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Topological susceptibility in lattice QCD with two flavors of dynamical quarks
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We present a study of the topological susceptibility in lattice QCD with two degenerate flavors of dynamical
quarks. The topological charge is measured on gauge configurations generated with a renormalization group
improved gauge action and a mean field improved clover quark action at three vaie$frf? with four sea
quark masses at eagh The lattice spacings at thegés area~0.22, 0.16 and 0.11 fm at the physical up and
down quark mass, which are fixed by the physjcaheson mass. The study is supplemented by simulations of
pure SU3) gauge theory with the same gauge action at 5 valueg @fith lattice spacings 0.09 fma
=0.27 fm. We employ a field-theoretic definition of the topological charge together with cooling. For the
topological susceptibility in the continuum limit of pure &)Y gauge theory we obtaig/*=197"12 Mev
where the error shows statistical and systematic ones added in quadrature. In fuff,GE€beavy sea quark
masses is consistent with that of pure (SJUgauge theory. A decrease gf toward light quark masses, as
predicted by the anomalous Ward-Takahashi identity f@t)¢hiral symmetry, becomes clearer for smaller
lattice spacings. The cross over in the behaviogofrom heavy to light sea quark masses is discussed.
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I. INTRODUCTION 5 o
The topological structure of gauge field fluctuations, in Xt:N_fmq+ o(mg), X=—1lm lim{yyp). (1)

particular instantons, has been invoked to explain several Mg—0 Ve

|mpor.tant lOW. energy properties of QCD, including the It is an interesting question to investigate whether lattice data
breaking of axial W1) symmetry and the large mass of the . . ) .
confirm a suppression consistent with Ef).

7' meson. Numerical simulations on a space-time lattice Pioneering attempts to calculagg in full QCD [5—7]

provide a nonperturb_anve _tOOI for the_ stL!dy of these phe'vvere restricted to small statistics and were plagued by long
nomena beyond semiclassical approximations. autocorrelation times. Progress in the simulation of full
Lattice studies of the topological susceptibiligy as a CD, as well as an increase of available computer power in
measure of these fluctuations have been mostly carried odécent years, has enabled this question to be readdressed with
for pure gauge theory without the presence of dynamical higher accuracy. A number of pieces of work have been
fermions[1]. Recent determinations by various groups usingreported recently{8—13 coming to different conclusions
different methods have led to a consistent value iNZU whether the topological susceptibility is consistent with the
gauge theory oﬁ(tl’4=200i 18 MeV [1]. prediction of Eg.(1). A common shortcoming in Refs.
Sea quark effects on the topological susceptibility havg8—12] is that they have been made at only one lattice spac-
been much less studied, although dynamical quarks are e¥ig. Referencg13], on the other hand, used only one bare
pected to have a strong influence prieading to a complete quark massamy at each coupling constagt
suppression for massless quarks. From the anomalous Ward- In this article we attempt to improve on this status by
Takahashi identity for (1) chiral symmetry, the topological Calculating the topological susceptibility in full QCD with
susceptibility is predicted2—4] to obey, for small quark two flavors of dynamical quarks at four sea quark masses at
masses in the chirally broken phase, each of three gauge couplings. We perform calculations on
configurations of the CP-PACS full QCD projddt4]. These
have been generated on the CP-PACS parallel compliér
using a renormalization grouRG) improved gauge action
*Present address: Department of Physics, University of Waled,16] and a mean field improved Sheikholeslami-Wohlert clo-

Swansea SA2 8PP, U.K. ver quark actio{17]. The efficacy of this choice of action
"Present address: Physics Department, Columbia University, Newver the standard action has been demonstrated in[ R&if.
York, NY 10027. by examining both the rotational symmetry of the static
tpresent address: CERN, Theory Division, CH-1211 Geneva 23juark potential and the scaling behavior of light hadron mass
Switzerland. ratios.
$present address: Department of Biochemistry and Molecular Bi- Preliminary results for the topological susceptibility based
ology, University College London, London, England, U.K. on a first analysis at our intermediate lattice spacing have
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TABLE |. Overview of full QCD simulations. The lattice spacirgis fixed by the vector meson mass at the physical quark mass and
M,=768.4 MeV.
p

B L3xT Csw a (fm) La (fm) K MpA Mps/My ro/a Nmeas  Nskip  Nain

1.80 12x24 160 0.215@2 2.58026) 0.1409 1.1560(61) 0.8071) 1.71435) 650 10 1
0.1430 0.9826B9  0.7531) 1.79913) 522 10 1
0.1445  0.822482) 0.6942) 1.89130) 729 10 1
0.1464 0.5306L7) 0.5474) 2.06438) 409 10 1
1.95 16x32 153 0.15567) 2.48927) 0.1375 0.8940(2 0.8041) 2.49754) 681 10 1
0.1390 0.7285®8  0.7521) 2.65142) 690 10 1
0.1400 0.5958®9  0.6901) 2.82129 689 10 1
0.1410 0.4270®8  0.5823) 3.01433) 488 10 1

