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Noncentrosymmetric superconductors possess, in general, order parameters of mixed parity, i.e., the Cooper
pairing state consists of spin-singlet and spin-triplet pairing components. We show that this property has
important implications for the NMR and other measurable quantities in the heavy Fermion superconductor
CePt3Si. The aspect of parity mixing explains the apparently contradicting observations of a Hebel-Slichter
peak in the nuclear spin-lattice relaxation rate T1

−1 and the presence of power law in the low-temperature
behavior of certain physical quantities, indicating line nodes in the quasiparticle gap.
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Inversion is one of the key symmetries for the formation
of Cooper pairs in superconductors. Unusual properties are
expected in superconductors whose crystal structure does not
possess an inversion center �e.g., Refs. 1–5, and references
therein�. For this reason, the recent discovery of supercon-
ductivity in the noncentrosymmetric heavy fermion com-
pound CePt3Si has initiated much excitement.6–8 On a micro-
scopic level, the appearance of antisymmetric spin-orbit
coupling �ASOC� due to the noncentrosymmetricity imprints
a characteristic spin structure on the band structure by lifting
the usual spin degeneracy.9,10 For superconductivity, the lack
of inversion symmetry makes the standard labeling of Coo-
per pairing states by even parity �spin singlet� and odd parity
�spin triplet� inapplicable, and it yields parity mixing, in
general.2 The modification of the band structure and the par-
ity mixing are likely responsible for the surprisingly high
value of the upper critical field Hc2 in CePt3Si, which sig-
nificantly exceeds the standard paramagnetic limit.3,6,8,11,12

Moreover, nuclear magnetic resonance �NMR� experiments
display apparently incompatible features. The nuclear spin-
lattice relaxation rate T1

−1 has a Hebel-Slichter peak just be-
low the onset of superconductivity, usually a sign of conven-
tional superconductivity. In contrast, unconventional
superconductivity is suggested by the low-temperature
power-law behavior of T1

−1, indicating line nodes in the qua-
siparticle gap.8,13,14 The presence of line nodes is also sup-
ported by London penetration depth measurements8,15 as
well as the thermal conductivity experiments.16 Therefore, an
important task is to reconcile the mutually contradicting ex-
perimental results in a consistent picture.

In the present study, we demonstrate that the key to
resolving this puzzle lies in the parity mixing of pairing
states as a natural consequence of the lack of inversion sym-
metry in this material. This aspect can be implemented by
considering a two-component order parameter with spin-
singlet and spin-triplet components. In this model, the Hebel-
Slichter peak relies on the presence of a finite coherence
effect. A sufficient condition for it is that the spin-singlet
component incorporates a gap function with a finite average
on the Fermi surface ���k���0, most easily satisfied by a
conventional �isotropic� s-wave pairing state. The line nodes

appear as a consequence of the superposition of the two
components.17

Our analysis is based on the single-particle Hamiltonian3

H = �
k,s

�kcks
† cks + � �

k,s,s�

�k · �cks
† �ss�cks�� . �1�

�k is the band energy measured relative to the chemical po-
tential. The second term describes the ASOC with �k=−�−k

and � as the coupling constant. �cks
�†� annihilates �creates� an

electron with momentum k and spin s.� The ASOC term
vanishes for systems with an inversion center. On the basis
of symmetry arguments, the crystal symmetry �P4mm� of
CePt3Si yields

�k =�3

2

1

kF
�− ky,kx,0� , �2�

in the lowest-order expansion, assuming a spherical Fermi
surface where �k is normalized such that the average over
the Fermi surface �	�k	2�=1.3 kF is the Fermi wave number
for �=0.

Starting from the basic tetragonal symmetry of CePt3Si
ignoring the ASOC in Eq. �1�, we could classify all basic
pairing states, distinguishing the spin-singlet and spin-triplet
states.3,5 A general argument by Anderson18 shows that in-
version symmetry is essential to realize spin-triplet pairing.
Hence, spin-triplet pairing states are expected to be sup-
pressed when the ASOC is turned on. A careful examination
leads, however, to the conclusion that a certain set of triplet
pairing states remains stable even when ��0. These states
are characterized by the d vector dk 
�k.

