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Nonclassical correlations of photon number and field components in the vacuum state
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It is shown that the quantum jumps in the photon numbern̂ from zero to one or more photons induced by

backaction evasion quantum nondemolition measurements of a quadrature componentx̂ of the vacuum light
field state are strongly correlated with the quadrature component measurement results. This correlation corre-

sponds to the operator expectation value^x̂n̂x̂& which is equal to one-fourth for the vacuum even though the
photon number eigenvalue is zero. Quantum nondemolition measurements of a quadrature component can thus
provide experimental evidence of the nonclassical operator ordering dependence of the correlations between
photon number and field components in the vacuum state.

PACS number~s!: 42.50.Dv, 42.50.Lc, 03.65.Bz
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I. INTRODUCTION

One of the main differences between quantum mecha
and classical physics is the impossibility of assigning we
defined values to all physical variables describing a syst
As a consequence, all quantum measurements necessar
troduce noise into the system. A measurement which o
introduces noise in those variables that do not commute w
the measured variable is referred to as a quantum nonde
lition ~QND! measurement@1#. In most of the theoretical and
experimental investigations@2–8#, the focus has been on th
overall measurement resolution and on the reduction of fl
tuations in the QND variable as observed in the correlat
between the QND measurement results and a subsequen
structive measurement of the QND variable. However, a
nite resolution, quantum nondemolition measurements do
completely destroy the original coherence between eig
states of the QND variable@9,10#. By correlating the QND
measurement result with subsequent destructive meas
ments of a noncommuting variable, it is therefore possible
determine details of the measurement induced decoher
@11#.

In particular, QND measurements of a quadrature com
nent of the light field introduce not only noise in the conj
gated quadrature component, but also in the photon num
of a state. By measuring a quadrature component of
vacuum field, ‘‘quantum jumps’’ from zero photons to on
or more photons are induced in the observed field. It
shown in the following that, even at low measurement re
lutions, the ‘‘quantum jump’’ events are strongly correlat
with extremely high measurement results for the quadra
component. This correlation corresponds to a nonclass
relationship between the continuous field components
the discrete photon number, which is directly related to fu
damental properties of the operator formalism. Thus,
experimentally observable correlation of photon number
fields reveals important details of the physical meaning
quantization.

In Sec. II QND measurements of a quadrature compon
1050-2947/2000/62~1!/013806~7!/$15.00 62 0138
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x̂ of the light field are discussed and a general measurem
operatorP̂dx(xm) describing a minimum noise measureme
at a resolution ofdx is derived. In Sec. III the measureme
operator is applied to the vacuum field and the measurem
statistics are determined. In Sec. IV the results are comp
with fundamental properties of the operator formalism.
Sec. V an experimental realization of photon-field coin
dence measurements is proposed and possible difficultie
discussed. In Sec. VI the results are interpreted in the con
of quantum state tomography and implications for the int
pretation of entanglement are pointed out. In Sec. VII
results are summarized and conclusions are presented.

II. QND MEASUREMENT OF A QUADRATURE
COMPONENT

Optical QND measurements of the quadrature compon
x̂S of a signal modeâS5 x̂S1 i ŷS are realized by coupling the
signal to a meter modeâM5 x̂M1 i ŷM in such a way that the
quadrature componentx̂M of the meter mode is shifted by a
amount proportional to the measured signal variablex̂S . This
measurement interaction can be described by a unitary tr
formation operator,

ÛSM5exp~2 i2 f x̂SŷM !, ~1!

which transforms the quadrature components of meter
signal to

ÛSM
21x̂SÛSM5 x̂S ,

ÛSM
21ŷSÛSM5 ŷS2 f ŷM ,

~2!