2.10 28x48 147 0.107@3) 2.58331) 0.1357 0.6301®1) 0.8061) 3.84316) 800 5 10
0.1367 0.516767) 0.7552) 4.07215) 788 5 10
0.1374  0.42406) 0.6913) 4.23614) 779 5 10
0.1382  0.2945@5  0.5763) 4.48512) 789 5 10

been published in Ref8]. In this article we present the final mass obtained at the physical quark mass point with the
analysis and results at all gauge couplings. physicalp meson mass. We obtam~0.22, 0.16 and 0.11

The identification of dynamical quark effects requires afm, respectively{14]. Lattices of size 3x T=12°x24, 16
comparison with pure S(@3) gauge theory where sea quarks X 32 and 24x 48 have been used, for which the physical
are absent. We therefore supplement our study of topology ifattice size remains approximately constant_at~2.5 fm.
full QCD by a set of simulations of SI3) gauge theory with At eachg, runs are carried out at four values of the hopping
the same RG-improved gluon action at a similar range oparametei chosen such that the mass ratio of pseudoscalar
lattice spacings. to vector mesons takesps/my~0.8, 0.75, 0.7 and 0.6.

The outline of this article is as follows. In Sec. Il we give  In Table | we give an overview of the parameters and
details on numerical simulations and measurements of thetatistics of the full QCD runs. Technical details concerning
topological charge. Results for the topological susceptibilitythe configuration generation with the hybrid Monte Carlo
are presented in Sec. lll where we discuss the continuunHMC) algorithm and results for the light hadron spectrum
extrapolation in pure gauge theory, as well as the quark masge presented in Ref14]. Runs were made with a length of
dependence in full QCD. Conclusions are summarized im000—7000 HMC unit trajectories per sea quark mass. To-

Sec. IV. pology measurements are made on configurations separated
by 10 HMC trajectories aB8=1.8 and 1.95 and by 5 trajec-
II. COMPUTATIONAL DETAILS tories atB=2.1. The number of measuremehig.,sand the
_ _ separationdNgy, are listed for each run in Table I.
A. Gauge configurations We supplement the study of topology in full QCD by

Gauge configurations incorporating two degenerate flasimulations of pure S(3) gauge theory with the RG-
vors of dynamical quarks have been generated by the CPmproved action of Eq(2). Configurations are generated at 5
PACS full QCD project. For gluons we employed an RG-Vvalues of 8 with lattice spacings 0.09 fma=<0.27 fm as
improved actior{16] of the form listed in Table Il. For the three larger gauge couplings lattices

of size &, 12* and 16 are used so that the physical lattice
B 1x1 1%2 size remains approximately constantlat~1.5 fm. While
SRG:E 3'64%§V Wi (%) _0'331;“:” Wi “(X) 1 this is smaller than the sizes in the full QCD runs, it has been
' o (2) a standard size employed in recent studies of topology in
SU(3) gauge theonf20-23. It has also been showf22]
where W1 and W*2 are the plaquette and rectangular that the instanton size distribution does not suffer from sig-

Wilson |Oop' For the quark part we adopted the C|over quarmificant f|n|te V0|ume effeCtS ona Iattice Of thIS Size. For the
action [17] with a mean field improved clover coefficient two smaller gauge couplings we keep lattices of siZe 8
csw=P ¥4 and the plaquett® calculated in perturbation Simulations are carried out with a combination of the
theory at one loofP=1-0.84128""1. This choice is based pseudo-heat-bath algorithm and the over-relaxation algo-
on the observation that measured values of the plag(iejte Tithm mixed in a ratiol:4. Foreachg we create 500—2000
are well approximated by the one-loop estindt4] and that independent configurations separated by 100 iterations.
csw determined in this way is close to its one-loop value
[19].

Three sets of gauge configurations have been generated at
bare gauge coupling8=1.8, 1.95 and 2.1. The lattice spac- The topological charge density in the continuum is de-
ings at these3’s are fixed by identifyng the vector meson fined by

B. Topological charge operator
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TABLE II. Overview of pure SU3) simulations. The lattice spaciregis determined using/o= 440 MeV.
The numbers in parentheses fdg,,s indicate the number of configurations used for potential measurement.

B L3xT a (fm) La (fm) oa? ro/a Neont
2.047 &Fx8 0.272619) 2.18115 0.369%52) 1.897859) 500
2.110 &Fx8 0.243910) 1.9518) 0.295824) 2.139953) 1000
2.227 Fx8 0.190%10) 1.5248) 0.180519) 2.73811) 2000
2.461 13x12 0.12597) 1.5119) 0.0788%90) 4.08914) 900
2.659 16x 16 0.09319) 1.48914) 0.0431184) 5.55630) 700495

1 The standard charge operator of Ef) hasO(a?) dis-
QX)= = €uipo TIF ,(X)F,6(X)], (3 cretization errors. With the choicgy=5/3 andc,=—1/12
32w [24,25 in Eq. (8) the leading ordea? terms are removed for

. . . _ classical instanton configurations and discretization errors
and the total topological charg® is an integer defined by becomeO(a%)

the integrated form

C. Cooling
Q= f d*x Q(x). 4

The topological charge operators of EES) or (8) are
] _ _ o dominated by local fluctuations of gauge fields when mea-
On the lattice we use the field-theoretic transcription ofsyred on thermalized lattice configurations and their value is

this operator which has the standard form generally noninteger. The cooling methf25] removes the
ultraviolet fluctuations by minimizing the action locally
Qst:E Qf(Xn), (5) while not significantly disturbing the underlying long-range
Xn topological structure.

