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We report on our study of two-flavor full QCD on anisotropic lattices usingO(a)-improved Wilson quarks
coupled with a renormalization-group-improved glue. The bare gauge and quark anisotropies corresponding to
the renormalized anisotropyj5as /at52 are determined as functions ofb andk, which cover the region of
spatial lattice spacingsas'0.28–0.16 fm andmPS/mV'0.6–0.9. The calibrations of the bare anisotropies are
performed with the Wilson loop and the meson dispersion relation at four lattice cutoffs and 5–6 quark masses.
Using the calibration results we calculate the meson mass spectrum and the Sommer scaler 0. We confirm that
the values ofr 0 calculated for the calibration using pseudoscalar and vector meson energy momentum disper-
sion relations coincide in the continuum limit within errors. This work serves to lay the groundwork for studies
of heavy quark systems and the thermodynamics of QCD including the extraction of the equation of state in the
continuum limit using Wilson-type quark actions.

DOI: 10.1103/PhysRevD.68.034503 PACS number~s!: 12.38.Gc
n
ie
a
nd
e
it

tio
c

i

f i
d

on
ra
th
n

at
ra
ha

f
m
ra
t

ters
tent

oth
ters

he
CS
la-
the

or a

udy

n our

ill
y
nt
n re-
ns
-
on-

.
so-
f
on
ra-
er-

VI,
Ja
I. INTRODUCTION

In spite of recent progress in computer technology a
numerical algorithms, the extraction of continuum propert
from lattice QCD remains challenging when dynamic
quarks are included due to the large computational dema
One method for alleviating the difficulty is to improve th
lattice action for a faster approach to the continuum lim
This enabled us to carry out the first systematic extrapola
to the chiral and continuum limits for the light hadron spe
trum @1,2#.

Another method that is effective for several quantities
to introduce a space-time anisotropy. In Ref.@3#, we showed
that using anisotropic lattices with a larger temporal cutof
efficient for reducing lattice artifacts in thermal QCD, an
carried out the first well-controlled continuum extrapolati
of the equation of state in quenched QCD. In finite tempe
ture QCD, anisotropic lattices have been employed in
quenched approximation also to study transport coefficie
@4#, pole masses@5,6#, glueballs@7#, and spectral functions
@8,9#, where anisotropy was introduced to obtain more d
points for temporal correlation functions. At zero tempe
ture, anisotropic lattices have been employed to study c
monium states@10–12#, glueballs @15#, heavy hybrids
@13,14#, and also the pion scattering length@16#.

In this paper, we calculate the anisotropy parameters
an improved full QCD action to contribute toward a syste
atic study of QCD with heavy quarks and at finite tempe
tures. The calculation of anisotropy parameters is no
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simple task in full QCD because a couple of bare parame
have to be simultaneously adjusted to achieve a consis
renormalized anisotropy in physical observables for b
quarks and gluons. This tuning of bare anisotropy parame
is called ‘‘calibration’’ @17#. We study two-flavor full QCD
with a renormalization-group-~RG-! improved gauge action
and a clover-improved Wilson quark action, extending t
combination of improved actions adopted by the CP-PA
Collaboration to anisotropic lattices. Carrying out simu
tions at several values of bare parameters, we perform
calibration to determine the bare anisotropy parameters f
given value of the renormalized anisotropyj5as /at as func-
tions of the gauge coupling and bare quark mass. We st
the range of parameters corresponding toas'0.28–0.16 fm
for the spatial lattice spacing andmPS/mV'0.6–0.9 for the
ratio of pseudoscalar and vector meson masses. Based o
previous study of finite temperature QCD@3#, we concentrate
on the casej52 in this paper.

Different choices of observables for the calibration w
lead toO(a) differences in the calibration results. We stud
this issue by comparing the results from two differe
observables—pseudoscalar and vector meson dispersio
lations. We anticipate that the results of different calibratio
will be useful for checking the stability of continuum ex
trapolations. As a test of the idea, we also perform a c
tinuum extrapolation of the Sommer scale atj52, by inter-
polating our measurement results to the calibrated points

This paper is organized as follows. We define our ani
tropic lattice action in Sec. II, and discuss our choice oj
52 and simulation parameters in Sec. III. The calibrati
procedure is described in Sec. IV. The results of two calib
tions for j52, using pseudoscalar and vector meson disp
sion relations, are summarized in Sec. V. Finally, in Sec.

-
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we interpolate the measurement results toj52 to study ba-
sic properties of our lattices. We also test how the differe
in the calibration affects physical observables. Section VI
devoted to conclusions and discussion. An Appendix
added to compare our calibration procedure with anot
method based on the ratio of screening and temporal ma

II. ANISOTROPIC LATTICE ACTION

We study full QCD with two flavors of degenerate lig
quarks. On isotropic lattices, we have made a series of
tematic studies adopting a clover-improved quark act
coupled with a RG-improved glue@1,2,18–22#. In these
studies, the clover coefficientcSW was set to the tadpole
improved value using the plaquette in one-loop perturba
theory for the mean field. This choice was based on the
servations that the one-loop plaquette reproduces the a
plaquette expectation values within 8% for the range of
rameters studied, and that the resulting value of the clo
coefficient agrees well with its actual one-loop value. T
action was shown to give both a good rotational symmetry
the heavy quark potential and a small scale violation in
light hadron spectra at moderate lattice spacings@23#. At
zero temperature, these good properties enabled us to
out the first systematic chiral and continuum extrapolatio
of light hadron spectra and light quark masses@1,2#. At finite
temperatures, this combination of actions was shown to
produce the expectedO(4) scaling around the two-flavo
chiral transition point@18,24# and was adopted in the firs
systematic calculation of the equation of state in lattice Q
with Wilson-type quarks@20#. Here, we extend the study t
anisotropic lattices.

A. RG-improved gauge action on anisotropic lattice

On isotropic lattices, the RG-improved gauge action
Iwasaki @25# consists of plaquettes and 132 rectangular
loops. Extending it to anisotropic lattices, the general form
the action is given by

SG5bH 1

gG
(

x,i . j
$c0

sPi j ~x!1c1
s@Ri j ~x!1Rji ~x!#%

1gG(
x,k

@c0
t Pk4~x!1c1

t Rk4~x!1c2
t R4k~x!#J , ~1!

wherei , j ,k are for spatial directions and

Pmn~x!512
1

3
Re Tr$Um~x!Un~x1m̂ !Um

† ~x1 n̂ !Un
†~x!%,

~2!

Rmn~x!512
1

3
Re Tr$Um~x!Um~x1m̂ !Un~x12m̂ !

3Um
† ~x1m̂1 n̂ !Um

† ~x1m̂ !Un
†~x!% ~3!

are the plaquette and rectangular loop in them-n plane, re-
spectively. The improvement coefficientsci

s/t satisfy the nor-
malization conditionsc0

s18c1
s51 and c0

t 14c1
t 14c2

t 51.
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The bare gauge coupling equalsb56/g2, andgG represents
the bare anisotropy. We have three independent improvem
parameters amongci

s/t .
In principle, these improvement coefficients may ha

nontrivial j dependences depending on the improvem
conditions on the anisotropic lattice. In Ref.@26#, we have
repeated the improvement procedure of Iwasaki on an
tropic lattices, and found that, for small anisotropiesj
'1 –4, thej dependences in the improvement coefficie
are weak, and a sufficient improvement is achieved just
fixing the coefficients to Iwasaki’s values for isotropic la
tices,c1

s5c1
t 5c2

t 520.331. As explained in Sec. III, we ar
interested in the casej52. Becausej dependences in the
improvement coefficients require additional elaborations
numerical simulations, such as the computation
j-derivative terms in the equation of state, we fix the im
provement coefficients to their isotropic values in the follo
ing.

