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One-dimensional ordering of ultra-low-density ion beams in a storage ring
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The two-particle model, first introduced by Hasse, is employed to predict the beam temperature at which a
one-dimensional ordered state of ions will be established in a cooler storage ring. The proposed state does not
have the iongin the beam frampeat rest, but simply has them not passing each other; i.e., remaining in the
same(ordered sequence. The model is applicable to an ultra-low-density beam where collective Coulomb
interactions are negligible. It is pointed out that the nature of the anomalous beam behavior observed in
electron-cooling experiments at G8Darmstadt and MSL (Stockholm) is approximately free from such
parameters as the lattice design, ion species, beam density, and energy. On the basis of the model, which is put
in Hamiltonian form, scaled, and numerically studied, a universal criterion of one-dimensional beam ordering
at low line density is derived. Analytic work is employed to explain the numerical results and derives an
approximate criterion.
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I. INTRODUCTION space-charge interactions play a definitive rfge-8]. This

Over twenty years ago, Russian researchers reported gisSumption seems quite reasonable for the analysis of the
an anomalous behavior of electron-cooled proton beams ciRr€sent experiments, considering that the jump of the mo-
culating in the NAP-M storage rinff]. In order to explain mentum spread takes place when the total number of stored
the experimental observation, the concept of a phase trandPns reaches on the order of 1000 at the ESR, i.e., at an
tion of a fast stored beam was introduced and discussedverage interparticle distance of about 10 cm. In such an
Molecular dynamic¥MD) simulations performed to repro- Ultra-low-density regime, no collective effects could domi-
duce the NAP-M resulf2] actually show that the beam may nate the beam. We thus assume that, even after the transition,
have been composed of a chain of thin transverse “disksthe motions of individual ions are roughly independent of
drifting back and forth in the longitudinal direction. each other9]. The orbit of theith ion then obeys the fol-

Steck and co-worker$3] recently observed a similar lowing single-particleHamiltonian in the absence of colli-
anomaly of highly charged heavy ion beams in the ExperisSions:
mental Storage RIingESR) at GSI; a sudden jump of the
momentum spread was detected with an electron cooler
turned on, once a certain line density was reached. This cu-
rious phenomenon of low-intensity cold beams was recon-
firmgd later by Danareét. al. at CRYRING iq Sweden4]. + }[Kx(s)(x(i))2+ Ky(s)(y(i))z], (1)

In either case, the experimental data were interpreted as the 2

possible signature of a longitudinal beam ordering, which o

was theoretically explained by Hasse through systematiwhere the canonical coordinatéx"),y('),z(');p;'),p;'),p(z'))
Monte Carlo calculations on a two-particle mod8l. Ac-  have been defined in the rest frankg,andK, are the focus-
cording to his theory, what had been established in thesing functions determined by the arrangement of quadrupole
storage rings is a one-dimensiondlD) stringlike order;  magnetsp is the local curvature of the design beam orhit,
namely, individual ions still execute large transverse oscillais the Lorentz factor, and we have taken the path lesgth
tions but no longer pass each other longitudinally. He therthe independent variable. Since the degrees of freedom are
explored the collective motion of &oulomb stringto de-  only weakly coupledeven when particle interaction is in-
scribe the fundamental mechanism behind the ESR andluded, it is not surprising that the beam maintains a large
CRYRING observation$6]. temperature anisotropy between the transverse and longitu-

In this paper, we make a step forward from the Hasse'slinal directions. It is also worthy to emphasize that our
numerical approach in Ref5] to give a simple and universal model does not explicitly depend on the line density of the
criterion of 1D ordering. The present model is valid for smallbeam. The line density itself, in other words the average
linear density and has thus, to first order, nothing to do withdistance between neighboring ions, appears to be inessential
Coulomb crystals and their stability where the collectivein this uniqgue phenomenon. The critical density is most

