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Nonclassical correlations of photon number and field components in the vacuum state
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It is shown that the quantum jumps in the photon nuntbéom zero to one or more photons induced by
backaction evasion quantum nondemolition measurements of a quadrature compofémé vacuum light
field state are strongly correlated with the quadrature component measurement results. This correlation corre-
sponds to the operator expectation va4&é§<) which is equal to one-fourth for the vacuum even though the
photon number eigenvalue is zero. Quantum nondemolition measurements of a quadrature component can thus
provide experimental evidence of the nonclassical operator ordering dependence of the correlations between
photon number and field components in the vacuum state.

PACS numbd(s): 42.50.Dv, 42.50.Lc, 03.65.Bz

. INTRODUCTION x of the light field are discussed and a general measurement

o _operatorP 5 (x,,) describing a minimum noise measurement

One of the main differences between quantum mechanicg; 5 resolution ofx is derived. In Sec. Il the measurement
and classical physics is the impossibility of assigning well-gnerator is applied to the vacuum field and the measurement
defined values to all physical variables describing a systenytatistics are determined. In Sec. IV the results are compared
As a consequence, all quantum measurements necessarily {jith fundamental properties of the operator formalism. In
troduce noise into the system. A measurement which onl\sec. V an experimental realization of photon-field coinci-
introduces noise in those variables that do not commute witllence measurements is proposed and possible difficulties are
the measured variable is referred to as a quantum nondemdiscussed. In Sec. VI the results are interpreted in the context
lition (QND) measuremertl]. In most of the theoretical and of quantum state tomography and implications for the inter-
experimental investigatiorj2—8], the focus has been on the pretation of entanglement are pointed out. In Sec. VIl the
overall measurement resolution and on the reduction of fluckesults are summarized and conclusions are presented.
tuations in the QND variable as observed in the correlation
between the QND measurement results and a subsequent de- || QND MEASUREMENT OF A QUADRATURE
structive measurement of the QND variable. However, at fi- COMPONENT
nite resolution, quantum nondemolition measurements do not
completely destroy the original coherence between eigen- Optical QND measurements of the quadrature component
states of the QND variablg9,10]. By correlating the QND  Xs of a signal modes=xs+iys are realized by coupling the
measurement result with subsequent destructive measursignal to a meter moday, =Xy +iyy in such a way that the
ments of a noncommuting variable, it is therefore possible tqyuadrature componert, of the meter mode is shifted by an

determine details of the measurement induced decoheren(ciﬂ10unt proportional to the measured signal variaigleThis

[11]. . measurement interaction can be described by a unitary trans-
In particular, QND measurements of a quadrature COMPOformation operator

nent of the light field introduce not only noise in the conju-

gated quadrature component, but also in the photon number N PR

of a state. By measuring a quadrature component of the Usm=exp(—i2fxsym), @
vacuum field, “quantum jumps” from zero photons to one

or more photons are induced in the observed field. It igvhich transforms the quadrature components of meter and
shown in the following that, even at low measurement resosignal to

lutions, the “quantum jump” events are strongly correlated

with extremely high measurement results for the quadrat_ure UgixsUsy=Xs,

component. This correlation corresponds to a nonclassical

relationship between the continuous field components and

~_qa o~ -
the discrete photon number, which is directly related to fun- UswysUsw=Ys—fywm,
damental properties of the operator formalism. Thus, this 2
experimentally observable correlation of photon number and UsixmUsy=Xu+ fXs,

fields reveals important details of the physical meaning of
guantization. AT -
In Sec. Il QND measurements of a quadrature component UsmymUsmu=Ym -
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x ;*iz/a The measurement operatfé{(xM) multiplies the probability
?11]81331 v Y Ol\l/{g;flft amplitudes of thexs eigenstates with a Gaussian statistical
? OPA weight factor given by the difference between the eigenvalue
/ \ / Xs and the measurement resy|j /f. By defining
Beam Beam 1
splitter* splitter* Xm:?XM ,
\ / \ ®
OPA - 1
Meter Signal oX=—,
input I — ar output 2f
y—yla

the measurement readout can be scaled, so that the average

- results correspond to the expectation valu&@f The nor-
o7F1 malized measurement operator then reads

* beam splitter reflectivity R =

FIG. 1. Schematic illustration of the measurement setup for a R
back action evasion quantum nondemolition measurement of a ~ 2 (Xm—Xs)2
quadrature component using optical parametric amplifileRAS. P sx(Xm) = (2mox°)expg — Tas2 |
Note that the reflectivity of the beam splitters depends on the am-

plification achieved in the parametric down-conversion process._ . . . .
The coupling factor for the measurement is given by (a This operator describes an ideal quantum nondemolition

