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Two flavors of dynamical quarks on anisotropic lattices
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We report on our study of two-flavor full QCD on anisotropic lattices usd{@)-improved Wilson quarks
coupled with a renormalization-group-improved glue. The bare gauge and quark anisotropies corresponding to
the renormalized anisotropy=ag/a,=2 are determined as functions gfand x, which cover the region of
spatial lattice spacings;~0.28—0.16 fm ananps/m,~0.6—0.9. The calibrations of the bare anisotropies are
performed with the Wilson loop and the meson dispersion relation at four lattice cutoffs and 5—6 quark masses.
Using the calibration results we calculate the meson mass spectrum and the Sommegy. $tlaleonfirm that
the values of ( calculated for the calibration using pseudoscalar and vector meson energy momentum disper-
sion relations coincide in the continuum limit within errors. This work serves to lay the groundwork for studies
of heavy quark systems and the thermodynamics of QCD including the extraction of the equation of state in the
continuum limit using Wilson-type quark actions.
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[. INTRODUCTION simple task in full QCD because a couple of bare parameters
have to be simultaneously adjusted to achieve a consistent
In spite of recent progress in computer technology andenormalized anisotropy in physical observables for both
numerical algorithms, the extraction of continuum propertiesquarks and gluons. This tuning of bare anisotropy parameters
from lattice QCD remains challenging when dynamicalis called “calibration” [17]. We study two-flavor full QCD
quarks are included due to the large computational demandwith a renormalization-groupRRG-) improved gauge action
One method for alleviating the difficulty is to improve the and a clover-improved Wilson quark action, extending the
lattice action for a faster approach to the continuum limit.combination of improved actions adopted by the CP-PACS
This enabled us to carry out the first systematic extrapolatioi©ollaboration to anisotropic lattices. Carrying out simula-
to the chiral and continuum limits for the light hadron spec-tions at several values of bare parameters, we perform the
trum[1,2]. calibration to determine the bare anisotropy parameters for a
Another method that is effective for several quantities isgiven value of the renormalized anisotrofy as/a; as func-
to introduce a space-time anisotropy. In H&f, we showed tions of the gauge coupling and bare quark mass. We study
that using anisotropic lattices with a larger temporal cutoff isthe range of parameters correspondin@ge-0.28—0.16 fm
efficient for reducing lattice artifacts in thermal QCD, and for the spatial lattice spacing amdps/m,~0.6—0.9 for the
carried out the first well-controlled continuum extrapolationratio of pseudoscalar and vector meson masses. Based on our
of the equation of state in quenched QCD. In finite temperaprevious study of finite temperature Q¢8), we concentrate
ture QCD, anisotropic lattices have been employed in then the cas&=2 in this paper.
qguenched approximation also to study transport coefficients Different choices of observables for the calibration will
[4], pole masse§5,6], glueballs[7], and spectral functions lead toO(a) differences in the calibration results. We study
[8,9], where anisotropy was introduced to obtain more datahis issue by comparing the results from two different
points for temporal correlation functions. At zero tempera-observables—pseudoscalar and vector meson dispersion re-
ture, anisotropic lattices have been employed to study chatations. We anticipate that the results of different calibrations
monium states[10—12, glueballs [15], heavy hybrids will be useful for checking the stability of continuum ex-
[13,14], and also the pion scattering lendtt6]. trapolations. As a test of the idea, we also perform a con-
In this paper, we calculate the anisotropy parameters fotinuum extrapolation of the Sommer scalefat2, by inter-
an improved full QCD action to contribute toward a system-polating our measurement results to the calibrated points.
atic study of QCD with heavy quarks and at finite tempera- This paper is organized as follows. We define our aniso-
tures. The calculation of anisotropy parameters is not dropic lattice action in Sec. Il, and discuss our choicefof
=2 and simulation parameters in Sec. Ill. The calibration
procedure is described in Sec. IV. The results of two calibra-
*Present address: YITP, Kyoto University, Kyoto 606-8502, Ja-tions for £=2, using pseudoscalar and vector meson disper-
pan. sion relations, are summarized in Sec. V. Finally, in Sec. VI,
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we interpolate the measurement resultgto2 to study ba- The bare gauge coupling equals-6/g2, and yg represents
sic properties of our lattices. We also test how the differenceéhe bare anisotropy. We have three independent improvement
in the calibration affects physical observables. Section VIl isparameters among*“.
devoted to conclusions and discussion. An Appendix is In principle, these improvement coefficients may have
added to compare our calibration procedure with anothenontrivial ¢ dependences depending on the improvement
method based on the ratio of screening and temporal massesnditions on the anisotropic lattice. In R¢R6], we have
repeated the improvement procedure of lwasaki on aniso-
Il. ANISOTROPIC LATTICE ACTION tropic lattices, and found that, for small anisotropiés
~1-4, the¢ dependences in the improvement coefficients
are weak, and a sufficient improvement is achieved just by
?fxing the coefficients to Iwasaki’'s values for isotropic lat-
Nices,c$=cl=ch=—0.331. As explained in Sec. Ill, we are

We study full QCD with two flavors of degenerate light
qguarks. On isotropic lattices, we have made a series of sy
tematic studies adopting a clover-improved quark actio

e UL 1 2, ) dpece ereie i e cose—2. Becaust cependences i he
improvéd value using the plaqsuvétte in one-loop perturbatior|lmprov_ement_coeff|_C|ents require additional elabora'qons in
i . : numerical simulations, such as the computation of
theory for the mean field. This choice was based on the ob-_d vative terms in the equation of state. we fix the im-
servations that the one-loop plaquette reproduces the actual envative .y qua . C
. o provement coefficients to their isotropic values in the follow-
plaquette expectation values within 8% for the range of pa;
rameters studied, and that the resulting value of the clover 9-
coefficient agrees well with its actual one-loop value. This
action was shown to give both a good rotational symmetry of
the heavy quark potential and a small scale violation in the We employ clover-improved Wilson quark&7]. On an-
light hadron spectra at moderate lattice spacif@@3. At isotropic lattices, the action is given by
zero temperature, these good properties enabled us to carry
out the first systematic chiral and continuum extrapolations
of light hadron spectra and light quark masgeg]. At finite
temperatures, this combination of actions was shown to re-
produce the expecte®(4) scaling around the two-flavor  K(x,y)= 8y y— k{(1— y4)U4(X) 8y ay+ (1+ v4)
chiral transition poin{18,24 and was adopted in the first
systematic calculation of the equation of state in lattice QCD Ty ] L DVNTT .
w)i/th Wilson-type quarkg20]. nge, we extend the study to XUa(X=4) iy} KSZ = Ui 8y
anisotropic lattices.

B. Clover quark action on anisotropic lattice

sF=XEy qOOK(x,y)a(y), (4)

. . . o +(r+7’i)UiT(X_iA)5xT,y}_Ks( th 0 4iF 4i(X)
A. RG-improved gauge action on anisotropic lattice I

