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Theory of tapered cooling
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A theory of tapered cooling for fast circulating ion beams in a storage ring is constructed. We describe the
fundamentals of this cooling scheme, a scheme that effectively yields both transverse and longitudinal cooling
through radial-position-dependent longitudinal momentum cooling, emphasizing that it might be the most
promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating
condition. We discuss the physical implication of the tapering factor of the cooling force, and show how to
determine its optimum value. Molecular dynamics is employed to demonstrate the validity of the present
theory.@S1063-651X~98!13009-X#

PACS number~s!: 41.75.2i, 52.60.1h, 29.20.Dh, 61.50.2f
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I. INTRODUCTION

The phase transition of fast ion beams in a storage
has attracted a great deal of interest since Russian phys
reported on a sudden jump of the Schottky signal detecte
the NAP-M ring @1#. Discussions held on the interpretatio
of the NAP-M results eventually initiated the comprehens
study of the ultracold state of particle beams. These be
are sufficiently cold in the beam rest frame, so that partic
making up the beam ‘‘lock into’’ a position where the repe
ling Coulomb force just balances the external focusing for
Seen in the laboratory frame, the whole ordered struc
circulates at great speed. The concept of the crystal
beam, regarded as a new state of matter, has now opene
various future possibilities in fundamental and applied ph
ics areas, including the study of completely space-cha
dominated beams, the study of Wigner crystal, the real
tion of high-luminosity ion colliders, the application t
ultrahigh resolution nuclear experiments and to atomic ph
ics research, etc.

The subject of beam crystallization was first studied us
the molecular dynamics~MD! approach by Schiffer and co
workers @2#. In recent years, Wei, Li, and Sessler demo
strated theoretically that beam crystallization is practica
achievable in a properly designed storage ring with a su
ciently strong three-dimensional~3D! cooling force @3#.
However, in order to reach a crystalline ground state, we
need to develop cooling methods that are much more p
erful than what has been conventionally used.

Laser cooling@4#, whose limiting temperature is of th
order of mK, is so far the most promising method to atta
crystalline beams. During recent years, extensive experim
tal efforts have been made to achieve a longitudinal be
temperature in the mK range@5,6#. However, since lase
cooling works on the Doppler principle, it does not produ
direct transverse cooling. Although intrabeam Coulomb sc
tering exchanges heat between transverse and longitu
directions, and the corresponding sympathetic cooling
been reported@7#, the cooling process is too slow. The tran
verse beam temperatures achieved in past experiment
PRE 581063-651X/98/58~3!/3817~9!/$15.00
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simply too high for our final goal.
To overcome this difficulty, several methods applying a

tificial dynamical coupling have been proposed. The simp
3D laser cooling scheme is to use momentum dispersion
regular rf cavity installed on a ring@8#. It has been shown
both analytically and numerically that one can enhance
transverse cooling rates up to the same level as the long
dinal rate. Introduction of a coupling cavity operating in th
TM210 mode is an alternative, mathematically equivale
scheme@9#. We have verified that the coupling cavity im
proves the transverse cooling efficiency even more. Acco
ing to the latest MD study@10#, the equilibrium transverse
temperature achievable with these methods appears to b
the region of 0.01 K or less, far below the current achieva
range. In fact, we have successfully observed Coulomb
dering in numerical simulations where only realistic longit
dinal cooling devices are used. But, unfortunately, the
schemes are limited to azimuthally bunched beams. Furt
more, in order to make the coupling effective, the mach
must operate near a linear synchrobetatron resonance in
ery lattice period, which usually conflicts with the requir
ment for crystal maintenance@11#. In the above-mentioned
MD simulations, the maintenance condition was actua
broken since we considered only a single rf cavity~and a
single coupling cavity! in a ring. Consequently, the ordere
structures would quickly melt away once the cooling for
was removed.

The concept of tapered cooling was first introduced a
possible way to achieve a final crystalline state where m
mentum (dp/p) is a function of the radial displacement~x!
@12,13#. Recently, systematic studies@14# concluded that ta-
pered cooling not only works at low temperature, but wor
at any finite temperature by effectively cooling both tran
verse ~betatron! and longitudinal phase space. In th
scheme, particles at different radial positions are cooled
wards different momenta. The change in momentum de
tion at the cooling device is expressed in the laborat
frame by

DS dp

p D52 f sF S dp

p D2gCxs

x

rm
G , ~1!
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whererm is the average radius of curvature in the bend
sections of the storage ring,g51/A12b2 is the Lorentz fac-
tor, f s is a positive constant corresponding to the cool
strength, and we callCxs the tapering factor@15#. While the
tapered force does not directly affect the vertical motion,
dissipative effect can readily be extended to this direction
introducing a linear coupling between the horizontal and v
tical degrees of freedom@8,9#, which is easily done by mean
of a skew quadrupole magnet in a ring.