B. Clover quark action on anisotropic lattice

We employ clover-improved Wilson quarks@27#. On an-
isotropic lattices, the action is given by

SF5(
x,y

q̄~x!K~x,y!q~y!, ~4!

K~x,y!5dx,y2k t$~12g4!U4~x!dx14̂,y1~11g4!

3U4
†~x24̂!dx24̂,y%2ks(

i
$~r 2g i !Ui~x!dx1 î ,y

1~r 1g i !Ui
†~x2 î !dx2 î ,y%2ksH ct(

i
s4iF4i~x!

1rcs(
i . j

s i j Fi j ~x!J dx,y . ~5!

For the field strengthFmn , we use the standard cloverlea
definition. Following our previous studies atj51, we apply
a mean-field improvement for Eq.~4!, Ui(x)→Ui(x)/us and
U4(x)→U4(x)/ut , whereus and ut are mean links in the
spatial and temporal directions. For the mean links, we ad
the value estimated from plaquette in one-loop perturba
theory as in our previous studies. Atj52, we obtain

W11~ss!5121.154/b, ~6!

W11~st!5120.560/b ~7!

for the spatial and temporal plaquettes. Therefore, we
us5(121.154/b)1/4 for j52. For the temporal mean field
we adopt ut51 because the naively calculated val
W11(st)1/2/W11(ss)1/4 exceeds 1 forj*1.6 at our values of
b.

Following Refs.@5,6#, we set the spatial Wilson paramet
to be r 51/j. In this case, the quark dispersion relation
physical units preserves the four-dimensional rotation sy
metry at the tree level, and the tree-level improvement co
ficients are free from the terms linear inmq @12,28,29#. In a
3-2
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TWO FLAVORS OF DYNAMICAL QUARKS ON . . . PHYSICAL REVIEW D68, 034503 ~2003!
quenched study@30#, it was shown that the fermionic bar
anisotropy parameter corresponding to a fixedj is well fitted
by a quadratic function ofmq with this choice ofr. With
dynamical quarks, however, terms linear inmq may appear
through quark loop corrections@29#.

The clover coefficientscs andct are functions ofr. With
our choicer 51/j, cs and ct are unity at the tree level an
their mean-field-improved values are given by

ct5
1

usut
2

, cs5
1

us
3

. ~8!

We define the bare anisotropy of the fermion field by

gF5
k tut

ksus
. ~9!

The bare quark mass in units ofas is given by

mq
05

1

2ksus
2gF23r . ~10!

For later convenience, we definek to satisfy the same rela
tion with mq

0 as in the isotropic case:

1

k
52~mq

014!5
1

ksus
22~gF13r 24!. ~11!

We perform chiral extrapolations in terms of 1/k.
The relationr 51/j suggests that spatial doublers m

appear at largej. The free quark dispersion relation for ou
action is given by

coshE~pW !511
p̄W21@mq

0/gF1~r /2gF!p̂W2#2

2@11mq
0/gF1~r /2gF!p̂W2#

, ~12!

wherep̄i5(sinpi)/gF , p̂i52 sin(pi/2), andE is in units ofat
while pi is in units ofas @30#. In Fig. 1, we plot the energy
E(pW )/j for j51, 2, and 4 atmq

050.1, 0.2, and 0.6, where
j5gF in this approximation. From this figure, we expect th
doubler effects are weak at our studied values ofj52 and
mq5(1/k21/kc)/250.07–0.8~see Sec. VI!.

III. SIMULATION PARAMETERS

In this paper, we focus on the case of the renormali
anisotropyj52. We have shown for finite-temperature pu
SU~3! gauge theory@3# that this choice ofj is optimal to
reduce scaling violations in the equation of state both in
high temperature limit and at finiteb; the latter is confirmed
by a Monte Carlo simulation. It is straightforward to analy
the high temperature limit for full QCD. We have found th
j52 is also optimal with two flavors of dynamical quark
and improved glue.

We perform simulations atb51.8, 1.9, 2.0, and 2.1 on
83324, 83324, 103330, and 123336 lattices, respectively
The lattice spacing is in the rangeas'0.28–0.16 fm, and
hence the spatial lattice size is fixed to be about 2 fm.
03450
t
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e
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Sec. VI for details of the scale determination. At eachb, six
values ofk, corresponding tomPS/mV'0.6, 0.7, 0.8, 0.85,
0.9, and 0.92, are simulated. To study lattice volume effe
we also perform additional simulations on 83324 and 123

336 lattices atb52.0. Our simulation parameters are sum
marized in Table I.

We generate gauge configurations by the hybrid Mo
Carlo algorithm with an even-odd preconditionedBICGSTAB

quark solver@2#. The molecular dynamics time stepdt is
adjusted to achieve an acceptance rate of about 70–8
Measurements are performed at every five trajectories o
1000–1700 trajectories after 300 thermalization trajector
where the length of one trajectory is set to unity. The sta
tical errors of the observables are estimated by the jackk
method at eachb andk with bins of 50 trajectories.

IV. CALIBRATION PROCEDURE

At each b and k, we have to tune the bare anisotrop
parametersgF and gG such that the renormalized anisotr
piesjF andjG for fermionic and gluonic observables coin
cide with each other:

jF~gF ,gG ;b,k!5jG~gF ,gG ;b,k!5j. ~13!

As discussed in the previous section, we study the casejj
52. For this purpose, we measurejF and jG at several
values of (gF ,gG) at fixedk andb, and determine the poin
where Eq.~13! is satisfied by an interpolation ingF andgG .
Let us denote the resulting values ofgF andgG for j52 as
gF* (b,k) andgG* (b,k). Finally, we parametrizegF* andgG*
as functions ofb and k for use in future studies of heav
quark systems and thermodynamics of QCD.

We measurejG by Klassen’s method@10#:

Rs~x,y!5Rt~x,jGy!, ~14!

FIG. 1. Dispersion relations of free quarks on anisotropic l

tices. The energyE(pW )2E(0) normalized byj is plotted as a func-
tion of spatial momentum at bare quark massesmq

050.1, 0.2, and
0.6 ~full, dotted, and dashed curves! for anisotropiesj51, 2, and 4.

LargerE(pW )2E(0)/j at pz /p;1 correspond to smallerj.
3-3
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TABLE I. Simulation parameters. ‘‘Traj.’’ is the number of trajectories used for measurements after 300 thermalization trajecto
b52.0, in addition to the main simulation on the 103330 lattice, simulations using the same values ofk, gF , gG , and the trajectory length
are done also on 83324 and 123336 lattices for a study of finite size effects.

b Size k Traj. (gG ,gFus)

1.8 83324 0.10745 1700 ~1.70,0.90!, ~1.70,1.10!, ~1.70,1.20!, ~1.75,0.90!,
~1.75,1.10!,~1.75,1.20!, ~1.85,0.90!, ~1.85,1.10!

