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The two-particle model, first introduced by Hasse, is employed to predict the beam temperature at which a
one-dimensional ordered state of ions will be established in a cooler storage ring. The proposed state does not
have the ions(in the beam frame) at rest, but simply has them not passing each other; i.e., remaining in the
same(ordered) sequence. The model is applicable to an ultra-low-density beam where collective Coulomb
interactions are negligible. It is pointed out that the nature of the anomalous beam behavior observed in
electron-cooling experiments at GSI(Darmstadt) and MSL (Stockholm) is approximately free from such
parameters as the lattice design, ion species, beam density, and energy. On the basis of the model, which is put
in Hamiltonian form, scaled, and numerically studied, a universal criterion of one-dimensional beam ordering
at low line density is derived. Analytic work is employed to explain the numerical results and derives an
approximate criterion.
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I. INTRODUCTION

Over twenty years ago, Russian researchers reported on
an anomalous behavior of electron-cooled proton beams cir-
culating in the NAP-M storage ring[1]. In order to explain
the experimental observation, the concept of a phase transi-
tion of a fast stored beam was introduced and discussed.
Molecular dynamics(MD) simulations performed to repro-
duce the NAP-M result[2] actually show that the beam may
have been composed of a chain of thin transverse “disks”
drifting back and forth in the longitudinal direction.

Steck and co-workers[3] recently observed a similar
anomaly of highly charged heavy ion beams in the Experi-
mental Storage Ring(ESR) at GSI; a sudden jump of the
momentum spread was detected with an electron cooler
turned on, once a certain line density was reached. This cu-
rious phenomenon of low-intensity cold beams was recon-
firmed later by Danaredet al. at CRYRING in Sweden[4].
In either case, the experimental data were interpreted as the
possible signature of a longitudinal beam ordering, which
was theoretically explained by Hasse through systematic
Monte Carlo calculations on a two-particle model[5]. Ac-
cording to his theory, what had been established in these
storage rings is a one-dimensional(1D) stringlike order;
namely, individual ions still execute large transverse oscilla-
tions but no longer pass each other longitudinally. He then
explored the collective motion of aCoulomb stringto de-
scribe the fundamental mechanism behind the ESR and
CRYRING observations[6].

In this paper, we make a step forward from the Hasse’s
numerical approach in Ref.[5] to give a simple and universal
criterion of 1D ordering. The present model is valid for small
linear density and has thus, to first order, nothing to do with
Coulomb crystals and their stability where the collective

space-charge interactions play a definitive role[6–8]. This
assumption seems quite reasonable for the analysis of the
present experiments, considering that the jump of the mo-
mentum spread takes place when the total number of stored
ions reaches on the order of 1000 at the ESR, i.e., at an
average interparticle distance of about 10 cm. In such an
ultra-low-density regime, no collective effects could domi-
nate the beam. We thus assume that, even after the transition,
the motions of individual ions are roughly independent of
each other[9]. The orbit of theith ion then obeys the fol-
lowing single-particleHamiltonian in the absence of colli-
sions:

Hi =
1

2
fspx

sidd2 + spy
sidd2 + spz

sidd2g −
g

r
xsidpz

sid

+
1

2
fKxssdsxsidd2 + Kyssdsysidd2g, s1d

where the canonical coordinatessxsid ,ysid ,zsid ;px
sid ,py

sid ,pz
sidd

have been defined in the rest frame,Kx andKy are the focus-
ing functions determined by the arrangement of quadrupole
magnets,r is the local curvature of the design beam orbit,g
is the Lorentz factor, and we have taken the path lengths as
the independent variable. Since the degrees of freedom are
only weakly coupled(even when particle interaction is in-
cluded), it is not surprising that the beam maintains a large
temperature anisotropy between the transverse and longitu-
dinal directions. It is also worthy to emphasize that our
model does not explicitly depend on the line density of the
beam. The line density itself, in other words the average
distance between neighboring ions, appears to be inessential
in this unique phenomenon. The critical density is most
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likely determined by the ability of the cooling system rather
than by the physics of “collective” ion interactions. The
anomalous Schottky signals were, indeed, observed at a cer-
tain density, but that should be due to the density dependence
of the equilibrium temperature of an electron-cooled beam
[10]. We thus speculate that the beam temperature achievable
with a specific cooler is most important.