On isotropic lattices, the RG-improved gauge action by
Iwasaki [25] consists of plaguettes andx2 rectangular +rcs_2 UiiFij(X)]5x,y- ®)
loops. Extending it to anisotropic lattices, the general form of )
the action is given by For the field strengttF,,, we use the standard cloverleaf
1 definition. Following our previous studies &1, we apply
Se=p{ — 2 {CSPij(X)+Ci[Rij(X)+ R;i(x)1} a mean-field improvement for E¢4), U;(x) — U;(x)/ug and
VG Xi>j U4(X)—U4(x)/u;, whereug and u; are mean links in the

spatial and temporal directions. For the mean links, we adopt

+ 96> [CYPra(X) +CiRw(X)+C5Ru(x)]f, (1)  the value estimated from plaquette in one-loop perturbation
XK theory as in our previous studies. A& 2, we obtain

wherei,j,k are for spatial directions and Wy (s9)=1—1.1543, (6)
1 R R —1_
P,u(¥) =12 ReT{U,(0U,(x+ U} (x+» UL}, Wiy(st)=1-0.5608 @)
(2)  for the spatial and temporal plaquettes. Therefore, we set
us=(1—1.154/8)Y for £=2. For the temporal mean field,
B 1 - A we adopt u;=1 because the naively calculated value
Ru(¥) =13 ReTRU,()U ,(x+ u)U,(x+2u) W, (st) YW, ,(s9)¥* exceeds 1 fok=1.6 at our values of
. ) B.
X UL(X+ u+ v)UL(x+ ,u)UI(x)} 3 Following Refs[5,6], we set the spatial Wilson parameter

to ber=1/¢. In this case, the quark dispersion relation in
are the plaquette and rectangular loop in the’ plane, re-  physical units preserves the four-dimensional rotation sym-
spectively. The improvement coe1‘ficiertt1§t satisfy the nor- metry at the tree level, and the tree-level improvement coef-
malization conditionscy+8c3=1 and cy+4ci+4c,=1. ficients are free from the terms linearim, [12,28,29. In a
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quenched study30], it was shown that the fermionic bare '
anisotropy parameter corresponding to a fi¥ad well fitted &=1
by a quadratic function ofn, with this choice ofr. With 1.0
dynamical quarks, however, terms linearnmy may appear
through quark loop correctiori29]. 3
The clover coefficients andc; are functions of. With _Iz‘
our choicer =1/¢, cg andc, are unity at the tree level and &
their mean-field-improved values are given by up
S o5
- - ® 4
C =, Co——. —
T2 =
We define the bare anisotropy of the fermion field by
o Ktut 0.0
LEPRT ©) 0.0 05 1.0
p,/® [a, " unit]

The bare quark mass in units af is given by ] ) . ) i
FIG. 1. Dispersion relations of free quarks on anisotropic lat-

0 1 tices. The energE(ﬁ) —E(0) normalized by is plotted as a func-
mq=2K U. Yr—3r. (10 tion of spatial momentum at bare quark masmgy 0.1, 0.2, and

s7s 0.6 (full, dotted, and dashed curyeer anisotropief=1, 2, and 4.
For later convenience, we defineto satisfy the same rela- LargerE(p) —E(0)/& at p,/m~1 correspond to smallej.

tion with mg as in the isotropic case: . o _
Sec. VI for details of the scale determination. At egshsix

1 0 values ofx, corresponding taness/my~0.6, 0.7, 0.8, 0.85,
~=2mgtd)= - —2(yp+3r—4). (1D 0.9, and 0.92, are simulated. To study lattice volume effects,
= we also perform additional simulations or>824 and 13
We perform chiral extrapolations in terms of«1/ X 36 lattices a{3=2.0. Our simulation parameters are sum-

The relationr =1/¢ suggests that spatial doublers may marized in Table I. . . .
appear at largé. The free quark dispersion relation for our ~ We generate gauge configurations by the hybrid Monte

action is given by Carlo algorithm with an even-odd precondition®d¢GSTAB
guark solver[2]. The molecular dynamics time stefi is
) 52+[mg/yp+(r 12v¢) 212 adjusted to achieve an acceptance rate of about 70—-80 %.
coshE(p)=1+ =—, (12 Measurements are performed at every five trajectories over
2[1+ m8/y,:+(r/2y;:)p2] 1000-1700 trajectories after 300 thermalization trajectories,

. where the length of one trajectory is set to unity. The statis-
wherep; = (sinp)/ v, p;= 2 sin@/2), andE is in units ofa, tical errors of the observables are estimated by the jackknife
while p; is in units ofag [30]. In Fig. 1, we plot the energy method at eacl8 and « with bins of 50 trajectories.

E(p)/¢ for £&=1, 2, and 4 am)=0.1, 0.2, and 0.6, where
&= vr in this approximation. From this figure, we expect that IV. CALIBRATION PROCEDURE
doubler effects are weak at our studied valuegsf2 and

mq= (L/x — L/xc)/2=0.07—0.8(see Sec. VI At each 8 and k, we have to tune the bare anisotropy

parametersyr and yg such that the renormalized anisotro-

pies ér and & for fermionic and gluonic observables coin-

In this paper, we focus on the case of the renormalized . _ . _
' = =¢. 1

anisotropyé=2. We have shown for finite-temperature pure (¥ 76 Bi) =ba(rr 76 Bik) =& 3
SU(3) gauge theory3] that this choice of¢ is optimal to  As discussed in the previous section, we study the ¢a@se
reduce scaling violations in the equation of state both in the=2  For this purpose, we measuge and &g at several
high temperature Iir_nit anq at finit,e; th_e latter is confirmed  values of ¢y, vc) at fixedx andB, and determine the point
by a Monte Carlo simulation. It is straightforward to analyze\yhere Eq(13) is satisfied by an interpolation ip- andyg .
the hlgh temperature limit for full QCD We have found that Let us denote the resumng Va|uesﬂ§ and G for §:2 as
and improved glue. as functions ofg and « for use in future studies of heavy

3We perform simulations gB=1.8, 19 2.0, and 2._1 On  quark systems and thermodynamics of QCD.
8°% 24, 8°x 24, 10x 30, and 12X 36 lattices, respectively.  \ye measureg by Klassen's metho@iL0]:

The lattice spacing is in the range~0.28—0.16 fm, and
hence the spatial lattice size is fixed to be about 2 fm. See R(X,¥)=Ri(X,&gY), (14
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TABLE |. Simulation parameters. “Traj.” is the number of trajectories used for measurements after 300 thermalization trajectories. At
B=2.0, in addition to the main simulation on the®¥030 lattice, simulations using the same values pfyr , v, and the trajectory length
are done also on®« 24 and 18x 36 lattices for a study of finite size effects.

B Size K Traj. (veYeUs)
1.8 8x24 0.10745 1700 (1.70,0.90, (1.70,1.10, (1.70,1.20, (1.75,0.90,
(1.75,1.10,(1.75,1.20, (1.85,0.90, (1.85,1.10
0.11162 1700 (1.70,1.00, (1.70,1.20, (1.70,1.30, (1.75,1.00,
(1.75,1.20, (1.75,1.30
0.11582 1700 (1.70,1.15%, (1.70,1.25, (1.70,1.30, (1.75,1.15,
(1.75,1.25, (1.75,1.30
0.12115 1700 (1.70,1.25, (1.70,1.35, (1.70,1.40, (1.75,1.25,
(1.75,1.35, (1.75,1.40
0.12438 1700 (1.70,1.20, (1.70,1.30, (1.70,1.40, (1.70,1.45,
(1.75,1.30, (1.75,1.40, (1.75,1.45, (1.80,1.20
0.12655 1700 (1.70,1.3%, (1.70,1.40, (1.70,1.453, (1.75,1.35,
(1.75,1.40, (1.75,1.45
1.9 8x24 0.1085 1000 (1.80,1.00, (1.80,1.10, (1.80,1.20, (1.80,1.30,
(1.85,1.00, (1.85,1.10, (1.85,1.20, (1.85,1.30,
0.1137 1000 (1.80,1.15, (1.80,1.25, (1.80,1.33, (1.85,1.15,
(1.85,1.25, (1.85,1.3%
0.1169 1000 (1.75,1.20, (1.75,1.30, (1.75,1.40, (1.80,1.20),
(1.80,1.30, (1.80,1.40, (1.85,1.20, (1.85,1.30
0.1212 1000 (1.75,1.59, (1.80,1.2%, (1.80,1.35, (1.80,1.45,
(1.80,1.59%, (1.85,1.25, (1.85,1.35, (1.85,1.4%
0.1245 1500 (1.70,1.50, (1.70,1.60, (1.75,1.30, (1.80,1.40),
(1.80,1.50, (1.85,1.30, (1.85,1.60
0.1260 1500 (1.75,1.40, (1.75,1.60, (1.80,1.50, (1.85,1.40,
(1.85,1.60, (1.90,1.50
2.0 16Gx 30 0.1090 1000 (1.80,1.25, (1.80,1.35, (1.80,1.45, (1.85,1.25,
(1.85,1.35
(83x 24) 0.1150 1000 (1.80,1.4%, (1.80,1.55, (1.85,1.33, (1.85,1.45,
(1.85,1.55, (1.95,1.45
(122 36) 0.1180 1000 (1.80,1.40, (1.80,1.50, (1.80,1.60, (1.85,1.50,
(1.85,1.60
0.1210 1000 (1.80,1.45, (1.80,1.55, (1.80,1.65, (1.85,1.45,
(1.85,1.55, (1.95,1.45
0.1244 1500 (1.70,1.60, (1.80,1.50, (1.80,1.60, (1.80,1.70,