1. . . o
Hi= ST+ (917 + (57 = 7<)
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likely determined by the ability of the cooling system rather[6]. The Wigner-Seitz radius is determined byra§,d/3

than by the physics of “collective” ion interactions. The =1/p,, where p, is the density of particles in a three-
anomalous Schottky signals were, indeed, observed at a cadimensional beam and under the same focusing conditions,
tain density, but that should be due to the density dependend®it in the limit of many particles. At low temperature limit,
of the equilibrium temperature of an electron-cooled beanwe haveaWS:(3q2/87-rsomw2)1’3 wherem s the rest mass of
[10]. We thus speculate that the beam temperature achievabiie particle andvg is the betatron frequency. By defining the

with a specific cooler is most important. _longitudinal plasma parameter &=(q?/4meqd)/kgT,, the
The paper is organized as follows: In Sec. II, we briefly |5« formula in Egs.(2) can be simplified tol',>1.43\.

review the current understandings of the ESR-type event tg,q is, however, the choice of “distance” in the evaluation

eIuc_idate the purpose and motivation of this work_. The tWo-5¢ coulomb energy, and different valuesBfsee below for
particle model relevant to the 1D ordering effect is then de

. ] ““two more correspond to different choices for this distance.
veloped in Sec. Ill. Our model is adequate only when the line  \1oshkovet al. have presented an analytic theory in Ref.

density of a beam is loyjust as in the ESR and CRYRING 115 somewhat different from the approach of Hasse. Link-
situationg. Although the basic approach is similar to Hasse'sj, o 'the ESR event to beam crystallization, they pointed out
in Ref. [S], we here provide a formalism that enables us t0y,q yery smalll, at the transition density. In fact, the mea-
clarify the underlying physics and to establish a universak, eq vajue off’, is far below the theoretically predicted
criterion. In fact, under some simplifying assumptions, they,eghold of the transition to a liquid phase. To explain this
dynamical system turns out to be substantially free from amﬁiscrepancy, they investigated a binary Coulomb collision

parameters. In Sec. IV, results of systematic two-particle,ny concluded two criteria. Their first criterion can be ex-
simulations are given to identify the operating region where, caq agl2]

the ordered state will be realized. On the basis of the univer-

sal Hamiltonian, we derive, in Sec. V, a very simple criterion )

for the transition temperature. This work provides an intui I, = - 1 (3)
tive description of the physical process behind the transition. AmedKeVT LTy

Finally, the results are summarized in Sec. VI.

It can be shown, however, that this criterion is not generally
required. We can construct cases whEre>1 and yet 1D
The ESR observation of ordering resembles the famougrdering(as verified, e.g., by the code described belog-
NAP-M event from which the concept of beam crystalliza- curs. In any event the conditiaid) can hardly be broken in
tion was born11]. To our knowledge, there are two separatethe cases of interest to us here because of a very thrge
theories developed for the 1D ordering eff¢bt6,13. As  can be concluded from Table 1 of Rdfl2] whereT} is
mentioned already, Hasse performed Monte Carlo simulashown to be of the order of 18-107° for the present experi-
tions based on a “two-particle model,” successfully repro-ments.
ducing the ESR outpu{®]. The model predicts the tempera-  On the other hand, by requiring that two colliding par-
ture below which ordering occurs, but not the density belowticles move longitudinally, during half a betatron period, by
which ordering can be achieved. A collective theory wasless than the maximum impact parameter still leading to re-
constructed later by him, to predict the linear density andlection, a second criterion was derivgt?]:
beam temperature at which the anomaly showq@jp Ex-
amining the excitation and stability of the collective “zigzag”

Il. PREVIOUS MODELS

2
o 1

mode, Hasse eventually proposed four criteria of 1D beam 5= T - > 17, (4)
ordering: AmeqakeT)

A < 0.709 KIS 1 wherea denotes the transverse beam size. Sim:e“i, the

1g N criterion (4) has the temperature-dependence
2
KT, < ) T, T? < const. (5)
+ 4’7T80aWS,

This is consistent with one of our results bel¢8ec. ).
Now, we can raise many questions, recalling the fact that