The paper is organized as follows: In Sec. II, we briefly
review the current understandings of the ESR-type event to
elucidate the purpose and motivation of this work. The two-
particle model relevant to the 1D ordering effect is then de-
veloped in Sec. III. Our model is adequate only when the line
density of a beam is low(just as in the ESR and CRYRING
situations). Although the basic approach is similar to Hasse’s
in Ref. [5], we here provide a formalism that enables us to
clarify the underlying physics and to establish a universal
criterion. In fact, under some simplifying assumptions, the
dynamical system turns out to be substantially free from any
parameters. In Sec. IV, results of systematic two-particle
simulations are given to identify the operating region where
the ordered state will be realized. On the basis of the univer-
sal Hamiltonian, we derive, in Sec. V, a very simple criterion
for the transition temperature. This work provides an intui-
tive description of the physical process behind the transition.
Finally, the results are summarized in Sec. VI.

II. PREVIOUS MODELS

The ESR observation of ordering resembles the famous
NAP-M event from which the concept of beam crystalliza-
tion was born[11]. To our knowledge, there are two separate
theories developed for the 1D ordering effect[5,6,12]. As
mentioned already, Hasse performed Monte Carlo simula-
tions based on a “two-particle model,” successfully repro-
ducing the ESR outputs[5]. The model predicts the tempera-
ture below which ordering occurs, but not the density below
which ordering can be achieved. A collective theory was
constructed later by him, to predict the linear density and
beam temperature at which the anomaly shows up[6]. Ex-
amining the excitation and stability of the collective “zigzag”
mode, Hasse eventually proposed four criteria of 1D beam
ordering:

l , 0.709,
ti

tb

.
1

l
,

kBT' , 0.25
q2

4p«0aWS
,

kBTi , 0.7
q2

4p«0aWS
, s2d

where q is the charge state of ions,kB is the Boltzmann
constant,T' andTi are the transverse and longitudinal beam
temperature whose careful definition appears in Eq.(12) be-
low, ti andtb are the period of an average Coulomb scatter-
ing and that of a single betatron oscillation,aWS is the
Wigner-Seitz radius, andl is the density parameter defined

by l=aWS/ d̄ with d̄ being the average interparticle distance

[6]. The Wigner-Seitz radius is determined by 4paWS
3 /3

=1/rv, where rv is the density of particles in a three-
dimensional beam and under the same focusing conditions,
but in the limit of many particles. At low temperature limit,
we haveaWS=s3q2/8p«0mvb

2d1/3 wherem is the rest mass of
the particle andvb is the betatron frequency. By defining the

longitudinal plasma parameter asGi=sq2/4p«0d̄d /kBTi, the
last formula in Eqs.(2) can be simplified toGi .1.43l.
There is, however, the choice of “distance” in the evaluation
of Coulomb energy, and different values ofG (see below for
two more) correspond to different choices for this distance.

Meshkovet al. have presented an analytic theory in Ref.
[12] somewhat different from the approach of Hasse. Link-
ing the ESR event to beam crystallization, they pointed out
the very smallGi at the transition density. In fact, the mea-
sured value ofGi is far below the theoretically predicted
threshold of the transition to a liquid phase. To explain this
discrepancy, they investigated a binary Coulomb collision
and concluded two criteria. Their first criterion can be ex-
pressed as[12]

G1 ;
q2

4p«0d̄

1

kB
ÎT'Ti

, 1. s3d

It can be shown, however, that this criterion is not generally
required. We can construct cases whereG1.1 and yet 1D
ordering(as verified, e.g., by the code described below) oc-
curs. In any event the condition(3) can hardly be broken in

the cases of interest to us here because of a very larged̄; as
can be concluded from Table 1 of Ref.[12] where G1 is
shown to be of the order of 10−3–10−5 for the present experi-
ments.

