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Topological susceptibility in lattice QCD with two flavors of dynamical quarks
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We present a study of the topological susceptibility in lattice QCD with two degenerate flavors of dynamical
quarks. The topological charge is measured on gauge configurations generated with a renormalization group
improved gauge action and a mean field improved clover quark action at three values ofb56/g2 with four sea
quark masses at eachb. The lattice spacings at theseb ’s area'0.22, 0.16 and 0.11 fm at the physical up and
down quark mass, which are fixed by the physicalr meson mass. The study is supplemented by simulations of
pure SU~3! gauge theory with the same gauge action at 5 values ofb with lattice spacings 0.09 fm&a
&0.27 fm. We employ a field-theoretic definition of the topological charge together with cooling. For the
topological susceptibility in the continuum limit of pure SU~3! gauge theory we obtainx t

1/45197216
113 MeV

where the error shows statistical and systematic ones added in quadrature. In full QCDx t at heavy sea quark
masses is consistent with that of pure SU~3! gauge theory. A decrease ofx t toward light quark masses, as
predicted by the anomalous Ward-Takahashi identity for U~1! chiral symmetry, becomes clearer for smaller
lattice spacings. The cross over in the behavior ofx t from heavy to light sea quark masses is discussed.
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I. INTRODUCTION

The topological structure of gauge field fluctuations,
particular instantons, has been invoked to explain sev
important low energy properties of QCD, including th
breaking of axial U~1! symmetry and the large mass of th
h8 meson. Numerical simulations on a space-time latt
provide a nonperturbative tool for the study of these p
nomena beyond semiclassical approximations.

Lattice studies of the topological susceptibilityx t as a
measure of these fluctuations have been mostly carried
for pure gauge theory without the presence of dynam
fermions@1#. Recent determinations by various groups us
different methods have led to a consistent value in SU~3!
gauge theory ofx t

1/45200618 MeV @1#.
Sea quark effects on the topological susceptibility ha

been much less studied, although dynamical quarks are
pected to have a strong influence onx t leading to a complete
suppression for massless quarks. From the anomalous W
Takahashi identity for U~1! chiral symmetry, the topologica
susceptibility is predicted@2–4# to obey, for small quark
masses in the chirally broken phase,
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It is an interesting question to investigate whether lattice d
confirm a suppression consistent with Eq.~1!.

Pioneering attempts to calculatex t in full QCD @5–7#
were restricted to small statistics and were plagued by l
autocorrelation times. Progress in the simulation of f
QCD, as well as an increase of available computer powe
recent years, has enabled this question to be readdressed
a higher accuracy. A number of pieces of work have be
reported recently@8–13# coming to different conclusions
whether the topological susceptibility is consistent with t
prediction of Eq. ~1!. A common shortcoming in Refs
@8–12# is that they have been made at only one lattice sp
ing. Reference@13#, on the other hand, used only one ba
quark massamq at each coupling constantb.

In this article we attempt to improve on this status
calculating the topological susceptibility in full QCD wit
two flavors of dynamical quarks at four sea quark masse
each of three gauge couplings. We perform calculations
configurations of the CP-PACS full QCD project@14#. These
have been generated on the CP-PACS parallel computer@15#
using a renormalization group~RG! improved gauge action
@16# and a mean field improved Sheikholeslami-Wohlert c
ver quark action@17#. The efficacy of this choice of action
over the standard action has been demonstrated in Ref.@18#
by examining both the rotational symmetry of the sta
quark potential and the scaling behavior of light hadron m
ratios.

Preliminary results for the topological susceptibility bas
on a first analysis at our intermediate lattice spacing h
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TABLE I. Overview of full QCD simulations. The lattice spacinga is fixed by the vector meson mass at the physical quark mass
M r5768.4 MeV.

b L33T cSW a ~fm! La ~fm! k mPSa mPS/mV r 0 /a NMeas NSkip NBin

1.80 123324 1.60 0.2150~22! 2.580~26! 0.1409 1.15601~61! 0.807~1! 1.716~35! 650 10 1
0.1430 0.98267~89! 0.753~1! 1.799~13! 522 10 1
0.1445 0.82249~82! 0.694~2! 1.897~30! 729 10 1
0.1464 0.5306~17! 0.547~4! 2.064~38! 409 10 1

