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The equations of motion for space-charge dominated beams in synchrotron are derived. We
that the space-charge force generates an identical defocusing function to the betatron motion
dispersion function. The self-consistent envelope equation obeys the Kapchinskij–Vladimirskij-t
equation similar to that of the linear transport system. We employ these results to analyze the sta
of the crystalline beams, and discuss the implication on the high intensity proton driver for the neu
spallation sources. [S0031-9007(98)06214-0]
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Intense charge particle beams have many applicatio
Some of these applications are proton drivers for the ne
tron spallation sources, the energy amplifier, the second
beam sources such as muons, pions, and kaons, and he
ion beam drivers for fusion energy [1,2]. Thus the sta
bility of the space-charge dominated beam is an importa
topic in beam physics. There are two methods common
used in the study of the stability of space-charge dominat
beams. The linearized Vlasov equation method studies
threshold of an equilibrium distribution perturbatively [3]
while the particle-core model studies the core stability u
ing the envelope equation, and the particle stability usin
Hill’s equation [4]. The linearized Vlasov equation ap
proach has been shown to provide accurate description
the threshold behavior of collective modes. On the oth
hand, the particle-core model has been successfully u
to describe the halo formation using parametric nonline
resonances. Numerical simulations have been found
agree well with both the linearized Vlasov equation theo
and the particle-core model in linear transport systems.

In the past, space-charge dominated beams were stud
mainly in linacs, where the beam energy is low, an
thus the space-charge force is important [5,6]. Sin
the synchrotron can accumulate linac beams and attai
much higher line density, the space-charge force can be
important. So far, the stability of space-charge dominat
beams has not been fully explored in synchrotrons d
to the complication of the dispersion functions, wher
we rely solely on multiparticle simulations. Deriving an
envelope equation for a space-charge dominated beam
synchrotron is therefore an important timely task becau
the synchrotron is considered as the prevailing scheme
the bunch compression in the neutron spallation sourc
The task is to find a self-consistent distribution and th
envelope equation for the space-charge dominated bea
in synchrotrons. This paper attempts to solve the task a
discuss the effect of the strong space-charge force on
lattice functions.

In the curvilinear Frenet-Serret coordinate system wi
sx, s, zd as unit basis vectors, the particle motion can be d
scribed by the phase space coordinatesx, px , z, pz , t, 2Ed
0031-9007y98y80(23)y5133(4)$15.00
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[7], where the synchrotron phase space coordinatesst, Ed
are the time and the energy of the particle,x, z are betatron
coordinates, andpx , pz are the corresponding conjugate
coordinates. We consider only transverse force, where
chooseAx ­ Az ­ 0 for the vector potential. The Hamil-
tonian up to the second order inpx , pz is

H̃ ø 2

µ
1 1

x
r

∂
p 1

µ
1 1

x
r

∂ µ
p2

x 1 p2
z

2p

∂
2 eAs ,

(1)

wheree and p are the charge and the momentum of th
particle, r is the radius of curvature, andAs ­ s1 1

xyrdA ? s is a component of the vector potentia
with Bz ­ f1ys1 1 xyrdg s≠Asy≠xd, Bx ­ 2 f1ys1 1

xyrdg s≠Asy≠zd. We expand the momentum about the
reference valuep0 and obtain

Dp ­ p 2 p0 ø
DE
b0c

2
1

2p0

µ
DE

b0cg0

∂2

2
eVsc

b0c
,

(2)

whereDE ­ E 2 E0 is the energy deviation, andb0 and
g0 are the Lorentz factors of the reference particle. He
Vsc is the self-consistent space-charge scalar potential t
satisfies the Poisson equationµ