) the heavy-ion beams in ESR and CRYRING were all in the

ultra-low density regime at transition: Can the ESR-type
where g is the charge state of iongg is the Boltzmann eyent really be linked to the concept of a phase transition in
constantT, andT, are the transverse and longitudinal beamthe heam? Do the physical quantities like the Wigner-Seitz
temperature whose careful definition appears in(#8) be-  radius,I" parameters, beam density, and so on, play an im-
low, 7 and 7 are the period of an average Coulomb scatterportant role in this phenomenon? Is it really possible to see
ing and that of a single betatron oscillatioays is the  collective modes excited even when individual ions are
Wigner-Seitz radius, andl is the density parameter defined roughly 10 cm apart? In the following sections, we try to
by A=ay 4 d with d being the average interparticle distance answer these questions.

q2
keT) < 0.7———,
4’77803.\/\/5
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Ill. UNIVERSAL APPROACH d?

D _ 42

A. Two-particle Hamiltonian dsz( )
Suppose an ultra-low-density ordered beam in a storage _ 2r, ZD - 722 8
ring; each particle is simply longitudinally reflected back at  ~ BPAI(XD = x2)2 4 (yU) - y(2)2 4 (2D — 7(2)2}3/2" (®)

every collision with its neighbors. We then reduce the num-
ber of ions, so that the average interparticle distance becoméd the horizontal direction, we have
larger and larger. Clearly, the ordered state can be maintained»

during this process. Note that we can make the plasma pa— (xY - x2)

rameter arbitrarily small by removing particlggovided that

the temperature change is negligibl8uch an ordered sys- (

2
. . L Yo
tem may not be categorized as a conventional liquid state _> (XY -x?)

where thel” parameter is supposed to be on the order of 1 or R
even greater. 2r, XV = x2

It is quite natural to say that collective effects are negli- * B2A (XY = x2)2 4 (y(D — y(@)2 4 (7D _ 72)2]312°
gible at ultra-low density. The Coulomb interaction occurs
only between two neighboring ions that happen to come ©)
close to each other. The Hamiltonian governing this binaryand the similar equation of motion holds in the vertical de-
process is given, in the rest frame, by gree of freedom. PuttingK=xY-x®?, Y=y® -y and z

=71Y-22 we readily find that these equations of motion are

H=Hy+Hy+ %é ()  derivable from the Hamiltonian
P ~_ 1l o 1(7’0)2 2 2

where the classical radius of the ionrjs= g2/ 4megmc with H= E(PX TP+ 2\ R (X°+Y%)

¢ being the speed of lightd is the interparticle distance,

H;(i=1,2) is the single-particle Hamiltonian already intro- + 2rp 1

duced in Eq(l), B=V1-1/42 and the last term describes B/ X+ Y2+ 7%

the Coulomb interaction. Since the collision rate is extremel hen the two colliding particles are far away from each

low due to the large average interparticle distance and thother, the relative motion is a simple drift in the longitudinal

low longitudinal temperature, each ion executes many betadirection and a harmonic oscillation in the transverse direc
tron oscillations during the time interval from one collision

; ) . tion. This is always true for low densityo matter how large
to the next. This suggests that the details of the lattice struct—he average inte?lparticle distance @they:e is a lower but?]o
ture are not very important. We thus employ the smooth ap- o — ) i
proximation, replacing, and K,, respectively, by(r,/R)2  UPper limit for d!). The line density of the beam therefore

and (vy/R)2 where v, is the betatron tune, arid denotes does not play an essential role in our two-particle model.
the average radius of the ring. For the sake of simplicity, we