On the other hand, by requiring that two colliding par-
ticles move longitudinally, during half a betatron period, by
less than the maximum impact parameter still leading to re-
flection, a second criterion was derived[12]:

G2 ;
q2

4p«0a

1

kBTi

. p, s4d

wherea denotes the transverse beam size. Sincea~ÎT', the
criterion (4) has the temperature-dependence

T'Ti
2 , const. s5d

This is consistent with one of our results below(Sec. V).
Now, we can raise many questions, recalling the fact that

the heavy-ion beams in ESR and CRYRING were all in the
ultra-low density regime at transition: Can the ESR-type
event really be linked to the concept of a phase transition in
the beam? Do the physical quantities like the Wigner-Seitz
radius,G parameters, beam density, and so on, play an im-
portant role in this phenomenon? Is it really possible to see
collective modes excited even when individual ions are
roughly 10 cm apart? In the following sections, we try to
answer these questions.
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III. UNIVERSAL APPROACH

A. Two-particle Hamiltonian

Suppose an ultra-low-density ordered beam in a storage
ring; each particle is simply longitudinally reflected back at
every collision with its neighbors. We then reduce the num-
ber of ions, so that the average interparticle distance becomes
larger and larger. Clearly, the ordered state can be maintained
during this process. Note that we can make the plasma pa-
rameter arbitrarily small by removing particles(provided that
the temperature change is negligible). Such an ordered sys-
tem may not be categorized as a conventional liquid state
where theG parameter is supposed to be on the order of 1 or
even greater.

It is quite natural to say that collective effects are negli-
gible at ultra-low density. The Coulomb interaction occurs
only between two neighboring ions that happen to come
close to each other. The Hamiltonian governing this binary
process is given, in the rest frame, by

H = H1 + H2 +
rp

b2g2

1

d
, s6d

where the classical radius of the ion isrp;q2/4p«0mc2 with
c being the speed of light,d is the interparticle distance,
Hisi =1,2d is the single-particle Hamiltonian already intro-
duced in Eq.(1), b=Î1−1/g2, and the last term describes
the Coulomb interaction. Since the collision rate is extremely
low due to the large average interparticle distance and the
low longitudinal temperature, each ion executes many beta-
tron oscillations during the time interval from one collision
to the next. This suggests that the details of the lattice struc-
ture are not very important. We thus employ the smooth ap-
proximation, replacingKx and Ky, respectively, bysnx/Rd2

and sny/Rd2 wherenxsyd is the betatron tune, andR denotes
the average radius of the ring. For the sake of simplicity, we
neglect the effect of bending magnets that is also believed to
be unimportant in the present case.

In the following, we will mainly discuss the situation of
nearly equal betatron tunes, i.e.,nx<ny, as was the case in
the ESR and CRYRING experiments[13]. We have actually
confirmed, through a number of simulations, that the influ-
ence of unequal tunes is weak and the results depend very
little on tune rationx/ny. Only in “pathological cases” where
nx/ny is quite different from unity and the transverse tem-
perature exceedingly largesT'@100Tid, is a difference in
transition temperature noticeable. Withnx<nys;n0d, Eq. (6)
can be written as