1.95 163332 1.53 0.1555~17! 2.489~27! 0.1375 0.89400~52! 0.804~1! 2.497~54! 681 10 1
0.1390 0.72857~68! 0.752~1! 2.651~42! 690 10 1
0.1400 0.59580~69! 0.690~1! 2.821~29! 689 10 1
0.1410 0.42700~98! 0.582~3! 3.014~33! 488 10 1

2.10 243348 1.47 0.1076~13! 2.583~31! 0.1357 0.63010~61! 0.806~1! 3.843~16! 800 5 10
0.1367 0.51671~67! 0.755~2! 4.072~15! 788 5 10
0.1374 0.42401~46! 0.691~3! 4.236~14! 779 5 10
0.1382 0.29459~85! 0.576~3! 4.485~12! 789 5 10
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been published in Ref.@8#. In this article we present the fina
analysis and results at all gauge couplings.

The identification of dynamical quark effects requires
comparison with pure SU~3! gauge theory where sea quar
are absent. We therefore supplement our study of topolog
full QCD by a set of simulations of SU~3! gauge theory with
the same RG-improved gluon action at a similar range
lattice spacings.

The outline of this article is as follows. In Sec. II we giv
details on numerical simulations and measurements of
topological charge. Results for the topological susceptibi
are presented in Sec. III where we discuss the continu
extrapolation in pure gauge theory, as well as the quark m
dependence in full QCD. Conclusions are summarized
Sec. IV.

II. COMPUTATIONAL DETAILS

A. Gauge configurations

Gauge configurations incorporating two degenerate
vors of dynamical quarks have been generated by the
PACS full QCD project. For gluons we employed an R
improved action@16# of the form

SRG5
b

6 H 3.648 (
x,m,n

Wmn
131~x!20.331(

x,m,n
Wmn

132~x!J ,

~2!

where W131 and W132 are the plaquette and rectangul
Wilson loop. For the quark part we adopted the clover qu
action @17# with a mean field improved clover coefficien
cSW5P23/4, and the plaquetteP calculated in perturbation
theory at one loopP5120.8412b21. This choice is based
on the observation that measured values of the plaquette^P&
are well approximated by the one-loop estimate@14# and that
cSW determined in this way is close to its one-loop val
@19#.

Three sets of gauge configurations have been generat
bare gauge couplingsb51.8, 1.95 and 2.1. The lattice spa
ings at theseb ’s are fixed by identifyng the vector meso
11450
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mass obtained at the physical quark mass point with
physicalr meson mass. We obtaina'0.22, 0.16 and 0.11
fm, respectively@14#. Lattices of sizeL33T5123324, 163

332 and 243348 have been used, for which the physic
lattice size remains approximately constant atLa'2.5 fm.
At eachb, runs are carried out at four values of the hoppi
parameterk chosen such that the mass ratio of pseudosc
to vector mesons takesmPS/mV'0.8, 0.75, 0.7 and 0.6.

In Table I we give an overview of the parameters a
statistics of the full QCD runs. Technical details concerni
the configuration generation with the hybrid Monte Ca
~HMC! algorithm and results for the light hadron spectru
are presented in Ref.@14#. Runs were made with a length o
4000–7000 HMC unit trajectories per sea quark mass.
pology measurements are made on configurations sepa
by 10 HMC trajectories atb51.8 and 1.95 and by 5 trajec
tories atb52.1. The number of measurementsNMeasand the
separationsNSkip are listed for each run in Table I.

We supplement the study of topology in full QCD b
simulations of pure SU~3! gauge theory with the RG
improved action of Eq.~2!. Configurations are generated at
values ofb with lattice spacings 0.09 fm&a&0.27 fm as
listed in Table II. For the three larger gauge couplings lattic
of size 84, 124 and 164 are used so that the physical lattic
size remains approximately constant atLa'1.5 fm. While
this is smaller than the sizes in the full QCD runs, it has be
a standard size employed in recent studies of topology
SU~3! gauge theory@20–23#. It has also been shown@22#
that the instanton size distribution does not suffer from s
nificant finite volume effects on a lattice of this size. For t
two smaller gauge couplings we keep lattices of size4.
Simulations are carried out with a combination of t
pseudo-heat-bath algorithm and the over-relaxation a
rithm mixed in a ratio1:4. Foreachb we create 500–2000
independent configurations separated by 100 iterations.