(10

B. Scaling

neglect the effect of bending magnets that is also believed to
In the following, we will mainly discuss the situation of 55 not explicitly depend os The magnitude ofl aver-
nearly equal betatron tunes, i.e,~1,, as was the case in 5404 over all stored particles is equal to the sum of the en-
confirmed, through a number of simulations, that the influ-mqpic oscillations and longitudinal drifbecause of the very
ence of unequal tunes is weak and the results depend Ve, |ine density:
vl vy is quite different from unity and the transverse tem- P2 1( )2 5
perature exceedingly large , >100T)), is a difference in ) +§ R X
can be written as
(i) 2+ (l) 2+ (l) 2 1 2 i .
H= {(p" ) (p\é) (Pz) + 5(%) [(x1)2 + (y('))z]} where(A) stands for the mean value of the quantityNot-
i=1,2 ing that (X?)=2((xY)2=2((x?)?), etc., we haveE=(p?)
* B2/ (xD = x@)2 4 (yD —y@)2 4 (7D = 722" @) has been dropped for brevity. The longitudinal variapje
can be related to the momentum sprefdp of the beam,
+p'?'=const from the Hamiltoniat7). Without loss of gen-  tion, the principle of energy equipartition requirég?)
erality, we assume thqg(l)+p(22):0. The longitudinal equa- =(vo/R)*x?) and <p§>=(v0/R)2<y2>. We thus concludeE

be unimportant in the present case. The Hamiltonian(10) is clearly a constant of motion as it
the ESR and CRYRING experimerits3]. We have actually  ¢rgies of three independent motiofise two transverse har-
little on tune ratiov,/ »,. Only in “pathological cases” where
E= <ﬁ>~<
transition temperature noticeable. With~ 1, (=), Eq.(6) ) )
P, 1 ( VO)Z 5 P:
(22 v2) (), @
2 2\R 2
M 1 +(p5) +(p) +(wo/ RIH(X®) +(y?) where the superscripfi)
It is easy to derive the momentum conservation taﬁr?/ measured in the laboratory frame, gs=(Sp/p)/y. In addi-
tion of relative motion then becomes :2(<p)2(>+<p§>)+<(ép/p)2>/y2. Following the useful defini-
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tion of beam temperatursee Steclet al. [3]), we defineT | IV. TRANSITION TEMPERATURE

andT, as " . .
In order to explore the condition under which the transi-

1 tion to the ordered state is anticipated, we numerically inte-

kgT, = Emc?ﬁzyz«pf)ﬂpf,)), grated the canonical equations of motion derived from the
universal Hamiltoniar{14). We are simply investigating the
dynamics of two particles. The numerical procedure is as

2 )
kT, = mc2,82< (%) > _ (12) follows:

(i) Choose the longitudinal scaled temperatﬁrand the
transverse  scaled temperaturesTX(E@i)/Z) and

Ty(=(p2/2).
ks (i) Choose an initial value ob, arbitrarily from Gauss-
E~ m(ﬁyc)z(‘ﬂl +T)). (13)  jan random numbers whose standard deviation is equal to
. ) \H(:\,@); note that, when the initigh, is positive(nega-
Before proceeding to numerical results, we demonstrat@ o) then the corresponding longitudinal coordinate must

that the dynamical system of EQLO) is basically parameter jniiay pe negative(positive) so that the two particles even-
free. All we must do for this purpose is to introduce thetually collide.

scaling transformation

Use of these definitions yields

(i) Choose initial values of the transverse canonical co-

[ o (R\Z|YS o 13 ordinates(X,y; by, py) arbitrarily from two sets of Gaussian
X = B—2$<—) K, PX:(,B_2$1R0> Py, random numbers whose standard deviations are equal to
L Yo

Vzi'x for (X,p,) and to \/Z_'Ary for (,py).
(iv) As the initial value of|Z, choose any number much

y= 2 (R b =2 )", greater than 10.
1A ) | T g R) P (v) Using these initial conditions, numerically solve the

canonical equations by means of the symplectic integrator.
- 2113 13 No information except for the scaled temperature is required
2r, (R 2ry v s i ;
7= _ZP_(_> , P,= (_ZP__0> D,. for this simulation. We repeat theAabove Procedure several
L 827\ o BY R hundred times at fixed temperatufe and T, in order to
- . . evaluate theeflection probability namely, the rate of events

The Hamiltonian(10) can then be rewritten, with the new \;here two longitudinally approaching particles are reflected
variables(x,y, z; by, By, p,) as back in a single collision.