(1.85,1.59, (1.85,1.60,
(1.90,1.55, (1.90,1.60, (2.00,1.50

0.1252 1500 (1.75,1.60, (1.75,1.685, (1.80,1.60, (1.85,1.55,
(1.85,1.65

2.1 12x36 0.1100 1000 (1.80,1.35, (1.80,1.55, (1.90,1.45, (1.95,1.35

0.1150 1000 (1.80,1.50, (1.80,1.60, (1.90,1.45, (1.90,1.55,
(1.90,1.65

0.1200 1000 (1.80,1.65, (1.85,1.55, (1.90,1.75, (1.95,1.50,
(1.95,1.60

0.1225 1500 (1.80,1.60, (1.80,1.70, (1.80,1.80, (1.90,1.60,

(1.90,1.70, (1.90,1.80

0.1245 1500 (1.80,1.60, (1.80,1.80, (1.85,1.70, (1.90,1.60,

(1.90,1.70
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where
WedX,y)
Rs(X,y) = WoixT1y)’ (15)
R )= WSI(Xat) (16
t(xr )_ Wst(x+ 1,t) ’ )

@ 2.05
are the ratios of spatial-spatial and spatial-temporal Wilson™"
loops, Ws(X,y) and W(x,t), respectively. We determine

&g by minimizing

< [RdXY)—Ri(x,&cy)]?
L(EG)_% (AR)Z+ (AR,)?

17

with ARy and AR; the statistical errors oRg and R,. To
avoid short range lattice artifacts,andy should not be too
small. The practical ranges &fandy will be discussed later.

For & we use the relativistic dispersion relation of me-

SOons.
. 2
E(p)?=m?+ §—2+O(p4),
F

(18)

whereE andm are the energy and mass in unitsapf and

p=2mn/Lg, with L the spatial lattice size, is the spatial

momentum in units ofg. We evaluatde andm from a cosh
fit of the meson two-point correlation function,

C(p,H)=>, (O(x,1)0"(6,0)€') (19
O(x,1)=2, d(Y)¢'(2)a(x+y,nHIq(x+7,t).
g (20

In this paper, we study pseudoscal®S and vector(V)
mesons consisting of sea quarks orlye y5 for PS andl’

=1v; for V. Quark fields are smeared by a functidmi) to

enhance ground state signals at short distances. For the
“smeared” quark field, we adopt an exponential smearing

function of the form

d(x)=aexp —p|x|) for x#0, ¢(0)=1, (21

PHYSICAL REVIEW D68, 034503 (2003

2.15 ; ; . . . . .
A 8°x24 with y=1
A without y=1
@ 10°x30 with y=1

210 } @] without y=1 J
® 12°x36 with y=1 .
u] without y=1

»
¥ ¥
2.00 - 1
1 .95 1 1 1 1 1
0 1 2 3 4 5 6 7

min(x"y)

FIG. 2. A typical determination og at 3=2.0, xk=0.1244,
and (yg,7¥rUs)=(1.85,1.60). Thetg shows the minimizing point
of L(&g) defined by Eq(17). Different symbols represent the re-
sults obtained on 3x 24, 1$x 30, and 12x 36 lattices. For filled
(open symbols,L(&g) is evaluated withiwithout) they=1 data.

relations. We denote these results for the calibrated bare
anisotropies a§yg (P9, y&(P9S) and (vE(V),y&(V)), re-
spectively. In Sec. V C, we show that they tend to converge
together toward the continuum limit. In future applications of
the present work, different sets off , y&) will be useful for
estimating systematic errors due to the continuum extrapola-
tion, in complicated physical observables, such as the equa-
tion of state.

In a previous study of quenched Q{B], the ratio of
temporal and screening masses of the PS meson was used to
determineé: . We study the difference between our proce-
dure and the mass ratio method in Appendix A. We find that
both methods give consistent valuesé&fwhen the quarks
are not too heavymps/my=<0.75(0.8) at 3=2.0 (2.1)].

V. CALIBRATION RESULTS
A. &g from matching of Wilson loop ratios

We determine the renormalized gauge anisotrggyby
minimizing the functionL (&g) defined by Eq(17). We in-
terpolateR;(x,t) by a cubic spline in terms df To remove
short range lattice artifacts, we evaluatéts) with x andy

where the coefficienta andp are adopted from a previous which satisfyx X y=M and examine th&! dependence. The

study [2]. The “point” quark field corresponds tap(X)

upper limit onx andy is set by requiring that the statistical

=85%- In our calculation of the meson two-point function, error does not exceed the central value for the Wilson loop
the sink operator is always the point-point type, while, forratio. Varying the upper limit hardly changes the results for
the source operator, we study point-point, point-smeared, ané . The filled symbols in Fig. 2 show typical results&f as
smeared-smeared cases. We find that the smear-smear sougckinction ofM =min(xxy). We find that, at this simulation
operator leads to the earliest plateau with small errors. Thergoint, {g is reasonably stable wheexy is larger than about

fore, we adopt the smear-smear source operator.

4.

In principle, we may adopt different observables to define  Since the conditiox X y=M does not exclude smatlor
the renormalized anisotropies. Away from the continuumy, which can be an additional origin of short distance effects,

limit, different choices will lead taO(a) differences in the

we study whetheég are affected by small values »bry by

calibration results. To study this problem, we compare theaemoving them. The results @ usingL(&g) without data
calibration results usingg from PS and V meson dispersion aty=1 are plotted with open symbols in Fig. 2. We find that,
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0.9 T T T 0.8 T T T T
PS v }
0.7 + | OPS ]
08 | + . | av -
¢ ¢ |
¢ty 06 | S ]
; } iy 112 |
. '++ u T? $4] 1] ] 0o5fF | i ]
I Bo N B } ol
= Soopdedgg o4l g ]
"%06"‘** r 1 1] [
w oo |
0000 ¢ 03 = 1 N
! o
05 [ ] 8o m 3 * * N ] T 02 L | g ]
: [
o n=(0,0,0)
o n=(1.0,0) il b
04 0 © 00000 " T An=g,:,(1); 4 A }
< n=(1,1,
0.0 | L L L
03 s s . . 0.0 0.5 , 1.0 15
“o 5 10 0 5 10 15 p
t t

_ ) _ FIG. 4. Sample results for the dispersion relation of pseudo-
FIG. 3. Effective mass of meson states with various momentacalar and vector mesons At=2.0, k=0.1244, and {g , ygUy)

obtained atf=2.0, x=0.1244, and {q,yrus)=(1.85,1.60) on  _ 4 g5 1 50). Dotted lines show fit results from=(0,0,0) and
the 16x 30 lattice. The left and right panels are the results for(1 0,0).

pseudoscalar and vector mesons.

although clear deviations from the filled symbols are ob-=2:044(59), 2.02(G14), and 2.01239) on 824, 16

served at smalM, the effects ofy=1 data are within 1% at X 30, an_d 1?><_ 36 Igttices, res_pectivm_ely. This confirms that
M =4 whereé. becomes stable. Therefore, placing a condi-the spz.m.al lattice sizez 1.6_fm. is sufficiently large to sup-
tion on minkXy) is sufficient to obtain a stable value for Press finite volume effects ig. in the range of quark masses
&g . Similar results are obtained at other simulation points. we study.

