
tion can be nonzero even if the system is in an eigenstate of

an eigenstate of, . Classically, a well-defined variable can- - . .
not be correlated with any other variable. By introducingA' In the case ofAthe sE)léu-system discussed above, the
negative probabilities, however, this situation is changed. IRnticommutation o§, ands, is responsible for the result that
the case above, the measurement reduc_es the expectation CIR (3= — (2. (total (3. tot 30
value ofs, to a very low value if a value o, close to the (S7:(8) = =(sz)s(totah{s)y(tota). (30
quantized values oft 3 is observed. On the other hand, |nthe case ofs,—, or when removing the noise effect
negative probabilities appear &, is close to the average from the measurement, the final density matrix can be re-
between the two quantized values. The original pure state iglaced with the initial state. It is then possible to obtain non-
retained if one averages over all measurement results, aro correlations betweesy ands, even for the eigenstates
shown by Eq.(14). Thus, there is a statistical correlation of 5 . This result suggests that the physically relevant value
between the spin componesyt and the spin compones},  of s, is not even well defined for eigenstatesyf In the
which may be expressed by averages over the measuremeérds of the famous Einstein-Podolsky-RoS&PR paper

results?Z and the expectation valuééx) after the measure- [21], the fact that the outcome of é;g measurement can be
ment as predicted with certainty does not mean that there exists an
element of reality corresponding to thimtential measure-
L ment result, unless the measuremenadsually performed.
§§<§X> —§§<§x>= —1(s). (277 The s, fluctuations of an eigenstate sf are revealed in the

noise-induced changes sf, if any property other thars,
interacts with the environment.

In words, the measurement of a quantized vaIue%zofs
correlated with the nonvanishing possibility of a negative F. Negative probabilities and quantization

value ofs, , while the measurement of a valuegfbetween One of the fundamental consequences of quantum me-
the quantized values is correlated with a negative probabilitghanics is the replacement of continuous classical variables
for 5,<0, indicating that such negative values are “moreWith discrete quantum numbers. In particular, the compo-
than impossible.” nents of angular momentum have eigenvalues equal to mul-
tiples of # and the energies of harmonic oscillators or wave
modes have eigenvalues equal to multiples of One of the
E. Nonclassical correlations as fundamental operator strangest features of quantum mechanics is the inconsistency
this introduces into classical arguments. For example, it

. . should be necessary to conclude thats,ifis equal to+ %
Usually, entanglement is analyzed in terms of operator y G q 2

. AR
properties. In particular, nonclassical features of spista-  2nd sy is equal tOiilv Sx+ sy should be equal to zero or
tistics can often be traced to the anticommutation of the spint 1. However, the eigenvalues sf+s, are =1/y2. It is

components. Using the generalized projection operatothis contradiction of classical arguments based on quantized

|55A(K), it is possible to derive an analytical expression forv_alues that is exploited in the formulation of Bell's inequali-

. o A . ties[22]. Usually, one tries to escape the dilemma by arguing
the correlation ofs; and(s,) given in Eq.(27). In geneElI, that the classical meaning of the quantized observable is lost

the correlation between the squared measurement &éult completely. Alternatively, however, one could assume that
and a variableéB after the measurement is given by eigenvalues damot represent all physical values of the ob-

properties
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servable. The observation of quantized values in precise IV. CONCLUSIONS
measurements could instead be explained as a fundamental

statistical effect based on the presence of negative probabilh—1ent process based on a separation of information and noise

ties and quantum correlat|ons._ . is possible. This separation corresponds exactly to the clas-
In the example above, the eigenvaluespire*1. How-  sical notion of a reality unchanged by the measurement in-
ever, there is a correlation betweshands, which suggests ~teraction. However, negative probabilities appear in the mea-

some measure of physical reality for fluctuationssin es-  surement decomposition of the initial density masixinto

pecially for the possibility of nonquantized values nsar the conditioned density matrices, given by Eq.(14). These

—0. In the case of light field quantization, the same prin_negatlve probab_llltles represent a type of _nonclasswal infor-

ciples can be applied to quantum nondemolition measurelation only available in quantum-mechanical systems. They

ments of photon numbdi23], revealing high phase coher- are responsible for the failure of measurement—mdependent

ence at half-integer photon numbers and low phasgoncegi]Of |Og"’.‘t| Feﬁ!gylsﬂf‘h tatsh'thi one p;roposclad n thle'EPR
. aper[21], and it is likely that this type of nonclassical in-

gggsergggenaounézg;grﬁfg ir;]u?;?zrrséigf (;Z%?ﬁ.u:?rg:g;g rmation is also responsible for the advantages of quantum

i tat A ved i babiliti mputing as compared with classical computing. Moreover,
quantum states are not resolved, negative probabllilies anfle negative probabilities are directly related to quantization

quantum correlations are hidden by the remaining uncefjisei since they arise from correlations that distinguish be-
tainty in the observed variable. If quantization is resolvedyyeen the observation of quantized values and the observa-
quantum correlations modify the statistics of all variablestion of values between two quantized eigenvalues of the ob-
that do not commute with the observed variable. Such correseryaple.
lations can only be interpreted in terms of negative probabili- These results clearly show that there is much more to
ties. However, quantum noise “covers up” the negativequantum measurements than the observation of eigenvalues.
probabilities. Nevertheless, negative probabilities can be obPossibly, the main interpretational problem in quantum mea-
served indirectly in nonclassical correlations. surement theory is the assumption that physical variables
Recently, the question of what truly characterizes the difshould be restricted to their eigenvalues. However, negative
ferences between classical physics and quantum physics hpgobabilities and the real physical consequences of measur-
been raised in a new context regarding the potential of quaring a value between two eigenvalues seem to indicate that
tum computerg24,25. It seems that on the quite technical the effective physical properties of a variable are not re-
level represented, e.g., by NMR quantum computation, thé&tricted to eigenvalues only. Instead, some measure of physi-
statistical relationships between those operator variables agal reality should be attributed to the continuum of values
tually utilized are far more important than observable inde-P€tween and even beyond the eigenvalues. In particular, the
pendent concepts such as entanglement. Possibly, contempi-diagonal matrix elements of the density matrix can be
rary quantum theory has paid too little attention to theassomatedlwnf.] the average of the two associated eigenval-
observable properties of quantum systems. By interpretin es, even if this average does not correspond to any actugl
guantum mechanics in terms of nonclassically correlated 0b_|genvalue. Quan_tum coherence can then be und_erstood n
servables, a smooth transition between the classical regi &rms of nonclassical correlations beltween the physical prop-
and the quantum regime is possible and the problem of su riies of a system. Thus the_ generalized measurement postu-
denly having to change the vocabulary from physical prop-‘_ate represents an opportunity for devel_opmg new interpreta-
erties to Hilbert spaces can be avoided. Quantum propertié&onal concepts in quantum theory which may allow us to

can then be explored within a framework similar to that ofiMprove our intuitive understanding of the physical nature of

classical physics, with the main quantum correction originat—quamurn effects.

ing from the nonclassical correlations possible due to the
appearance of negative probabilities. It should then be pos-
sible to identify the correlations required for quantum com- The author would like to acknowledge support from the

In conclusion, a physical interpretation of the measure-
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