Since the present model is relevant only to an ultra-low-

N>

~ 1 1 1 . S . o -
H==(p2+p2+pd) + (5 +2) + ——— (14 density beam, it is essential to set the initial value|of
2(px Py *+P2) 2( ) Ve + 92+ 2 4 sufficiently large so that the last term in E@L4) can be

ignored at the beginning. In fact, the two-particle model is
where the independent variable has also been scaled to based on the assumption that each individual particle “sees”
9=v,-(s/R). The scaled temperature, defined by= (P2 only the nearest neighbor. If the Coulomb potential is not

~2 ~ . negligible when|Z| is comparable to the scaled interparticle

+<py>)/2 andT,=(p5), can be calculated from . ~ = 5 o 213 ,

distanced=d[(2r /3 Y)(R?/v§)]™1/3, we must take into ac-
- 213 count the contribution from, at least, two neighbors at both
Tl 2_kB<2r /37’E> {Ti } (15)  sides. To know the starting condition appropriate for two-
-”r” m&\" PR particle simulations, we performed test runs changing the
initial value ofz. Examples are given in Fig. 1 where a round
A different definition of dimensionless temperature has beelbeam(<>‘<2):<92>,1'xz'?y) and two different combinations of
:Z:;int'hne R;/fe'[g where the'scallr_lg constant explicitly con- ﬁT 1, T) have been assumed. The ordinate is the reflection

ge interparticle distance. Once such a defin - . . - .

tion is adopted, the corresponding numerical results naturall robab|llty Wh'le the absc[sg'?\ indicates the initzaThese
depend on the line density of the beam. Certainly, one ca ictures point out that the initial value @ must be chosen

obtain dimensionless parameters that way, but the introduér’—;')e" h?bqr\mlge 12;] dtgstnc’)f?ﬁé mgdde;ng-rfdgfcﬁ; Eg;?sr Arsessurl]f
tion of line density, or equivalently, average particle spacing ugnly | " P ine y ' u

: : : : ing 1°/Au’®* ions at 360 MeV/u in ESR as an example, we
is not physically meaningful. By contrast, we have directly . >
scaled the Hamiltonian itself, making it parameter free, andind that the scaled distance of 100 correspondsdto

since our scaling constants are totally independert, ahe ~1.8 mm andA~0.011.

present theory cannot produce density-dependent results. Tﬂ%zlgur?hze S:SVZ.S tf;e;ﬁgegtlc?zarigob;bIgtyel;ﬁﬂgtegall)g do'?erm
ingredients in all that follow are the scaled Hamilton{a4) B SCISS } rdi repres i S )
and temperaturegl5). They permit us to establish “univer- PeratureT, and T, respectively. The reflection rate at each

sal” ordering conditions. mesh point on thel|—T, plane has been evaluated from

TH
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e~ 100 % ——
@ 90 % ——
— 80 A 100 —_—
£
2
E 60 . 10 UNORDERED 1
=)
2 =
=}
S 4 - 1 ]
8
= =
M =
20 . 01 ORDERED S
0 . . . . .1
0001 001 0.1 1 10 100 1000 10000 01 1 10
Initial longitudinal coordinate (scaled) T|
|
100 FIG. 2. Reflection probability map obtained numerically from
(b) the universal Hamiltoniaigl4). We have considered a round beam
_ 80t whereT,=T,. The initial value of the longitudinal coordinafehas
S been fixed at 100, which is not essential to the result; even if a
£z different value is chosen, we eventually find almost the same map
§ 60 as long as it is sufficiently larger than 10.
£ .
§ 40 (and, in fact, for highT, a slightly “pessimisticj approxi-
ko mation even for flat beams.
& The actual transition points experimentally confirmed at
2T ESR are plotted on the map in Fig. 3 where the data summa-
rized in Ref.[5] have been used, and are summarized in
; . . . ‘ s Table I. (All we need to know here are the values &d/p
0001 001 0.1 1 10 100 1000 10000

andTy4,s at which anomalous beam behavior was detegted.
The scaled average interparticle distamtat transition is

FIG. 1. Dependence of reflection probability on the initial value also listed in the table. The magnitudedin each case is on

of |2|. The initial conditions assumed in these examples @g: the order of 18, which justifies the application of the two-
T,=50,T,=0.3;(b) T, =0.1,T,=0.7. particle model to the ESR data. We see, from Fig. 3, that the
transition points are in-between the 60% and 80% contours.