Results obtained at different lattice volumes®x@4,
10°x 30, and 12x36) are also shown in Fig. 2. With our

lattices, no finite volume effects are visible in the values of ) _ _
i Figures 6—9 show typical results for bare anisotropies at

i:rom these studies, we adopt mir(y)=3, 3, 4, and 5 at €achp, obtained at the third and fifth heaviest quark masses
B=1.8, 1.9, 2.0, and 2.1, respectively, in subsequent analy-

C. Bare anisotropies at£é=2 (yg and y§)

=(0,0,0), (1,0,0, (1,1,0, and (1,1,, and their permuta- o
tions. In Fig. 3 we plot typical data for the effective energy Lue 04

ses. 0.8 , . . .
|
B. £ from meson dispersion relations 07 283X24 P\? 1
We determine the renormalized quark anisotrgpyfrom o6l | ®12%36 PS &
the meson dispersion relation. We calculate the meson en , - v ;;
ergy E(p) at the spatial momentgp=2mn/Ly with n o5 ! [

defined by
03| &
C(p,t cosH Eqg(p,t)(N/2—t : T
fp ) h efffp J(N/2—-1)] (22 02 | !
C(p,t+1) cosfEen(p,t)(N/2—t—1)] 7 L
o1 fF ]
obtained from the smear-smear correlators. Typical results !
for the energyE(ﬁ) are shown in Fig. 4. 0.0 010 0f5 \ 110 115
Using data aﬁ=(0,0,0), (1,0,0 and their permutations, P

: 2\ Wi ; N2 2 12 £2
we fit E(p) with th? leading formulé (p)“= m +P /f_F to FIG. 5. Volume dependence of a mesonic dispersion relations at
determine{r . The fits are shown by dotted lines in Fig. 4. In g—3 o, x=0.1244, and 4, yrus) = (1.85,1.60). Filled and open

Fig. 5, data obtained on %24 and 12x36 lattices are  symbols show the results on 1236 and §x 24 lattices with PS
compared with the fit results on the®:030 lattice. We find  and V channels. The other conditions are the same as in Fig. 4 and

that the data are well explained by the fit results. Indeed, thene fit results on a < 30 lattice, which are the same as in Fig. 4,
slopes obtained for the three lattice sizes are consisggnt: are shown with dotted lines.
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2.1 | 3IN,~1.2/3 E I A XV ]
20 : 1 19F 3
S 1€ 18¢ ;
w5 1.9 | ] wi . ]
: 17 .

18 ] 1.6 Av,=1.80 '
1.7 et 1.5 +——t—————————
2.2 | p=1.8,x=0.11582 - 2.2  B=1.8,x=0.12438 .

L, L
: 2. ] E 2N, =2.1/5 )
oq [ AXN223 ] o [ M .
5 R B
20 + e 2.0
220F -5 1220
1.9 L . 1.9 |
: ®1=1.70 ] '
18 [ me-ie0 18|
{11 SSRPESNEPUDRUSL: [ | ) SV B O
1.1 1.2 1.3 1.4 1.1 1.2 1.3 1.4 1.5
YU, el

FIG. 6. £ and&r as functions of §g , yrUs) at 8= 1.8 for the third and fifth heaviest For&r, results from the pseudoscalar dispersion
relation are shown. The lines represent the results of the¢2f®sand (24).

22_|||: 23|||| /:
51 3 |32=1.9,K=0.1169 7 oo | |32=1.9,K=O.1245 /;/,3
E X /Ng=7.2/5 ] E X /Ny4=2.2/4 3
00 [ ; 2.1 3
o . 1o 20 F
£ 19} 18 T
W w19 F
1.8 1.8 |
g ERR 2o
1_6;::::}:::::::::{::::; 1,6:/:/.:.,....,::::,.:..,....:
22 | B=1.9,«x=0.1169 . 22  B=1.9,x=0.1245 .
[ .2 . E V2N = 1
o [ XN1.35 S gy | A2 o
3 Wr-180 ] 3 W75 ]
18 C Aze=1.85 ] 18 [ Aza=1.eo 1
[ ] [ Ove=185 1
1.7 IR TR ST S (T A T TN TN [N SN SR TN N U T T W 1.7 YRS T TR TR [ T YO WY TN AN TN TN ST VNN NN ST VT TN S (N O Y TN
1.1 1.2 1.3 1.4 1.5 12 13 14 15 16 1.7
YeUs TrUs

FIG. 7. The same as Fig. 6 but 4=1.9.
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- - B=2.0,x=0.1244 . _~]
22 :_Xz/Ndf=1-7/6 “".,..-' //’/ e
[ e

[3 =2.0,x=0.1180
21 x/N =0.2/2

& 2.0 : 1%

e e

F 19 15
1.8 Wy-185 ]
1.7 ————————
51 r B=2.0,x=0.1180 _

- X /NG=5.9/2

2.0

(o]
up

19 |

18 b
13 14 15 16 17

YFus

FIG. 8. The same as Fig. 6 but 4= 2.0.

B 2.1,k=0.1200 e~ - B=2.1,k=0.1245 oy
2.2 fx/Ndf 1.212 A4 27 XINGE1012
i g [
T 2.1 F 1
F e -
~21r¢ A 1= : ]
w20 F PR S i Az 1
Eo § m ®y-180 | 1.9 ;/:i:/I @y.-180 ]
L - Hy,=185 £~ Hy,=1.85 ]
19 {,//// 61:1.90 1 18 E Azezlgo
2 V=195
18 -t b1 1.7 H—+—+—+——F+—+—+—+—+F+—+—+—+—+F+—+—++—
2_2,321K01200 . 21;[321K01245 ]
X/Ndf 0.0/2 -1 CXINGELER2 -
' : a A
] o -
r @®y.=1.80
Wy.-185
Ay=1.90
1 1 1

P R A R ‘H’ o L o o
14 15 16 17 18 1.9 15 1.6 1.7 1.8 1.9
VFus yFus

FIG. 9. The same as Fig. 6 but A&=2.1.
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TABLE Il. Bare anisotropy parameters calibratedéte 2.