≠2

≠x2
1

≠2

≠z2

∂
Vsc ­ 2

e
e0

Z Z Z
dpx dpz

3 ds2DEdfsx, z, px , pz , 2DE; sd ,

(3)

where the distribution functionf obeys the Vlasov equa-
tion dfyds ­ 0. The equilibrium distribution function in
a synchrotron must also be a periodic function ofs, and
is generally a function of the effective Hamiltonian tha
includes the space-charge mean field potential. For a fe
special distributions, self-consistent space-charge poten
can be expressed in analytic form, e.g., the Kapchinsk
Vladimirskij (KV) distribution [8] in a linear transport
system.
© 1998 The American Physical Society 5133
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Now we consider the case of a coasting beam witho
synchrotron motion so that the longitudinal electric fiel
is zero. The vector potential is given by

As ­ B0x 1
B0

2r
x2 1

1
2

B1sx2 2 z2d 1 Asc , (4)

where B1 ­ ≠Bzy≠x is the focusing function evaluated
at the reference orbit, andAsc is the vector potential
due to the space-charge force. Since the magnetic fo
is equal to 2b

2
0 times the electric force, we obtain

Asc ­ b
2
0Vscyb0c. Substituting the vector potential into

the Hamiltonian, one obtains
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DE
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0E0

1 p0
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2g
2
0
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DE

b
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0E0
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2 p0
DE

b
2
0E0

x
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1
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x 1 p2
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1
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2
sKxx2 1 Kzz2d 1

e

b0cg
2
0

Vsc ,

(5)
where Kx ­ 1yr2 2 B1yBr and Kz ­ B1yBr are the
focusing functions for betatron motion,Br ­ jp0yej is
the magnetic rigidity of the beam, andB0 ­ 2p0yer

signifies the expansion ofx around the reference orbit.
The next step is to transform the coordinate system o

the closed orbit for the particle at energyE. Using the
generating function [9]
s

F2sx, px , , z, pz, t, 2DEd ­

µ
x 2 Dx

DE

b
2
0E0

∂
px 1

µ
z 2 Dz

DE

b
2
0E0

∂
pz 2 sE0 1 DEdt 1 x

D0
x

b0c
DE

2
1
2

DxD0
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µ
DE
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1 z
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zp0

µ
DE

b
2
0E0

∂2

,

and making a scale change to coordinatesp̃x ­ pxyp0, p̃z ­ pzyp0, andW ­ DEyp0, the new Hamiltonian become

H̃1 ­ 2
W

b0c
1

p̃2
x

2
1

1
2
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p̃2
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2
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1
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Note that x̃ is the betatron coordinate around the of
momentum closed orbit. Since the equilibrium distribu
tion is a function ofx and z, the mean field Coulomb
potential is given by

Vsc ø Vsc,0 1
1
2

Vsc,xx

µ
x̃ 1 Dx

W
b0c

∂2

1 Vsc,xz

µ
x̃ 1 Dz

W
b0c

∂ µ
z̃ 1 Dz

W
b0c

∂
1

1
2

Vsc,zz

µ
z̃ 1 Dz

W
b0c

∂2

1 . . . , (6)

whereVsc,0 is a constant term, and

Vsc,xx ­
≠2Vsc

≠x̃2
, Vsc,zz ­

≠2Vsc

≠z̃2
,

Vsc,xz ­
≠2Vsc

≠x̃≠z̃
are partial derivatives of the space-charge potential eva
ated at the reference orbit. Eliminating the cross terms
the Hamiltonian, the equations for the dispersion functio
are given by

D00
x 1

µ
Kx 1

eVsc,xx

b0cp0g
2
0

∂
Dx 1

eVsc,xz

b0cp0g
2
0

Dz ­
1
r

,

(7)

D00
z 1

µ
Kz 1

eVsc,zz

b0cp0g
2
0

∂
Dz 1

eVsc,xz

b0cp0g
2
0

Dx ­ 0 .