3 In addition, the
ASOC mixes even-parity spin-singlet and odd-parity spin-
triplet pairing components. Interestingly, the conventional
s-wave spin-singlet pairing state mixes with the state corre-
sponding to dk=�k, which has under these symmetry condi-
tions the highest possible symmetry, corresponding to the
trivial representation of the generating point group C4vA1.17

The A1-superconducting phase has a gap function of the
form
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�̂k = ���̂0 + dk · �̂�i�̂y = ���̂0 + ��− k̃y�̂x + k̃x�̂y��i�̂y ,

�3�

with the s-wave pairing component � and the d vector

dk=��−k̃y , k̃x ,0�. The unit vector k̃= �k̃x , k̃y , k̃z�
= �cos � sin 	 , sin � sin 	 , cos 	�.

For our discussion, we will use the quasi-classical theory
of superconductivity.19–21 In this formulation, we concentrate
on the states in the immediate vicinity of the Fermi surface
and assume 	� 	 , 	� 	 ,�
�F ��F is the Fermi energy�. The
quasiclassical Green’s function ǧ can be written as a matrix
in Nambu �particle-hole� space,

ǧ�r, k̃,i�n� = − i� ĝ i f̂

− i f̄
ˆ − ĝ̄

� . �4�

The vector r is the real-space coordinate, the unit vector k̃
indicates the position on the spherical Fermi surface, and
�n=T�2n+1� is the Matsubara frequency. Throughout the

paper, “hat” ·̂ denotes the 2�2 matrix in the spin space, and

“check” ·̌ denotes the 4�4 matrix composed of the 2�2
Nambu space and the 2�2 spin space. The Eilenberger
equation, which includes the spin-orbit coupling �Eq. �2��, is
given by22–25

ivF · �ǧ + �i�n�̌3 − ��̌k · Š − �̌k, ǧ� = 0, �5�

with

�̌3 = ��̂0 0

0 − �̂0
�, Š = ��̂ 0

0 �̂tr � , �6�

�̌k = ��k�̂0 0

0 �−k�̂0
� = ��k�̂0 0

0 − �k�̂0
� , �7�

�k = �3
2 �− k̃y, k̃x,0� , �8�

�̌k = � 0 �̂k

− �̂k
† 0

� . �9�

Here, �̂= ��̂x , �̂y , �̂z� is the Pauli matrix, �̂0 is the unit ma-

trix, �̂tr=−�̂y�̂�̂y, vF is the Fermi velocity, and �ǎ , b̌�= ǎb̌

− b̌ǎ. We use units in which �=kB=1. The Eilenberger
equation is supplemented by the normalization condition,

ǧ2=−21̌.19,22

With the pairing state in Eq. �3� and the spin-orbit cou-
pling in Eq. �8�, we obtain the following Green’s functions
from the Eilenberger equation �5� and the normalization
condition,26

ĝ = gI�̂I + gII�̂II, ĝ̄ = − �̂y�ḡI�̂I + ḡII�̂II��̂y ,

f̂ = �f I�̂I + f II�̂II�i�̂y, f̄
ˆ

= − i�̂y� f̄ I�̂I + f̄ II�̂II� , �10�

with the matrices �̂I,II defined by1,17,27 �̂I,II= ��̂0± �̄k · �̂� /2

and �̄k= �−k̄y , k̄x ,0�, where k̄= �k̄x , k̄y ,0�= �cos � , sin � ,0�. In
the case of a spatially uniform system,26

gI,II =
�n

BI,II
, ḡI,II =

− �n

BI,II
, �11a�

f I,II =
� ± � sin 	

BI,II
, f̄ I,II =

�* ± �* sin 	

BI,II
. �11b�

The denominators BI,II are given as BI,II

=��n
2+ 	�±� sin 		2, and the signs in front of the square root

are determined by the condition, sgn�RegI,II��
=sgn�Re�n��. Note that the Green’s functions �Eq. �11�� do
not explicitly depend on the spin-orbit coupling constant �,
although � is kept nonzero. This result of the Eilenberger
equation reflects the fact that the spin-triplet component con-
tained in the pairing state �Eq. �3�� is not affected by the
ASOC of Eq. �2�.3 In this way, the quasi-classical formula-
tion incorporates the effect of noncentrosymmetricity in a
very convenient form, which may prove beneficial also for
future studies.