In full QCD one might consider cooling with the full ac-
with the lattice charge density defined by tion including the fermionic part. We refrain from this be-
cause it would lead to solutions of the classical equations of
p p p motion of the effective action, obtained by integrating out
Qr(Xn)= @EWW TCL(X)Cpe(X)]. 6) fermion fields [27]. These are different from instantons
which are solutions of the classical equations of motion of
In this expression the field strength on the lattice is definedhe gauge action only. Moreover, cooling would become a

through the clover leaf operatmiy, schematically defined Nnon-local process. _ _ o _
in the upper line of Fig. 1. In principle any lattice discretization of the continuum

An improved charge operator can be constructed by addigauge a}ction can be used. for sm_oothing gauge configurations
tionally calculating a rectangular clover leaf made out of 1Py cooling. However, lattice actions generally do not have

. R . oo . scale invariant instanton solutions. The standard Wilson
2 Wilson lOOpSC’” defined in Fig. 1, and combining them laguette action discretization of a continuum instanton so-
to the charge density piag

lution with radiusp, for example, behaves fa<p<L as
) [28]
Q)= 5 €upo TLCLICL(01 () 1
Solaq™ Scont(l_ g(a/p)2+0((a/p)4)j. 9
The improved global charge is then defined through
Under cooling with the plaquette action, instantons therefore
o P i R _ shrink and disappear when the cooling is applied too long. To
Qimp xEn {CoQU(Xn) +C2QL(Xn)} ® improve on this we use for cooling a gluon action of the

generic form

P 1 :‘
=—1I
cho=pim{ EZI } scoo.={co > W) +ey w}f(x)], (10
X, u<v X, v
C§v=%lm{ + } where the coefficientg, and ¢, satisfy the normalization
conditioncy+8c,;=1. We employ the two choices
FIG. 1. Schematic definition of the clover leaf operators for Co=5/3, c;=—-1/12 (12)

lattice topological charge. The upper line shows the standard opera- )
tor CZV, while the lower line the rectangular clover Ieﬁﬁv. for the Luscher and WeiszLW) action, and
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Co=3.648, c;=-0.331 (12 TABLE IlI. Ratio between the center of the peak of the topo-
logical charge distribution and the integer charge after 10/20/50
cooling steps with the RG-improved action. At missing numbers no

for the RG improved action.
P clearly separated peak structure could be identified.

The tree-level improved Symanzik action bydamer and
Weisz[24,25 of Eq. (11) has reduced the breaking of instan-

ton scale invariance given 48], B Standard Q Improved Q
2.047 —/0.77/0.85 —/0.94/0.97
~ 17 . . 2.110 —10.80/0.87 0.89/0.94/0.98
Suw=Seon) 1= 575(@/p)"+ 0@/, (13 550y 0.78/0.83/0.88 0.94/0.96/0.98
2.461 0.85/0.89/0.92 0.97/0.98/0.99
while still not admitting stable instantons under cooling. For2.659 0.89/0.92/0.94 0.98/0.99/0.995

the RG-improved action of Eq12) the sign of the leading
order term is changel®8]:
Cooling with the RG-improved action or the LW action
972 can lead to different values of the topological charge since
Sre=Scontl 1+ ?(a/p)er O((a/p)4)] . (14 instantons with a radius of the order of the lattice spacing can
be either destroyed or stablized. The ambiguity is only ex-
pected to vanish when the lattice is fine enough. We test this
explicitly by using both actions for cooling and treat differ-
ences as a systematic error of the cooling method.
A cooling step consists of the minimization of the local

The flip of the sign leads to a local minimum of the action
where stable lattice instantons can eX29)].

280 AR Tt action for three S(2) subgroups at every link of the lattice
200  10steps 1 20steps 1 SOsteps using the pseudo-heat-bath algorithm wjgl=. We have
o 150 [ 1 1 made 50 cooling steps for every configuration, measuring the
S topological charge after each step.
S 100 | standard @ T T ] We have investigated the deviations from integer topo-
50 - 1 1 i logical charge as a function of the number of cooling steps,
" " | 1‘ the topological charge operator, and the coupling constant for
e e S VLIS L TR SRS RS Y i i i
our simulations of pure S@3) gauge theory. In Fig. 2 we
200 1 + . show the distribution of the topological charge at the inter-
o 150 | 1 1 1 mediate gauge coupling o8=2.227. The distribution is
3 ' peaked at quantized but noninteger valuefQofThe peaks
£ 100 L improved Q 1 T 1 are already well separated after 10 cooling steps and the
50 - 1 1 ] widths of peaks further decrease with increasing the number
u ll JJ l l of cooling steps. At the same number of cooling steps, peaks
0 oW A‘L;n o i 1 lu | ] .
6-4-20 2 4 6-4-202 4 6-4-20 2 4 6 are narrower for the improved charge operadday, than for
Q Q Q
050 120 | H;“,,;;mé;i;;i;;;ii;iiiimHmmm_
& [3
200 | 10steps | 20steps | 50 steps b)_ C 80Ff 6833§§§§§§§§§§§§D§§§§§§§§§§§§§§§§§§§Q§§§§§§§§§Q!
a0 LS . . . B=2.047
g 150 T T ] 8:0 a | ,,;;imimmmiimm;;i;mnm_
% 100 - standard Q 1 1 i ‘65 60 b gggggg§Q§§QQQQQQQQQ§§§§§§§§§§Q§§§§§§§§§§§§§QQ;
)k Tl B=2.110
50 - 4 4 4 4.0 T T ; ;
ol n o TN A AT J\ A g o e e e e
< 30+t ]
200 | T T 1 20 L PREET
g 150 1 1 _ < 4.0 [ 5o800833300028380023888000880000083800033880004
= = g -
= L improved Q 4 4 4 <~ 30 =
S 100 5o L8 : : : : B=2.462
50 + T T 1 4.0 | 328883333333508855333535008855883356888858533335%4
A ‘8 * cool with RG action 1
0 \ A A ) s Y 30¢ o | with LW .
o 1 2 0 1 2 o0 1 2 oo L 5 000l with LW action | N
Q Q Q o 10 20 30 40 50

