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Space-Charge Dominated Beams in Synchrotrons
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The equations of motion for space-charge dominated beams in synchrotron are derived. We find
that the space-charge force generates an identical defocusing function to the betatron motion and
dispersion function. The self-consistent envelope equation obeys the Kapchinskij—Vladimirskij-type
equation similar to that of the linear transport system. We employ these results to analyze the stability
of the crystalline beams, and discuss the implication on the high intensity proton driver for the neutron
spallation sources. [S0031-9007(98)06214-0]

PACS numbers: 29.27.Eg, 41.75.—i, 52.25.Wz

Intense charge particle beams have many application§?], where the synchrotron phase space coordinatds)
Some of these applications are proton drivers for the neuware the time and the energy of the partialg; are betatron
tron spallation sources, the energy amplifier, the secondamgoordinates, ang,, p, are the corresponding conjugate
beam sources such as muons, pions, and kaons, and heaoprdinates. We consider only transverse force, where we
ion beam drivers for fusion energy [1,2]. Thus the sta-choosed, = A, = 0 for the vector potential. The Hamil-
bility of the space-charge dominated beam is an importantbnian up to the second order jn, p, is
topic in beam physics. There are two methods commonly ) )
used in the study of the stability of space-charge dominated j7 ~ — <1 + i)l, + <1 + i) <u> — A,
beams. The linearized Vlasov equation method studies the p p 2p
threshold of an equilibrium distribution perturbatively [3], @
while the particle-core model studies the core stability us-
ing the envelope equation, and the particle stability usin
Hill's equation [4]. The linearized Vlasov equation ap- . .
proachqhas bee[n]shown to provide accurate ?Jlescriptio% g/_p JA-s is a component of the vector potential
the threshold behavior of collective modes. On the othelith Bz = [1/(1 + x/p)](9A,/dx). B, = —[1/(1 +
hand, the particle-core model has been successfully usé‘c{p)](aAf/aZ)' We expa_nd the momentum about the
to describe the halo formation using parametric nonlineaFeference valugo and obtain
resonances. Numerical simulations have been found to A AE 1 AE \? eV,
agree well with both the linearized Vlasov equation theory 2P =P — po =~ — — —< > - ,
and the particle-core model in linear transport systems. Boc 2P0 N Boco Boc

In the past, space-charge dominated beams were studied (2)

mainly in linacs, where the beam energy is low, andwhereAE = E — E, is the energy deviation, ang, and
thus the space-charge force is important [5,6]. Since,, are the Lorentz factors of the reference particle. Here

the synchrotron can accumulate linac beams and attain @, is the self-consistent space-charge scalar potential that
much higher line density, the space-charge force can be agtisfies the Poisson equation

important. So far, the stability of space-charge dominated

beams has not been fully explored in synchrotrons due(é’_2 L 8—2>V _ e [[f dp. d

to the complication of the dispersion functions, where\ox2 = 9z2/ * €0 Px @p:

we rely solely on multiparticle simulations. Deriving an

envelope equation for a space-charge dominated beam in X d(=AE)f(x,z, px, pzs —AE;s),

synchrotron is therefore an important timely task because ?)

the synchrotron is considered as the prevailing scheme for

the bunch compression in the neutron spallation sourcesvhere the distribution functiolf obeys the Vlasov equa-

The task is to find a self-consistent distribution and thetion df /ds = 0. The equilibrium distribution function in

envelope equation for the space-charge dominated bearassynchrotron must also be a periodic functionspfind

in synchrotrons. This paper attempts to solve the task and generally a function of the effective Hamiltonian that

discuss the effect of the strong space-charge force on thiecludes the space-charge mean field potential. For a few

lattice functions. special distributions, self-consistent space-charge potential
In the curvilinear Frenet-Serret coordinate system withcan be expressed in analytic form, e.g., the Kapchinskij-

(x,s, z) as unit basis vectors, the particle motion can be deVladimirskij (KV) distribution [8] in a linear transport

scribed by the phase space coordinate,, z, p..t, —E)  system.

heree and p are the charge and the momentum of the
article, p is the radius of curvature, and; = (1 +
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Now we consider the case of a coasting beam withouj, » AE . 1 < AE >2 » AE x
i i i ic fi 0= 0 0 2\ 2~ - PO -
synchrotron motion so that the longitudinal electric field B3E, 2v2 \ B3E, B3E, p
is zero. The vector potential is given by 2+ p? e
v P TPy PO g 2 K72 + —5 Vi,
_ Bo o, 1 2 _ 2 2po 2 Bocyo
AS—B()X‘F%)C +5B1(x —27) + A, (4) ©)

where K, = 1/p> — B,/Bp and K, = B;/Bp are the
where By = 9B, /dx is the focusing function evaluated focusing functions for betatron motio®p = |po/e| is
at the reference orbit, and, is the vector potential the magnetic rigidity of the beam, anBly = —pg/ep
due to the space-charge force. Since the magnetic foresignifies the expansion aof around the reference orbit.
. 2 .- . . . .
is equal to —Bj times the electric force, we obtain  The next step is to transform the coordinate system onto
A = B3V /Boc. Substituting the vector potential into the closed orbit for the particle at energy Using the

the Hamiltonian, one obtains | generating function [9]
— AE AE — o
Fa(x,Py,,2, P01, —AE) = <x - D —)‘ + <z - D —>_, — (Ep + AE)t + x ——AE
2\, Dy P, x B(%EO Px z B(%EO P 0 Boc
L p.p! <E>2+ D: x5 - Lp.p <E>2
- 5 5 Z - 5 z 9
5 Px x PO B(%EO Boc 5 Pz 2P0 ,B%E()

and making a scale change to coordingies= p./po, p. = p./po, andW = AE/ po, the new Hamiltonian becomes