—1)/a. measurement of finite resolutiofx. The probability distri-
bution of the measurement resuktg is given by

In general, the unitary measurement interaction operator

Ugy creates entanglement between the signal and the meter P(X) = (D |5§3<(Xm)|‘1’s>

by correlating the values of the quadrature components. Such

(6)

an entanglement can be realized experimentally by squeezing 1 (Xg— Xy)?
the two mode light field of the signal and meter using optical 2—2] dxsexp ————— [(xgl @)
parametric amplifier6OPAS [6—8]. The measurement setup V2 oX 26x

is shown schematically in Fig. 1. Note that the backaction 7)
changingxs is avoided by adjusting the interference between

the two amplified beams. Therefore, the reflectivity of theTys the probability distribution of measurement results is
beam splitters depends on the amplification. A contmuou%quaﬂ to the convolution ofxg®<)|? with a Gaussian of

adjustment of the coupling factdr would require adjust- : : 2
ments of both the pump beam intensities of the OPAs and th\égrlanceéx. The corresponding averages >, andx, are

reflectivities of the beam splitter as given in Fig. 1. given by
If the input state of the meter is the vacuum field state,

|[vacy, and the signal field state is given b$s), then the J _ 2
entangled state created by the measurement interaction is dXXimP (Xm) = (Pl Xs| Ps),
given by (8)
Usul®s;vac = J dxsdxy(Xg P )Xy — FXgvao) | xs; Xy f AXXGHP (X)) = (D[ XE| D) + X
1/4
:j dXSdXM<_) exd — (xy— fx9)?] The mea}sure_m_ent readoyt, ther_efore represent_s the actual
™ value ofxg within an error margin oft §x. The signal state

X(xg| Do) |Xs:Xm)- 3) after the measurement is given by

Reading out the meter variablg, removes the entanglement

by destroying the coherence between states with different | ps(Xm)) = —=——==P s (Xm)| ). 9
Xum - It is then possible to define a measurement operator VP(Xm)
P;(xy) associated with a readout ®f; , which acts only on A
the initial signal statéds). This operator is given by Since the quantum coherence between the eigenstates of
. . is preserved, the system state is still a pure state after the
(X Pr(xm)|Pg) = (Xs;Xm|Usnu| Ps;vag measurement. The system properties which do not commute
0\ U4 with §<S are changed by the modified statistical weight of
= (— exf — (Xy — fxg)?]{xg Pg). each eigenstate component. Thus the physical effect of noise
™ in the measurement interaction is correlated with the mea-

(4) surement information obtained.
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. MEASUREMENT OF THE VACUUM FIELD y
If the signal is in the vacuum stafeac), then the mea-
surement probability is a Gaussian centered aroxpe 0
with a variance oféx?+ 1/4,
P () = p( n 10
Xm) = exp — .
™ 2m(xC+ 114 2(5x2+1/4) 0.25
The quantum state after the measurement is a squeezed st ,
given by \ ~0.25 0 025
' X
)= [ axg w225 )
Xm) ) = Xg| m————
s 8\ T 1+40x?
y 1+46x2 xm |’ o
expg — Xg— Xg).
aox2 \"% 144sx2] |7°
11

The quadrature component averages and variances of this

state are FIG. 2. Visualization of the field fluctuations before and after
the measurement for a measurement resolutio®oef 0.5 and a
measurement result of,,=—0.5. The contours shown mark the

<;(S>x = L, standard deviation of the Gaus;ian noise distributions. The circle
m14+46x2 represents the vacuum fluctuations. After the measurement the
component is shifted by,,/2=—0.25 and the fluctuations xare
“ squeezed by a factor of 2. The fluctuations ity are increased by
<yS>Xm: 0, a factor of 2 by the noise introduced in the measurement.
(12
2 . “
s QO ()= [ | [ (e, PO
" ™ 1+406x°
5 —( J dXX2 P (Xm)
(32 (92, =
m m 165X2

x( f dxm<ﬁS)XmP(xm)). (14

Examples of the phase-space contours before and after tll?

measurement are shown in Fig. 2 for a measurement resqu—CCOrdlng to Egs(10) and(13), this correlation is equal to

tion of 6x=0.5 and a measurement resultxgf= — 0.5. Note 1
that the final state is shifted by only half the measurement C(x3;(Ng)y )= 5 (15)
result. "