B K v&(PS) X2/NDF ¥£ (PS) XZ/NDF ve(V) XZ/NDF ¥ (V) X2/NDF
1.8 0.10745 1.7421) 12.4/5 1.49012) 6.7/5 1.77483) 12.4/5 1.27882) 3.1/5
0.11162 1.734.2) 2.7/3 1.57117) 2.6/3 1.74018) 2.713 1.29821) 2.0/3
0.11582 1.7281) 2.2/3 1.68220) 1.2/3 1.76820) 2.213 1.46443) 2.4/3
0.12115 1.728@B1) 0.9/3 1.78411) 1.4/3 1.75715) 0.9/3 1.61814) 7.8/3
0.12438 1.70&3) 2.1/5 1.87916) 3.3/5 1.76914) 2.1/5 1.676298) 2.5/5
0.12655 1.702) 1.1/3 1.89515) 4.9/3 1.76022) 1.1/3 1.78613) 1.4/3
1.9 0.10850 1.80680) 1.6/5 1.55412) 5.1/5 1.809856) 1.6/5 1.38715) 5.8/5
0.11370 1.797(®4) 2.9/3 1.67512) 1.3/3 1.812650) 2.9/3 1.56184) 1.6/3
0.11690 1.76Q1) 1.3/5 1.75813) 7.2/5 1.794%74) 1.3/5 1.608832) 3.8/5
0.12120 1.77@0 4.0/5 1.85813) 1.6/5 1.801875) 4.0/5 1.74213) 7.3/5
0.12450 1.763172) 2.1/4 1.92713) 2.2/4 1.790835) 2.1/4 1.80730) 1.5/4
0.12600 1.762®3) 2.8/3 1.98717) 1.8/3 1.781177) 2.8/3 1.91812) 4.9/3
2.0 0.10900 1.82430) 2.9/2 1.693170) 4.1/2 1.831€38) 2.9/2 1.626695) 1.3/2
0.11500 1.828%2) 1.5/3 1.801835) 0.9/3 1.833176) 1.5/3 1.719098) 6.7/3
0.11800 1.824®5) 5.9/2 1.890774) 0.2/2 1.8318398) 5.9/2 1.826833) 0.1/2
0.12100 1.82263) 7.5/3 1.93519) 3.3/3 1.827871) 7.5/3 1.90825) 2.5/3
0.12440 1.812@3) 12.1/6 2.00219) 1.7/6 1.829%92) 12.1/6 1.9387) 3.1/6
0.12520 1.81696) 2.2/2 2.02614) 0.4/2 1.828978) 2.2/2 1.94958) 5.5/2
2.1 0.11000 1.88189) 2.7/1 1.79610) 1.4/1 1.882779) 2.7/1 1.76011) 0.4/1
0.11500 1.867&0) 4.5/2 1.893274) 17.5/2 1.872¢73) 4.5/2 1.850185) 19.4/2
0.12000 1.867@®7) 0.0/2 1.970198) 1.2/2 1.87116) 0.0/2 1.95449) 0.6/2
0.12250 1.855%8) 2.6/3 2.03223 3.6/3 1.8608%2) 2.6/3 2.00420) 6.0/3
0.12450 1.851(65) 1.6/2 2.04814) 1.0/2 1.861868) 1.6/2 1.98029) 4.8/2
(mpg/my~0.85 and 0.70 We find that, for the range of és=agt+bgyrtcsys. (24)

parameters we study, we can fit the data assuming an ansatz

linear inyg andyg:
F ¢ Results of the least? fits are also shown in Figs. 6-9.

§r=apt+bryetceye, (23) From the conditiorge (v ,vs) = éc(vF - ¥6) =2, we ob-
tain y§ and yg for ¢=2 as functions of the coefficients
"Beta=2.0, Kappa=0.121" —— . . .
[TTTT77 P ag, .. f Cg - \I/Ve (?]eternr]]me their ;arrors using the error prOéJa—
. 1777717711171 4 gation formula where the errors fag, . . . Cg are estimate
ft ’A"I'l”"”””””"”’l’l’lllll’l”” m zg === from the error matrix of the least? fits for & and &g . The
4 ",',{',"Illllllllllll’l’l’lldfﬂﬂllllll I results are summarized in Table II.
35 | e ':'l'l'l’l'l’l’l’l’l’l””l’l’l’l"””’,””’ To confirm the magnitude of the errors, we study
3 (Y, e X5t/ Nor= (X2.,+ x4.2)/2Npe, as a function ofys and

25
2
15
1

¥e, Wherex,g., is the x? value for a fit of &gc( Ve, v6)
data t0ér,c=2+b(yi—yg) +c(ys— ve) for given values
of (vg,vyc). This quantity measures to what extent 2 is

185 achieved by Wilson loops and the meson correlation function
at (yg,yg). The minimum of thotal/ND,: is located at
(vF ,y&). Atypical result is plotted in Fig. 10. We find that

153 N
155

U A 159179 18 the errors es_timated frpm a unit increasex@f../Npr are
' consistent with those listed in Table 1.
FIG. 10. x2,,,/Npg for £€=2 fits at 3=2.0 andk=0.121. Re- In later applications, it will be convenient to parametrize

sults using&:(PS) for the fermionic anisotropy are shown. The ¥g andyg as functions of3 and«. Figures 11 and 12 show
minimum of x&../Npe is 1.348 at (sye,vs)=(UsyE 7))  the parameter dependencegf and y% . We adopt the gen-
=(1.5605,1.8225). The curves on the base plane are a contour mapal quadratic ansatz i and «

of x2a/Npe . The minimum point is marked by " on the con-

tour map[Note thatNp is larger than that for the fit23) and(24)

summarized in Table Il becauss and ag are not free in this YE=Ag+BeB +CeB'2+DeB k' +Epx’ +Fex'?,
calculation] (25
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PHYSICAL REVIEW D 68, 034503 (2003

2.1 T T T T
ep=18V
a |3=1 9
N
20 - v p=2.1 i
Y
S
. --------- |
¢
17t .
1.6 1 1 1 1
75 8.0 85 9.0 9.5 10.0

1/x

FIG. 11. y§(PS) andy&(V) corresponding t&=2. Curves are the results of the global(®6) with parameter$28) and (30).

Ye=Ag+BgB' +CgB'?+DgB k' +Egk’ +Fgk'?,
(26)

where B'=8-2.0 and x'=«k—0.12. For y£(PS) and
v&(PS), we find

Ar=1.909741), Bg=0.74638),

Cr=0.0425), Dp=—13.94.1),

Er=20.1475), Fr=—1(83), (27)
Ac=1.821428), B;=0.43522),
Ce=-0.2417), Dg=3.22.9),
Eg=—1.6944), Fg=—6957), (28)

with x?/Npp=38.0/17 and x?/Npg=19.2/17, and, for
vr (V) and yg(V),

22 .
o p=1.8, PS
! u =19
AB=2.0
20 vp=2.1 ]
1.8 .
o I
16 el Y
1 .4 | \.\.'.\‘\% \"‘\a
1 .2 L L I L
75 8.0 8.5 9.0 9.5 10.0

1/x

Ar=1.843448), Bg=1.20446),

Cr=-0.9329), Dp=—21.94.7),

Er=25.9497), Fr=48892), (29)
Ac=1.831129), B;=0.34822),
Cs=0.1420), Dg=0.52.9),
Eg=—1.1947), Fg=—61(58), (30)

with x?/Npg=76.0/17 andy?/Npg=14.6/17, using the val-
ues ofy§,s and their errors listed in Table. II. The errors for
the coefficients are estimated from th€error matrix. These
fits are shown in Figs. 11 and 12 by dotted lines.

In Fig. 13, we plotyg as a function of the dimensionless
quark massng=(1/k—1/k¢)/2 using«. determined in Sec.
VI. Although the range ofng is not very close to the chiral
limit, our values ofyf suggest a strong linear dependence in

2.2 ~ oy T T T T
AR ®p=18V
up=19
AB=2.0
vp=2.1 T
.... Ve ]
e, ""A ..... ]
g ‘ "“‘\._‘_. ............ -
-
¢ \...\\!
1.2 1 1 N ‘\]““..
75 8.0 8.5 9.0 9.5 10.0

1/x

FIG. 12. y£(PS) andyf (V) corresponding tg=2. Curves are the results of the global(6) with parameter$27) and (29).
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22 - - - - scale and several other basic properties of our lattice. We
also test the effects of the two calibration results using PS
and V meson dispersion relations on the continuum extrapo-
lation of physical quantities.

20r ) For the interpolations to ¥ ,yg) at each ,x), we
adopt a linear ansatz

18 i y=atbystcyr (31
when the range ofyg is less than 0.3. When may)
—min(y:)=0.3, we adopt a quadratic ansatz

er ] y=a+tbyg+cye+dyg, (32
because, in this case, the linear ansatz sometimes fails to

14 , , , , explain the datd y?/Npg~O(10)-O(100)]. We find that

100 0.2 0.4 0.6 0.8 1.0 terms quadratic inyg do not improve the fits. We confirm

M, that this quadratic ansatz leads to a result consistent with the
linear ansatz if maxg)—min(y:)<<0.3.