. . . cooling step
FIG. 2. Topological charge distribution @=2.227 after vari-

ous numbers of cooling steps with the RG-improved action and for FIG. 3. Expectation value of the topological charge squared as a
two definitions of the topological chargé) shows the whole dis- function of the number of cooling steps for two different cooling
tribution while (b) is an enlargement of the first three peaks. actions.
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TABLE IV. Correlat.ion coefﬁcigntr beMeerpimp obtained af- ing steps, however, there is a strong correlation with
ter 10, 20 or 50 cooling steps with the RG-improved or the LW =(.84. With decreasing lattice spacimgapproaches unity

action. and charges are highly correlated on the finest lattice. These
features agree with our naive expectations.

B 10 steps 20 steps 50 steps Since(Q?) has an approximate plateau after 20 cooling
2.047 0.901) 0.861) 0.841) steps we use this as a central vali@?) is listed for pure
2110 0.92%5) 0.8867) 0.8718) SU(3).gauge theory in Tgble \% gnd for full QCD in Table VI.
2997 0.9612) 0.9473) 0.9313) The first quoted error is statlstlc'al. The second error ex-
2 461 0.9911) 0.9862) 0.9823) presses the.uncertalnty of qhoosmg the number of cooling
2 659 0.998%5) 0.99787) 0.997a9) steps by taking the largest difference betwé@?3) after 20

i ' ' i cooling steps and after more cooling steps up to 50.
the naive formQ,,. Centers of peaks are located below in- D. Full QCD time histories

teger values. Cooling and improvement of charge operator Decorrelation of topology is an important issue in the
move them closer to integers. In Table Il we list the ratio simulation of full QCD since the topological charge is one of
between center of peaks and integer charge, found to be inke quantities which is expected to have the longest autocor-
dependent o, for all gauge couplings and after 10, 20, or relation with the HMC algorithm. In simulations with the
50 cooling steps with the RG-improved action. The ratioKogut-Susskind quark action it was found that topological
moves closer to unity with increasing gauge coupling, in-modes have a very long autocorrelation tifi7e30].
creasing number of cooling steps and when the charge op- In Figs. 4, 5 and 6 we plot time histories Qi after 20
erator is improved, showing that the difference from integercooling steps calculated for our full QCD runs at all sea
is a finite lattice spacing effect. After 20 cooling steps, cenquark masses. Autocorrelation times are visibly small even at
ters of peaks 0Q;n, do not differ from the integer by more the smallest quark masses. FBr=1.80 and8=1.95 the
than 6% even at the coarsest lattice spacing. Because of it§pological charges measured on configurations separated by
superiority we only us€;y,, rounded to the nearest integer, 10 HMC trajectories are well decorrelated, and hence the
in the following. integrated autocorrelation time is smaller than 10 trajecto-
In Fig. 3 we plot(Q?) measured in pure SB) gauge ries. Correspondingly, errors are independent of the bin size
theory as a function of the number of cooling steps for thewhen employing the binning method. &= 2.10, where the
two cooling actions. Cooling with the two actions leads tocharge is measured at every fifth HMC trajectory, we find
quite different values ofQ?) at coarser lattice spacings. The integrated autocorrelation times of 5—6 configurations, cor-
difference decreases with an increasing coupling constantsponding to 25—-30 HMC trajectories. This is comparable

and almost vanishes on the finest lattice. to, but somewhat smaller than, recent results reported for the
We quantify the difference between cooling with the two Wilson [31] or the clover quark actiof9]. For error esti-
actions by calculating the linear correlation coefficient mates throughout this paper we use bins of 10 configura-
tions, corresponding to 50 HMC trajectories Gt 2.10 and
(( ﬁ%_ Q%%)(Qm)_ thv‘g)) no binning fqr the two other co'uplings. _ _
r= , (15 A related issue is the ergodicity of HMC simulations. In
J((Q%%—Qﬁ%)zx(ng—Qm)z) Figs. 4, 5 and 6 we show histograms of the topological

charge. They are reasonably symmetric around zero and the
after 10, 20, or 50 cooling steps. For the evaluation of Eqgdistribution can be approximately described by a Gaussian,
(15) we substitute charges before rounding to integers. Valalso plotted in the figures. Ensemble averag@s, listed in
ues ofr are listed in Table IV. The correlation between to- Table VI, are consistent with zero or deviate at most three
pological charge after cooling with the RG-improved or thestandard deviations of statistical error g=2.1 and «
LW action decreases with increasing number of cooling=0.1374. We conclude that topology is well sampled in our
steps. Even at the coarsest lattice spacing and after 50 coalins.