B. Topological charge operator

The topological charge density in the continuum is d
fined by
1-2
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TABLE II. Overview of pure SU~3! simulations. The lattice spacinga is determined usingAs5440 MeV.
The numbers in parentheses forNConf indicate the number of configurations used for potential measurem

b L33T a ~fm! La ~fm! sa2 r 0 /a NConf

2.047 8338 0.2726~19! 2.181~15! 0.3695~52! 1.8978~59! 500
2.110 8338 0.2439~10! 1.951~8! 0.2958~24! 2.1399~53! 1000
2.227 8338 0.1905~10! 1.524~8! 0.1805~19! 2.738~11! 2000
2.461 123312 0.1259~7! 1.511~9! 0.07885~90! 4.089~14! 900
2.659 163316 0.0931~9! 1.489~14! 0.04311~84! 5.556~30! 700~495!
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Q~x!5
1

32p2
emnrs Tr@Fmn~x!Frs~x!#, ~3!

and the total topological chargeQ is an integer defined by
the integrated form

Q5E d4x Q~x!. ~4!

On the lattice we use the field-theoretic transcription
this operator which has the standard form

Qst5(
xn

QL
P~xn!, ~5!

with the lattice charge density defined by

QL
P~xn!5

1

32p2
emnrs Tr@Cmn

P ~x!Crs
P ~x!#. ~6!

In this expression the field strength on the lattice is defin
through the clover leaf operatorCmn

P , schematically defined
in the upper line of Fig. 1.

An improved charge operator can be constructed by a
tionally calculating a rectangular clover leaf made out o
32 Wilson loopsCmn

R defined in Fig. 1, and combining them
to the charge density

QL
R~xn!5

2

32p2
emnrs Tr@Cmn

R ~x!Crs
R ~x!#. ~7!

The improved global charge is then defined through

Qimp5(
xn

$c0QL
P~xn!1c1QL

R~xn!%. ~8!

FIG. 1. Schematic definition of the clover leaf operators
lattice topological charge. The upper line shows the standard op
tor Cmn

P , while the lower line the rectangular clover leafCmn
R .
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The standard charge operator of Eq.~5! hasO(a2) dis-
cretization errors. With the choicec055/3 andc1521/12
@24,25# in Eq. ~8! the leading ordera2 terms are removed fo
classical instanton configurations and discretization err
becomeO(a4).

C. Cooling

The topological charge operators of Eqs.~5! or ~8! are
dominated by local fluctuations of gauge fields when m
sured on thermalized lattice configurations and their valu
generally noninteger. The cooling method@26# removes the
ultraviolet fluctuations by minimizing the action locall
while not significantly disturbing the underlying long-rang
topological structure.

In full QCD one might consider cooling with the full ac
tion including the fermionic part. We refrain from this be
cause it would lead to solutions of the classical equations
motion of the effective action, obtained by integrating o
fermion fields @27#. These are different from instanton
which are solutions of the classical equations of motion
the gauge action only. Moreover, cooling would become
non-local process.

In principle any lattice discretization of the continuu
gauge action can be used for smoothing gauge configurat
by cooling. However, lattice actions generally do not ha
scale invariant instanton solutions. The standard Wils
plaquette action discretization of a continuum instanton
lution with radiusr, for example, behaves fora!r!L as
@28#

Splaq5ScontH 12
1

5
~a/r!21O„~a/r!4

…J . ~9!

Under cooling with the plaquette action, instantons theref
shrink and disappear when the cooling is applied too long.
improve on this we use for cooling a gluon action of t
generic form

Scool5H c0 (
x,m,n

Wmn
131~x!1c1 (

x,m,n
Wmn

132~x!J , ~10!

where the coefficientsc0 and c1 satisfy the normalization
conditionc018c151. We employ the two choices

c055/3, c1521/12 ~11!

for the Lüscher and Weisz~LW! action, and

r
ra-
1-3
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c053.648, c1520.331 ~12!

for the RG improved action.
The tree-level improved Symanzik action by Lu¨scher and

Weisz@24,25# of Eq. ~11! has reduced the breaking of insta
ton scale invariance given by@28#,

SLW5ScontH 12
17

210
~a/r!41O„~a/r!6

…J , ~13!

while still not admitting stable instantons under cooling. F
the RG-improved action of Eq.~12! the sign of the leading
order term is changed@28#:

SRG5ScontH 11
2.972

5
~a/r!21O„~a/r!4

…J . ~14!