Several physical quantities thus interpolatedéte2 are
summarized in Table Ill, where the results from the quadratic
my . This result is in clear contrast to the case of quenche@nsatz(32) are marked by an asterisk on The errors are
QCD in which y# is well fitted by a quadratic ansatz in est|mated2by quadratically averaging over the contributions
motivated from the tree-level expression fof [30]. As from the rror m*atrlx for the fit31) or (32), and from the
mentioned in Sec. Il B, we expect linear corrections from€Mors foryg andyg . The results obtained by adopting two
higher order quark loops even if the linear terms are removedlternative choices for th¢=2 point—yg,(PS) from the
at the tree leve29]. Our result provides us with an example pseudoscalar dispersion relation apj(V) from the vec-

FIG. 13. y£(PS) vs quark mass at varioys Lines are guides
to the eyes.

that confirms this expectation. tor dispersion relation—are labeled B§S and (V).
Finally, we study thé(a) differences among the calibra-
tion results using PS and V mesons. We plot the relative A. Plaquette

H * *
differences betweenyg (PS) and y£(V) and between Figure 15 shows the plaguette expectation valiveg s s)

* * ; ; ;

7e(PS) andyg(V) in Fig. 14 as functions o and 1k. andW,(st) at £=2 adoptingy%,s(PS). The results adopt-
Errors are estimated neglecting the correlation between Pm * (V) are similar. As a reference point, the plaquette
and V determinations. We find that the differences tend tg 9 YF/G ' point, pad

: L . values on an isotropic lattice using the same action are also
vanish asB is increased. AB=2.0, the differences are less . ) .
than 5% fory? and 1% forys . plotted [2]. Different points at the samg with the same

symbol represent the results obtained at different

The numerical results for plaquettes are compared with
their one-loop values a§=2, Egs.(6) and (7), shown by

In this section, we interpolate the measurement results tdashed lines in the figure. F@rwe adopt the bare value. We
the calibration points corresponding §&=2 to estimate the find that, as in the case of isotropic lattices, the plaquettes

VI. PHYSICAL QUANTITIES AT §é=2

0.25 T T T 0.05 T T
OB=1.8 OB=1.8
0.20 F B=1.9 ] mp=1.9
AB=20 AB=2.0
. v B=2.1 % . v B=2.1
P o5} 5 ] e
SN ) ¥ ] S g ,‘ %
~ " , e ‘ Ji p
i § T : T |
[70] 0.05 | 4 )
= ; : 2 [ 3
2 phy oY@ 2
0.00 = _0.05 .
1
~0.05 . ‘ . ‘ . .
7.5 8.0 8.5 9.0 9.5 75 8.0 8.5 9.0 9.5
1/x 1/x

FIG. 14. Relative differences betweefi (PS) andyg (V), and betweeny&(PS) andyg(V), as functions of3 and 1k.
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TABLE IIl. Physical quantities interpolated t§=2. Results marked with an asterisk are from the quadratic ai32xzwhile other
results are from the linear ansd@4). The results of two alternatives for tife=2 point, y§,5(PS) andyg,s(V), are labeled byPS and(V),
respectively.

B K mps(PS) x*INpg my(PS) x*INpg Mps/my(PS) x*INpg ro/as(PS) x?/Npr
Mp(V) x*INpg my(V) X*INpg Mps/my(V) x*INpg rolas(V) x*/Npr

1.8 0.10743% 1.439566) 8.2/4 1.576075) 2.6/4 0.9133E7) 1.3/4 1.29915) 2.6/4
1.560155) 8.2/4 1.71784) 2.6/4 0.9082843) 1.3/4 1.32019 2.6/4

0.11162 1.243162) 1.1/2 1.398675) 3.1/2 0.8890(567) 2.8/2 1.346198) 1.5/2
1.300939) 1.1/2 1.472045) 3.1/2 0.8838165) 2.8/2 1.35%19) 1.5/2

0.11582 1.030657) 7.9/13 1.204878) 7.1/3 0.855610) 3.1/3 1.41811) 3.0/3

1.07912) 7.9/3 1.27%17) 7.1/3 0.84583) 3.1/3 1.40619) 3.0/3

0.12115 0.7634.5) 2.9/3 0.967%25) 5.5/3 0.788812) 3.0/3 1.521064) 8.5/3
0.766@26) 2.9/3 0.990642) 5.5/3 0.773219) 3.0/3 1.55712) 8.5/3

0.12438 0.588@25) 5.7/4 0.816836) 7.414 0.720@2) 6.1/4 1.60510) 8.1/4
0.544873) 5.7/4 0.797846) 7.414 0.683474) 6.1/4 1.70113 8.1/4

0.12655 0.434(771) 9.1/3 0.684145) 4.3/3 0.635630) 3.9/3 1.73011) 4.2/3
0.383862) 9.1/3 0.662746) 4.3/3 0.580670) 3.9/3 1.79610) 4.2/3

1.9 0.10850 1.325556) 4.5/4 1.44285) 2.3/4 0.9185(50) 1.5/4 1.5018666) 18.2/4
1.4045%79) 4.5/4 1.53300) 2.3/4 0.9159664) 1.5/4 1.510173) 18.2/4

0.11370 1.06738) 7.5/13 1.200246) 5.713 0.8886(M5) 10.3/3 1.604(80) 2.4/3
1.097727) 7.5/13 1.239832) 5.713 0.88536:9) 10.3/3 1.614(49) 2.4/3

0.11690 0.90880) 4.9/5 1.05572) 8.9/5 0.8610898) 9.4/5 1.637671) 4.3/5
0.930420) 4.9/5 1.089127) 8.9/5 0.854261) 9.4/5 1.67444) 4.3/5

0.12120 0.682515) 5.8/4 0.846(27) 5.7/4 0.806617) 2.1/4 1.79510) 1.8/4
0.679313) 5.8/4 0.851625) 5.714 0.797618) 2.1/4 1.82110) 1.8/4

0.12450° 0.485924) 5.9/3 0.672(1) 0.6/3 0.723428) 2.713 1.970870) 19.1/3
0.459373) 5.9/3 0.659%10) 0.6/3 0.695831) 2.713 2.01618) 19.1/3

0.12600 0.380461) 33.6/3 0.583E89) 8.5/3 0.651779) 10.7/3 2.11914) 1.6/3
0.355943) 33.6/3 0.572230) 8.5/3 0.620%6) 10.7/3 2.16810) 1.6/3

2.0 0.10900 1.19126) 0.9/2 1.283(B0) 1.712 0.9285736) 0.6/2 1.779853) 3.9/2
1.214335) 0.9/2 1.309740) 1.7/2 0.9272E39) 0.6/2 1.784455) 3.9/2

0.11500 0.905@8) 2.2/3 1.0131249) 6.2/3 0.8942(61) 8.3/3 1.932645) 8.2/3
0.920122) 2.2/3 1.032830) 6.2/3 0.8915689) 8.3/3 1.947166) 8.2/3

0.11800 0.755397) 1.2/2 0.869614) 0.3/2 0.8687467) 0.4/2 2.038(48) 5.1/2
0.760413) 1.2/2 0.877818) 0.3/2 0.8662®32) 0.4/2 2.055858) 5.1/2

0.12100 0.596094) 26.3/3 0.7226B14) 14.6/3 0.825(15) 0.6/3 2.22911) 1.5/3
0.5950%95) 26.3/3 0.723(15) 14.6/3 0.822019) 0.6/3 2.241)) 1.5/3

0.12440 0.391@5) 11.5/6 0.539123) 20.9/6 0.72541) 11.6/6 2.52713 14.6/6
0.378450) 11.5/6 0.53131) 20.9/6 0.71167) 11.6/6 2.57018 14.6/6

0.12520 0.33587) 8.5/2 0.490628) 5.6/2 0.684856) 0.1/2 2.59916) 0.3/2
0.31515) 8.5/2 0.481%67) 5.6/2 0.65%23) 0.1/2 2.66047) 0.3/2

2.1 0.11000 1.04432) 3.2/1 1.115(36) 0.2/1 0.936462) 3.4/1 2.232472) 13.11
1.054532) 3.211 1.126436) 0.2/1 0.9361(47) 3.4/1 2.237161) 13.1/1