TABLE V. Topological susceptibility in pure SI3) gauge theory. FofQ?) the first error is statistical, and the second error is an estimate
of systematic error related to the choice of the number of cooling steps([th)the two errors and the statistical errorrgfare added in
quadrature.

Cool with RG-improved action: Cool with LW action:
B (Q) (Q% Xt (Q) (Q% Xt
2.047 0.0%15) 12.0769)(+72) 0.0382 32 0.0013) 8.50(52) (- 80) 0.0269'3]
2.110 0.12193 8.61(39)(+13) 0.0441°% 0.05482) 6.74(31)(38) 0.034518
2.227 —0.043(46) 4.2¢13)(0) 0.0582°3) —0.042(43) 3.71(12)¢ 18) 0.0509 38
2.461 0.13%69) 4.1221)(0) 0.0555 23 0.12366) 3.93(20)( 4) 0.0530°%8
2.659 0.06776) 4.0822)(0) 0.0593 3% 0.07376) 4.06(22)(1) 0.0590°3;
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TABLE VI. Topological susceptibility in full QCD. The meaning of the errors is the same as in Table V.

Cool with RG-improved action:

Cool with LW action:

B K (Q) (Q? Xtré (Q) (Q% Xtré
1.80 0.1409 0.44) 123.46.5(+11.9 0.0258 32 —0.04(37) 87.94.6)(—3.3) 0.0184 13
0.1430 0.1049) 125.17.8)(+10.5 0.0316 35 0.2040) 85.2(5.5)(-3.2) 0.0215 1
0.1445 0.4640) 119.36.0)(+10.7) 0.037T 33 0.5333) 77.7(4.2)(3.0) 0.0241°2
0.1464 0.1846) 85.05.9)(+6.9 0.0372 35 0.20:38) 58.1(3.9)(0.7) 0.0254 22
1.95 0.1375 1.0%2) 186.49.7)(+10.7) 0.0553 &¢ 1.3546) 148.58.4)(+1.6) 0.0440 38
0.1390 0.4743) 127.06.5)(+9.9 0.0478 32 0.2739) 104.2(5.7)(0.6) 0.0393 33
0.1400 —0.33(39) 106.%6.7)(+8.3 0.0514 33 —0.02(34) 78.44.4(+1.9 0.0379°%8
0.1410 0.6140) 76.54.7(+5.0 0.0482 33 0.2737) 65.23.9(+1.4) 0.0411%
2.10 0.1357 0.988) 146.411.0(+6.8) 0.0481 33 1.1788) 137.410.6(+2.6) 0.0452 3
0.1367 —0.5(1.0) 150.716.6/(+5.7) 0.0624° 3 —0.6(1.0) 137.615.6(+3.4) 0.0570°g¢
0.1374 —2.52(81) 102.8.7(+3.3 0.0496'39 —2.61(82 98.09.7)(+0.9) 0.0472 22
0.1382 —0.29(63) 56.86.6)(+0.9) 0.0344 % —0.33(61) 52.65.0)(+0.5) 0.0321°3

E. Scale determination previous results of Ref$14,33,34. Data are consistent with
previous determinations, and extend the domain of results to
smaller values of3.

We fit the string tension data of Fig. 7 using an ansatz

aproposed by Alltor] 35],

To fix the scale we use the string tensioror the Sommer
parameter, [32] of the static quark potential. Full QCD
values ofry have been determined in R¢fi4] and are re-
produced in Table I. The analysis of the static quark potenti
in pure SU3) gauge theory of this work parallels the one in
Ref.[14]. We listo andr g in Table Il. The dependence of the
dimensionless string tensioflca on the gauge coupling is
shown for pure S(B) gauge theory in Fig. 7 together with

Joa=1(B) {1+c,a(B)?+cqa(B)*}/co,

a(B)=f(B)/f(B=2.4),

4 T T T
0 K=0.1409

3000 4000 5000 6000

>

0 3
0 35
0 4

3000 4000

0 2000 5000 6000

N T
K=0,1445
e} 0Fr

-20
run a)
-40 L L -
0 2000 6000 0 40 0

40 T T T
K=0.1464

h
>

2000 O 30

run aj) . .
1000 2000 3000 O

run by, . .
1000 2000 3000

K=0.141 I

J J 20 AL
M ] ] o O
] ] _20 ]

run d) 1frun b)

6000 0 2000 O
HMC traj. #

0_
20

run a)
1000

run a) , runb)
0 2000

run c)
4000
HMC traj. #

1000

30 0

FIG. 4. Time histories and histograms in full QCD @& 1.80. FIG. 5. Time histories and histograms in full QCD @& 1.95.
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(e
2000 3000
40 T T
20
¢] 0F
-20 |
—40 L Il Il
0 1000 2000 3000
40 T L L
K=0.1374
20
o 0Ff
-20
-40 L Il Il L
0 1000 2000 3000 4000 0 50
40 T T T
K=0.1382
20 C H aAr aAr 7 7
20 F 1k Ik ] ]
40 runa) | runb) runc)
0 1000 O 1000 0 1000 0 50
HMC traj. #

FIG. 6. Time histories and histograms in full QCD @+ 2.10.

wheref(B) is the two-loop scaling function of SB) gauge
theory,

f _(Gbo)blmg 4_13) - 11
(B)_ B ex 12)0 ’ O_(477)21

- 102 an
Yam®

We obtain the best fit at

Cp=0.544397), ¢,=0.39038), ¢,=0.04912),

(18

with good y?/Npg=19.3/19. The fit curve plotted in Fig. 7

reproduces the data very well.