H = o
i=1,2

H spx
sidd2 + spy

sidd2 + spz
sidd2

2
+

1

2
Sn0

R
D2

fsxsidd2 + sysidd2gJ
+

rp

b2g2

1
Îsxs1d − xs2dd2 + sys1d − ys2dd2 + szs1d − zs2dd2

. s7d

It is easy to derive the momentum conservation lawpz
s1d

+pz
s2d=const from the Hamiltonian(7). Without loss of gen-

erality, we assume thatpz
s1d+pz

s2d=0. The longitudinal equa-
tion of relative motion then becomes

d2

ds2szs1d − zs2dd

=
2rp

b2g2

zs1d − zs2d

fsxs1d − xs2dd2 + sys1d − ys2dd2 + szs1d − zs2dd2g3/2. s8d

In the horizontal direction, we have

d2

ds2sxs1d − xs2dd

= − Sn0

R
D2

sxs1d − xs2dd

+
2rp

b2g2

xs1d − xs2d

fsxs1d − xs2dd2 + sys1d − ys2dd2 + szs1d − zs2dd2g3/2,

s9d

and the similar equation of motion holds in the vertical de-
gree of freedom. PuttingX=xs1d−xs2d, Y=ys1d−ys2d and Z
=zs1d−zs2d, we readily find that these equations of motion are
derivable from the Hamiltonian

H̃ =
1

2
sPx

2 + Py
2 + Pz

2d +
1

2
Sn0

R
D2

sX2 + Y2d

+
2rp

b2g2

1
ÎX2 + Y2 + Z2

. s10d

When the two colliding particles are far away from each
other, the relative motion is a simple drift in the longitudinal
direction and a harmonic oscillation in the transverse direc-
tion. This is always true for low density,no matter how large
the average interparticle distance is(there is a lower but no

upper limit for d̄!). The line density of the beam therefore
does not play an essential role in our two-particle model.

B. Scaling

The Hamiltonian(10) is clearly a constant of motion as it

does not explicitly depend ons. The magnitude ofH̃ aver-
aged over all stored particles is equal to the sum of the en-
ergies of three independent motions(the two transverse har-
monic oscillations and longitudinal drift) because of the very
low line density:

E ; kH̃l<KPx
2

2
+

1

2
Sn0

R
D2

X2L
+KPy

2

2
+

1

2
Sn0

R
D2

Y2L +KPz
2

2
L , s11d

wherekAl stands for the mean value of the quantityA. Not-
ing that kX2l=2ksxs1dd2l=2ksxs2dd2l, etc., we haveE=kpx

2l
+kpy

2l+kpz
2l+sn0/Rd2skx2l+ky2ld where the superscript(i)

has been dropped for brevity. The longitudinal variablepz
can be related to the momentum spreaddp/p of the beam,
measured in the laboratory frame, aspz=sdp/pd /g. In addi-
tion, the principle of energy equipartition requireskpx

2l
=sn0/Rd2kx2l and kpy

2l=sn0/Rd2ky2l. We thus concludeE
=2skpx

2l+kpy
2ld+ksdp/pd2l /g2. Following the useful defini-
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tion of beam temperature(see Stecket al. [3]), we defineT'

andTi as

kBT' =
1

2
mc2b2g2skpx

2l + kpy
2ld,

kBTi = mc2b2KSdp

p
D2L . s12d

Use of these definitions yields

E <
kB

msbgcd2s4T' + Tid. s13d

Before proceeding to numerical results, we demonstrate
that the dynamical system of Eq.(10) is basically parameter
free. All we must do for this purpose is to introduce the
scaling transformation

X = F 2rp

b2g2S R

n0
D2G1/3

x̂, Px = S 2rp

b2g2

n0

R
D1/3

p̂x,

Y = F 2rp

b2g2S R

n0
D2G1/3

ŷ, Py = S 2rp

b2g2

n0

R
D1/3

p̂y,

Z = F 2rp

b2g2S R

n0
D2G1/3

ẑ, Pz = S 2rp

b2g2

n0

R
D1/3

p̂z.

The Hamiltonian(10) can then be rewritten, with the new
variablessx̂, ŷ, ẑ; p̂x, p̂y, p̂zd as

Ĥ =
1

2
sp̂x

2 + p̂y
2 + p̂z

2d +
1

2
sx̂2 + ŷ2d +

1

Îx̂2 + ŷ2 + ẑ2
, s14d

where the independent variable has also been scaled to be

u=n0·ss/Rd. The scaled temperature, defined byT̂';skp̂x
2l

+kp̂y
2ld /2 andT̂i ;kp̂z

2l, can be calculated from

HT̂'

T̂i

J =
2kB

mc2S2rpbg
n0

R
D−2/3HT'