0.11500 0.810873) 9.0/2 0.8898L6) 4.8/2 0.9114819 0.0/2 2.400063) 1.5/2
0.816214) 9.0/2 0.8968L7) 4.8/2 0.9109%:9) 0.0/2 2.413468) 1.5/2

0.12000 0.564480) 1.3/2 0.657714) 1.3/2 0.858411) 0.5/2 2.69994) 0.3/2
0.564414) 1.3/2 0.658124) 1.3/2 0.857720) 0.5/2 2.705%18) 0.3/2

0.12250 0.43134) 5.8/3 0.533012) 3.6/3 0.807828) 5.3/3 2.87%10) 10.0/3
0.429413) 5.8/3 0.533613) 3.6/3 0.804425) 5.3/3 2.8811) 10.0/3

0.12450 0.301&23) 10.4/2 0.422(19) 11.9/2 0.71382) 7.9/2 3.17715) 1.6/2
0.290648) 10.4/2 0.414@84) 11.9/2 0.699763) 7.9/2 3.22927) 1.6/2
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TABLE IV. Critical hopping parametek.. The numbers in the

0.8
first parentheses are statistical errors, and those in the second are
RS systematic errors from the chiral extrapolation.
0.7 - “_”_,_»“”" = B
- 3 e B 1k (PS) 1ko(V)
L 08T T 18 7.70843)(*%) 7.76380)( *2
[ TR 1.9 7.77539( "% 7.78946)( *3
% o5 % ] 2.0 7.83626)( 729 7.86250)( 3
o H . o 2.1 7.88814)( 13 7.89624)( 3
\Y; & &7
04 3 I S 1
,/’/g/’/ OW11(SS) i — 1 H
oW (s) point for §=2. We find thatk.(PS) andk (V) are consistent
03 1 - lloopP.T. T with each other within the present statistical accuracy.
A Ref[2] We determine the scale of our lattices from {heneson
02 ‘ ‘ ‘ ‘ mass m,=771.1 MeV at the physical pointmpg/my
17 18 19 2.0 21 22 =m_/m,=135.0/771.1. Figure 17 showsy as a function
g of magat y&,(PS) andyf,(V). We find that the masses at

FIG. 15. Plaquettes a@=2 and 1. Different points at the same
B with the same symbol represent the results obtained at different
[largerW;q(ss) andW,4(st) correspond to largex]. Dashed lines

are the results of one-loop perturbation theory.

*
agree with the perturbative calculation within about 10% at”F/G
this value ofB. This confirms our choice of the clover coef-

ficientsc, andcq to this accuracy.

B. Light meson spectrum and the lattice scale

v£6(PS) andyf,5(V) are slightly different on coarse lat-
tices. The difference rapidly decreases with increagng

Extrapolation to the physical point is done by adopting a
quadratic ansatz to the lightest four data points at gadive
note that, with the present statistics, the two resultsrprat
(PS) andyf,5(V), extrapolated to the physical point,
are consistent with each other already on the coarsest lattice.
High statistics simulations directly aff,(PS) andyg,s(V)
may resolve the difference at the physical point.

The resulting lattice scale is summarized in Table V. Sys-
tematic errorg§second erropsin the table are estimated from

In Fig. 16, we summarize the values ofog at £&=2, a comparison with linear fits using the lightest three points.
adoptingyg,s(PS), as a function of k. Carrying out chiral
extrapolations in which the lightest four points are fitted to a C. Static quark potential and Sommer scale

guadratic ansatz, we obtain the chiral poiR{PS) listed in
Table IV. The first errors are statistical, while the second

We extract the static quark potentd(r) from the fit

ones are systematic errors estimated from the difference with W(r,t)=C(r)exd — V(r)t] (33
the results of linear fits to the lightest three points. The val-

ues ofk.(V) are obtained similarly, adoptingf,s(V) as the

1.6
T T
15 | . 141
®p=1.8 PS |
mp=1.9 PS
AB=2.0 PS 1.2 b
vp=2.1 PS |
— quad. fit with 4points = |
----------- linear fit with 3points 1.0 |
1.0 5
€ ‘
Yo 08 |
o —@p=18 PS
E o m—mp=1.9 PS
o6 | 7 A—AB=20 PS ]
: v—vp-2.1 PS
0.5 . - O-~OPp=1.8 V
E--BB=19 V
0.4 g A-AP=20 V 1
= Ve B=2.1 V
0.2 1 Il Il 1 Il Il 1 1 L 1
A 00 02 04 06 08 10 12 14 16 18 20 22
0.0 = L m 2
75 8.0 85 9.0 Ps

1/x

FIG. 17. my as a function oin3 for é=2 at y§,c(PS) (filled

FIG. 16. m,%s at y§,6(PS) foré=2 as a function of 1. Full symbols and atyf,s(V) (open symbols The leftmost symbols are
and dotted curves show quadratic and linear fits using the lightedhe results of quadratic extrapolations to the physical point. The

four and three data points, respectively.

lines are guides for the eyes.
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TABLE V. Lattice scale determined frorm, at the physical
point.

B ay(PS)(GeVv'?) ay(V)(Gev™1) L.ag (fm)
1.8 1.39528)( 73 1.40826)( *§" 2.2
1.9 1.18521)(*§ 1.17817)( 73 1.9
2.0 0.95715)( 7§ 0.98626)( 1.9
2.1 0.82410)( *§ 0.83817)( ¢ 2.0

to temporal Wilson loops. In order to enhance the overlap

C(r) with the ground state, we smear spatial lifiB4]. We
fit the data at~0.45—-0.90 fm where a large overlap is ob-

served. As in previous studies on isotropic lattices, we find

no apparent string breaking effects\igr). Therefore, we fit
the potential with

V(r)=A+%+o-r (34)

PHYSICAL REVIEW D 68, 034503 (2003

3.5 T T T

®—@p-18 PS
=—mp-19 PS
A—AP=20 PS

3.0
25
QUJ
‘_O

2.0

1.5

0.0 0.5 1.0 ) 1.5 2.0

Mpg

FIG. 18. Sommer scale =2 as a function of the PS meson
mass. The leftmost symbols are the results of quadratic extrapola-

for the range ~0.35-1.5 fm. The parameters for the poten-yjons 1o the physical point. The lines are guides for the eyes.

tial calculations are summarized in Table VI.
With Eg. (34), the Sommer scalg, [32] defined by

dv(r)
2— =
°oTqr | 1.65 (35
—rg
is given by
ro 1.65+ aé

The results for/a interpolated ta€=2 are listed in Table

linear extrapolation to the continuum limit gives,
=0.597(24) (39 and 0.612(33){ %)) fm for y§, using the

PS and V meson dispersion relations, respectively. The sys-
tematic errors are estimated by comparing the results of vari-
ous combinations of chiral extrapolatioénear and qua-
dratic fits for my andrgy). We find that the results using
vE,6(PS) andyg,s(V) are consistent in the continuum limit
within the statistical errors. A constrained fit requiring the
same continuum value, as shown in Fig. 20, leads o
=0.603(19)(*5) fm, where the statistical error was esti-
mated by neglecting the correlation between the PS and V

Il and shown in Fig. 18. Extrapolating to the physical point, results, and the systematic error was estimated from the re-
we obtain the values summarized in Table VII, where thesults of constrained fits using various combinations of chiral

central values are from quadratic ﬁtsr’mﬁS using the light-

extrapolations fom,, andr .

est fourk’s, and the systematic errors are estimated from the

difference with a linear fit using the lightest threés.
The Sommer scale ahpg/my=0.7, 0.6, and 0.17%the

D. Beta functions

Finally, we attempt a rough estimation of the beta func-

physical point from a quadratic fit is plotted in Fig. 19 as a

function of the lattice spacing. We find that the differencetlonS

between the calibrations using the PS and V meson disper- EP B

sion relations becomes smaller toward the continuum limit. ag— , AgT— (37
H i H aas S