Ill. TOPOLOGICAL SUSCEPTIBILITY

A. Pure SU(3) gauge theory
The topological susceptibility

in pure SU3) gauge theory is converted to the dimensionless

numberxtré using measured values of the Sommer scgle
and is quoted in Table V. Statistical errors @?2) andrg

PHYSICAL REVIEW D64 114501
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©
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02 r
0'0 1 1 1 1
2.0 25 3.0 35 4.0
B

FIG. 7. String tension in pure SB) gauge theory as a function
of the gauge coupling. Circles represent data from Ré&#.33,34

while squares are obtained in the present work. The solid line rep-

resents a fit with Eq(16).
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FIG. 8. Continuum extrapolation of the topological susceptibil-

ity in pure SU3) gauge theory.
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and the systematic error related to the choice of the numbehey move closer together toward the continuum limit. On

of cooling steps are added in quadrature. the finest lattice the difference almost vanishes. Since data
We plot x,r¢ as a function ofa?/r§ in Fig. 8. Results exhibit a curvature, we attempt continuum extrapolations in-

obtained with the two cooling actions are significantly differ- cluding the leading scaling violation term 6f(a?) and the

ent from each other at coarser lattice spacings. As expectedext higher order term aD(a*). We obtain

0.057Q43)+0.04961)a%/r3—0.4419)a*/r cool with Sgg,
4__
Xt'0=1 0.060243) —0.07268)a2/r2—0.1922a*/r§ cool with S,y , (20

with x?/Npe=2.2 and 1.4, respectively. Fit curves plotted in Fig. 8 follow the data well. In the continuumjrrﬁibbtained
with the two cooling actions differ by about one standard deviation of statistics.

In Fig. 8 we also ploty; normalized by the string tension. Data behave similar to the one normalizegl Bycontinuum
extrapolation of the same form as above leads to

0.033327)+0.00429) 0a—0.10367)02a*  cool with Srg,
xt/0?=1 0.034727)—0.04031) ra’— 0.041 76)c%a* cool with Sy, (21)

with x?/Npe=1.5 and 0.8, respectively. QCD at the same,/a is therefore not constant whenega

To set the scale we usg=0.49(3) fm or{o=440(30)  changes. We take this into account by using the interpolation
MeV where the errors in parentheses are our estimates @brmula of Eq.(20) and the linear fit of/r as a function of
uncertainty of these quantities which are not directly measurtm,a)? in Ref. [14] and Ca|cu|<—ﬂte/,(tr61 at matching values
able in experiments. Employingr from cooling with the  of r_/a. We arrive at the one standard deviation error band
RG-improved action as the central value, we obtain for theyf the susceptibility in pure gauge theory plotted as the light
topological susceptibility in pure S8) gauge theory, shaded area in Figs. 9, 10 and 11. An increasing tendency
with decreasing quark mass is manifespBat 1.8, whereas at

xi"'=1974)(15)(19)(12) MeV, (22) B=2.1 the shaded error band is very flat.
where the first error is statistical, the second is associated 0.08 . . . .
with the uncertainty from the cooling action, the third re- '
flects the difference from using, or \/o to set the scale, and e cool with RG action
the last comes from the uncertainty rip. o cool with LW action
Our value ofy*is in good agreement with recent deter- 0.06 7

minations by several groups using different methj@fs-23
as well as with the Witten-Veneziano relatidi36], x;
=f2(m?, +m?—2mZ)/2N;~(180 MeV)',

B. Full QCD E 3 @
Topological susceptibilities obtained in full QCD runs and 0.02 | f o

normalized byr, measured for the same sea quark mass are
collected in Table VI. In Figs. 9, 10 and 11 they are plotted )
as a function of fpg)2. As in pure SW3) gauge theory, 0.00 | |
data obtained with the two cooling actions differ from each 0.0 1.0 2.0 3.0 4.0
other at3=1.8 where the lattice is coarsest but are consis- (Mpsro)

tent with each other within error bars g&=2.1. The quark

mass dependence is similar between the two cooling actlor]%ht shaded region indicates the one standard deviation error band

at all thes values. for pure SU3) gauge theory, cooled with the RG-improved action,

For comparison we also plot in Figs. 9, 10 and 11 SUSCeP5 corresponding values of. The darker shaded region starting at

thI|ItIeS in pure Su3) gauge theory obtained by cooling ,erq is the one standard deviation error band of the small mass
with the RG-improved action. In full QCDy/a changes prediction of Eq. (24) evaluated with measured values of
together with the sea quark massmpa in Table I. The  f_a[(mpg)?] andry/al (Mpga)?] while the dotted line is the same
topological susceptibility in pure gauge theory is a decreasprediction evaluated with measured valuesfefa andry/a at

ing function of azlrg, and the value corresponding to full physical quark masses.