The photon number expectation value after the measure%— . .
o . ~ 52 It read or measurements of the vacuum state. This result is inde-
ment is given by the expectation values@fandys. It reads pendent of the measurement resolution. In particular, it even

applies to the low resolution limit 0dx— e, which should
leave the original vacuum state nearly unchanged. It is there-

~ _ /32 o2 _ = . ; :
<nS>><m_<XS>><m+<yS>><m 2 fore reasonable to conclude that this correlation is a funda-
mental property of the vacuum state, even though it involves
1 X2 nonzero photon numbers.
(13

= + :
166x%(1+46x%)  (1+46x%)?
IV. CORRELATIONS OF PHOTON NUMBER AND

. FIELDS IN THE OPERATOR FORMALISM
The dependence of the photon number expectation value

<ﬁs>xm after the measurement on the squared measurement Since the measurement readaytrepresents information

result x2, describes a correlation between field componengbout operator variables of the system, it is possible to
and photon number defined by express the correlatioﬁ‘,(xfn;<ns>xm) in terms of operator
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expectation values ofs andng. Equation(8) shows how the by I SR, )
average ovex, can be replaced by the operator expectation ©(Xmi(Ns)x,)=| 5 {XsNs* NeXSay—(Ns)akXg)av| + 5 -

value(x2). Likewise, the average over the producix@fand (20
<ns>xm can F’e transformed into an operator expression. Th%ince the additional correlation gf does not depend on the
transformation reads measurement resolutiodx, it should not be interpreted as a
result of the measurement dynamics. Instead, the derivation
J dXm X2(Ng)x P(Xm) above reveals that it originates from the operator ordering in
m

the quantum-mechanical expression for the correlation. Since
R it is the noncommutativity of operator variables that distin-
(vadxs)(Xg/ng/Xs) guishes quantum physics from classical physics, the contri-

(xg+x8)?
= f dxsdxg( N Y NG
bution of 3 is a nonclassical contribution to the correlation of

4

(Xg—XL)? photon number and fields. Specifically, it should be noted
><<xé|vac>exp( — S—;> that the classical correlation of a well-defined variable with
80X any other physical property is necessarily zero. Only the

1 guantum-mechanical properties of noncommutative variables

- J dxm(—(§<§ﬁs+ 2XgNeXs+ NeXZ)y allow nonzero correlations of photon number and fields even
4 m if the field mode is in a photon number eigenstate. The op-

erator transformation thus reveals that the correlation

+5x2<ﬁs)xm> P(Xpm)- (1)  C(xG:(ns)x ) of § found in measurements of the vacuum
state is a directly observable consequence of the nonclassical
The average expectation value of photon number after theperator order dependence of correlations between noncom-

measurement is given by muting variables.
<nS>av:f de<nS>me(Xm)- 7 V. EXPERIMENTAL REALIZATION: PHOTON-FIELD
COINCIDENCE MEASUREMENTS

Using the index av to denote averages over expectation val- The experimenta| setup required to measure the correla-
ues after the measurement, the correlat(b(xﬁl;<ﬁs>xm) tion between a QND measurement of the quadrature compo-
may be expressed by the average final-state expectation valent §<S and the photon number after the measurement is
ues as shown in Fig. 1. It is essentially identical to the setups used
in previous experimentf7,8]. However, instead of measur-
ing the x quadrature in the output fields, it is necessary to
perform a photon number measurement on the signal branch.
The output of this measurement must then be correlated the
—<ns>av<X§>av)- (19) output from the hoquyne detection Qf the meter bran;h.
The homodyne detection of the meter simply converts a high
_ _ . intensity light field into a currenty,(t), while the signal
The correlation observed in the measurement is thereforg,aqout produces discreet photon detection pulse. These
g.ive_n. by a particular ordereq product of operators. T_he mosﬁulses can also be described by a detection currgt),
significant feature of this operator product is thephich should be related to the actual photon detection events
XghgXs-term, in which the photon number operatog is by a response functioRg(7), such that
sandwiched between the field operatfogs The expectation
value.ofisﬁsis of an eigenstate afs dO('BS not factorize into =3 Re(t-t)), (21)
the eigenvalue ofig and the expectation value of, be- [

cause the field operators; change the original state into a
state with different photon number statistics. According to
the commutation relations,