Ti
J . s15d

A different definition of dimensionless temperature has been
taken in Ref.[5] where the scaling constant explicitly con-
tains the average interparticle distance. Once such a defini-
tion is adopted, the corresponding numerical results naturally
depend on the line density of the beam. Certainly, one can
obtain dimensionless parameters that way, but the introduc-
tion of line density, or equivalently, average particle spacing,
is not physically meaningful. By contrast, we have directly
scaled the Hamiltonian itself, making it parameter free, and

since our scaling constants are totally independent ofd̄, the
present theory cannot produce density-dependent results. The
ingredients in all that follow are the scaled Hamiltonian(14)
and temperatures(15). They permit us to establish “univer-
sal” ordering conditions.

IV. TRANSITION TEMPERATURE

In order to explore the condition under which the transi-
tion to the ordered state is anticipated, we numerically inte-
grated the canonical equations of motion derived from the
universal Hamiltonian(14). We are simply investigating the
dynamics of two particles. The numerical procedure is as
follows:

(i) Choose the longitudinal scaled temperatureT̂i and the

transverse scaled temperaturesT̂xs;kp̂x
2l /2d and

T̂ys;kp̂y
2l /2d.

(ii ) Choose an initial value ofp̂z arbitrarily from Gauss-
ian random numbers whose standard deviation is equal to
ÎT̂is=Îkp̂z

2ld; note that, when the initialp̂z is positive(nega-
tive), then the corresponding longitudinal coordinate must
initially be negative(positive) so that the two particles even-
tually collide.

(iii ) Choose initial values of the transverse canonical co-
ordinatessx̂, ŷ; p̂x, p̂yd arbitrarily from two sets of Gaussian
random numbers whose standard deviations are equal to
Î2T̂x for sx̂, p̂xd and toÎ2T̂y for sŷ, p̂yd.

(iv) As the initial value ofuẑu, choose any number much
greater than 10.

(v) Using these initial conditions, numerically solve the
canonical equations by means of the symplectic integrator.
No information except for the scaled temperature is required
for this simulation. We repeat the above procedure several

hundred times at fixed temperatureT̂' and T̂i in order to
evaluate thereflection probability, namely, the rate of events
where two longitudinally approaching particles are reflected
back in a single collision.

Since the present model is relevant only to an ultra-low-
density beam, it is essential to set the initial value ofuẑu
sufficiently large so that the last term in Eq.(14) can be
ignored at the beginning. In fact, the two-particle model is
based on the assumption that each individual particle “sees”
only the nearest neighbor. If the Coulomb potential is not
negligible whenuẑu is comparable to the scaled interparticle

distanced̃; d̄fs2rp/b2g2dsR2/n0
2dg−1/3, we must take into ac-

count the contribution from, at least, two neighbors at both
sides. To know the starting condition appropriate for two-
particle simulations, we performed test runs changing the
initial value of ẑ. Examples are given in Fig. 1 where a round

beamskx̂2l=kŷ2l ,T̂x=T̂yd and two different combinations of

sT̂' ,T̂id have been assumed. The ordinate is the reflection
probability while the abscissa indicates the initialẑ. These
pictures point out that the initial value ofuẑu must be chosen
well above 10; then, our model produces proper results
roughly independent of the line density of the beam. Assum-
ing 197Au79+ ions at 360 MeV/u in ESR as an example, we

find that the scaled distance of 100 corresponds tod̄
<1.8 mm andl<0.011.