The flip of the sign leads to a local minimum of the acti
where stable lattice instantons can exist@29#.

FIG. 2. Topological charge distribution atb52.227 after vari-
ous numbers of cooling steps with the RG-improved action and
two definitions of the topological charge.~a! shows the whole dis-
tribution while ~b! is an enlargement of the first three peaks.
11450
r

Cooling with the RG-improved action or the LW actio
can lead to different values of the topological charge sin
instantons with a radius of the order of the lattice spacing
be either destroyed or stablized. The ambiguity is only
pected to vanish when the lattice is fine enough. We test
explicitly by using both actions for cooling and treat diffe
ences as a systematic error of the cooling method.

A cooling step consists of the minimization of the loc
action for three SU~2! subgroups at every link of the lattic
using the pseudo-heat-bath algorithm withb5`. We have
made 50 cooling steps for every configuration, measuring
topological charge after each step.

We have investigated the deviations from integer top
logical charge as a function of the number of cooling ste
the topological charge operator, and the coupling constan
our simulations of pure SU~3! gauge theory. In Fig. 2 we
show the distribution of the topological charge at the int
mediate gauge coupling ofb52.227. The distribution is
peaked at quantized but noninteger values ofQ. The peaks
are already well separated after 10 cooling steps and
widths of peaks further decrease with increasing the num
of cooling steps. At the same number of cooling steps, pe
are narrower for the improved charge operatorQimp than for

TABLE III. Ratio between the center of the peak of the top
logical charge distribution and the integer charge after 10/20
cooling steps with the RG-improved action. At missing numbers
clearly separated peak structure could be identified.

b Standard Q Improved Q

2.047 —/0.77/0.85 —/0.94/0.97
2.110 —/0.80/0.87 0.89/0.94/0.98
2.227 0.78/0.83/0.88 0.94/0.96/0.98
2.461 0.85/0.89/0.92 0.97/0.98/0.99
2.659 0.89/0.92/0.94 0.98/0.99/0.995

r FIG. 3. Expectation value of the topological charge squared
function of the number of cooling steps for two different coolin
actions.
1-4
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the naive formQst. Centers of peaks are located below i
teger values. Cooling and improvement of charge oper
move them closer to integers. In Table III we list the ra
between center of peaks and integer charge, found to be
dependent ofQ, for all gauge couplings and after 10, 20,
50 cooling steps with the RG-improved action. The ra
moves closer to unity with increasing gauge coupling,
creasing number of cooling steps and when the charge
erator is improved, showing that the difference from integ
is a finite lattice spacing effect. After 20 cooling steps, ce
ters of peaks ofQimp do not differ from the integer by more
than 6% even at the coarsest lattice spacing. Because o
superiority we only useQimp , rounded to the nearest intege
in the following.

In Fig. 3 we plot ^Q2& measured in pure SU~3! gauge
theory as a function of the number of cooling steps for
two cooling actions. Cooling with the two actions leads
quite different values of̂Q2& at coarser lattice spacings. Th
difference decreases with an increasing coupling cons
and almost vanishes on the finest lattice.

We quantify the difference between cooling with the tw
actions by calculating the linear correlation coefficient

r 5
^~Qimp

RG2Qimp
RG!~Qimp

LW 2Qimp
LW !&

A^~Qimp
RG2Qimp

RG!2&^~Qimp
LW 2Qimp

LW !2&
, ~15!

after 10, 20, or 50 cooling steps. For the evaluation of
~15! we substitute charges before rounding to integers. V
ues ofr are listed in Table IV. The correlation between t
pological charge after cooling with the RG-improved or t
LW action decreases with increasing number of cool
steps. Even at the coarsest lattice spacing and after 50 c

TABLE IV. Correlation coefficientr betweenQimp obtained af-
ter 10, 20 or 50 cooling steps with the RG-improved or the L
action.

b 10 steps 20 steps 50 steps

2.047 0.90~1! 0.86~1! 0.84~1!

2.110 0.923~5! 0.886~7! 0.871~8!

2.227 0.961~2! 0.942~3! 0.931~3!

2.461 0.991~1! 0.986~2! 0.982~3!