- woop:o1 pz 1 W 1 4
a=-+8 4 g+ By g2y —5C<D;’ + KD, — —) + — (D! + K.D,)
Boc 2 2 2 2 Boc p Boc '

e

— V.
Bocpovs

(3) [+ 2 ;) ]
+ =|\5—) | = + D\ D} + K.D, — — | + D.(D! + K.D,) | +
2 <B0C> 7(2), X X X=X p Z( z Z Z)
Note thatx is the betatron coordinate around the o*f-Note that the space-charge mean field reduces the focus-
momentum closed orbit. Since the equilibrium distribu-ing strength and may introduce a linear coupling to the

tion is a function ofx and z, the mean field Coulomb equations of motion. The new Hamiltonian becomes
potential is given by

~ 1 V.
) = —| p? + (K, + =2 )52 4 52
! % w 217 Bocpovs )
Vee = sc,0 T E Vsc,xx X + D, ,B— 0
W oC W n <KZ + evsc,zzz>z2 + 2 eVsC,XZ2 562:|
4 Vsc,xz<)~c + D, —)(Z + D, _> Bocpovo Bocpovo
Boc Boc w 1/ WN[1 D,
I W\ T 8o 2\Bee) L7275 L
+ 5 VSC,ZZ<2 + D, —) + ..., (6) 0 0 Yo P
Boc The synchrotron equation of motion is given by
whereV o is a constant term, and _
2 2 d (A7) 1 (D, 1 w
=T - s vl Gl bl ©)
Vsc,xx = %2 Vsc,zz = 822 5 ds BOC pP Yo BOC
02V d(—Ww)
= —> — =0, 10
Vsc,xz 85{82 ds ( )

are partial derivatives of the space-charge potential evaILWhereAi — 7 — 5/Byc is the relative time. For a coast-

ated at the reference orbit. Eliminating the cross terms 'rihg beam,W is constant. The corresponding momentum
the Hamiltonian, the equations for the dispersion funCtion%ompactién factor for thé space-charge dominated beam

are given by
V. % 1 1 [D
D! + <Kx L. SC’”2>Dx T oo = & jé—xds, (11)
Bocpovo Bocpovo p - p
whereC is the circumference of the synchrotron, has an
p'+ (k. + eV 2 D. + eV xz D=0 identical form as that of the emittance dominated beams
z O Bocpoyd! S Bocpove " ) except that the dispersion function is modified by the

(8) space-charge mean field. The equations of betatron motion
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are given by Neglecting the linear coupling and nonlinear contribu-
tion from the space-charge potential, the betatron Hamil-

o <Kx N evsc,xx2>5é n L’“ZZ =0, (12) tonian becomes
Bocpovo Bocpo¥o | v
- -2 -2 €Vscax \ .2
Vs V, H3=—[p +p +<K +—>x
34 <Kz 4 ¢ sc,zz2>~ Lﬂzx =0. (13) 2L * ! ,BOCPO')’(%
Bocpovo Bocpovo
ok, + e )22 (14)
We observe that Hill's equations for betatron motion have 7 Bocpoye Sk

an identical focusing function as that of the dispersion
functions. Furthermore, the space-charge force may inand the KV distribution is a self-consistent solution [8]. In
troduce linear coupling to betatron motion and gives riséhe KV model, we obtain
to the vertical dispersion.

We now apply our formalism to analyze the crystalline Veerr = — N ;,
beams in a storage ring as they are the ultimate form of ’ mey ala + b)
space-charge dominated beams [10]. By using a properly eN 1 (15)
tailored “tapered” cooling force, an ordered state of the Viezs = meo bla + b)’

crystal beam can be obtained by the molecular dynamics

numerical simulations [11]. When the crystalline state iswhereN is the number of particles per unit length, and
formed, the normalized temperatures, defined in Ref. [11]Jandb are the horizontal and the vertical betatron beam en-
will be less than10~* in all degrees of freedom. Fig- velopes. For a KV beam, the envelope equations become

ure 1 shows the dispersion functien /8, and the vertical ; €2 2K,

closed orbit, /(ze,) in one period of the lattice. The exis- a’ + K= -3 =" (16)
tence of an unique dispersion function shown in the upper 5

curve of Fig. 1 indicates that the horizontal closed orbit b+ Kb — = — 2K (17)
of each particle is related to the dispersion function. The ) b> a+b’

fact thatz.,/{zc,) = 1 for all particles in the crystalline where €, and e, are the beam emittances, =

beam indicates that (1) the space-charge force has &@Nry/ B%vi is the space-charge perveance, apds the

most fully compensated the quadrupole focusing force, andlassical radius.