0.11162 1700 ~1.70,1.00!, ~1.70,1.20!, ~1.70,1.30!, ~1.75,1.00!,
~1.75,1.20!, ~1.75,1.30!

0.11582 1700 ~1.70,1.15!, ~1.70,1.25!, ~1.70,1.30!, ~1.75,1.15!,
~1.75,1.25!, ~1.75,1.30!

0.12115 1700 ~1.70,1.25!, ~1.70,1.35!, ~1.70,1.40!, ~1.75,1.25!,
~1.75,1.35!, ~1.75,1.40!

0.12438 1700 ~1.70,1.20!, ~1.70,1.30!, ~1.70,1.40!, ~1.70,1.45!,
~1.75,1.30!, ~1.75,1.40!, ~1.75,1.45!, ~1.80,1.20!

0.12655 1700 ~1.70,1.35!, ~1.70,1.40!, ~1.70,1.45!, ~1.75,1.35!,
~1.75,1.40!, ~1.75,1.45!

1.9 83324 0.1085 1000 ~1.80,1.00!, ~1.80,1.10!, ~1.80,1.20!, ~1.80,1.30!,
~1.85,1.00!, ~1.85,1.10!, ~1.85,1.20!, ~1.85,1.30!,

0.1137 1000 ~1.80,1.15!, ~1.80,1.25!, ~1.80,1.35!, ~1.85,1.15!,
~1.85,1.25!, ~1.85,1.35!

0.1169 1000 ~1.75,1.20!, ~1.75,1.30!, ~1.75,1.40!, ~1.80,1.20!,
~1.80,1.30!, ~1.80,1.40!, ~1.85,1.20!, ~1.85,1.30!

0.1212 1000 ~1.75,1.55!, ~1.80,1.25!, ~1.80,1.35!, ~1.80,1.45!,
~1.80,1.55!, ~1.85,1.25!, ~1.85,1.35!, ~1.85,1.45!

0.1245 1500 ~1.70,1.50!, ~1.70,1.60!, ~1.75,1.30!, ~1.80,1.40!,
~1.80,1.50!, ~1.85,1.30!, ~1.85,1.60!

0.1260 1500 ~1.75,1.40!, ~1.75,1.60!, ~1.80,1.50!, ~1.85,1.40!,
~1.85,1.60!, ~1.90,1.50!

2.0 103330 0.1090 1000 ~1.80,1.25!, ~1.80,1.35!, ~1.80,1.45!, ~1.85,1.25!,
~1.85,1.35!

(83324) 0.1150 1000 ~1.80,1.45!, ~1.80,1.55!, ~1.85,1.35!, ~1.85,1.45!,
~1.85,1.55!, ~1.95,1.45!

(123336) 0.1180 1000 ~1.80,1.40!, ~1.80,1.50!, ~1.80,1.60!, ~1.85,1.50!,
~1.85,1.60!

0.1210 1000 ~1.80,1.45!, ~1.80,1.55!, ~1.80,1.65!, ~1.85,1.45!,
~1.85,1.55!, ~1.95,1.45!

0.1244 1500 ~1.70,1.60!, ~1.80,1.50!, ~1.80,1.60!, ~1.80,1.70!,
~1.85,1.55!, ~1.85,1.60!,

~1.90,1.55!, ~1.90,1.60!, ~2.00,1.50!
0.1252 1500 ~1.75,1.60!, ~1.75,1.65!, ~1.80,1.60!, ~1.85,1.55!,

~1.85,1.65!

2.1 123336 0.1100 1000 ~1.80,1.35!, ~1.80,1.55!, ~1.90,1.45!, ~1.95,1.35!
0.1150 1000 ~1.80,1.50!, ~1.80,1.60!, ~1.90,1.45!, ~1.90,1.55!,

~1.90,1.65!
0.1200 1000 ~1.80,1.65!, ~1.85,1.55!, ~1.90,1.75!, ~1.95,1.50!,

~1.95,1.60!
0.1225 1500 ~1.80,1.60!, ~1.80,1.70!, ~1.80,1.80!, ~1.90,1.60!,

~1.90,1.70!, ~1.90,1.80!
0.1245 1500 ~1.80,1.60!, ~1.80,1.80!, ~1.85,1.70!, ~1.90,1.60!,

~1.90,1.70!
034503-4
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TWO FLAVORS OF DYNAMICAL QUARKS ON . . . PHYSICAL REVIEW D68, 034503 ~2003!
where

Rs~x,y!5
Wss~x,y!

Wss~x11,y!
, ~15!

Rt~x,t !5
Wst~x,t !

Wst~x11,t !
, ~16!

are the ratios of spatial-spatial and spatial-temporal Wil
loops, Wss(x,y) and Wst(x,t), respectively. We determin
jG by minimizing

L~jG!5(
x,y

@Rs~x,y!2Rt~x,jGy!#2

~DRs!
21~DRt!

2
, ~17!

with DRs and DRt the statistical errors ofRs and Rt . To
avoid short range lattice artifacts,x andy should not be too
small. The practical ranges ofx andy will be discussed later

For jF we use the relativistic dispersion relation of m
sons:

E~pW !25m21
pW 2

jF
2

1O~pW 4!, ~18!

whereE andm are the energy and mass in units ofat , and
pW 52pnW /Ls , with Ls the spatial lattice size, is the spati
momentum in units ofas . We evaluateE andm from a cosh
fit of the meson two-point correlation function,

C~pW ,t !5(
xW

^O~xW ,t !O†~0W ,0!eipW xW& ~19!

O~xW ,t !5(
yWzW

f~yW !f8~zW !q̄~xW1yW ,t !Gq~xW1zW,t !.

~20!

In this paper, we study pseudoscalar~PS! and vector~V!
mesons consisting of sea quarks only:G5g5 for PS andG

5g i for V. Quark fields are smeared by a functionf(xW ) to
enhance ground state signals at short distances. For
‘‘smeared’’ quark field, we adopt an exponential smear
function of the form

f~xW !5a exp~2puxW u! for xWÞ0, f~0W !51, ~21!

where the coefficientsa and p are adopted from a previou
study @2#. The ‘‘point’’ quark field corresponds tof(xW )
5dxW ,0W . In our calculation of the meson two-point functio
the sink operator is always the point-point type, while,
the source operator, we study point-point, point-smeared,
smeared-smeared cases. We find that the smear-smear s
operator leads to the earliest plateau with small errors. Th
fore, we adopt the smear-smear source operator.

In principle, we may adopt different observables to defi
the renormalized anisotropies. Away from the continuu
limit, different choices will lead toO(a) differences in the
calibration results. To study this problem, we compare
calibration results usingjF from PS and V meson dispersio
03450
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relations. We denote these results for the calibrated b
anisotropies as„gF* (PS),gG* (PS)… and „gF* (V),gG* (V)…, re-
spectively. In Sec. V C, we show that they tend to conve
together toward the continuum limit. In future applications
the present work, different sets of (gF* ,gG* ) will be useful for
estimating systematic errors due to the continuum extrap
tion, in complicated physical observables, such as the eq
tion of state.

In a previous study of quenched QCD@5#, the ratio of
temporal and screening masses of the PS meson was us
determinejF . We study the difference between our proc
dure and the mass ratio method in Appendix A. We find t
both methods give consistent values ofjF when the quarks
are not too heavy@mPS/mV&0.75 ~0.8! at b*2.0 ~2.1!#.