Figure 2 shows the reflection probability predicted by our
model. The abscissa and ordinate represent the scaled tem-

peratureT̂i and T̂', respectively. The reflection rate at each

mesh point on theT̂i–T̂' plane has been evaluated from
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1000 independent simulations. This figure looks similar to
the Hasse’s Fig.3 of Ref.[5], except that — due to the dif-
ferent normalization — Hasse’s curves are apparently only
valid for l=0.00015 whereas our Fig. 2 applies for arbitrary
density, within the limits outlined above. We recognize that
the reflection border is approximately straight, which sug-

gests the ordering condition of the formT̂' ·T̂i
a,const,

where the magnitude of the exponenta is between 2 and 3.
Carrying out the least-square fitting of the 80% probability
curve in Fig. 2, we have the phenomenological ordering cri-
terion

T̂' · T̂i
2.4, 0.95, s16d

which looks satisfactory over the whole temperature range.
This simple phenomenological criterion allows us to make a
quick estimate of the transition temperature of an ultra-low-
density beam in a given machine. The criterion(16) is ob-
tained as a fit to the numerical results for the limiting case of
a round beam as discussed above. However, we have also
studied other aspect ratioskx̂2l / kŷ2l, especially the case
kŷ2l→0. It has been found that the same criterion is a good

(and, in fact, for highT̂' a slightly “pessimistic”) approxi-
mation even for flat beams.

The actual transition points experimentally confirmed at
ESR are plotted on the map in Fig. 3 where the data summa-
rized in Ref. [5] have been used, and are summarized in
Table I. (All we need to know here are the values ofdp/p
andTtrans at which anomalous beam behavior was detected.)
The scaled average interparticle distanced̃ at transition is

also listed in the table. The magnitude ofd̃ in each case is on
the order of 103, which justifies the application of the two-
particle model to the ESR data. We see, from Fig. 3, that the
transition points are in-between the 60% and 80% contours.

FIG. 1. Dependence of reflection probability on the initial value
of uẑu. The initial conditions assumed in these examples are:(a)

T̂'=50,T̂i=0.3; (b) T̂'=0.1,T̂i=0.7.

FIG. 2. Reflection probability map obtained numerically from
the universal Hamiltonian(14). We have considered a round beam

whereT̂x=T̂y. The initial value of the longitudinal coordinateẑ has
been fixed at 100, which is not essential to the result; even if a
different value is chosen, we eventually find almost the same map
as long as it is sufficiently larger than 10.

FIG. 3. The operating points at which the anomalous beam be-
haviors were observed in ESR have been marked with
+s40Ar18+d, 3 s58Ni28+d, L s86Kr36+d, h s132Xe54+d, Ds197Au79+d,
andss238U92+d. The data used here have been summarized in Table
I. The three lines show the smoothed probability contours in Fig. 2.
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An example of reflection probability calculated as a function
of beam density is given in the Appendix.

Note that the criterion(16) does not predict the final equi-
librium temperature after the transition is completed. In fact,
according to the ESR data[3], the momentum spreaddp/p
drops at a critical line density by nearly one order of magni-
tude. After the ordering therefore the marks in Fig. 3 jump to
the left where the reflective collision is perfectly guaranteed.

V. BASIC MECHANISM OF 1D ORDERING

It is concluded that the universal probability map, Fig. 2,
reproduces the ESR data and can be used to analyze a wide
range of future experiments and applications. To this end a
minimum of information, essentially only the beam tempera-
tures, is necessary. We do not have to be concerned with
collective effects, plasma parameters, or density as long as

d̃@10. The observed dependence of the transition point on
the number of stored ions should not be interpreted as evi-
dence that the line density is of primary importance but
rather as an indication that the achievable temperatures de-
pend on beam density.

We next study two-particle Coulomb collisions under the
influence of an artificial linear potential in order to derive
analytical reflection criteria. The total potential of the system
is the sum of two fundamental functions:

Vsx̂,ŷ,ẑd =
1

2
sx̂2 + ŷ2d +

1

Îx̂2 + ŷ2 + ẑ2
. s17d

The reflection probability of 100% implies that the longitu-
dinal coordinateẑ is always bounded in the positive or nega-
tive region. When two particles pass each other longitudi-
nally, the value ofẑ goes across zero changing its sign. Such
an event never takes place if the total energy, which is in-
variant in the present case, is lower than the potential barrier
at ẑ=0. The functionVsx̂, ŷ, ẑ=0d becomes minimum along
x̂2+ ŷ2=1 where the potential height is 3/2. Since the aver-

age energy of the system can be expressed asÊ<2T̂'