- N AAaA A a
C(Xﬁq;<ns>xm):(Z<X%ns+zxsnsxs+ns>(§>av

wheret; is the time of photon detection evantAccording to

the theoretical prediction discussed above, each photon num-
ber detection event should be accompanied by an increase of
T | noise in the homodyne detection current of the meter. How-
XSnSXSZE(XSnS+ Nsxg) + 4 (19 ever, the temporal overlap of the signal currbgt) and the
increased noise in the meter currdgf(t) is an important

Therefore, the expectation valuefojﬁsis of a photon num- factor in the evaluation of the correlation. Due to the fre-
ber state is exactly 1/4 higher than the product of the eigenduency filtering employed, the meter mode corresponding to

| o d th i | Aﬁ Th lati a signal detection event is given by a filter function with a
value ofns and the expectation vaiue 5. 1he correlation — ;qp approximately equal to the inverse frequency resolu-

C(x5:(ng)x, ) may then be expressed by the final-state extion of the filter. For a typical filter with a Lorentzian line-
pectation values as width of 2y, the mode of interest would read
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3 2 0.35

ai:\/;J' dtexp(—ylt—t)a(t). (22) @
The actual meter readout should therefore be obtained by Pen) 0-28
mh 0.2

integrating the current over a time of abouy2For practical
reasons, it seems most realistic to use a direct convolution of Po(#m) 4 15
the meter current,, and the signal current, adjusting the 0.1
response functioRg(7) to produce an electrical pulse of

duration 24. A measure of the Correlatioﬁt(xrzn;<ﬁs>xm) O'OZ
can then be obtained from the current correlation -4 -2 0 2 4
N Tm
£ COxGing) ) =(ldhw)?— 1515, (239

where the factoré denotes the efficiency of the measure- 00141 (1)
ment, as determined by the match between the responst 0.012}
function Rg(7) and the filter function given by Eq22). 0.01
Moreover, the efficiency of the experimental setup may be 0.008
reduced further by the limited quantum efficiency of the de- Pos(em)
tector. 0.006

Fortunately, the requirement of efficiency for the experi- 0.004
ment is not very restrictive, provided that the measurement 0.002
resolution is so low that only few photons are created. In that o
case, the total noise average in the meter curigntis -4 -2 0 2 4
roughly equal to the noise average in the absence of a photor T

detection event, which is very close to the shot noise limit of ion of th baility distributi 1
the homodyne detection. However, the fluctuations of the "'C-3: S‘iparitl'or_‘? the proba ||tt3y Istr utuﬂ_(ﬁmzjo_tthe
time averaged currents within a time interval of abouy 1/ Measurement resulf, into a componen®o(xy,) associated with no
. . . guantum jump and a componeRt;(x,,) associated with a quan-
around a photon detection event in the signal branch corre:, :
. um jump to one or more phOtOﬂS at a measurement resolution of
spond to the fluctuations of the measurement vakyefor a

; ¢ h H ox=1. (a) shows bothP(x,,) andPy(x,,), which are only slightly
qua_ntum Jump event from zero p qtons to Qne P (_)ton. IrHifferent from each other(b) shows the difference given by the
particular, the measurement result(i) associated with a

i R A ’ quantum jump contributiorPq,(x). The total probability of a
photon detection event at tinteis approximately given by guantum jump apx=1 is 5.72%.

Xm(i)%Cf dtR(t—t;)1 (1), (24  P(xm) and Po(xy), even though the total probability of a
quantum jump to one or more photons obtained by integrat-

. : . ing Pgy(Xpy) is about 5.72% . The peaks of the probability
Whe_reC is a scaling 9°”S‘aﬂt which maps t_he current2 fluc distribution are close ta: 2, eight times higher than the fluc-
tuations of a vacuum input field onto ag, variance oféx-.

In the case of a photon detection event, however, the prot;yation ofx_S in the vacuum. The measurement f_Iuctuations
ability distribution over the measurement resutis(i) is  corresponding to a photon detection event are given by
given by the difference between the total probability distri-

bution P(Xm) _and th(_a partPo(X,) of_the pro.bability distri- f desznPQJ(Xm) 1
bution associated with no photons in the signal, =248

4

1
2+ \/1+ . ) ~35%2.