V. CALIBRATION RESULTS

A. jG from matching of Wilson loop ratios

We determine the renormalized gauge anisotropyjG by
minimizing the functionL(jG) defined by Eq.~17!. We in-
terpolateRt(x,t) by a cubic spline in terms oft. To remove
short range lattice artifacts, we evaluateL(jG) with x andy
which satisfyx3y>M and examine theM dependence. The
upper limit onx andy is set by requiring that the statistica
error does not exceed the central value for the Wilson lo
ratio. Varying the upper limit hardly changes the results
jG . The filled symbols in Fig. 2 show typical results ofjG as
a function ofM5min(x3y). We find that, at this simulation
point, jG is reasonably stable whenx3y is larger than about
4.

Since the conditionx3y>M does not exclude smallx or
y, which can be an additional origin of short distance effec
we study whetherjG are affected by small values ofx or y by
removing them. The results ofjG usingL(jG) without data
at y51 are plotted with open symbols in Fig. 2. We find tha

FIG. 2. A typical determination ofjG at b52.0, k50.1244,
and (gG ,gFus)5(1.85,1.60). ThejG shows the minimizing point
of L(jG) defined by Eq.~17!. Different symbols represent the re
sults obtained on 83324, 103330, and 122336 lattices. For filled
~open! symbols,L(jG) is evaluated with~without! the y51 data.
3-5
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although clear deviations from the filled symbols are o
served at smallM, the effects ofy51 data are within 1% a
M*4 wherejG becomes stable. Therefore, placing a con
tion on min(x3y) is sufficient to obtain a stable value fo
jG . Similar results are obtained at other simulation point

Results obtained at different lattice volumes (83324,
103330, and 122336) are also shown in Fig. 2. With ou
lattices, no finite volume effects are visible in the values
jG .

From these studies, we adopt min(x3y)53, 3, 4, and 5 at
b51.8, 1.9, 2.0, and 2.1, respectively, in subsequent an
ses.

B. jF from meson dispersion relations

We determine the renormalized quark anisotropyjF from
the meson dispersion relation. We calculate the meson
ergy E(pW ) at the spatial momentapW 52pnW /Ls with nW
5(0,0,0), ~1,0,0!, ~1,1,0!, and ~1,1,1!, and their permuta-
tions. In Fig. 3 we plot typical data for the effective ener
defined by

C~pW ,t !

C~pW ,t11!
5

cosh@Eeff~pW ,t !~Nt/22t !#

cosh@Eeff~pW ,t !~Nt/22t21!#
~22!

obtained from the smear-smear correlators. Typical res
for the energyE(pW ) are shown in Fig. 4.

Using data atnW 5(0,0,0), ~1,0,0! and their permutations
we fit E(pW ) with the leading formulaE(pW )25m21pW 2/jF

2 to
determinejF . The fits are shown by dotted lines in Fig. 4.
Fig. 5, data obtained on 83324 and 122336 lattices are
compared with the fit results on the 103330 lattice. We find
that the data are well explained by the fit results. Indeed,
slopes obtained for the three lattice sizes are consistenjF

FIG. 3. Effective mass of meson states with various mome
obtained atb52.0, k50.1244, and (gG ,gFus)5(1.85,1.60) on
the 103330 lattice. The left and right panels are the results
pseudoscalar and vector mesons.
03450
-

-

f

y-

n-

lts

e

52.044(59), 2.020~44!, and 2.012~39! on 83324, 103

330, and 122336 lattices, respectively. This confirms th
the spatial lattice size*1.6 fm is sufficiently large to sup-
press finite volume effects injF in the range of quark masse
we study.

C. Bare anisotropies atjÄ2 „gG* and gF* …

Figures 6–9 show typical results for bare anisotropies
eachb, obtained at the third and fifth heaviest quark mas

ta

r

FIG. 4. Sample results for the dispersion relation of pseu
scalar and vector mesons atb52.0, k50.1244, and (gG ,gFus)

5(1.85,1.60). Dotted lines show fit results fromnW 5(0,0,0) and
(1,0,0).

FIG. 5. Volume dependence of a mesonic dispersion relation
b52.0, k50.1244, and (gG ,gFus)5(1.85,1.60). Filled and open
symbols show the results on 123336 and 83324 lattices with PS
and V channels. The other conditions are the same as in Fig. 4
the fit results on a 103330 lattice, which are the same as in Fig.
are shown with dotted lines.
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FIG. 6. jG andjF as functions of (gG ,gFus) atb51.8 for the third and fifth heaviestk. ForjF , results from the pseudoscalar dispersi
relation are shown. The lines represent the results of the fits~23! and ~24!.

FIG. 7. The same as Fig. 6 but atb51.9.
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FIG. 8. The same as Fig. 6 but atb52.0.

1.4 1.5 1.6 1.7 1.8 1.9
γFus

1.8

1.9

2.0

2.1

2.2

ξ G

γG=1.80
γG=1.85
γG=1.90
γG=1.95

1.8

1.9

2.0

2.1

2.2

2.3

ξ F
(P

S
)

γG=1.80
γG=1.85
γG=1.90
γG=1.95

1.5 1.6 1.7 1.8 1.9
γFus

1.8

1.9

2.0

2.1

ξ G

γG=1.80
γG=1.85
γG=1.90

1.7

1.8

1.9

2.0

2.1

2.2

2.3

ξ F
(P

S
)

γG=1.80
γG=1.85
γG=1.90

β=2.1,κ=0.1200 β=2.1,κ=0.1245

β=2.1,κ=0.1200 β=2.1,κ=0.1245

χ2
/Ndf=1.2/2

χ2
/Ndf=0.0/2 χ2

/Ndf=1.6/2

χ2
/Ndf=1.0/2

FIG. 9. The same as Fig. 6 but atb52.1.
034503-8



TWO FLAVORS OF DYNAMICAL QUARKS ON . . . PHYSICAL REVIEW D68, 034503 ~2003!
TABLE II. Bare anisotropy parameters calibrated toj52.

b k gG* (PS) x2/NDF gF* (PS) x2/NDF gG* (V) x2/NDF gF* (V) x2/NDF

1.8 0.10745 1.742~11! 12.4/5 1.499~12! 6.7/5 1.7748~93! 12.4/5 1.2783~82! 3.1/5
0.11162 1.734~12! 2.7/3 1.571~17! 2.6/3 1.740~18! 2.7/3 1.298~21! 2.0/3
0.11582 1.725~11! 2.2/3 1.682~20! 1.2/3 1.768~20! 2.2/3 1.464~43! 2.4/3
0.12115 1.7282~81! 0.9/3 1.784~11! 1.4/3 1.757~15! 0.9/3 1.613~14! 7.8/3
0.12438 1.703~13! 2.1/5 1.879~16! 3.3/5 1.769~14! 2.1/5 1.676~28! 2.5/5
0.12655 1.708~22! 1.1/3 1.895~15! 4.9/3 1.760~22! 1.1/3 1.786~13! 1.4/3