+T̂i /2, the general criterion of 100% reflection is given by

2T̂' +
T̂i

2
,

3

2
. s18d

The probability contour corresponding to this condition is,
however, rather different from the phenomenological fit in

Eq. (16). Thus the above statistical mechanics argument
(space averages over the energy surface is equal to time av-
erage over a trajectory) is not applicable. This is attributed to
the restriction of the starting conditions; namely, we only
wish to consider the particular situation in which two par-
ticles are initially located far away from each other and
gradually approach. Taking this fact into account, we try to
give a plausible explanation to the numerical results in Fig.
2. For this purpose, it is convenient to look into typical re-

flection patterns at high and lowT̂' separately.

A. High transverse temperature: T̂�š1

From the Hamiltonian, we find the longitudinal equation
of motion dp̂z/du=d2ẑ/du2= ẑ/ sx̂2+ ŷ2+ ẑ2d3/2, which says
that the relative momentumup̂zu decreases at a rate propor-
tional to sx̂2+ ŷ2+ ẑ2d−3/2. It is therefore always possible to let
the trajectory go beyond theẑ=0 line and, thus have no

ordering, by choosing a sufficiently highT̂'. Inversely
speaking, for reflection,up̂zu must initially be smaller at

higher T̂', so thatp̂z reaches zero before crossing theẑ=0
line.

A large transverse oscillation amplitude also leads to
weakening the coupling among the three degrees of freedom.
The probability of large energy transfer between the trans-
verse and longitudinal motions will then be lowered. To
check this out, a typical trajectory of the two-particle motion
is plotted in Fig. 4(a) [14]. We actually see no noticeable
change in the oscillation amplitude before and after the re-
flection, which indicates that the energy of the transverse
motion is conserved. By subtracting the transverse energy
from both sides of Eq.(14), we obtain the formal equation

T̂i < p̂z
2+2/Îs'

2 + ẑ2, where s' is the root-mean-squared
(rms) amplitude of the transverse oscillation. An approxi-

mate ordering condition at highT̂' can thus be written as

T̂i ,2/s' or, equivalently,

T̂' · T̂i
2 , 2, s19d

becauses'
2 =kx̂2l+kŷ2l=2T̂'. This condition is similar to the

criterion (5) by Meshkovet al., but our reasoning leading to
it seems different from the “no-passing” argument of Ref
[12]. The reflection border determined by this condition is in
reasonable agreement with the numerical result, as shown in
Fig. 5.

TABLE I. Momentum spreaddp/p, transverse beam temperatureTtrans, and scaled interparticle distance

d̃ at which anomalous Schottky signals were detected at ESR. The value ofd̃ in each case gives the threshold
above which the occurrence of 1D ordering is anticipated. The data below are extracted from the table in
Ref. [5].

40Ar18+ 58Ni28+ 86Kr36+ 132Xe54+ 197Au79+ 238U92+

EnergysMeV/ud 360 205 240 240 360 360

dp/ps10−6d 4 4 4 6 6 5

TtranssmeVd 300 440 640 1000 1500 1800

d̃ 4800 5800 4600 6700 1500 7400
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B. Low transverse temperature: T̂�™1

This range is not the one of the present experiments, but it
is interesting — for it gives us added insight into the solu-
tions of the two-particle model. The potential function of Eq.
(17) produces a steep barrier around the origin. Even high

longitudinal temperature is allowed at lowT̂' and the par-
ticle is still reflected. The trajectory can therefore come

closer to the origin compared to the high-T̂' case. Then, a
significant energy transfer from the longitudinal direction to
the transverse direction can take place. Figure 4(b) shows a
solution to the universal equations of motion, where rela-
tively high longitudinal temperature has been assumed.
Naturally, the collision is almost head-on owing to the small
transverse oscillation amplitude. We recognize that, in the
vicinity of the potential barrier, the collision pattern looks
like a Rutherford scattering with a small impact parameterb.
The scattering anglef can thus be estimated from

cotSf

2
D < b · p̂`

2 , s20d

where p̂` is the total momentum before the scattering. Al-
though the impact parameter depends on the phase and am-
plitude of the transverse oscillation, we here simply assume

b<s'<Î2T̂'. In addition,p̂`<ÎT̂i becauseT̂i @ T̂' in the
present case. Sincef must be greater than about 90° to get a
reflection, Eq.(20) results in the ordering condition