2.659 0.9982~5! 0.9978~7! 0.9970~9!
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ing steps, however, there is a strong correlation withr
50.84. With decreasing lattice spacingr approaches unity
and charges are highly correlated on the finest lattice. Th
features agree with our naive expectations.

Since ^Q2& has an approximate plateau after 20 cooli
steps we use this as a central value.^Q2& is listed for pure
SU~3! gauge theory in Table V and for full QCD in Table V
The first quoted error is statistical. The second error
presses the uncertainty of choosing the number of coo
steps by taking the largest difference between^Q2& after 20
cooling steps and after more cooling steps up to 50.

D. Full QCD time histories

Decorrelation of topology is an important issue in t
simulation of full QCD since the topological charge is one
the quantities which is expected to have the longest auto
relation with the HMC algorithm. In simulations with th
Kogut-Susskind quark action it was found that topologic
modes have a very long autocorrelation time@7,30#.

In Figs. 4, 5 and 6 we plot time histories ofQimp after 20
cooling steps calculated for our full QCD runs at all s
quark masses. Autocorrelation times are visibly small eve
the smallest quark masses. Forb51.80 andb51.95 the
topological charges measured on configurations separate
10 HMC trajectories are well decorrelated, and hence
integrated autocorrelation time is smaller than 10 trajec
ries. Correspondingly, errors are independent of the bin
when employing the binning method. Atb52.10, where the
charge is measured at every fifth HMC trajectory, we fi
integrated autocorrelation times of 5–6 configurations, c
responding to 25–30 HMC trajectories. This is compara
to, but somewhat smaller than, recent results reported for
Wilson @31# or the clover quark action@9#. For error esti-
mates throughout this paper we use bins of 10 configu
tions, corresponding to 50 HMC trajectories, atb52.10 and
no binning for the two other couplings.

A related issue is the ergodicity of HMC simulations.
Figs. 4, 5 and 6 we show histograms of the topologi
charge. They are reasonably symmetric around zero and
distribution can be approximately described by a Gauss
also plotted in the figures. Ensemble averages^Q&, listed in
Table VI, are consistent with zero or deviate at most th
standard deviations of statistical error atb52.1 and k
50.1374. We conclude that topology is well sampled in o
runs.
ate
TABLE V. Topological susceptibility in pure SU~3! gauge theory. For̂Q2& the first error is statistical, and the second error is an estim
of systematic error related to the choice of the number of cooling steps. Forx tr 0

4 the two errors and the statistical error ofr 0 are added in
quadrature.

Cool with RG-improved action: Cool with LW action:
b ^Q& ^Q2& x tr 0

4 ^Q& ^Q2& x tr 0
4

2.047 0.05~15! 12.07~69!~172! 0.0382222
132 0.00~13! 8.50(52)(280) 0.0269230

117

2.110 0.121~93! 8.61~39!~113! 0.0441220
121 0.054~82! 6.74(31)(238) 0.0345225

116

2.227 20.043(46) 4.24~13!~0! 0.0582220
120 20.042(43) 3.71(12)(218) 0.0509231

118

2.461 0.139~68! 4.12~21!~0! 0.0555229
129 0.123~66! 3.93(20)(24) 0.0530228

128

2.659 0.067~76! 4.08~22!~0! 0.0593234
134 0.073~76! 4.06(22)(21) 0.0590234

134
1-5
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TABLE VI. Topological susceptibility in full QCD. The meaning of the errors is the same as in Table V.

Cool with RG-improved action: Cool with LW action:
b k ^Q& ^Q2& x tr 0

4 ^Q& ^Q2& x tr 0
4

1.80 0.1409 0.41~44! 123.4~6.5!~111.9! 0.0258225
135 20.04(37) 87.9~4.6!(23.3) 0.0184219

118

0.1430 0.10~49! 125.1~7.8!~110.5! 0.0316222
134 0.20~40! 85.2(5.5)(23.2) 0.0215217

115

0.1445 0.46~40! 119.3~6.0!~110.7! 0.0371230
145 0.53~33! 77.7(4.2)(23.0) 0.0241222

120

0.1464 0.18~46! 85.0~5.9!~16.8! 0.0372238
148 0.20~38! 58.1(3.9)(20.7) 0.0254225

125

1.95 0.1375 1.09~52! 186.4~9.7!~110.7! 0.0553256
164 1.35~46! 148.5~8.4!~11.6! 0.0440246