Nevertheless, the Green’s functions labeled by the indices
I and II belong to the two distinct Fermi surfaces, which are
split by the spin-degeneracy lifting due to the ASOC.1,17,26,27

The quasiparticle gap is different on the two Fermi surfaces:
�Ik̃= 	�+� sin 		 and �IIk̃= 	�−� sin 		. The densities of
states on the two Fermi surfaces are also different, in general,
and this difference has important implications in various
other contexts. However, we choose them to be equal here
for simplicity, since our results would be on a qualitative
level insensitive to this detail.

The pairing interaction leading to the gap function �Eq.
�3�� is characterized by three coupling constants, �s, �t, and
�m. Here, �s and �t result from the pairing interaction within
each spin channel �s: singlet, t: triplet�. �m is the scattering of
Cooper pairs between those two parity channels, present in
systems without inversion symmetry.17 The gap equations
are written as

� = �sT �
	�n	��c

�f+� + �mT �
	�n	��c

�sin 	f−� , �12�

� = �tT �
	�n	��c

�sin 	f−� + �mT �
	�n	��c

�f+� , �13�

where f±= �f I± f II� /2 and �c is the cutoff energy. The angular
brackets denote the average over the Fermi surface, assum-
ing the spherical Fermi surface for simplicity. In the limit
T→Tc �Tc: the superconducting critical temperature�, the lin-
earized gap equations allow us to determine �t and �s by

�t =
3

2
� 1

w
− ��m�, �s =

2

3
�t + �� −

2

3�
��m, �14�
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w = ln� T

Tc
� + �

0�n���c/T−1�/2

2

2n + 1
, �15�

if the parameters �m and ���� /��	T→Tc−0+ are given.
In Fig. 1, we show the temperature dependence of the

order parameters � and � obtained from the gap equations
�Eqs. �12� and �13��. We set �c=20Tc, �m=0.12, and �=0.5,
yielding �t�0.39 and �s�0.16. When � is fixed to be real
and positive without loss of generality, such a solution as �
is also real and positive, is stable for the above parameters.

We turn now to the nuclear spin-lattice relaxation rate
1 /T1. Assuming for the NMR experiment a static magnetic
field in the z direction, we arrive at the following expression
for 1 /T1 in terms of the quasi-classical Green’s function ǧ:28

T1�Tc�Tc

T1�T�T
=

1

4T
�

−�

� d�

cosh2��/2T�
W��� , �16�

with

W��� = �a↓↓
22�����a↑↑

11�− ��� − �a↓↑
21�����a↑↓

12�− ��� , �17�

ǎ��� =
i

2
�̌3�ǧ�i�n → � + i�� − ǧ�i�n → � − i��� ,

�18�

ǎ = �â11 â12

â21 â22�, âij = �a↑↑
ij a↑↓

ij

a↓↑
ij a↓↓

ij � , �19�

where ���0� is an infinitesimally small constant, and we set
�=10−4Tc.

In Fig. 2�a�, we show the temperature dependence of
1 /T1T obtained from Eq. �16�, where the Green’s functions
in Eqs. �10� and �11� are substituted into W��� �Eq. �17��
through Eqs. �4� and �18�. The temperature dependence of �
and � is obtained from the gap equations as shown in Fig. 1.
Obviously, 1 /T1T �solid line� possesses a peak just below Tc.
In order to identify the origin of this peak, in Fig. 2�a� we
plot the contributions of the two terms in Eq. �17� separately:
W=WGG+WFF,

WGG��� = �a↓↓
22�����a↑↑

11�− ��� , �20�

WFF��� = − �a↓↑
21�����a↑↓

12�− ��� . �21�

WGG and WFF are composed of the regular Green’s functions
and the anomalous Green’s functions, respectively. The co-
herence factor is represented as 1+WFF /WGG. The contribu-
tion of WFF �dashed line� is related to the coherence effect
and gives the dominant contribution to the peak below Tc as
seen in Fig. 2�a�. WFF is finite owing to the s-wave compo-
nent �. In contrast, WGG �dashed-dotted line� describes the
contribution of the density of states and its temperature-
dependent variation. The contribution to the peak from the
singularity of the density of states at the gap edge is minor,
since this singularity is rather weak due to the anisotropy of
the gaps 	�±� sin 		 on both Fermi surfaces I and II. There-
fore, the peak in the total 1 /T1T �solid line� can clearly be
attributed to the coherence-factor-induced enhancement of
the relaxation rate T1

−1 originated from the coherence effect
under the favor of nonzero contribution of WFF.