1.9 0.10850 1.8068~80! 1.6/5 1.554~12! 5.1/5 1.8093~56! 1.6/5 1.387~15! 5.8/5
0.11370 1.7971~94! 2.9/3 1.675~12! 1.3/3 1.8126~60! 2.9/3 1.5615~84! 1.6/3
0.11690 1.760~11! 1.3/5 1.753~13! 7.2/5 1.7945~74! 1.3/5 1.6085~82! 3.8/5
0.12120 1.773~10! 4.0/5 1.858~13! 1.6/5 1.8013~75! 4.0/5 1.742~13! 7.3/5
0.12450 1.7631~72! 2.1/4 1.927~13! 2.2/4 1.7908~85! 2.1/4 1.807~30! 1.5/4
0.12600 1.7629~93! 2.8/3 1.987~17! 1.8/3 1.7811~77! 2.8/3 1.918~12! 4.9/3

2.0 0.10900 1.8243~40! 2.9/2 1.6931~70! 4.1/2 1.8319~38! 2.9/2 1.6266~95! 1.3/2
0.11500 1.8288~52! 1.5/3 1.8015~85! 0.9/3 1.8331~76! 1.5/3 1.7190~98! 6.7/3
0.11800 1.8243~65! 5.9/2 1.8907~74! 0.2/2 1.8315~88! 5.9/2 1.8268~83! 0.1/2
0.12100 1.8225~73! 7.5/3 1.935~19! 3.3/3 1.8278~71! 7.5/3 1.903~25! 2.5/3
0.12440 1.8120~73! 12.1/6 2.002~19! 1.7/6 1.8299~92! 12.1/6 1.938~27! 3.1/6
0.12520 1.8169~76! 2.2/2 2.026~14! 0.4/2 1.8289~78! 2.2/2 1.949~58! 5.5/2

2.1 0.11000 1.8814~88! 2.7/1 1.796~10! 1.4/1 1.8827~79! 2.7/1 1.760~11! 0.4/1
0.11500 1.8678~70! 4.5/2 1.8932~74! 17.5/2 1.8722~73! 4.5/2 1.8501~85! 19.4/2
0.12000 1.8673~87! 0.0/2 1.970~18! 1.2/2 1.871~16! 0.0/2 1.954~49! 0.6/2
0.12250 1.8559~58! 2.6/3 2.032~23! 3.6/3 1.8603~62! 2.6/3 2.004~20! 6.0/3
0.12450 1.8517~55! 1.6/2 2.043~14! 1.0/2 1.8615~68! 1.6/2 1.980~29! 4.8/2
f
s

s
a-

dy

ion

t

ze
e

m

(mPS/mV;0.85 and 0.70!. We find that, for the range o
parameters we study, we can fit the data assuming an an
linear in gF andgG :

jF5aF1bFgF1cFgG , ~23!

x

"Beta=2.0, Kappa=0.121"
       5

     4.5
       4

     3.5
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1.56

1.57
1.58

1.59
usγF 1.79
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1.82
1.83

1.84
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4

χ2
total/Ndf

FIG. 10. x total
2 /NDF for j52 fits atb52.0 andk50.121. Re-

sults usingjF(PS) for the fermionic anisotropy are shown. Th
minimum of x total

2 /NDF is 1.348 at (usgF ,gG)5(usgF* ,gG* )
5(1.5605,1.8225). The curves on the base plane are a contour
of x total

2 /NDF . The minimum point is marked by ‘‘3 ’’ on the con-
tour map.@Note thatNDF is larger than that for the fits~23! and~24!
summarized in Table II becauseaF and aG are not free in this
calculation.#
03450
atz
jG5aG1bGgF1cGgG . ~24!

Results of the leastx2 fits are also shown in Figs. 6–9.
From the conditionjF(gF* ,gG* )5jG(gF* ,gG* )52, we ob-

tain gF* and gG* for j52 as functions of the coefficient
aF , . . . ,cG . We determine their errors using the error prop
gation formula where the errors foraF , . . . ,cG are estimated
from the error matrix of the leastx2 fits for jF andjG . The
results are summarized in Table II.

To confirm the magnitude of the errors, we stu
x total

2 /NDF[(xF;2
2 1xG;2

2 )/2NDF , as a function ofgF and
gG , wherexF/G;2

2 is the x2 value for a fit ofjF/G(gF8 ,gG8 )
data tojF/G521b(gF82gF)1c(gG8 2gG) for given values
of (gF ,gG). This quantity measures to what extentj52 is
achieved by Wilson loops and the meson correlation funct
at (gF ,gG). The minimum of x total

2 /NDF is located at
(gF* ,gG* ). A typical result is plotted in Fig. 10. We find tha
the errors estimated from a unit increase ofx total

2 /NDF are
consistent with those listed in Table II.

In later applications, it will be convenient to parametri
gF* andgG* as functions ofb andk. Figures 11 and 12 show
the parameter dependence ofgF* andgG* . We adopt the gen-
eral quadratic ansatz inb andk

gF* 5AF1BFb81CFb821DFb8k81EFk81FFk82,
~25!

ap
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FIG. 11. gG* (PS) andgG* ~V! corresponding toj52. Curves are the results of the global fit~26! with parameters~28! and ~30!.
r

s

l
in
gG* 5AG1BGb81CGb821DGb8k81EGk81FGk82,
~26!

where b85b22.0 and k85k20.12. For gF* (PS) and
gG* (PS), we find

AF51.9097~41!, BF50.746~38!,

CF50.04~25!, DF5213.9~4.1!,

EF520.14~75!, FF521.~83.!, ~27!

AG51.8210~28!, BG50.435~22!,

CG520.24~17!, DG53.2~2.9!,

EG521.69~44!, FG5269~57!, ~28!

with x2/NDF538.0/17 and x2/NDF519.2/17, and, for
gF* (V) and gG* (V),
03450
AF51.8434~48!, BF51.204~46!,

CF520.93~29!, DF5221.9~4.7!,

EF525.94~97!, FF5488~92!, ~29!

AG51.8311~29!, BG50.348~22!,

CG50.14~20!, DG50.5~2.9!,

EG521.19~47!, FG5261~58!, ~30!

with x2/NDF576.0/17 andx2/NDF514.6/17, using the val-
ues ofgF/G* and their errors listed in Table. II. The errors fo
the coefficients are estimated from thex2 error matrix. These
fits are shown in Figs. 11 and 12 by dotted lines.

In Fig. 13, we plotgF* as a function of the dimensionles
quark massmq5(1/k21/kc)/2 usingkc determined in Sec.
VI. Although the range ofmq is not very close to the chira
limit, our values ofgF* suggest a strong linear dependence
FIG. 12. gF* (PS) andgF* ~V! corresponding toj52. Curves are the results of the global fit~25! with parameters~27! and ~29!.
3-10
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mq . This result is in clear contrast to the case of quenc
QCD in whichgF* is well fitted by a quadratic ansatz inmq

motivated from the tree-level expression forgF* @30#. As
mentioned in Sec. II B, we expect linear corrections fro
higher order quark loops even if the linear terms are remo
at the tree level@29#. Our result provides us with an examp
that confirms this expectation.

Finally, we study theO(a) differences among the calibra
tion results using PS and V mesons. We plot the rela
differences betweengF* (PS) and gF* (V) and between
gG* (PS) andgG* (V) in Fig. 14 as functions ofb and 1/k.
Errors are estimated neglecting the correlation between
and V determinations. We find that the differences tend
vanish asb is increased. Atb>2.0, the differences are les
than 5% forgF* and 1% forgG* .