(2) there is no vertical dispersion function and no inhomo- When the horizontal and vertical betatron tunes for the

geneous term in Eq. (13). Thus the linear coupling due terystalline beam lattice are equal, the envelope equation

the space-charge force is small, .8y . = 0. for b = a, in the smooth approximation, can be written
as [12]

— - === 18

C “T 5 a’ (18)
whereuv is the betatron tune, anrdis the average emittance
of the crystalline beam. The envelope tune is given by

\\\w‘\\\\‘\\\\‘\\\\‘\\ww
(L o]
() o]
(€]
a»

g 8

K 1/2
vy =21 = | a9)
where k is the normalized space-charge parameter given
by k = K,.C/4mve. Here we note that the envelope tune
is 2v for an emittance dominated (hot) beam afb for a
space charge dominated (cold) beam. If the envelope tune
encounters a systematic half-integer stop band (Mathieu
instability), the envelope (or betatron amplitude function)

0 5‘ 1‘0 1‘5 will be unstable.

s (arb. unit) For a synchrotron made df superperiods, systematic
half-integer stop bands occur®f2,P,3P/2,.... There-
fore, in order to maintain a crystalline beam, the lattice
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FIG. 1. The horizontal orbitx.,/6 (normalized unit) and
the vertical orbitz.,/(z.,) of 20 particles obtained from the )
molecular dynamics calculations are plotted in one superperiodNUSt satisfy/2v = P/2 [11] _

The lattices used are simple periodic focusing and defocusing Figure 2 shows the beam temperature, obtained from the
(FODO) lattice with superperiod® = 10 and betatron tunes molecular dynamics calculations, y&v/P. When the

Q. = Q; = 2.34. ltis evident that the horizontal closed orbit petatron tune of a cold beam reaches the envelope stop

of the crystalline particle arises from dispersion function, and .
the vertical closed orbit is obtained from the homogeneou?and atﬁv/P = 1/2, the betatron envelope for all off-

Hill's equation of Eqg. (13) with a focusing force almost fully Momentum particles becomes unstable, and the tempera-
balanced by the Coulomb mean field. ture of the beam increases suddenly. When the betatron
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be consistent with the numerical results obtained from a
| molecular dynamics simulation for the crystalline beam.
Our formalism can be extended readily to solve the space-
charge dominated bunched beam problems.
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FIG. 2. The total temperatur,,; = T, + T, + T, (in the
normalized unit [11]) obtained from the molecular dynamics
(MD) simulations with several different lattices are plotted as a
function of the betatron tune. The circles and squares are ob-
tained from lattice made of FODO cells with 10 superperiods, [1]
and the stars are obtained from the lattice with 6 superperiods
of the TARN-11 storage ring at Institute of Nuclear Studies

in Tokyo. The arrow attached to the star symbol shows that
the beam temperature obtained from MD simulations is lower |7

than1078. Note that the solid line af2v = P/2 corresponds

to the envelope stop band of a cold beam and dashed lines at
2v = P/2 andP correspond to that of a hot beam. The dotted
line shows the corresponding third order envelope stop band of

a cold beam. 3]

tune of a hot beam encounters the envelope stop band at
2v/P = 1/2, 1 shown as dashed lines in Fig. 2, the beam
temperature seems to show a small stepwise increase 44l
well. Besides the linear Mathieu instability, nonlinear sys-
tematic stop bands occur aﬁv =P/m(m=3,4,..))

[4]. Fortunately, higher order stop bands have zero width, [5]
and these stop bands can be easily suppressed by the cool-
ing force.

For high density beams in synchrotrons, the space-[6]
charge parameter is designed to satisfy the condition
vk = 0.4, which is small in comparison with that of [7]
the linac beams or the crystalline beams. However, the
beam particles stay in the synchrotron for a long time, [8]
and the accumulated effect can be as important. Here
the systematic and random half-integer stop band for the
envelope equation may play an essential role in the stability
of the space-charge dominated beams. Comparison of
numerical simulations with the theory presented in this
Letter would be valuable. [9]

In conclusion, we have derived the equations of motior{10]
for space-charge dominated beams in synchrotrons. We
find that the space-charge defocusing field on the betatron
coordinatex and dispersion functioP, are identical. The (11]
momentum compaction factor of a synchrotron with space-
charge dominated beams can be calculated by Eq. (1H2]
with the modified dispersion function. We find that the
KV beam is also a self-consistent distribution for the
space-charge dominated beams in synchrotrons. For a KV
beam, the envelope equations of motion are identical to
that of linear transport channels. Our theory is found to
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As the density of a space-charge dominated beam becomes
higher, the intrabeam scattering becomes more important,
and the heating rate increases. However, when a crys-
talline structure is formed, the random scattering vanishes.
The crystalline state corresponds to a state with vanishing
small transverse and longitudinal emittances.