Experimentally, we can realize tapered laser cooling
employing a special light whose photon frequency has a
ear dependence on the horizontal coordinate. Such a
could be obtained, for example, by means of a prism. Si
larly, we can generate the tapered electron cooling force
utilizing the dispersive effect from a bending magnet@16#.
As demonstrated below, the tapered cooling scheme ena
one to reach all kinds of crystalline structure if the ring la
tice satisfies the necessary conditions@11#.

In this paper, we give a theoretical description of t
physics of tapered cooling. First, we review the Hamilton
formalism for the study of space-charge-dominated beam
Sec. II. In Sec. III, the cooling rates are evaluated under
linear approximation, and the stability limit of a laser-cool
beam is discussed. We then show, in Sec. IV, how to o
mize the tapering factor to crystallize fast circulating beam
Finally, in Sec. V, the theoretical predictions are compa
with MD simulation results.

II. MEAN-FIELD HAMILTONIAN FORMALISM

Before proceeding to the details of the tapered cool
scheme, we first briefly outline a Hamiltonian formalism f
the study of cold beams. A general theory of space-cha
dominated beams is available in Ref.@17#.

The starting point is the variational principle

dE Ltdt50, ~2!

whereLt is the relativistic Lagrangian describing the motio
of a charged-particle beam. For later convenience, we cha
the independent variable from the timet to the reference path
length s, modifying Eq. ~2! to d*Lsds50 in terms of the
new Lagrangian

Ls52mcA~ct8!22u8•u81q~A•u82ft8!, ~3!

where q and m are, respectively, the charge state and r
mass of stored ions,c is the speed of light,u is the coordi-
nate vector in real space,f is the scalar potential of spac
charges satisfying Poisson’s equation,A5(Ax ,Ay ,As) in-
cludes the potential of the space-charge field as well as
of external magnetic fields, and the prime stands for diff
entiation with respect tos. Without loss of generality, we
consider only coasting beams for simplicity@18# and thus
neglect the longitudinal component of space-charge fo
~i.e., Ax505Ay!. The Hamiltonian can now be derived
from Ls , as
g
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H52S 11
x

r DAS pt1qf

c D 2

2m2c22px
22py

2

2qS 11
x

r DAs , ~4!

wherer is the curvature of the reference orbit and the lo
gitudinal canonical momentum conjugate tot has been intro-
duced aspt5]Ls /]t8. Expanding the square root and kee
ing the low order terms, we obtain

H'2S 11
x

r D S qAs1p2
px

21py
2

2p D , ~5!

wherep is the total kinetic momentum given byp5mbgc
5A(pt1qf)2/c22m2c2. Taking only bending and quadru
pole magnets into account@19#, Eq. ~5! becomes

H'2p0S 11
x

r D DE

b0
2E0

1
p0

2g0
2 S DE

b0
2E0

D 2

1
px

21py
2

2p0

1
p0

2
~Kxx

21Kyy
2!1

q

b0cg0
2 f, ~6!

where the quantities with the subscript 0 express the va
of the reference particle,Kx and Ky are the horizontal and
vertical focusing functions respectively, andDE5E2E0 is
the total energy difference from the design valueE0 . Using
the Suzuki’s generating function@20# and then adopting the
relative timet̃5t2s/b0c as the longitudinal coordinate,H is
transformed to

H̃5
1

2
~ p̃x

21Kxx̃
2!1

1

2
~ p̃y

21Kyỹ
2!

1
1

2 F 1

g0
2 1DxS q

p0b0cg0
2 Fsc2

1

r D G S DẼ

b0cD
2

1
q

p0b0cg0
2 S f̃2Fscx̃

DẼ

b0cD , ~7!

where the new canonical variables of the system
( x̃,p̃x ,ỹ,p̃y , t̃,DẼ), the functionf̃ is related to the original
Coulomb potential asf̃5f(x5 x̃2DxDẼ/b0c,y5 ỹ;s),
andFsc is thes-dependent periodic function associated w
the space-charge detuning to the horizontal dispersion fu
tion Dx @21#; namely,

Dx91KxDx5
1

r
1

q

p0b0cg0
2 Fsc. ~8!