VI. PHYSICAL QUANTITIES AT jÄ2

In this section, we interpolate the measurement result
the calibration points corresponding toj52 to estimate the

FIG. 13. gF* (PS) vs quark mass at variousb. Lines are guides
to the eyes.
03450
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scale and several other basic properties of our lattice.
also test the effects of the two calibration results using
and V meson dispersion relations on the continuum extra
lation of physical quantities.

For the interpolations to (gF* ,gG* ) at each (b,k), we
adopt a linear ansatz

y5a1bgG1cgF ~31!

when the range ofgF is less than 0.3. When max(gF)
2min(gF)>0.3, we adopt a quadratic ansatz

y5a1bgG1cgF1dgF
2 , ~32!

because, in this case, the linear ansatz sometimes fai
explain the data@x2/NDF;O(10) –O(100)#. We find that
terms quadratic ingG do not improve the fits. We confirm
that this quadratic ansatz leads to a result consistent with
linear ansatz if max(gF)2min(gF),0.3.

Several physical quantities thus interpolated toj52 are
summarized in Table III, where the results from the quadra
ansatz~32! are marked by an asterisk onk. The errors are
estimated by quadratically averaging over the contributio
from thex2 error matrix for the fit~31! or ~32!, and from the
errors forgF* andgG* . The results obtained by adopting tw
alternative choices for thej52 point—gF/G* (PS) from the
pseudoscalar dispersion relation andgF/G* (V) from the vec-
tor dispersion relation—are labeled by~PS! and ~V!.

A. Plaquette

Figure 15 shows the plaquette expectation valuesW11(ss)
andW11(st) at j52 adoptinggF/G* (PS). The results adopt
ing gF/G* (V) are similar. As a reference point, the plaque
values on an isotropic lattice using the same action are
plotted @2#. Different points at the sameb with the same
symbol represent the results obtained at differentk.

The numerical results for plaquettes are compared w
their one-loop values atj52, Eqs.~6! and ~7!, shown by
dashed lines in the figure. Forb we adopt the bare value. W
find that, as in the case of isotropic lattices, the plaque
FIG. 14. Relative differences betweengF* (PS) andgF* (V), and betweengG* (PS) andgG* (V), as functions ofb and 1/k.
3-11
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TABLE III. Physical quantities interpolated toj52. Results marked with an asterisk are from the quadratic ansatz~32!, while other
results are from the linear ansatz~31!. The results of two alternatives for thej52 point,gF/G* (PS) andgF/G* (V), are labeled by~PS! and~V!,
respectively.

b k mPS(PS) x2/NDF mV(PS) x2/NDF mPS/mV(PS) x2/NDF r 0 /as(PS) x2/NDF

mPS(V) x2/NDF mV(V) x2/NDF mPS/mV(V) x2/NDF r 0 /as(V) x2/NDF

1.8 0.10745* 1.4395~66! 8.2/4 1.5760~75! 2.6/4 0.91339~37! 1.3/4 1.299~15! 2.6/4
1.5601~55! 8.2/4 1.7178~64! 2.6/4 0.90828~43! 1.3/4 1.320~19! 2.6/4

0.11162* 1.2431~62! 1.1/2 1.3985~75! 3.1/2 0.88900~57! 2.8/2 1.346~18! 1.5/2
1.3009~39! 1.1/2 1.4720~45! 3.1/2 0.88382~65! 2.8/2 1.355~19! 1.5/2

0.11582 1.0302~57! 7.9/3 1.2043~78! 7.1/3 0.8556~10! 3.1/3 1.413~11! 3.0/3
1.079~12! 7.9/3 1.275~17! 7.1/3 0.8458~23! 3.1/3 1.406~19! 3.0/3

0.12115 0.7635~15! 2.9/3 0.9679~25! 5.5/3 0.7888~12! 3.0/3 1.5210~64! 8.5/3
0.7660~26! 2.9/3 0.9906~42! 5.5/3 0.7732~19! 3.0/3 1.557~12! 8.5/3

0.12438* 0.5880~25! 5.7/4 0.8165~36! 7.4/4 0.7200~22! 6.1/4 1.605~10! 8.1/4
0.5448~73! 5.7/4 0.7973~46! 7.4/4 0.6834~74! 6.1/4 1.701~13! 8.1/4

0.12655 0.4347~71! 9.1/3 0.6841~45! 4.3/3 0.6356~80! 3.9/3 1.730~11! 4.2/3
0.3838~62! 9.1/3 0.6627~46! 4.3/3 0.5805~70! 3.9/3 1.796~10! 4.2/3

1.9 0.10850* 1.3255~56! 4.5/4 1.4428~65! 2.3/4 0.91851~50! 1.5/4 1.5015~66! 18.2/4
1.4045~79! 4.5/4 1.5330~90! 2.3/4 0.91599~54! 1.5/4 1.5101~73! 18.2/4

0.11370 1.0672~38! 7.5/3 1.2002~46! 5.7/3 0.88860~95! 10.3/3 1.6041~80! 2.4/3
1.0977~27! 7.5/3 1.2393~32! 5.7/3 0.88535~59! 10.3/3 1.6140~49! 2.4/3

0.11690 0.9085~30! 4.9/5 1.0557~42! 8.9/5 0.86105~98! 9.4/5 1.6376~71! 4.3/5
0.9304~20! 4.9/5 1.0891~27! 8.9/5 0.85428~61! 9.4/5 1.6742~44! 4.3/5

0.12120* 0.6825~15! 5.8/4 0.8460~27! 5.7/4 0.8066~17! 2.1/4 1.795~10! 1.8/4
0.6793~13! 5.8/4 0.8516~25! 5.7/4 0.7976~18! 2.1/4 1.821~10! 1.8/4

0.12450* 0.4859~24! 5.9/3 0.6720~21! 0.6/3 0.7234~28! 2.7/3 1.9708~70! 19.1/3
0.4593~73! 5.9/3 0.6599~40! 0.6/3 0.6958~81! 2.7/3 2.016~18! 19.1/3

0.12600 0.3804~61! 33.6/3 0.5839~39! 8.5/3 0.6517~79! 10.7/3 2.119~14! 1.6/3
0.3559~43! 33.6/3 0.5722~30! 8.5/3 0.6205~56! 10.7/3 2.165~10! 1.6/3

2.0 0.10900 1.1913~26! 0.9/2 1.2830~30! 1.7/2 0.92857~36! 0.6/2 1.7792~53! 3.9/2
1.2143~35! 0.9/2 1.3097~40! 1.7/2 0.92725~39! 0.6/2 1.7844~55! 3.9/2

0.11500 0.9057~18! 2.2/3 1.0131~24! 6.2/3 0.89420~51! 8.3/3 1.9326~45! 8.2/3
0.9201~22! 2.2/3 1.0323~30! 6.2/3 0.89158~69! 8.3/3 1.9471~66! 8.2/3

0.11800 0.75539~97! 1.2/2 0.8696~14! 0.3/2 0.86874~67! 0.4/2 2.0380~48! 5.1/2
0.7604~13! 1.2/2 0.8778~18! 0.3/2 0.86623~92! 0.4/2 2.0553~68! 5.1/2