146

0.1390 0.42~43! 127.0~6.5!~19.3! 0.0478239
152 0.27~39! 104.2(5.7)(20.6) 0.0393233

133

0.1400 20.33(39) 106.3~5.7!~18.3! 0.0514235
153 20.02(34) 78.4~4.4!~11.9! 0.0379227

128

0.1410 0.61~40! 76.5~4.7!~15.0! 0.0482236
148 0.27~37! 65.2~3.9!~11.4! 0.0411231

132

2.10 0.1357 0.96~88! 146.4~11.0!~16.8! 0.0481237
143 1.17~88! 137.4~10.6!~12.6! 0.0452236

137

0.1367 20.5(1.0) 150.7~16.6!~15.7! 0.0624269
173 20.6(1.0) 137.6~15.6!~13.4! 0.0570265

167

0.1374 22.52(81) 102.2~9.7!~13.3! 0.0496247
150 22.61~82! 98.0~9.7!~10.9! 0.0472252

152

0.1382 20.29(63) 56.5~5.6!~10.9! 0.0344234
135 20.33(61) 52.6~5.0!~10.5! 0.0321231

131
ti
in
e

h

s to
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E. Scale determination

To fix the scale we use the string tensions or the Sommer
parameterr 0 @32# of the static quark potential. Full QCD
values ofr 0 have been determined in Ref.@14# and are re-
produced in Table I. The analysis of the static quark poten
in pure SU~3! gauge theory of this work parallels the one
Ref. @14#. We lists andr 0 in Table II. The dependence of th
dimensionless string tensionAsa on the gauge coupling is
shown for pure SU~3! gauge theory in Fig. 7 together wit

FIG. 4. Time histories and histograms in full QCD atb51.80.
11450
al

previous results of Refs.@14,33,34#. Data are consistent with
previous determinations, and extend the domain of result
smaller values ofb.

We fit the string tension data of Fig. 7 using an ans
proposed by Allton@35#,

Asa5 f ~b! $11c2â~b!21c4â~b!4%/c0 ,

â~b![ f ~b!/ f ~b52.4!, ~16!

FIG. 5. Time histories and histograms in full QCD atb51.95.
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where f (b) is the two-loop scaling function of SU~3! gauge
theory,

f ~b!5S 6b0

b D 2b1/2b0
2

expS 2
b

12b0
D , b05

11

~4p!2
,

b15
102

~4p!4
. ~17!

We obtain the best fit at

c050.5443~97!, c250.390~38!, c450.049~12!,
~18!

with goodx2/NDF519.3/19. The fit curve plotted in Fig. 7
reproduces the data very well.

III. TOPOLOGICAL SUSCEPTIBILITY

A. Pure SU„3… gauge theory

The topological susceptibility

x t5
^Q2&

V
~19!

in pure SU~3! gauge theory is converted to the dimensionle
numberx tr 0

4 using measured values of the Sommer scaler 0

and is quoted in Table V. Statistical errors of^Q2& and r 0

FIG. 6. Time histories and histograms in full QCD atb52.10.
11450
s

FIG. 7. String tension in pure SU~3! gauge theory as a function
of the gauge coupling. Circles represent data from Refs.@14,33,34#
while squares are obtained in the present work. The solid line
resents a fit with Eq.~16!.

FIG. 8. Continuum extrapolation of the topological susceptib
ity in pure SU~3! gauge theory.
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and the systematic error related to the choice of the num
of cooling steps are added in quadrature.

We plot x tr 0
4 as a function ofa2/r 0

2 in Fig. 8. Results
obtained with the two cooling actions are significantly diffe
ent from each other at coarser lattice spacings. As expec
s
u

th

t
e-

r-

nd
a
ed

ch
is

io

e
g

a
ll

11450
er

d,

they move closer together toward the continuum limit. O
the finest lattice the difference almost vanishes. Since d
exhibit a curvature, we attempt continuum extrapolations
cluding the leading scaling violation term ofO(a2) and the
next higher order term ofO(a4). We obtain
x tr 0
45H 0.0570~43!10.049~61!a2/r 0

220.44~19!a4/r 0
4 cool withSRG,

0.0602~43!20.072~68!a2/r 0
220.19~22!a4/r 0

4 cool withSLW , ~20!