(8)
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Note that the space-charge mean field reduces the foc
ing strength and may introduce a linear coupling to th
equations of motion. The new Hamiltonian becomes

H̃2 ­
1
2

"
p̃2

x 1

µ
Kx 1

eVsc,xx

b0cp0g
2
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∂
x̃2 1 p̃2

z

1

µ
Kz 1
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2
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∏
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The synchrotron equation of motion is given by

dsDt̃d
ds

­
1

b0c

µ
Dx

r
2

1

g
2
0

∂
W

b0c
, (9)

ds2W d
ds

­ 0 , (10)

whereDt̃ ­ t̃ 2 syb0c is the relative time. For a coast-
ing beam,W is constant. The corresponding momentu
compaction factor for the space-charge dominated beam

ac,sc ­
1
C

I Dx

r
ds , (11)

whereC is the circumference of the synchrotron, has a
identical form as that of the emittance dominated beam
except that the dispersion function is modified by th
space-charge mean field. The equations of betatron mo
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are given by

x̃00 1

µ
Kx 1

eVsc,xx

b0cp0g
2
0

∂
x̃ 1

eVsc,xz

b0cp0g
2
0

z̃ ­ 0 , (12)

z̃00 1

µ
Kz 1

eVsc,zz

b0cp0g
2
0

∂
z̃ 1

eVsc,xz

b0cp0g
2
0

x̃ ­ 0 . (13)

We observe that Hill’s equations for betatron motion hav
an identical focusing function as that of the dispersio
functions. Furthermore, the space-charge force may
troduce linear coupling to betatron motion and gives ris
to the vertical dispersion.

We now apply our formalism to analyze the crystallin
beams in a storage ring as they are the ultimate form
space-charge dominated beams [10]. By using a prope
tailored “tapered” cooling force, an ordered state of th
crystal beam can be obtained by the molecular dynam
numerical simulations [11]. When the crystalline state
formed, the normalized temperatures, defined in Ref. [11
will be less than1024 in all degrees of freedom. Fig-
ure 1 shows the dispersion functionxcoyd, and the vertical
closed orbitzcoykzcol in one period of the lattice. The exis-
tence of an unique dispersion function shown in the upp
curve of Fig. 1 indicates that the horizontal closed orb
of each particle is related to the dispersion function. Th
fact thatzcoykzcol ø 1 for all particles in the crystalline
beam indicates that (1) the space-charge force has
most fully compensated the quadrupole focusing force, a
(2) there is no vertical dispersion function and no inhomo
geneous term in Eq. (13). Thus the linear coupling due
the space-charge force is small, i.e.,Vsc,xz ø 0.

FIG. 1. The horizontal orbitxcoyd (normalized unit) and
the vertical orbitzcoykzcol of 20 particles obtained from the
molecular dynamics calculations are plotted in one superperio
The lattices used are simple periodic focusing and defocusi
(FODO) lattice with superperiodP ­ 10 and betatron tunes
Qx ­ Qz ­ 2.34. It is evident that the horizontal closed orbit
of the crystalline particle arises from dispersion function, an
the vertical closed orbit is obtained from the homogeneou
Hill’s equation of Eq. (13) with a focusing force almost fully
balanced by the Coulomb mean field.
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Neglecting the linear coupling and nonlinear contribu
tion from the space-charge potential, the betatron Ham
tonian becomes

H̃3 ­
1
2

∑
p̃2

x 1 p̃2
x 1

µ
Kx 1

eVsc,xx

b0cp0g
2
0

∂
x̃2

1

µ
Kz 1

eVsc,zz

b0cp0g
2
0

∂
z̃2

∏
, (14)

and the KV distribution is a self-consistent solution [8]. I
the KV model, we obtain