0.12100 0.59609~94! 26.3/3 0.7225~14! 14.6/3 0.8251~15! 0.6/3 2.229~11! 1.5/3
0.59505~95! 26.3/3 0.7231~15! 14.6/3 0.8229~19! 0.6/3 2.241~11! 1.5/3

0.12440 0.3912~35! 11.5/6 0.5397~23! 20.9/6 0.7254~41! 11.6/6 2.527~13! 14.6/6
0.3784~50! 11.5/6 0.5319~31! 20.9/6 0.7116~57! 11.6/6 2.570~18! 14.6/6

0.12520 0.3355~37! 8.5/2 0.4906~28! 5.6/2 0.6843~56! 0.1/2 2.599~16! 0.3/2
0.315~15! 8.5/2 0.4819~67! 5.6/2 0.655~23! 0.1/2 2.660~47! 0.3/2

2.1 0.11000 1.0442~32! 3.2/1 1.1150~36! 0.2/1 0.93648~52! 3.4/1 2.2324~72! 13.1/1
1.0545~32! 3.2/1 1.1264~36! 0.2/1 0.93610~47! 3.4/1 2.2372~61! 13.1/1

0.11500 0.8108~13! 9.0/2 0.8898~16! 4.8/2 0.91143~49! 0.0/2 2.4000~63! 1.5/2
0.8162~14! 9.0/2 0.8963~17! 4.8/2 0.91097~59! 0.0/2 2.4134~68! 1.5/2

0.12000 0.56448~90! 1.3/2 0.6577~14! 1.3/2 0.8584~11! 0.5/2 2.6992~94! 0.3/2
0.5644~14! 1.3/2 0.6582~24! 1.3/2 0.8577~20! 0.5/2 2.705~18! 0.3/2

0.12250 0.4313~14! 5.8/3 0.5339~12! 3.6/3 0.8075~28! 5.3/3 2.875~10! 10.0/3
0.4294~13! 5.8/3 0.5335~13! 3.6/3 0.8044~25! 5.3/3 2.881~11! 10.0/3

0.12450 0.3015~23! 10.4/2 0.4220~19! 11.9/2 0.7134~32! 7.9/2 3.177~15! 1.6/2
0.2906~48! 10.4/2 0.4149~34! 11.9/2 0.6997~63! 7.9/2 3.229~27! 1.6/2
034503-12
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agree with the perturbative calculation within about 10%
this value ofb. This confirms our choice of the clover coe
ficientsct andcs to this accuracy.

B. Light meson spectrum and the lattice scale

In Fig. 16, we summarize the values ofmPS
2 at j52,

adoptinggF/G* (PS), as a function of 1/k. Carrying out chiral
extrapolations in which the lightest four points are fitted to
quadratic ansatz, we obtain the chiral pointkc(PS) listed in
Table IV. The first errors are statistical, while the seco
ones are systematic errors estimated from the difference w
the results of linear fits to the lightest three points. The v
ues ofkc(V) are obtained similarly, adoptinggF/G* (V) as the

1.7 1.8 1.9 2.0 2.1 2.2
β

0.2

0.3

0.4

0.5

0.6

0.7

0.8
<

pl
aq

ue
tte

>

W11(ss)
W11(st)
1loop P.T.
Ref.[2]

FIG. 15. Plaquettes atj52 and 1. Different points at the sam
b with the same symbol represent the results obtained at differek
@largerW11(ss) andW11(st) correspond to largerk]. Dashed lines
are the results of one-loop perturbation theory.

FIG. 16. mPS
2 at gF/G* (PS) for j52 as a function of 1/k. Full

and dotted curves show quadratic and linear fits using the ligh
four and three data points, respectively.
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point for j52. We find thatkc(PS) andkc(V) are consistent
with each other within the present statistical accuracy.

We determine the scale of our lattices from ther meson
mass mr5771.1 MeV at the physical pointmPS/mV
5mp /mr5135.0/771.1. Figure 17 showsmV as a function
of mPS

2 at gF/G* (PS) andgF/G* (V). We find that the masses a
gF/G* (PS) andgF/G* (V) are slightly different on coarse lat
tices. The difference rapidly decreases with increasingb.

Extrapolation to the physical point is done by adopting
quadratic ansatz to the lightest four data points at eachb. We
note that, with the present statistics, the two results formV at
gF/G* (PS) andgF/G* (V), extrapolated to the physical poin
are consistent with each other already on the coarsest lat
High statistics simulations directly atgF/G* (PS) andgF/G* (V)
may resolve the difference at the physical point.

The resulting lattice scale is summarized in Table V. S
tematic errors~second errors! in the table are estimated from
a comparison with linear fits using the lightest three poin

C. Static quark potential and Sommer scale

We extract the static quark potentialV(r ) from the fit

W~r ,t !5C~r !exp@2V~r !t# ~33!

st

TABLE IV. Critical hopping parameterkc . The numbers in the
first parentheses are statistical errors, and those in the secon
systematic errors from the chiral extrapolation.

b 1/kc(PS) 1/kc(V)

1.8 7.708~43!( 20
123) 7.763~80!( 20

125)
1.9 7.775~39!( 20

127) 7.789~46!( 20
130)

2.0 7.836~26!( 20
125) 7.862~50!( 20

122)
2.1 7.888~14!( 20

127) 7.896~24!( 20
131)

FIG. 17. mV as a function ofmPS
2 for j52 at gF/G* (PS) ~filled

symbols! and atgF/G* (V) ~open symbols!. The leftmost symbols are
the results of quadratic extrapolations to the physical point. T
lines are guides for the eyes.
3-13
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to temporal Wilson loops. In order to enhance the over
C(r ) with the ground state, we smear spatial links@31#. We
fit the data att'0.45–0.90 fm where a large overlap is o
served. As in previous studies on isotropic lattices, we fi
no apparent string breaking effects inV(r ). Therefore, we fit
the potential with

V~r !5A1
a

r
1sr ~34!

for the ranger'0.35–1.5 fm. The parameters for the pote
tial calculations are summarized in Table VI.

With Eq. ~34!, the Sommer scaler 0 @32# defined by

r 0
2 dV~r !

dr U
r 5r 0

51.65 ~35!

is given by

r 0

as
5A1.651aj

sj
. ~36!

The results forr 0 /as interpolated toj52 are listed in Table
III and shown in Fig. 18. Extrapolating to the physical poin
we obtain the values summarized in Table VII, where
central values are from quadratic fits inmPS

2 using the light-
est fourk ’s, and the systematic errors are estimated from
difference with a linear fit using the lightest threek ’s.

The Sommer scale atmPS/mV50.7, 0.6, and 0.175~the
physical point! from a quadratic fit is plotted in Fig. 19 as
function of the lattice spacing. We find that the differen
between the calibrations using the PS and V meson dis
sion relations becomes smaller toward the continuum lim
For the Sommer scale at the physical point, a na

TABLE V. Lattice scale determined frommr at the physical
point.

b as(PS)(GeV21) as(V)(GeV21) Lsas ~fm!