with x2/NDF52.2 and 1.4, respectively. Fit curves plotted in Fig. 8 follow the data well. In the continuum limitx tr 0
4 obtained

with the two cooling actions differ by about one standard deviation of statistics.
In Fig. 8 we also plotx t normalized by the string tension. Data behave similar to the one normalized byr 0. A continuum

extrapolation of the same form as above leads to

x t /s25H 0.0333~27!10.004~29!sa220.103~67!s2a4 cool withSRG,

0.0347~27!20.040~31!sa220.041~76!s2a4 cool withSLW , ~21!
tion

nd
ght
ncy

and
n,
at
ass

of
e

with x2/NDF51.5 and 0.8, respectively.
To set the scale we user 050.49(3) fm orAs5440(30)

MeV where the errors in parentheses are our estimate
uncertainty of these quantities which are not directly meas
able in experiments. Employingx tr 0

4 from cooling with the
RG-improved action as the central value, we obtain for
topological susceptibility in pure SU~3! gauge theory,

x t
1/45197~4!~20

13!~29
10!~12! MeV, ~22!

where the first error is statistical, the second is associa
with the uncertainty from the cooling action, the third r
flects the difference from usingr 0 or As to set the scale, and
the last comes from the uncertainty inr 0.

Our value ofx t
1/4 is in good agreement with recent dete

minations by several groups using different methods@20–23#
as well as with the Witten-Veneziano relation@36#, x t

5 f p
2 (mh8

2
1mh

222mK
2 )/2Nf'(180 MeV)4.

B. Full QCD

Topological susceptibilities obtained in full QCD runs a
normalized byr 0 measured for the same sea quark mass
collected in Table VI. In Figs. 9, 10 and 11 they are plott
as a function of (mPSr 0)2. As in pure SU~3! gauge theory,
data obtained with the two cooling actions differ from ea
other atb51.8 where the lattice is coarsest but are cons
tent with each other within error bars atb52.1. The quark
mass dependence is similar between the two cooling act
at all theb values.

For comparison we also plot in Figs. 9, 10 and 11 susc
tibilities in pure SU~3! gauge theory obtained by coolin
with the RG-improved action. In full QCDr 0 /a changes
together with the sea quark mass ormPSa in Table I. The
topological susceptibility in pure gauge theory is a decre
ing function of a2/r 0

2, and the value corresponding to fu
of
r-

e

ed

re

-

ns

p-

s-

QCD at the samer 0 /a is therefore not constant whenmPSa
changes. We take this into account by using the interpola
formula of Eq.~20! and the linear fit ofa/r 0 as a function of
(mPSa)2 in Ref. @14# and calculatex tr 0

4 at matching values
of r 0 /a. We arrive at the one standard deviation error ba
of the susceptibility in pure gauge theory plotted as the li
shaded area in Figs. 9, 10 and 11. An increasing tende
with decreasing quark mass is manifest atb51.8, whereas at
b52.1 the shaded error band is very flat.

FIG. 9. Topological susceptibility in full QCD atb51.80. The
light shaded region indicates the one standard deviation error b
for pure SU~3! gauge theory, cooled with the RG-improved actio
at corresponding values ofr 0. The darker shaded region starting
zero is the one standard deviation error band of the small m
prediction of Eq. ~24! evaluated with measured values
f PSa@(mPSa)2# andr 0 /a@(mPSa)2# while the dotted line is the sam
prediction evaluated with measured values off PSa and r 0 /a at
physical quark masses.
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The topological susceptibility in full QCD is consiste
with that of pure gauge theory at the heaviest quark mass
b51.8 and 1.95, but smaller by two standard deviations
b52.1. Values at intermediate quark masses are consis
or slightly smaller. At the smallest quark mass the topolo
cal susceptibility in full QCD is suppressed compared to
pure gauge value. The decrease is, however, contained w
15% or one to two standard deviations atb51.8 and 1.95,
which is marginal. A clearer decrease by 41%, correspond
to seven standard deviations, is observed atb52.1.

We investigate if the small suppression due to dynam
quarks at the two coarser lattice spacings is against expe
tions by comparing the behavior ofx t with the prediction of
Eq. ~1! for vanishing quark mass. Using the Gell-Mann
Oakes–Renner relation@37,38#

S5
f p

2 mp
2

4mq
, ~23!

FIG. 10. Topological susceptibility in full QCD atb51.95.
Symbols are the same as in Fig. 9.