Turning to the low-temperature behavior, we present the
same data on a double-logarithmic scale in Fig. 2�b�. The
temperature dependence of 1 /T1T exhibits a T2 power law at
low temperatures, characteristic of the presence of line nodes
in the gap. These nodes are the result of the superposition of
spin-singlet and spin-triplet contributions �each separately
would not produce line nodes�. On the Fermi surface I, the
gap is 	�+� sin 		 and is nodeless, referring to Eq. �11b�,
�note that ��0, ��0, and 0�	��. On the other hand,
the form of the gap on the Fermi surface II is 	�−� sin 		,

FIG. 1. The temperature dependence of the order parameters in
units of Tc. The spin-triplet component � �solid line� and the spin-
singlet s-wave component � �dashed line�. �c=20Tc, �m=0.12, and
�=0.5. Both � and � are real and positive.

FIG. 2. Temperature dependence of the nuclear spin-lattice re-
laxation rate 1 /T1T �solid lines�, �=10−4Tc. �a� Dashed line is the
contribution of the anomalous Green’s functions WFF related to the
coherence effect. Dashed-dotted line is the contribution of the regu-
lar Green’s functions WGG related to the density of states. �b� Plot of
the same data on a double-logarithmic scale. Dotted line is a plot of
T2. From the plot, it is noted that T1

−1 follows the T3 law at low
temperatures.

BRIEF REPORTS PHYSICAL REVIEW B 73, 092508 �2006�

092508-3



where nodes can appear for ��� �see Fig. 3�. These line
nodes on the Fermi surface II lead to the low-temperature T3

law in T1
−1 �i.e., T2 in 1/T1T� as shown in Fig. 2�b�, which is

in qualitative agreement with the experimental result. More-
over, the power laws observed in the London penetration
depth8,15,26 and the thermal conductivity16 are also consistent
with this gap form.

In conclusion, the apparent puzzle found in the tempera-
ture dependence of the NMR relaxation rate13 may turn out
to be a key experiment to determine the pairing symmetry.
The presence of a Hebel-Slichter peak can only be attributed
to a coherence effect that points toward a conventional
s-wave-like pairing. On the other hand, the low-temperature
power-law behavior observed in a variety of experiments13–16

indicates the presence of a line node in the quasiparticle gap.
In this paper, we have shown that this discrepancy can be
explained by including the natural parity mixing of the Coo-
per pairing states as given in Eq. �3�. The symmetry of the
odd-parity spin-triplet part is uniquely defined by the form of

the ASOC. That s+ p-wave pairing state is also compatible
with other experimental properties, such as the behavior of
the upper critical field.29

The same type of model for Cooper pairing is likely to be
relevant for the superconductivity in LaPt3Si �Tc�0.67 K�,
which has the same crystal structure as CePt3Si. Experimen-
tal data of T1

−1 by NQR suggest a nodeless gap,30 i.e., within
our model 	� 	 � 	�	. These two compounds provide a neat
pair of systems to be compared. In particular, CePt3Si is a
heavy fermion compound with magnetic order, while LaPt3Si
represents a much less correlated metal. It is now highly
desirable to have further experimental confirmations of the
pairing symmetry and hints for the pairing mechanisms at
work in both materials.

Note added. After completing this work, we noted that a
similar idea concerning the coexistence between the coher-
ence effect in T1

−1 and the line node in a gap was briefly
discussed in Ref. 31 by Fujimoto very recently. A further
discussion of the low-temperature part of the NMR relax-
ation rate is given in Ref. 32 by Samokhin. However, our
explanation of the peak in T1

−1 attributed to the coherence-
effect term WFF instead of WGG is different from that of Ref.
32. The origin of the line-node gap due to the parity mixing
discussed in this paper is different from both the propositions
in Refs. 31 and 32.
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