ÛSM
21x̂MÛSM5 x̂M1 f x̂S ,

ÛSM
21ŷMÛSM5 ŷM .
©2000 The American Physical Society06-1
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In general, the unitary measurement interaction oper
ÛSM creates entanglement between the signal and the m
by correlating the values of the quadrature components. S
an entanglement can be realized experimentally by squee
the two mode light field of the signal and meter using opti
parametric amplifiers~OPAs! @6–8#. The measurement setu
is shown schematically in Fig. 1. Note that the backact
changingx̂S is avoided by adjusting the interference betwe
the two amplified beams. Therefore, the reflectivity of t
beam splitters depends on the amplification. A continu
adjustment of the coupling factorf would require adjust-
ments of both the pump beam intensities of the OPAs and
reflectivities of the beam splitter as given in Fig. 1.

If the input state of the meter is the vacuum field sta
uvac.&, and the signal field state is given byuFS&, then the
entangled state created by the measurement interactio
given by

ÛSMuFS ;vac&5E dxSdxM^xSuFS&^xM2 f xSuvac&uxS ;xM&

5E dxSdxMS 2

p D 1/4

exp@2~xM2 f xS!2#

3^xSuFS&uxS ;xM&. ~3!

Reading out the meter variablexM removes the entanglemen
by destroying the coherence between states with diffe
xM . It is then possible to define a measurement oper
P̂f(xM) associated with a readout ofxM , which acts only on
the initial signal stateuFS&. This operator is given by

^xSuP̂f~xM !uFS&5^xS ;xMuÛSMuFS ;vac&

5S 2

p D 1/4

exp@2~xM2 f xS!2#^xSuFS&.

~4!

FIG. 1. Schematic illustration of the measurement setup fo
back action evasion quantum nondemolition measurement
quadrature component using optical parametric amplifiers~OPAs!.
Note that the reflectivity of the beam splitters depends on the
plification achieved in the parametric down-conversion proce
The coupling factor for the measurement is given byf 5(a2

21)/a.
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The measurement operatorP̂f(xM) multiplies the probability
amplitudes of thex̂S eigenstates with a Gaussian statistic
weight factor given by the difference between the eigenva
xS and the measurement resultxM / f . By defining

xm5
1

f
xM ,

~5!

dx5
1

2 f
,

the measurement readout can be scaled, so that the av
results correspond to the expectation value ofx̂S . The nor-
malized measurement operator then reads

P̂dx~xm!5~2pdx2!expS 2
~xm2 x̂S!2

4dx2 D . ~6!

This operator describes an ideal quantum nondemoli
measurement of finite resolutiondx. The probability distri-
bution of the measurement resultsxm is given by

P~xm!5^FSuP̂dx
2 ~xm!uFS&

5
1

A2pdx2E dxS expS 2
~xS2xm!2

2dx2 D z^xSuFS& z2.

~7!

Thus the probability distribution of measurement results
equal to the convolution ofz^xSuFS& z2 with a Gaussian of
variancedx. The corresponding averages ofxm and xm

2 are
given by

E dxSxmP~xm!5^FSux̂SuFS&,

~8!

E dxSxm
2 P~xm!5^FSux̂S

2uFS&1dx2.

The measurement readoutxm therefore represents the actu
value of x̂S within an error margin of6dx. The signal state
after the measurement is given by

ufS~xm!&5
1

AP~xm!
P̂dx~xm!uFS&. ~9!

Since the quantum coherence between the eigenstatesx̂S
is preserved, the system state is still a pure state after
measurement. The system properties which do not comm
with x̂S are changed by the modified statistical weight
each eigenstate component. Thus the physical effect of n
in the measurement interaction is correlated with the m
surement information obtained.

a
a

-
s.
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III. MEASUREMENT OF THE VACUUM FIELD

If the signal is in the vacuum stateuvac&, then the mea-
surement probability is a Gaussian centered aroundxm50
with a variance ofdx211/4,

P~xm!5
1

A2p~dx211/4!
expS 2

xm
2

2~dx211/4!
D . ~10!

The quantum state after the measurement is a squeezed
given by

ufS~xm!&5E dxSS p
4dx2

114dx2D 21/4

3expF2
114dx2

4dx2 S xS2
xm

114dx2D 2G uxS&.