1000 independent simulations. This figure looks similar to

Initial longitudinal coordinate (scaled)

the Hasse's Fig.3 of Ref5], except that — due to the dif- Wr—— 80 % ]

ferent normalization — Hasse’s curves are apparently only - N Ar gg; e

valid for A.=0.00015 whereas our Fig. 2 applies for arbitrary A NiXe, ]

density, within the limits outlined above. We recognize that Kro ™,

the reflection border is approximately strgighAt, which sug- 2 Xer i

gests the ordering condition of the forf, -T'<const, i i

where the magnitude of the exponenis between 2 and 3. & L Auh i

Carrying out the least-square fitting of the 80% probability QU

curve in Fig. 2, we have the phenomenological ordering cri-

terion 2r 1
> 224
T,-T;7<0.95, (16)

which looks satisfactory over the whole temperature range. ‘s ow 1 - 3

This simple phenomenological criterion allows us to make a 7ﬁ

quick estimate of the transition temperature of an ultra-low-
dgnsny beam in a given machme. The crlter'(drﬁ}). is ob- FIG. 3. The operating points at which the anomalous beam be-
tained as a fit to the numerical results for the limiting case of,ayiors were observed in ESR have been marked with
a round beam as discussed above. However, we have alspoaris) x (58\i28%) ¢ (86Kr36+), [1(13%e54%), A(197Au79Y),

studied other aspect ratio&?)/(y?), especially the case andO(228J92%). The data used here have been summarized in Table
(§%—0. It has been found that the same criterion is a good. The three lines show the smoothed probability contours in Fig. 2.
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TABLE I. Momentum spreadp/p, transverse beam temperatdrg,,, and scaled interparticle distance

d at which anomalous Schottky signals were detected at ESR. The vallie efich case gives the threshold
above which the occurrence of 1D ordering is anticipated. The data below are extracted from the table in

Ref. [5].

40Ar18+ 5q\|i28+ BEKI'36+ l3%(e54+ 197Au79+ 23ﬂJ 92+
Energy(MeV/u) 360 205 240 240 360 360
Sp/p(1079) 4 4 4 6 6 5
TyrandmMeV) 300 440 640 1000 1500 1800
3 4800 5800 4600 6700 1500 7400

An example of reflection probability calculated as a functionEq. (16). Thus the above statistical mechanics argument
of beam density is given in the Appendix. (space averages over the energy surface is equal to time av-
Note that the criterioril6) does not predict the final equi- erage over a trajectoyys not applicable. This is attributed to
librium temperature after the transition is completed. In factthe restriction of the starting conditions; namely, we only
according to the ESR daf8], the momentum spreadp/p  wish to consider the particular situation in which two par-
drops at a critical line density by nearly one order of magni-ticles are initially located far away from each other and
tude. After the ordering therefore the marks in Fig. 3 jump togradually approach. Taking this fact into account, we try to
the left where the reflective collision is perfectly guaranteedgive a plausible explanation to the numerical results in Fig.