FIG. 11. Topological susceptibility in full QCD atb52.10.
Symbols are the same as in Fig. 9.
11450
or
r
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with f p normalized to be 132 MeV in experiment, Eq.~1!
can be rewritten as

x tr 0
45

~ f PSr 0!2~mPSr 0!2

4Nf
1O~mPS

4 !. ~24!

In Ref. @14# pseudoscalar decay constantsf PSa and Sommer
scaler 0 /a have been determined for all gauge couplings a
fitted as functions of (mPSa)2. Using the fits we calculate the
one standard deviation error band of Eq.~24! and plot it as a
dark shaded area starting at zero in Figs. 9, 10 and 11.
plot the same prediction evaluated with measured value
f PSa and r 0 /a at physical quark masses as dotted line. D
ferences between the band and the line are of ordermPS

4 .
Sizable scaling violations inf PS have been observed in Re
@14# with f p5195(5) MeV (b51.8), 157~7! MeV (b
51.95) and 131~7! MeV (b52.1) if the scale is determined
by ther meson mass. Correspondingly, the slope of the p
diction Eq.~24! shows a variation withb.

The susceptibility in full QCD at the smallest quark ma
lie between the shaded band and the dotted line of Eq.~24!.
Interestingly, the smallest simulated quark masses ab
51.8 and 1.95 lie roughly in the region where the small m
prediction and pure SU~3! gauge theory cross. A stronge
suppression of the topological susceptibility atb52.1, on
the other hand, occurs at a quark mass somewhat below
crossing point. This may be an indication that the runs ab
52.1 reach quark masses where a suppression compar
pure SU~3! gauge theory can be expected. The exact loca
of the cross over region depends, however, on the magni
of higher order terms in Eq.~24! and the lattice value off PS.
Simulations at lighter quark masses will therefore be help
to clarify whether the interpretation described here is corre

IV. DISCUSSION AND CONCLUSIONS

We have studied the topological susceptibility as a fu
tion of quark mass and lattice spacing in two-flavor full QC
using a field theoretic definition of the topological char
together with cooling.

We have shown that an improved charge discretizat
can be defined which produces charges close to integers.
stability of lattice instantons differs between two actio
used for cooling, which leads to different values of the top
logical charge at coarse lattice spacings. We have confirm
that the difference decreases with decreasing lattice spa
and vanishes in the continuum limit. Our investigation
time histories of the topological charge in full QCD hav
shown that autocorrelations are reasonably short and tha
runs are long enough to sample topology well. These an
ses support our belief that systematic errors of the coo
method are kept under control, and that our lattice meas
ments indeed reflect topological properties of the QC
vacuum.

The quark mass dependence of the topological susce
bility x tr 0

4 in full QCD is found to be flat or even increas
with decreasing quark mass atb51.8 and 1.95, and a clea
decrease is only observed atb52.1. A comparison with pure
gauge theory at correspondingr 0 /a shows thatx tr 0

4 in full
1-9
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QCD is consistent with pure gauge theory at heavier qu
masses but suppressed at the lightest quark mass of
simulation. At the same time, the susceptibility at the light
quark masses are in agreement with the prediction of
anomalous Ward-Takahashi identity for U~1! chiral symme-
try for small quark masses when lattice values for the ps
doscalar decay constant are employed. These results su
that our lightest simulated quark masses lie around the t
sition region where a suppression due to sea quarks is
pected to set in.

Recently several alternative theoretical explanations h
been suggested as to why the topological susceptibility
lattice full QCD might appear less suppressed than expe
for small quark masses. It has been pointed out@39# that a
large enough volume withVSmq@1 @4# is necessary for Eq
~1! to be valid. Since we employ a large lattice size ofLa
'2.5 fm and quark masses withmq*40 MeV this condition
is always fulfilled. It has also been argued that subtle
et

.

a
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,

11450
rk
ur
t
e

u-
est
n-
x-

e
in
ed

s

exist in the flavor singlet lattice Ward-Takahashi identiti
when the Wilson or clover fermion action is employed
that counterterms are needed for the correct chiral beha
of the topological susceptibility@40#. Simulations at lighter
sea quark masses and further theoretical analyses are ne
to examine whether such an explanation is required for
derstanding the quark mass dependence ofx t in full QCD.
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