~11!

The quadrature component averages and variances of
state are

^x̂S&xm
5

xm

114dx2
,

^ ŷS&xm
50,

~12!

^x̂S
2&xm

2^x̂S&xm

2 5
dx2

114dx2
,

^ ŷS
2&xm

2^ ŷS&xm

2 5
114dx2

16dx2
.

Examples of the phase-space contours before and afte
measurement are shown in Fig. 2 for a measurement res
tion of dx50.5 and a measurement result ofxm520.5. Note
that the final state is shifted by only half the measurem
result.

The photon number expectation value after the meas
ment is given by the expectation values ofx̂S

2 andŷS
2 . It reads

^n̂S&xm
5^ x̂S

2&xm
1^ ŷS

2&xm
2

1

2

5
1

16dx2~114dx2!
1

xm
2

~114dx2!2
. ~13!

The dependence of the photon number expectation v

^n̂S&xm
after the measurement on the squared measurem

result xm
2 describes a correlation between field compon

and photon number defined by
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C~xm
2 ;^n̂S&xm

!5E S E dxmxm
2 ^n̂S&xm

P~xm! D
2S E dxmxm

2 P~xm! D
3S E dxm^n̂S&xm

P~xm! D . ~14!

According to Eqs.~10! and ~13!, this correlation is equal to

C~xm
2 ;^n̂S&xm

!5
1

8
~15!

for measurements of the vacuum state. This result is in
pendent of the measurement resolution. In particular, it e
applies to the low resolution limit ofdx→`, which should
leave the original vacuum state nearly unchanged. It is the
fore reasonable to conclude that this correlation is a fun
mental property of the vacuum state, even though it involv
nonzero photon numbers.

IV. CORRELATIONS OF PHOTON NUMBER AND
FIELDS IN THE OPERATOR FORMALISM

Since the measurement readoutxm represents information
about operator variablex̂S of the system, it is possible to
express the correlationC(xm

2 ;^n̂S&xm
) in terms of operator

FIG. 2. Visualization of the field fluctuations before and aft
the measurement for a measurement resolution ofdx50.5 and a
measurement result ofxm520.5. The contours shown mark th
standard deviation of the Gaussian noise distributions. The ci
represents the vacuum fluctuations. After the measurement, tx
component is shifted byxm/2520.25 and the fluctuations inx are
squeezed by a factor of 1/A2. The fluctuations iny are increased by
a factor ofA2 by the noise introduced in the measurement.
6-3
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expectation values ofx̂S andn̂S . Equation~8! shows how the
average overxm

2 can be replaced by the operator expectat

value^x̂S
2&. Likewise, the average over the product ofxm

2 and

^n̂S&xm
can be transformed into an operator expression.

transformation reads

E dxm xm
2 ^n̂S&xm

P~xm!

5E dxSdxS8S ~xS1xS8!2

4
1dx2D ^vacuxS&^xSun̂SuxS8&

3^xS8uvac&expS 2
~xS2xS8!2

8dx2 D
5E dxmS 1

4
^ x̂S

2n̂S12x̂Sn̂Sx̂S1n̂Sx̂S
2&xm

1dx2^n̂S&xmD P~xm!. ~16!

The average expectation value of photon number after
measurement is given by

^n̂S&av5E dxm^n̂S&xm
P~xm!. ~17!

Using the index av to denote averages over expectation
ues after the measurement, the correlationC(xm

2 ;^n̂S&xm
)

may be expressed by the average final-state expectation
ues as

C~xm
2 ;^n̂S&xm

!5S 1

4
^x̂S

2n̂S12x̂Sn̂Sx̂S1n̂Sx̂S
2&av

2^nS&av̂ xS
2&avD . ~18!