T̂' · T̂i
2 , 0.5. s21d

In spite of the crude assumptions, this condition qualitatively

explains the probability contours in the lowT̂' region (see
Fig. 5). Interestingly, the condition(21) is quite analogous to

what we have found for highT̂'.

VI. SUMMARY

We have shown that in essence, the ESR-type event is
simply determined by Coulomb collisions of two neighbor-
ing ions, which under appropriate conditions, can lead to
reflections. The Wigner-Seitz radius, theG parameter, beam
density and collective motions are of no substantial impor-
tance in this effect.

The two-particle model suffices for explaining the anoma-
lous behavior of electron-cooled ion beams in a storage ring.
The dynamical system treated here is made completely pa-
rameter free after scaling, which means that the nature of 1D
ordering at ultra-low density is only determined by the scaled

dimensionless temperaturesT̂' and T̂i. Details of the lattice
design, beam energy, ion species, etc., only enter through the

values ofT̂' and T̂i. Solving the universal equations of mo-
tion, we have obtained a useful chart that enables us to esti-
mate the probability of reflective binary collisions at specific
beam temperature. An intuitive picture of the ordering pro-

FIG. 4. Typical solutions to the universal equations of motion.
The initial coordinates assumed here are:(a) sx̂, ŷ, ẑ; p̂x, p̂y, p̂zd
=s8.944,−3.162,−300;0,3.162,0.5477d, (b) sx̂, ŷ, ẑ; p̂x, p̂y, p̂zd
=s0,−0.2236,−300;0.3162,−0.2236,2d. Note that, in the case of

high T̂' (the upper picture), the horizontal and vertical oscillation
amplitudes are independently maintained before and after the
reflection.

FIG. 5. Reflection probability map. The dotted curves are the
probability contours shown in Fig. 2. The thick broken and dotted
lines indicate the reflection borders given, respectively, by Eqs.(19)
and(21). The phenomenological fit of Eq.(16) has also been plotted
in a thick solid line.
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cess was briefly described to reproduce the reflection border
in Fig. 2. The present universal criterion offers experimen-
talists, who have different storage rings and different types of
beams and coolers, a simple guideline on the possible oper-
ating region where the sudden transition to the 1D ordered
state is expected.
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APPENDIX: ESR EXPERIMENTS

For completeness, let us apply the two-particle algorithm
to reproduce the ESR observations. For this purpose, we first
need to know the density dependence of the equilibrium
beam temperature. The rms momentum spread correspond-
ing to dp/p in Table I can be evaluated from the formula
Îksdp/pd2l=s8 ln 2d−1/2sdp/pd [3]. The value ofksdp/pd2l is
then substituted into the definition ofTi to find the longitu-
dinal transition temperature. Note, however, thatdp/p and
Ttrans in Table I only show their values when a jump of
Schottky noise power took place at a specific line density.At
a different line density, we must use differentdp/p and Ttrans.
According to Ref.[3], the longitudinal and transverse tem-
perature of an electron-cooled beam in ESR scale asN0.6

whereN is the total number of stored ions. We here employ

this scaling law to determine initial conditions for two-
particle simulations. Note also that, as long as the initial
value ofp̂z is picked from Gaussian random numbers in each
simulation run, the reflection probability doesnot grow as
sharply as exhibited in Ref.[5] Therefore, as a trial, we here

fix p̂z at ÎT̂i initially. The reflection probability of197Au79+

ions in ESR then shows the behavior in Fig. 6, which is
similar to the results in Ref.[5].
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