5X2
PQu(Xm) = P(Xm) = Po(Xm) f dXmPQa(Xm)
. . 26
=(vadP3 |vac) — (vad P 5|vac? (29
For 6x>1, this result is three times higher than the overall
average. Fovx=1, the ratio between the fluctuation inten-

1 X2,
exp — : i o .
2m(5x2+ 1/4) p( 2(6x2+1) sity of a deztgctlo_n event and the average fluctuation intensity
of 1/4+ 6x° is still equal to 2.65. In other words, the fluc-

/ 325x2 4 tuations of the measurement resulf nearly triple in the
- —ex;{ — 5 X2 ) . case of a quantum jump event. The corresponding increase in
m(1+86%?%)2 1+ X the fluctuations of the homodyne detection curignshould
(25)  be detectable even at low efficienciésMoreover, it does
not matter how many photon events go undetected, since the
Figure 3 shows the results for a measurement resolution aftio has been determined relative to the overall average of
ox=1, which is close to the experimentally realized resolu-the meter fluctuations. It is thus possible to obtain experi-
tion reported in[8]. There is only a slight difference in mental evidence of the fundamental correlation of field com-
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ponent and photon number even with a rather low overalfrom the results. It is therefore possible to deduce correla-

efficiency of the detector setup. tions between the field components and the field intensity
defined byl =x2+y2, which is the classical equivalent of
VI. INTERPRETATION OF THE QUANTUM JUMP Eq. (27). For the vacuum, the Wigner function reads
STATISTICS 2 1
What physical mechanism causes the quantum jump fromf dXSdYSXgWO(XSvyS)_( f dxsdysxaWo(Xs,Ys) | = 3
the zero photon vacuum to one or more photons? The rela- (30)
tionship between the photon number operator and the
guadrature components of the field is given by The correlation of andx3 is given by
~ 1 92 52 2 2
Nst 5 =XstYs. (27) C(xs;1)= dxsdysXslWo(Xs,Ys)
According to Eq(2) describing the measurement interaction,
gto a2 9 —( j dXsdysXéWo(Xs,ys))
the change in photon numbeg should therefore be caused

by the change itys caused by, ,
x( f dxsdstWO(xs,ys)>
UsunsUsw=ns—2fysym+ f2yp . (28)

Thus the change in the photon number does not depend ex- =C(Xqni(Ns)y,) = 3 (31)
plicitly on either the measured quadratutg or the meter

- ; 2,2 2 -
variableX,, . Nevertheless, the meter readout shows a strond hUS, the correlation betweér-xs+ys andxs described by
correlation with the quantum jump events. In particular, thethe Wigner distribution is also equal f In fact, the “in-
probability distribution of meter readout resuls, for a  tensity fluctuations™ of the Wigner function can be traced to
guantum jump to one or more photons shown in Fig. 3 haghe same operator properties that give rise to the correlations

peaks at values far outside the range given by the variance 8etween the field measurement result and the induced photon
the vacuum fluctuations of number. For arbitrary signal fields, the correlation between
S.

Moreover, the correlation between the readout and photo e squared measurement result and t'he photpn num.ber aiter
number after the measurement does not disappear in the e measurement can therefore be derived by integrating over

of low resolution @x— ). Rather, it appears to be a funda- e Wigner function of the signal field after the measurement

mental property of the vacuum state even before the meé@tg?ctmn acc&rdw‘\‘g :0 E.c2313‘|. tuations” of the Wi
surement. This is confirmed by the operator formalism, course he “intensity fluctuations= or the Yvigner

which identifies the source of the correlation as the expectaf-unCtlon cannot be observed directly, since any phase-

) ~ o~ A . . . . Insensitive determination of the photon number will reveal
tion value(xgnsxs). This expectation value is equal $0in e well-defined result of zero photons in the vacuum. Nev-

the vacuum, even though the photon number is zero. SinCgiheless even a low resolution measurement of the quadra-
the operator formalism does not allow an identification of the,

operator with the eigenvalue unless it acts directly on thgU"® components which Ieaves_the vziuz:uum state nea_rly un-

eigenstate, it is possible to find nonzero correlations even i¢hanged reveals a correlation ofs and ns which

the system is in an eigenstate of one of the correlated varforresponds to the assumption that the measured quadrature

ables. In particular, the action of the operatay on the  Xs contributes to a fluctuating vacuum energy. The quantum

vacuum state is given by jump itself appears to draw its energy not from the external
influence of the measurement interaction, but from the fluc-