The correlation observed in the measurement is there
given by a particular ordered product of operators. The m
significant feature of this operator product is t
x̂Sn̂Sx̂S-term, in which the photon number operatorn̂S is
sandwiched between the field operatorsx̂S . The expectation
value ofx̂Sn̂Sx̂S of an eigenstate ofn̂S does not factorize into
the eigenvalue ofn̂S and the expectation value ofx̂S

2 , be-

cause the field operatorsx̂S change the original state into
state with different photon number statistics. According
the commutation relations,

x̂Sn̂Sx̂S5
1

2
~ x̂S

2n̂S1n̂Sx̂S
2!1

1

4
. ~19!

Therefore, the expectation value ofx̂Sn̂Sx̂S of a photon num-
ber state is exactly 1/4 higher than the product of the eig
value of n̂S and the expectation value ofx̂S

2 . The correlation

C(xm
2 ;^n̂S&xm

) may then be expressed by the final-state
pectation values as
01380
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C~xm
2 ;^n̂S&xm

!5S 1

2
^x̂S

2n̂S1n̂Sx̂S
2&av2^nS&av̂ xS

2&avD1
1

8
.

~20!

Since the additional correlation of1
8 does not depend on th

measurement resolutiondx, it should not be interpreted as
result of the measurement dynamics. Instead, the deriva
above reveals that it originates from the operator ordering
the quantum-mechanical expression for the correlation. S
it is the noncommutativity of operator variables that dist
guishes quantum physics from classical physics, the con
bution of 1

8 is a nonclassical contribution to the correlation
photon number and fields. Specifically, it should be no
that the classical correlation of a well-defined variable w
any other physical property is necessarily zero. Only
quantum-mechanical properties of noncommutative variab
allow nonzero correlations of photon number and fields e
if the field mode is in a photon number eigenstate. The
erator transformation thus reveals that the correlat
C(xm

2 ;^n̂S&xm
) of 1

8 found in measurements of the vacuu
state is a directly observable consequence of the nonclas
operator order dependence of correlations between nonc
muting variables.

V. EXPERIMENTAL REALIZATION: PHOTON-FIELD
COINCIDENCE MEASUREMENTS

The experimental setup required to measure the corr
tion between a QND measurement of the quadrature com
nent x̂S and the photon number after the measuremen
shown in Fig. 1. It is essentially identical to the setups us
in previous experiments@7,8#. However, instead of measur
ing the x quadrature in the output fields, it is necessary
perform a photon number measurement on the signal bra
The output of this measurement must then be correlated
output from the homodyne detection of the meter bran
The homodyne detection of the meter simply converts a h
intensity light field into a currentI M(t), while the signal
readout produces discreet photon detection pulse. Th
pulses can also be described by a detection currentI S(t),
which should be related to the actual photon detection ev
by a response functionRS(t), such that

I S~ t !5(
i

RS~ t2t i !, ~21!

wheret i is the time of photon detection eventi. According to
the theoretical prediction discussed above, each photon n
ber detection event should be accompanied by an increas
noise in the homodyne detection current of the meter. Ho
ever, the temporal overlap of the signal currentI S(t) and the
increased noise in the meter currentI M(t) is an important
factor in the evaluation of the correlation. Due to the fr
quency filtering employed, the meter mode corresponding
a signal detection event is given by a filter function with
width approximately equal to the inverse frequency reso
tion of the filter. For a typical filter with a Lorentzian line
width of 2g, the mode of interest would read
6-4
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âi5AgE dt exp~2gut2t i u!â~ t !. ~22!

The actual meter readout should therefore be obtained
integrating the current over a time of about 2/g. For practical
reasons, it seems most realistic to use a direct convolutio
the meter currentI M and the signal currentI S , adjusting the
response functionRS(t) to produce an electrical pulse o
duration 2/g. A measure of the correlationC(xm

2 ;^n̂S&xm
)

can then be obtained from the current correlation

j C~xm
2 ;^n̂S&xm

!5~ I SI M !22I S
2 I M

2 , ~23!

where the factorj denotes the efficiency of the measur
ment, as determined by the match between the resp
function RS(t) and the filter function given by Eq.~22!.
Moreover, the efficiency of the experimental setup may
reduced further by the limited quantum efficiency of the d
tector.