1.8 1.395~28!( 20
195) 1.408~26!( 20

167) 2.2
1.9 1.185~21!( 20

180) 1.178~17!( 20
155) 1.9

2.0 0.957~15!( 20
168) 0.986~26!( 20

161) 1.9
2.1 0.824~10!( 20

162) 0.838~17!( 20
170) 2.0

TABLE VI. Parameters for the calculation of the static qua
potential.

b k nsmear Fit range int Fit range inr

1.8 0.10745–0.11582 1 3–6 A2 –2A3
0.12115–0.12655 1 3–6 A2 –3A2

1.9 0.1085–0.1169 2 3–6 A2 –3A2
0.1212–0.1260 2 4–7 A2 –3A3

2.0 0.1090–0.1180 3 4–7 A2 –3A3
0.1210–0.1252 3 5–9 A3 –6.0

2.1 0.1100–0.1200 4 5–9 A3 –6.0
0.1225–0.1245 4 6–11 2.0–3A6
03450
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linear extrapolation to the continuum limit givesr 0

50.597(24)(214
152) and 0.612(33)(237

179) fm for gF/G* using the
PS and V meson dispersion relations, respectively. The
tematic errors are estimated by comparing the results of v
ous combinations of chiral extrapolations~linear and qua-
dratic fits for mV and r 0). We find that the results using
gF/G* (PS) andgF/G* (V) are consistent in the continuum lim
within the statistical errors. A constrained fit requiring th
same continuum value, as shown in Fig. 20, leads tor 0

50.603(19)(222
160) fm, where the statistical error was est

mated by neglecting the correlation between the PS an
results, and the systematic error was estimated from the
sults of constrained fits using various combinations of ch
extrapolations formV and r 0.

D. Beta functions

Finally, we attempt a rough estimation of the beta fun
tions

as

]k

]as
U

mPS /mV

, as

]b

]as
U

mPS /mV

~37!

along lines of constant physics defined bymPS/mV5const.
These quantities are required in a calculation of the equa
of state in thermal QCD@20#. We calculate the beta function
by

FIG. 18. Sommer scale atj52 as a function of the PS meso
mass. The leftmost symbols are the results of quadratic extrap
tions to the physical point. The lines are guides for the eyes.

TABLE VII. Sommer scale atj52, extrapolated to the physica
point.

b r 0 /as(PS) r 0 /as(V)

1.8 1.843~21!( 247
10 ) 1.892~17!( 226

10 )
1.9 2.269~23!( 277

10 ) 2.331~18!( 256
10 )

2.0 2.818~27!( 262
10 ) 2.870~41!( 278

10 )
2.1 3.367~23!( 291

10 ) 3.377~39!( 2118
10 )
3-14
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S ]b

]~mVat!

]k

]~mVat!

]b

]~mPS/mV!

]k

]~mPS/mV!

D
5S ]~mVat!

]b

]~mPS/mV!

]b

]~mVat!

]k

]~mPS/mV!

]k

D 21

~38!

using the data formPS and mV listed in Table III. In Ref.
@20#, a slightly different method was adopted because
matrix in the right hand side of Eq.~38! sometimes become
almost singular in the large quark mass region. Since qu
are not quite heavy in this study, we adopt the simp

FIG. 19. Sommer scale atmPS/mV50.7, 0.6, and 0.175~the
physical point! as a function of the lattice spacing. Errors are s
tistical.
03450
e
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method using Eq.~38!. We fit mPS and mV to the general
quadratic ansatz inb and k. Because the data noticeab
deviate from the quadratic form when we include all valu
of k, we restrict ourselves to threek ’s around the target
mPS/mV in the fit, while all fourb ’s are included. Our esti-
mates for the beta functions are summarized in Figs. 21
22.

VII. CONCLUSIONS

In this article we initiated a systematic study of two-flav
full QCD on anisotropic lattices. We determined, for clove
improved Wilson quarks coupled to a RG-improved glue,
bare anisotropy parameters that realize a consistent re
malized anisotropyj52 in both quark and gauge sectors.
the quark sector we employed both pseudoscalar and ve

-

FIG. 20. Sommer scale at the physical point as a function of
lattice spacing. Errors are statistical. Lines show the continuum
trapolation with a constraint requiring the same continuum value
PS and V results.
t
FIG. 21. Beta functions~37! at gF/G* (PS) forj52. Thick curves are the results for given values ofmPS/mV , while thin curves represen
their errors.
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FIG. 22. Same as Fig. 21 but atgF/G* (V).
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meson channels for calibration. The results for the bare
isotropy parameters are summarized in Eqs.~25!–~30! as
functions ofb and k for the rangesas'0.28–0.16 fm and
mPS/mV'0.6–0.9. The difference between the two calib
tion methods should beO(a). We confirmed that the differ-
ence in the bare anisotropy parameters actually vanishe
ward the continuum limit.

We also attempted to calculate some basic quantities
ing data measured in the runs made for the calibration
interpolating them to the point corresponding toj52. Al-
though errors from interpolations are introduced, this
abled us to carry out an initial determination of the latti
scale and beta functions. For the Sommer scaler 0, we found
that r 0 from different calibration methods led to a consiste
value in the continuum limit.

We wish to apply our results to a study of heavy qua
and thermal QCD, in which simulations can be directly ma
with j52 anisotropic lattices using the parametrizatio
Eqs.~25!–~30!. We hope to report on such studies in the ne
future.
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APPENDIX: jF FROM THE RATIO OF SCREENING AND
TEMPORAL MASSES

In this paper, we adopt the dispersion relation for mes
for defining the fermionic anisotropyjF . An alternative defi-
nition of jF is given by the ratio of the masses measured
a spatial direction~screening massms) and the temporal di-
rection ~temporal massmt),
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jF
mass ratio5ms /mt , ~A1!

as adopted in a quenched study for PS mesons@5#. For clar-
ity, we denotejF defined by Eq.~18! using the dispersion
relation asjF

disp in this appendix.
A disadvantage of the mass ratio method is that, to obt

reliable values ofms and mt suppressing contamination o
excited states, we need to prepare well-tuned smea
sources in both the spatial and temporal directions, and
carry out multipole fits, on sufficiently large lattices. In th
paper, because we do not have propagators with tempo
smeared sources, we study spatial propagators with po
point source and sink. We find that, when the quarks
light, the effective mass of the spatial PS meson correla
does not show a clear plateau, and sometimes shows a
creasing tendency even at the maximum distancex5Ns/2
21. This means that our spatial lattice sizes 8–12 may

FIG. 23. jF
mass ratio(PS)2jF

disp(PS) as a function ofmPS/mV at
various values ofb andk.
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be large enough to suppress excited states. Unfortunately
number of data points is also not sufficient to attempt a m
tipole fit. Therefore, in the following, we just adopt the valu
of the effective mass atx5Ns/221 for ms . Strictly speak-
ing, this value gives an upper bound onms . Therefore, the
resultingjF

mass ratiomay be larger than the true value when t
quarks are light.

Because our temporal lattice sizes are sufficiently lar
we do not encounter a similar problem in the calculations
mt andjF

disp.
9
.

y

03450
the
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Figure 23 shows the difference of the two fermion
anisotropies jF

mass ratio(PS)2jF
disp(PS) as a function of

mPS/mV at b51.9, 2.0, and 2.1. We find that the differenc
is consistent with zero whenmPS/mV is small. A slight over-
shooting atmPS/mV&0.7 may be understood by the fact th
our jF

mass ratio is an upper bound for the true value as d
cussed above. We also find that the difference at large qu
masses decreases toward the continuum limit. Atb*2.0
~2.1!, the two methods are consistent with each other
mPS/mV&0.75 ~0.8!.
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