YA
o
o
=
o

FIG. 9. Topological susceptibility in full QCD g8=1.80. The
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0.08 . T with f_ normalized to be 132 MeV in experiment, E4)
can be rewritten as
i f 2 m 2
0.06 | %_{ 1 Xtrg:—( pdo) (Mpdo) +0(mpy. (29
. g % »—}4 In Ref.[14] pseudoscalar decay constafifgga and Sommer
e 0.04 [] @ ] scalery/a have been determined for all gauge couplings and

fitted as functions ofrfipqa) . Using the fits we calculate the
one standard deviation error band of E2¢) and plot it as a
dark shaded area starting at zero in Figs. 9, 10 and 11. We

0.02 | , 1
;ggg: m:: Ev% :g::g: plot the same prediction evaluated with measured values of
fpa andrg/a at physical quark masses as dotted line. Dif-
ferences between the band and the line are of onofy.
0.00 ¥ : : . . o . .
0.0 2.0 4.0 6.0 Sizable scaling violations ifipg have been observed in Ref.

(Mpsro)? [14] with f_=195(5) MeV (8=1.8), 1577) MeV (B
=1.95) and 13) MeV (B=2.1) if the scale is determined
by thep meson mass. Correspondingly, the slope of the pre-
diction Eq.(24) shows a variation wittB.
The susceptibility in full QCD at the smallest quark mass
The topological susceptibility in full QCD is consistent lie between the shaded band and the dotted line of(%.
with that of pure gauge theory at the heaviest quark mass fdnterestingly, the smallest simulated quark massesgat
B=1.8 and 1.95, but smaller by two standard deviations for=1.8 and 1.95 lie roughly in the region where the small mass
B=2.1. Values at intermediate quark masses are consisteptediction and pure S@3) gauge theory cross. A stronger
or slightly smaller. At the smallest quark mass the topologi-suppression of the topological susceptibility &t2.1, on
cal susceptibility in full QCD is suppressed compared to théhe other hand, occurs at a quark mass somewhat below the
pure gauge value. The decrease is, however, contained withffossing point. This may be an indication that the rung at
15% or one to two standard deviations/t 1.8 and 1.95, =2.1 reach quark masses where a suppression compared to
which is marginal. A clearer decrease by 41%, correspondin§ure SU3) gauge theory can be expected. The exact location
to seven standard deviations, is observegat.1. of the cross over region depends, however, on the magnitude
We investigate if the small suppression due to dynamicaPf higher order terms in Eq24) and the lattice value dfps.
quarks at the two coarser lattice spacings is against expectgimulations at lighter quark masses will therefore be helpful
tions by comparing the behavior gf with the prediction of to clarify whether the interpretation described here is correct.

Eq. (1) for vanishing quark mass. Using the Gell-Mann—

FIG. 10. Topological susceptibility in full QCD aB=1.95.
Symbols are the same as in Fig. 9.

Oakes—Renner relatidi37,38 IV. DISCUSSION AND CONCLUSIONS
f2m2 We have studied the topological susceptibility as a func-
3= , (23)  tion of quark mass and lattice spacing in two-flavor full QCD

4m using a field theoretic definition of the topological charge
together with cooling.
0.08 . . . We have shown that an improved charge discretization
can be defined which produces charges close to integers. The
stability of lattice instantons differs between two actions
used for cooling, which leads to different values of the topo-
logical charge at coarse lattice spacings. We have confirmed
that the difference decreases with decreasing lattice spacing
ﬁ and vanishes in the continuum limit. Our investigation of
time histories of the topological charge in full QCD have
ji shown that autocorrelations are reasonably short and that our
runs are long enough to sample topology well. These analy-
ses support our belief that systematic errors of the cooling
® cool with RG action | method are kept under control, and that our lattice measure-
© cool with LW action ments indeed reflect topological properties of the QCD
vacuum.
0.00 £ : - ‘ The quark mass dependence of the topological suscepti-
0.0 20 (mpsfo)':.o 60 bility Xtré in full QCD is found to be flat or even increase
with decreasing quark mass At 1.8 and 1.95, and a clear
FIG. 11. Topological susceptibility in full QCD aB=2.10.  decrease is only observed/@t2.1. A comparison with pure
Symbols are the same as in Fig. 9. gauge theory at corresponding/a shows thatXtré in full

4
Xt o
o
o
=
T
1

0.02 -
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QCD is consistent with pure gauge theory at heavier quarlexist in the flavor singlet lattice Ward-Takahashi identities
masses but suppressed at the lightest quark mass of owhen the Wilson or clover fermion action is employed so
simulation. At the same time, the susceptibility at the lightesthat counterterms are needed for the correct chiral behavior
quark masses are in agreement with the prediction of thef the topological susceptibility40]. Simulations at lighter
anomalous Ward-Takahashi identity foX1) chiral symme-  sea quark masses and further theoretical analyses are needed
try for small quark masses when lattice values for the pseurn examine whether such an explanation is required for un-

doscalar decay constant are employed. These results suggggfstanding the quark mass dependencg, o full QCD.
that our lightest simulated quark masses lie around the tran-

sition region where a suppression due to sea quarks is ex-
pected to set in.