Fortunately, the requirement of efficiency for the expe
ment is not very restrictive, provided that the measurem
resolution is so low that only few photons are created. In t
case, the total noise average in the meter currentI M is
roughly equal to the noise average in the absence of a ph
detection event, which is very close to the shot noise limit
the homodyne detection. However, the fluctuations of
time averaged currents within a time interval of about 1g
around a photon detection event in the signal branch co
spond to the fluctuations of the measurement valuesxm for a
quantum jump event from zero photons to one photon.
particular, the measurement resultxm( i ) associated with a
photon detection event at timet i is approximately given by

xm~ i !'CE dtR~ t2t i !I M~ t !, ~24!

whereC is a scaling constant which maps the current flu
tuations of a vacuum input field onto anxm variance ofdx2.
In the case of a photon detection event, however, the p
ability distribution over the measurement resultsxm( i ) is
given by the difference between the total probability dis
bution P(xm) and the partP0(xm) of the probability distri-
bution associated with no photons in the signal,

PQJ~xm!5P~xm!2P0~xm!

5^vacuP̂dx
2 uvac&2^vacuP̂dxuvac&2

5
1

A2p~dx211/4!
expS 2

xm
2

2~dx21 1
4 !
D

2A 32dx2

p~118dx2!2
expS 2

4

11dx2
xm

2 D .

~25!

Figure 3 shows the results for a measurement resolutio
dx51, which is close to the experimentally realized reso
tion reported in@8#. There is only a slight difference in
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P(xm) and P0(xm), even though the total probability of
quantum jump to one or more photons obtained by integ
ing PQJ(xm) is about 5.72% . The peaks of the probabili
distribution are close to62, eight times higher than the fluc
tuation of x̂S in the vacuum. The measurement fluctuatio
corresponding to a photon detection event are given by

E dxmxm
2 PQJ~xm!

E dxmPQJ~xm!

5
1

4
1dx2S 21A11

1

8dx2D '3dx2.

~26!

For dx@1, this result is three times higher than the over
average. Fordx51, the ratio between the fluctuation inten
sity of a detection event and the average fluctuation inten
of 1/41dx2 is still equal to 2.65. In other words, the fluc
tuations of the measurement resultxm nearly triple in the
case of a quantum jump event. The corresponding increas
the fluctuations of the homodyne detection currentI M should
be detectable even at low efficienciesj. Moreover, it does
not matter how many photon events go undetected, since
ratio has been determined relative to the overall averag
the meter fluctuations. It is thus possible to obtain expe
mental evidence of the fundamental correlation of field co

FIG. 3. Separation of the probability distributionP(xm) of the
measurement resultxm into a componentP0(xm) associated with no
quantum jump and a componentPQJ(xm) associated with a quan
tum jump to one or more photons at a measurement resolutio
dx51. ~a! shows bothP(xm) andP0(xm), which are only slightly
different from each other.~b! shows the difference given by th
quantum jump contributionPQJ(xm). The total probability of a
quantum jump atdx51 is 5.72%.
6-5



ra

ro
el
th

n
d

e

on
th

ha
e

to
lim
a-
e
m
ct

in
th
th
n
a

al
p

ta
n
e

m
an
um

,
d

la-
sity
f

to
ions
oton
en
after
over
ent

r
se-
al

ev-
dra-
n-

ature
um
nal
uc-
s
ing
re-
nti-
ser-
p is
ss.

.
the
rin-
t of
-

ical
the
an-

HOFMANN, KOBAYASHI, AND FURUSAWA PHYSICAL REVIEW A 62 013806
ponent and photon number even with a rather low ove
efficiency of the detector setup.