For the Sommer scale at the physical point, a naive Mpg/my Mpg/my

TABLE VI. Parameters for the calculation of the static quark 20ng lines of constant physics defined imgs/my=const.
These quantities are required in a calculation of the equation

potential.
of state in thermal QCID20]. We calculate the beta functions
B K Nemear Fit range int  Fit range inr by
1.8 0.10745-0.11582 1 3-6 \/5_2\/§ TABLE VII. Sommer scale aE=2, extrapolated to the physical
0.12115-0.12655 1 3-6 J2-3\2 point.
1.9  0.1085-0.1169 2 3-6 J2-3\2
0.1212-0.1260 2 4-7 J2-33 P fo/as(PS) fo/as(V)
20  0.1090-0.1180 3 4-7 V2-3/3 1.8 1.84321)(*9, 1.89217)( %9
0.1210-0.1252 3 5-9 3-6.0 1.9 2.26923)( 79, 2.33118)( 2
2.1  0.1100-0.1200 4 5-9 J3-6.0 2.0 2.81827)( 12 2.87041)( 78
0.1225-0.1245 4 6-11 2.0-3/6 2.1 3.367123)( "9 3.377139)( 9,

034503-14



TWO FLAVORS OF DYNAMICAL QUARKS ON . .. PHYSICAL REVIEW D68, 034503 (2003

1.5 r r T 1.25 - ; .
physical point
14 ] 120y : ]
- . oy (PS)
% IE x 115 | OVealV) ]
13 f 1 S,
g % x  §
1.10 | S g .
> \\\ S
g12} [] % . ) & %
=3 — 5
w [ 1.05 < I~ 1
“r % i% ] 1.00 [ et ]
? @m,/m,=0.175 : PS R =
a 060 :PS Ng S
A 0.70 :PS Yy
1.0 | % Omeg/m,=0.175 : V 1 0.95 | AN ]
a 0.60 :V | R
A 070 :V ‘\\
0.9 ' : : 090 =50 0.2 04 06 (\JB
0.2 0.4 0.6 0.8 1.0 ' : m : '
m, v
FIG. 19. Sommer scale ahp5/m,=0.7, 0.6, and 0.17%the | tt_FIG. 20'_301216: sc?le at‘ttt.hf. pf?yil_ial pokllnt atsha funnctt_lr?n ?T:the
physical point as a function of the lattice spacing. Errors are sta- atlice spacing. -rrors are statistical. Lines show the continuum ex-
o trapolation with a constraint requiring the same continuum value for
tistical.
PS and V results.
B K . .
method using Eq(38). We fit mpg and my, to the general
a(myay) a(myay) quadratic ansatz if8 and k. Because the data noticeably
B oK deviate from the quadratic form when we include all values

of x, we restrict ourselves to three’s around the target
mps/my, in the fit, while all four 8’s are included. Our esti-
amya)  d(mps/my)\ ~* mates for the beta functions are summarized in Figs. 21 and
i i 22.
= (38
amyay)  d(mpg/my)

K K

d(mps/my)  d(mMps/my)

VII. CONCLUSIONS

In this article we initiated a systematic study of two-flavor
using the data fompg and my, listed in Table Ill. In Ref.  full QCD on anisotropic lattices. We determined, for clover-
[20], a slightly different method was adopted because thémproved Wilson quarks coupled to a RG-improved glue, the
matrix in the right hand side of E¢38) sometimes becomes bare anisotropy parameters that realize a consistent renor-
almost singular in the large quark mass region. Since quarksialized anisotropy¥=2 in both quark and gauge sectors. In
are not quite heavy in this study, we adopt the simplerthe quark sector we employed both pseudoscalar and vector

meg/m,=0.90
0.01 ——— 0.85

> >
0.00
5 5
) =
S -06 1T
> >
= m,¢/m,=0.90 1S =
- 0.80 -0.01 ==~
7 - 0.70
0.7 + . —_— 0.65 b
-0.8 . g -0.02 k :
1.8 1.9 2.0 2.1 1.8 1.9 2.0 2.1
§ p

FIG. 21. Beta function$37) at y§,(PS) foré=2. Thick curves are the results for given valuesmfs/m,,, while thin curves represent
their errors.

034503-15



UMEDA et al.

PHYSICAL REVIEW D 68, 034503 (2003

- g * Meg/mM,=0.90

| or | T o

o[ - 0.75

= 0.70

e 0.65
o 4 7
£ =
2 S
&) 5
g -0.6 | ] =
= >
S ——— M,/M,=0.90 €

—— 0.80
——= 0.70 —
-0.7 o 0.65 1 e
-0.8 : . -0.02 s s
1.8 1.9 2.0 2.1 1.8 1.9 2.0 2.1
B B
FIG. 22. Same as Fig. 21 but gf,s(V).
meson channels for calibration. The results for the bare an- gmass ralie m /m,, (A1)

isotropy parameters are summarized in E@5)—(30) as
functions of 8 and « for the rangesa;~0.28-0.16 fm and
mps/my~0.6—0.9. The difference between the two calibra-as adopted in a quenched study for PS me$bhd~or clar-
tion methods should b&(a). We confirmed that the differ- ity, we denoteér defined by Eq.(18) using the dispersion
ence in the bare anisotropy parameters actually vanishes teelation ang'Sp in this appendix.
ward the continuum limit. A disadvantage of the mass ratio method is that, to obtain
We also attempted to calculate some basic quantities useliable values ofmg and m, suppressing contamination of
ing data measured in the runs made for the calibration andxcited states, we need to prepare well-tuned smeared
interpolating them to the point corresponding&e 2. Al- sources in both the spatial and temporal directions, and/or
though errors from interpolations are introduced, this encarry out multipole fits, on sufficiently large lattices. In this
abled us to carry out an initial determination of the latticepaper, because we do not have propagators with temporally
scale and beta functions. For the Sommer scglave found  smeared sources, we study spatial propagators with point-
thatr, from different calibration methods led to a consistentpoint source and sink. We find that, when the quarks are
value in the continuum limit. light, the effective mass of the spatial PS meson correlator
We wish to apply our results to a study of heavy quarksdoes not show a clear plateau, and sometimes shows a de-
and thermal QCD, in which simulations can be directly madecreasing tendency even at the maximum distaxeeN /2
with £€=2 anisotropic lattices using the parametrizations—1. This means that our spatial lattice sizes 8—12 may not

Egs.(25)—(30). We hope to report on such studies in the near
future.
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APPENDIX: & FROM THE RATIO OF SCREENING AND s v B=2.1
TEMPORAL MASSES
In this paper, we adopt the dispersion relation for meson: '0'60.6 o= 58 oG

for defining the fermionic anisotropéf . An alternative defi-
nition of &¢ is given by the ratio of the masses measured in
a spatial directior{screening massy,) and the temporal di-
rection (temporal massn,),

Mpg/My,

FIG. 23. grassraippg)y £dShps) as a function ompg/my at
various values o3 and «.
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be large enough to suppress excited states. Unfortunately, the Figure 23 shows the difference of the two fermionic
number of data points is also not sufficient to attempt a mul-anisotropies £ pS)— ¢dSAPS) as a function of

tipole fit. Therefore, in the following, we just adopt the value
of the effective mass at=N¢/2—1 for mg. Strictly speak-
ing, this value gives an upper bound oqy. Therefore, the
resulting&[ass e

quarks are light.

mps/My at 3=1.9, 2.0, and 2.1. We find that the difference
is consistent with zero whempg/my is small. A slight over-
shooting aimps/my=0.7 may be understood by the fact that

may be larger than the true value when theour £I'®°"js an upper bound for the true value as dis-

cussed above. We also find that the difference at large quark

Because our temporal lattice sizes are sufficiently largemasses decreases toward the continuum limit. 34t 2.0
we do not encounter a similar problem in the calculations 0f2.1), the two methods are consistent with each other at

m, and 2P,

Mps/My=0.75(0.8).
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