2. For this purpose, it is convenient to look into typical re-

V. BASIC MECHANISM OF 1D ORDERING flection patterns at high and IoYAK/l separately.

It is concluded that the universal probability map, Fig. 2,
reproduces the ESR data and can be used to analyze a wide
range of future experiments and applications. To this end a From the Hamiltonian, we find the longitudinal equation
minimum of information, essentially only the beam tempera-of motion dp,/d6=d?z/d¢?*=2/(X?+9%+7°)%? which says
tures, is necessary. We do not have to be concerned witthat the relative momentun,| decreases at a rate propor-
collective effects, plasma parameters, or density as long agonal to (x?+92+2%) %2 It is therefore always possible to let

d>10. The observed dependence of the transition point othe trajectory go beyond thg=0 line and, thus have no
the number of stored ions should not be interpreted as eviprdering, by choosing a sufficiently high,. Inversely

dence that the line density is of primary importance butspeaking, for reflection|p,] must initially be smaller at

rather as an indication that the achievable temperatures dﬂigheri’ so thatp, reaches zero before crossing the0
pend on beam density. b z

We next study two-particle Coulomb collisions under the
influence of an artificial linear potential in order to derive

A. High transverse temperature: 'T'J_>1

line.

A large transverse oscillation amplitude also leads to
weakening the coupling among the three degrees of freedom.
M™he probability of large energy transfer between the trans-

verse and longitudinal motions will then be lowered. To
1 1 check this out, a typical trajectory of the two-particle motion
V(%,9,2) = S (8 +97) + ——. (17)  is plotted in Fig. 4a) [14]. We actually see no noticeable
2 R+ + 2 change in the oscillation amplitude before and after the re-
The reflection probability of 100% implies that the longitu- flection, which indicates that the energy of the transverse
dinal coordinaté is always bounded in the positive or nega- Motion is conserved. By subtracting the transverse energy
tive region. When two particles pass each other longitudifrom both sides of Eq(14), we obtain the formal equation
nally, the value of goes across zero changing its sign. SuchT,~p2+2/\o? +%, where o, is the root-mean-squared
an event never takes place if the total energy, which is in{rms) amplitude of the transverse oscillation. An approxi-
va[iarg)t i'r;r:hef pres_en\t/z:fatsielis(;)ovt;/er than the p_otentiall barrighate ordering condition at higli, can thus be written as
at z=0. The functionV(x,y,z=0) becomes minimum along 3 -
%2+92=1 where the potential height is 3/2. Since the aver. |1~ 20 o, equivalently,

age energy of the system can be expresseo&_aé:l'l 'AI'L -'T'|f<2, (19

+T,/2, the general criterion of 100% reflection is given by because? _<)A(2>+<92>_21_ This condition is similar to the
1= el

~ T, _3 criterion (5) by Meshkovet al, but our reasoning leading to
2T + 5<% (18) it seems different from the “no-passing” argument of Ref
[12]. The reflection border determined by this condition is in
The probability contour corresponding to this condition is,reasonable agreement with the numerical result, as shown in
however, rather different from the phenomenological fit inFig. 5.
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. . . . 1000 ¢
@ |
100 £
10 |
<>: | <§| ]
o
1
01}
X
[ i
‘ 0.01
2 0 2
4 ' ' ' ' FIG. 5. Reflection probability map. The dotted curves are the
5L (b) i probability contours shown in Fig. 2. The thick broken and dotted
lines indicate the reflection borders given, respectively, by B®.
2 kb - and(21). The phenomenological fit of E¢L6) has also been plotted
R in a thick solid line.
1t e ) 8
(2
o 1 cot(?) ~b-p2, (20)
= S where p,. is the total momentum before the scattering. Al-
27 ] though the impact parameter depends on the phase and am-
3 plitude of the transverse oscillation, we here simply assume
3 e b /f . R \/7 ~ A
Y e b=~o, =\2T,. In addition,p,.~ VT, becausd;>T, in the
-4 o 8 6 '4 2 0 5 present case. Sineg must be greater than about 90° to get a
i i i ~ i reflection, Eq.(20) results in the ordering condition
z

- =2
FIG. 4. Typical solutions to the universal equations of motion. T, -Ti< 05. (21)
The initial coordinates assumed here a(@) (X,,2;Px.Py.P))  |n spite of the crude assumptions, this condition qualitatively

=(8.944,-3.162,-30M,3.162,0.547 (b X,Y,Z; Py, By, P . - . A .
( 0 CGY.ZPaby. Pl explains the probability contours in the loW, region (see