VI. INTERPRETATION OF THE QUANTUM JUMP
STATISTICS

What physical mechanism causes the quantum jump f
the zero photon vacuum to one or more photons? The r
tionship between the photon number operator and
quadrature components of the field is given by

n̂S1
1

2
5 x̂S

21 ŷS
2 . ~27!

According to Eq.~2! describing the measurement interactio
the change in photon numbern̂S should therefore be cause
by the change inŷS caused byŷM ,

ÛSM
21n̂SÛSM5n̂S22 f ŷSŷM1 f 2ŷM

2 . ~28!

Thus the change in the photon number does not depend
plicitly on either the measured quadraturex̂S or the meter
variablex̂M . Nevertheless, the meter readout shows a str
correlation with the quantum jump events. In particular,
probability distribution of meter readout resultsxm for a
quantum jump to one or more photons shown in Fig. 3
peaks at values far outside the range given by the varianc
the vacuum fluctuations ofx̂S .

Moreover, the correlation between the readout and pho
number after the measurement does not disappear in the
of low resolution (dx→`). Rather, it appears to be a fund
mental property of the vacuum state even before the m
surement. This is confirmed by the operator formalis
which identifies the source of the correlation as the expe
tion value^x̂Sn̂Sx̂S&. This expectation value is equal to14 in
the vacuum, even though the photon number is zero. S
the operator formalism does not allow an identification of
operator with the eigenvalue unless it acts directly on
eigenstate, it is possible to find nonzero correlations eve
the system is in an eigenstate of one of the correlated v
ables. In particular, the action of the operatorx̂S on the
vacuum state is given by

x̂Suvac&5
1

2
uns51&, ~29!

so the operatorx̂S which should only determine the statistic
properties of the state with regard to the quadrature com
nentxS changes the vacuum state into the one-photon s
The application of operators thus causes fluctuations i
variable even when the eigenvalue of that variable is w
defined.

The nature of this fluctuation might be clarified by a co
parison of the nonclassical correlation obtained for fields
photon number in the vacuum with the results of quant
tomography by homodyne detection@12,13#. In such mea-
surements, the photon number is never obtained. Rather
complete Wigner distributionW(xS ,yS) can be reconstructe
01380
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from the results. It is therefore possible to deduce corre
tions between the field components and the field inten
defined byI 5xS

21yS
2 , which is the classical equivalent o

Eq. ~27!. For the vacuum, the Wigner function reads

E dxSdySxS
4W0~xS ,yS!2S E dxSdySxS

2W0~xS ,yS! D 2

5
1

8
.

~30!

The correlation ofI andxS
2 is given by

C~xS
2 ;I !5E S E dxSdySxS

2IW0~xS ,yS! D
2S E dxSdySxS

2W0~xS ,yS! D
3S E dxSdxSIW0~xS ,yS! D

5C~xm
2 ;^nS&xm

!5
1

8
. ~31!

Thus, the correlation betweenI 5xS
21yS

2 andxS
2 described by

the Wigner distribution is also equal to18 . In fact, the ‘‘in-
tensity fluctuations’’ of the Wigner function can be traced
the same operator properties that give rise to the correlat
between the field measurement result and the induced ph
number. For arbitrary signal fields, the correlation betwe
the squared measurement result and the photon number
the measurement can therefore be derived by integrating
the Wigner function of the signal field after the measurem
interaction according to Eq.~31!.

Of course the ‘‘intensity fluctuations’’ of the Wigne
function cannot be observed directly, since any pha
insensitive determination of the photon number will reve
the well-defined result of zero photons in the vacuum. N
ertheless even a low resolution measurement of the qua
ture componentx̂S which leaves the vacuum state nearly u
changed reveals a correlation ofx̂S

2 and nS which
corresponds to the assumption that the measured quadr
x̂S contributes to a fluctuating vacuum energy. The quant
jump itself appears to draw its energy not from the exter
influence of the measurement interaction, but from the fl
tuating energy contributionx̂S