Vsc,xx ­ 2
eN
pe0

1
asa 1 bd

,

Vsc,zz ­ 2
eN
pe0

1
bsa 1 bd

,
(15)

whereN is the number of particles per unit length, anda
andb are the horizontal and the vertical betatron beam e
velopes. For a KV beam, the envelope equations beco

a00 1 Kxa 2
e2

x

a3
­

2Ksc

a 1 b
, (16)

b00 1 Kzb 2
e2

z

b3
­

2Ksc

a 1 b
, (17)

where ex and ez are the beam emittances,Ksc ­
2Nr0yb

2
0g

3
0 is the space-charge perveance, andr0 is the

classical radius.
When the horizontal and vertical betatron tunes for th

crystalline beam lattice are equal, the envelope equat
for b ­ a, in the smooth approximation, can be writte
as [12]

a00 1

µ
2py

C

∂2

a 2
e2

a3
­

Ksc

a
, (18)

wherey is the betatron tune, ande is the average emittance
of the crystalline beam. The envelope tune is given by

yenv ­ 2y

∑
1 2

k
p

1 1 k2 1 k

∏1y2

, (19)

wherek is the normalized space-charge parameter giv
by k ­ KscCy4pye. Here we note that the envelope tun
is 2y for an emittance dominated (hot) beam and

p
2y for a

space charge dominated (cold) beam. If the envelope tu
encounters a systematic half-integer stop band (Math
instability), the envelope (or betatron amplitude function
will be unstable.

For a synchrotron made ofP superperiods, systematic
half-integer stop bands occur atPy2, P, 3Py2, . . . . There-
fore, in order to maintain a crystalline beam, the lattic
must satisfy

p
2y # Py2 [11].

Figure 2 shows the beam temperature, obtained from
molecular dynamics calculations, vs

p
2yyP. When the

betatron tune of a cold beam reaches the envelope s
band at

p
2yyP ­ 1y2, the betatron envelope for all off-

momentum particles becomes unstable, and the temp
ture of the beam increases suddenly. When the betat
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FIG. 2. The total temperatureTtotal ­ Tx 1 Tz 1 Ts (in the
normalized unit [11]) obtained from the molecular dynamics
(MD) simulations with several different lattices are plotted as a
function of the betatron tune. The circles and squares are o
tained from lattice made of FODO cells with 10 superperiods
and the stars are obtained from the lattice with 6 superperiod
of the TARN-11 storage ring at Institute of Nuclear Studies
in Tokyo. The arrow attached to the star symbol shows tha
the beam temperature obtained from MD simulations is lowe
than1028. Note that the solid line at

p
2 y ­ Py2 corresponds

to the envelope stop band of a cold beam and dashed lines
2y ­ Py2 andP correspond to that of a hot beam. The dotted
line shows the corresponding third order envelope stop band
a cold beam.

tune of a hot beam encounters the envelope stop band
2yyP ­ 1y2, 1 shown as dashed lines in Fig. 2, the beam
temperature seems to show a small stepwise increase
well. Besides the linear Mathieu instability, nonlinear sys
tematic stop bands occur at

p
2 y ­ Pym sm ­ 3, 4, . . .d

[4]. Fortunately, higher order stop bands have zero width
and these stop bands can be easily suppressed by the co
ing force.

For high density beams in synchrotrons, the space
charge parameter is designed to satisfy the conditio
yk # 0.4, which is small in comparison with that of
the linac beams or the crystalline beams. However, th
beam particles stay in the synchrotron for a long time
and the accumulated effect can be as important. He
the systematic and random half-integer stop band for th
envelope equation may play an essential role in the stabili
of the space-charge dominated beams. Comparison
numerical simulations with the theory presented in this
Letter would be valuable.

In conclusion, we have derived the equations of motio
for space-charge dominated beams in synchrotrons. W
find that the space-charge defocusing field on the betatro
coordinatẽx and dispersion functionDx are identical. The
momentum compaction factor of a synchrotron with space
charge dominated beams can be calculated by Eq. (1
with the modified dispersion function. We find that the
KV beam is also a self-consistent distribution for the
space-charge dominated beams in synchrotrons. For a K
beam, the envelope equations of motion are identical t
that of linear transport channels. Our theory is found to
5136
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be consistent with the numerical results obtained from
molecular dynamics simulation for the crystalline beam
Our formalism can be extended readily to solve the spac
charge dominated bunched beam problems.
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