=(0,20.2236,~300;0.3162,-0.2239, MNote that, in the case of Fig. 5). Interestingly, the conditiof21) is quite analogous to
high T, (the upper picturg the horizontal and vertical oscillation 9.9 gy )isq 9

amplitudes are independently maintained before and after th¥/hat we have found for higft, .
reflection.
VI. SUMMARY

B. Low transverse temperature: T, <1 We have shown that in essence, the ESR-type event is

This range is not the one of the present experiments, but gimply determined by Coulomb collisions of two neighbor-
is interesting — for it gives us added insight into the solu-ing ions, which under appropriate conditions, can lead to
tions of the two-particle model. The potential function of Eq. reflections. The Wigner-Seitz radius, theparameter, beam
(17) produces a steep barrier around the origin. Even higllensity and collective motions are of no substantial impor-

longitudinal temperature is allowed at loW, and the par- tance in this effect. _ N
ticle is still reflected. The trajectory can therefore come The two-particle model suffices for explaining the anoma-

closer to the origin compared to the hi@’h-case Then a lous behavior of electron-cooled ion beams in a storage ring.
o 9 P S The dynamical system treated here is made completely pa-
significant energy transfer from the longitudinal direction to

the transverse direction can take place. Figui® hows a rameter free after scaling, which means that the nature of 1D

solution to the universal equations of motion, where rela_orderlng at ultra-low density is only determined by the scaled

tively high longitudinal temperature has been assumeo(_jim_ensionless tempergtur@ a_nd T,. Details of the lattice
Naturally, the collision is almost head-on owing to the smalld€sign, beam energy, ion species, etc., only enter through the
transverse oscillation amplitude. We recognize that, in thevalues of T, andT,. Solving the universal equations of mo-
vicinity of the potential barrier, the collision pattern looks tion, we have obtained a useful chart that enables us to esti-
like a Rutherford scattering with a small impact parambter mate the probability of reflective binary collisions at specific
The scattering anglé can thus be estimated from beam temperature. An intuitive picture of the ordering pro-

066504-7



OKAMOTO et al. PHYSICAL REVIEW E 69, 066504(2004)

cess was briefly described to reproduce the reflection borde 199
in Fig. 2. The present universal criterion offers experimen-
talists, who have different storage rings and different types of
beams and coolers, a simple guideline on the possible opers
ating region where the sudden transition to the 1D ordere
state is expected.
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APPENDIX: ESR EXPERIMENTS 10

Average interparticle distance [cm ]

For completeness, let us apply the two-particle algorithm
to reproduce the ESR observations. For this purpose, we first FIG. 6. Two-particle simulation result corresponding to an ESR
need to know the density dependence of the equilibriunfxperiment. A 360-MeV/4*"Au’®* beam in ESR withvp=2.3 has
beam temperature. The rms momentum spread correspon?ﬁe” assumed. Unlike the numerical prgcedure outlined in Sec. 1V,
ing to Sp/p in Table | can be evaluated from the formula the initial value of|p,| has been fixed at'T; in each simulation.
V((8p/p)?)=(8 In 274 8p/p) [3]. The value ok (sp/p)?)is , N -
then substituted into the definition df to find the longitu-  this scaling law to determine initial conditions for two-
dinal transition temperature. Note, however, tépfp and  Particle simulations. Note also that, as long as the initial
Tyans iN Table 1 only show their values when a jump of value ofp, is picked from Gaussian random numbers in each
Schottky noise power took place at a specific line denaity. Simulation run, the reflection probability doest grow as
a different line density, we must use differéptp and T4~ SHArPlY asAexh|b|ted in Ref5] Therefore, as a trial, we here
According to Ref.[3], the longitudinal and transverse tem- fix p, at \'T, initially. The reflection probability of’Au%*
perature of an electron-cooled beam in ESR scald®% ions in ESR then shows the behavior in Fig. 6, which is
whereN is the total number of stored ions. We here employsimilar to the results in Ref5].
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