Recently several alternative theoretical explanations have
been suggested as to why the topological susceptibility in This work was supported in part by Grants-in-Aid of the
lattice full QCD might appear less suppressed than expecteldinistry of Education (Nos. 09304029, 10640246,
for small quark masses. It has been pointed [89] that a 10640248, 10740107, 11640250, 11640294, 11740162,
large enough volume witl'>my>1 [4] is necessary for Eq. 12014202, 12304011, 12640253, 12740133, 13640260

ACKNOWLEDGMENTS

(1) to be valid. Since we employ a large lattice sizelLaf
~2.5 fm and quark masses with;=40 MeV this condition

A.AK. and T.M. were supported by the JSPS Research for
the Future ProgrartNo. JSPS-RFTF 97P011DX5.E., K.N.,

is always fulfilled. It has also been argued that subtletiesand H.P.S. were supported by JSPS.

[1] For a recent review, see M. Teper, Nucl. PhygPBoc. Supp).
83, 146 (2000.

[2] R. J. Crewther, Phys. LetTOB, 349(1977.

[3] P. Di Vecchia and G. Veneziano, Nucl. PhyB171, 253
(1980.

[4] H. Leutwyler and A. Smilga, Phys. Rev. 46, 5607 (1992.

[5] H. Gausterer, J. Potvin, S. Sanielevici, and P. Woit, Phys. Lett.

B 233 439(1989.
[6] K. M. Bitar et al, Phys. Rev. D44, 2090(1991).

[7] Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, and A.

Ukawa, Phys. Lett. BB13 425(1993.

[8] A preliminary account of the present work based on data at
B=1.95 has been presented in CP-PACS Collaboration, A. Ali

Khanet al, Nucl. Phys. B(Proc. Supp). 83, 162 (2000.

[9] A. Hart and M. Teper, Nucl. Phys. BProc. Supp). 83, 476
(2000.

[10] UKQCD Collaboration, A.
hep-ph/0004180.

[11] SESAM and L Collaborations, G. S. Bakt al, Phys. Rev.
D 64, 054502(2001.

[12] A. Hasenfratz, Phys. Rev. B4, 074503(2001).

[13] B. Allés, M. D’Elia, and A. Di Giacomo, Phys. Lett. B83
139(2000.

[14] CP-PACS Collaboration, A. Ali Khaet al,, hep-lat/0105015.

[15] V. lwasaki, Nucl. Phys. BProc. Supp). 60A, 246 (1998.

[16] Y. Iwasaki, Nucl. PhysB258 141 (1985; Univ. of Tsukuba
report UTHEP-1181983.

[17] B. Sheikholeslami and R. Wohlert, Nucl. PhyB259, 572
(1985.

[18] CP-PACS Collaboration, S. Aokét al, Phys. Rev. D60,
114508(1999.

[19] S. Aoki, R. Frezzotti, and P. Weisz, Nucl. Phy8540, 501
(1999.

[20] B. Allés, M. D’Elia, and A. Di Giacomo, Nucl. Phy®3494,
281(1997.

Hart and M.

Teper,

[21] P. de Forcrand, M. Gaw@i Peez, J. E. Hetrick, and I.
Stamatescu, Nucl. Phys. @roc. Supp). 63, 549(1998.

[22] UKQCD Collaboration, D. A. Smith, and M. J. Teper, Phys.
Rev. D58, 014505(1998.

[23] A. Hasenfratz and C. Nieter, Phys. Lett.489, 366 (1998.

[24] P. Weisz, Nucl. PhysB212 1(1983; P. Weisz and R. Wohlert,

ibid. B236, 397 (1984); B247, 544E) (1984.

[25] M. Luscher and P. Weisz, Commun. Math. Phg¥, 59
(1985; 98, 433E) (1985.

[26] B. Berg, Phys. Lett104B, 475 (1981); M. Teper,ibid. 162B,

357(1985; E. M. ligenfritz, M. L. Laursen, G. Schierholz, M.

Muiller-Preuker, and H. Schiller, Nucl. PhyB268 693(1986.

[27] J. B. Kogut, D. K. Sinclair, and M. Teper, Nucl. Phy8348
178(199)).

[28] M. Garca Peez, A. Gonztez-Arroyo, J. Snippe, and P. van
Baal, Nucl. PhysB413 535(1994).

[29] S. Itoh, Y. Iwasaki, and T. YoshjePhys. Lett.147B, 141
(1984).

[30] B. Allés, G. Boyd, M. D’Elia, A. Di Giacomo, and E. Vicari,
Phys. Lett. B389 107 (1996.

[31] B. Allés et al, Phys. Rev. 058, 071503(1998.

[32] R. Sommer, Nucl. Phys8411, 839 (1994).

[33] Y. lwasaki, K. Kanaya, T. Kaneko, and T. YoShihys. Rev. D
56, 151 (1997).

[34] CP-PACS Collaboration, M. Okamott al., Phys. Rev. D60,
094510(1999.

[35] C. R. Allton, hep-lat/9610016.

[36] E. Witten, Nucl. PhysB156, 269 (1979; G. Venezianojbid.
B159 213(1979.

[37] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. R&,
2195(1969.

[38] J. Gasser and H. Leutwyler, Phys. R&@, 77 (1982.

[39] S. Dur, hep-lat/0103011.

[40] G. Rossi and M. Testgprivate communication

114501-10