2 . These energy fluctuation
could be interpreted as virtual or hidden fluctuations exist
only potentially until the energy uncertainty of the measu
ment interaction removes the constraints imposed by qua
zation and energy conservation. In particular, energy con
vation does require that the energy for the quantum jum
provided by the optical parametric amplification proce
Certainly theaverageenergy is supplied by the pump beam
However, the energy content of the pump beam and
meter beam cannot be defined due to the uncertainty p
ciple. The pump must be coherent and the measuremen
the meter field componentx̂M prevents all energy measure
ments in that field. If it is accepted that quantum-mechan
reality is somehow conditioned by the circumstances of
measurement, it can be argued that the reality of the qu
6-6
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tized photon number only exists if the energy exchange
the system with the environment is controlled on the leve
single quanta. Otherwise, it is entirely possible that
vacuum energy might not be zero as suggested by the ph
number eigenvalue, but might fluctuate according to the
tistics suggested by the Wigner function.

Even though it may appear to be highly unorthodox
first, this ‘‘relaxation’’ of quantization rules actually corre
sponds to the noncommutativity of the operators, and m
help explain the seemingly nonlocal properties of entang
ment associated with the famous EPR paradox@14#. The
definition of elements of reality given by EPR reads ‘‘If,
without in any way disturbing a system, we can predict w
certainty (i.e., with probability equal to unity) the value of
physical quantity, then there exists an element of phys
reality corresponding to this physical quantity.’’ This defini-
tion of elements of reality assumes that the eigenvalue
quantum states are real even if they are not confirmed
future measurements. In particular, the photon number of
vacuum would be considered as a real number, not an op
tor, so the operator correlation^x̂Sn̂Sx̂S& should not have any
physical meaning. However, the nonzero correlation of fie
and photon number in the vacuum observed in the Q
measurement discussed above suggests thateven the possi-
bility of predicting the value of a physical quantity with ce
tainty only defines an element of reality if this value is
rectly observed in a measurement. Based on this conclusion
there is no need to assume any ‘‘spooky action at a
tance,’’ or physical nonlocality, in order to explain Bell
inequalities@15#. Instead, it is sufficient to point out tha
knowledge of the wave function does not provide knowled
of the type of measurement that will be performed. In t
case of spin-12 systems, the quantized values of spin comp
nents are not a property inherent in the spin system, b
property of the measurement actually performed. To ass
that spins are quantized even without a measurement
not correspond to the implications of the operator formalis
since it is not correct to replace operators with their eig
values.

In the same manner, the correlation discussed in this
per would be paradoxical if one regarded the photon num
an
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eigenvalue of zero in the vacuum state as an elemen
reality independent of the measurement actually perform
One would then be forced to construct mysterious for
changing the photon number in response to the measure
result. However, the operator formalism suggests no s
hidden forces. Instead, the reality of photon number qua
zation depends on the operator ordering and thus proofs t
rather fragile.

VII. SUMMARY AND CONCLUSIONS

The change in photon number induced by a quantum n
demolition measurement of a quadrature component of
vacuum is strongly correlated with the measurement res
An experimental determination of this correlation is possi
using optical parametric amplification in a setup similar
previously realized QND measurements of quadrature c
ponents@7,8#. The observed correlation corresponds to a fu
damental property of the operator formalism which allo
nonvanishing correlations between noncommuting variab
even if the system is in an eigenstate of one of the variab

The quantum jump probability reflects the properties
intensity fluctuations corresponding to the vacuum fluct
tions of the field components. The total correlation of fiel
and photon number therefore reproduces the result
would be expected if there was no quantization. It seems
quantum jumps are a mechanism by which the corresp
dence between quantum mechanics and classical physi
ensured. The quantum jump correlation observable in
experimental situation discussed above thus provides a
between the discrete nature of quantized information and
continuous nature of classical signals. Finite resolution Q
measurements could therefore provide a more detailed
derstanding of the nonclassical properties of quantum in
mation in the light field.
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