tuating energy contributiorié. These energy fluctuations
could be interpreted as virtual or hidden fluctuations existing
only potentially until the energy uncertainty of the measure-
so the operataxs which should only determine the statistical ment interaction removes the constraints imposed by quanti-
properties of the state with regard to the quadrature compazation and energy conservation. In particular, energy conser-
nentxs changes the vacuum state into the one-photon stat&ation does require that the energy for the quantum jump is
The application of operators thus causes fluctuations in &rovided by the optical parametric amplification process.
variable even when the eigenvalue of that variable is wellCertainly theaverageenergy is supplied by the pump beam.
defined. However, the energy content of the pump beam and the
The nature of this fluctuation might be clarified by a com-meter beam cannot be defined due to the uncertainty prin-
parison of the nonclassical correlation obtained for fields angiple. The pump must be coherent and the measurement of
photon number in the vacuum with the results of quantunthe meter field componemnt, prevents all energy measure-
tomography by homodyne detecti¢h2,13. In such mea- ments in that field. If it is accepted that quantum-mechanical
surements, the photon number is never obtained. Rather, theality is somehow conditioned by the circumstances of the
complete Wigner distributiolV(Xs,ys) can be reconstructed measurement, it can be argued that the reality of the quan-

“ 1
Xglvao = §|nS: 1), (29
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tized photon number only exists if the energy exchange ogigenvalue of zero in the vacuum state as an element of
the system with the environment is controlled on the level ofreality independent of the measurement actually performed.
single quanta. Otherwise, it is entirely possible that theOne would then be forced to construct mysterious forces
vacuum energy might not be zero as suggested by the photatanging the photon number in response to the measurement
number eigenvalue, but might fluctuate according to the staresult. However, the operator formalism suggests no such
tistics suggested by the Wigner function. hidden forces. Instead, the reality of photon number quanti-
Even though it may appear to be highly unorthodox atzation depends on the operator ordering and thus proofs to be
first, this “relaxation” of quantization rules actually corre- rather fragile.
sponds to the noncommutativity of the operators, and may
help explain the seemingly nonlocal properties of entangle-
ment associated with the famous EPR para{lb4]. The
definition of elements of reality given by EPR read#," The change in photon number induced by a quantum non-
without in any way disturbing a system, we can predict withdemolition measurement of a quadrature component of the
certainty (i.e., with probability equal to unity) the value of a vacuum is strongly correlated with the measurement result.
physical quantity, then there exists an element of physicahn experimental determination of this correlation is possible
reality corresponding to this physical quantitylhis defini-  using optical parametric amplification in a setup similar to
tion of elements of reality assumes that the eigenvalues gfreviously realized QND measurements of quadrature com-
quantum states are real even if they are not confirmed iponentd7,8]. The observed correlation corresponds to a fun-
future measurements. In particular, the photon number of thdamental property of the operator formalism which allows
vacuum would be considered as a real number, not an opergenvanishing correlations between noncommuting variables
tor, so the operator correlatigisnsxs) should not have any even if the system is in an eigenstate of one of the variables.
physical meaning. However, the nonzero correlation of fields The quantum jump probability reflects the properties of
and photon number in the vacuum observed in the QNDntensity fluctuations corresponding to the vacuum fluctua-
measurement discussed above suggestsetiat the possi- tions of the field components. The total correlation of fields
bility of predicting the value of a physical quantity with cer- and photon number therefore reproduces the result that
tainty only defines an element of reality if this value is di-would be expected if there was no quantization. It seems that
rectly observed in a measuremeBgsed on this conclusion, guantum jumps are a mechanism by which the correspon-
there is no need to assume any ‘“spooky action at a disdence between quantum mechanics and classical physics is
tance,” or physical nonlocality, in order to explain Bell’'s ensured. The quantum jump correlation observable in the
inequalities[15]. Instead, it is sufficient to point out that experimental situation discussed above thus provides a link
knowledge of the wave function does not provide knowledgé)etween the discrete nature of quantized information and the
of the type of measurement that will be performed. In thecontinuous nature of classical signals. Finite resolution QND
case of sping systems, the quantized values of spin compo-neasurements could therefore provide a more detailed un-
nents are not a property inherent in the spin system, but gerstanding of the nonclassical properties of quantum infor-
property of the measurement actually performed. To assum@ation in the light field.
that spins are quantized even without a measurement does
not correspond to the implications of the operator formalism,
since it is not correct to replace operators with their eigen-
values. One of us(H.F.H) would like to acknowledge support
In the same manner, the correlation discussed in this pdrom the Japanese Society for the Promotion of Science
per would be paradoxical if one regarded the photon numbefJSPS3.

VII. SUMMARY AND CONCLUSIONS
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