It is evident from Eq.~7! that the longitudinal canonica
momentum is a constant of motion. We therefore writeDẼ
[W5const. In this caseFsc may generally involveW as a
parameter. The horizontal betatron equation derived fromH̃
suggests that it is beneficial to defineFsc as

W

b0c
Fsc5S ]f̃

] x̃ D
x̃505 ỹ

, ~9!
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such that the linear force terms balance along closed orbi
a ground state. For crystalline beams under a mean-field
proximation,Fsc is proportional toDx and independent ofW
as shown later, due to the linearity of the potentialf @see Eq.
~22!#.

III. COOLING RATES

In this section, we demonstrate that tapered cooling ef
tively reduces the temperature in both transverse and lo
tudinal directions. Cooling rates, operating points, and sta
ity limits are discussed at high temperature, neglect
intraparticle interaction.
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A. Evaluation of the linear cooling rates

In the high temperature regime, we can simplify t
Hamiltonian of Eq.~7! by neglecting the space-charge pote
tial. It is then possible to express the solution of the eq
tions of motion by a transfer matrixM (s1us0) for the canoni-
cal variables from positions0 to s1 , which are defined by

~ x̃,p̃x ,ỹ,p̃y , t̃,DẼ!~s1!5M ~s1us0!~ x̃,p̃x ,ỹ,p̃y , t̃,DẼ!~s0!.

For the section of the machine consisting of regular bend
dipoles and alternating-gradient~AG! focusing quadrupoles
the transfer matrix from the HamiltonianH̃ is written as@22#
MD51
cosmx

R sin mx

nx
0 0

2
nx sin mx

R
cosmx

0

cosmy
R sin my

ny
0

2
ny sin my

R
cosmy

0 0
1 2

2phR

~b0c!2

0 1

2 , ~10!
for a
c-

a

nal

ne-
where the horizontal and vertical betatron tunes are den
by nx andny , respectively,h is the phase slip factor,R is the
average ring radius,0 represents the 232 zero matrix,mx
52pnx , andmy52pny . The effect of tapered cooling ca
be expressed by a second transfer matrix just across the
ing device, obtained by linearizing Eq.~1!,

MTC

51
12g 0

0
0 ~g2 f s!

dc

b0c

0 1 0 0

0
1 0

0
0 1

0 0

0

1 0

2
gb0c

dc
0 0 12 f s1g

2 ,

~11!

wheredc is the magnitude of momentum dispersion in t
cooling section, andg is the dimensionless parameter defin
by g[g0f sCxsdc /rm . Specifically,dc must be finite to pro-
duce a horizontal dissipative force. The effect of the sk
ed

ol-

quadrupole magnet, needed to couple transverse motion
simultaneous cooling in both horizontal and vertical dire
tions, is

MQ51
I

0 0

0
2

Gq

R
0

0 0

I

0 0

2
Gq

R
0 0

dqGq

Rb0c

0
2

dqGq

Rb0c
0 I

0 0

2 , ~12!

wheredq is the dispersion size at the skew magnet,I denotes
the identity matrix, andGq is the coupling constant. For
quadrupole magnet having the axial lengthl q , Gq is defined
by Gq/R5l q/Br]B/]y, whereB is the magnetic field.

The linear cooling rates in the transverse and longitudi
directions are defined as the reduction per units of the rela-
tive transverse oscillation amplitude and momentumW. It
can be obtained by evaluating the eigenvalues of the o
tune transfer matrixM5MD•MQ•MTC . Substituting Eqs.
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~10!, ~11!, and ~12! into the characteristic equatio
uM2lI u50, we eventually find the dispersion relation

S l1
1

l
22 cosmyD

3H ~l211 f s2g!Fl1
12g

l
2~22g!cosmxG

2g~g2 f s!S 1

l
2cosmxD J

2GH F12S 12
dq

dc
DgGl211 f sJ

50, ~13!

where G[(2pGq)2 sinmx sinmy /mxmy . When writing l
5exp(im), the imaginary part ofm can be directly related to
the cooling rates. A larger Im(m) implies a higher cooling
rate while the beam becomes unstable if Im(m),0.

As an example, we choose among a wide range
choices, the beam and machine parameters of the sto
cooler ring TARN II listed in Table I@23#. In Fig. 1 we
display numerical solutions of Eq.~13! under a strong cool-
ing situation. We recognize that one of the three cool
rates becomes negative beyond a certainCxs; in other words,
too steep tapering causes beam heating. It can be shown
there always exists a threshold value ofCxs beyond which
the cooling process becomes unstable.

B. Operating point consideration and limiting tapering factor

For a more practically achievable cooling rate off s!1,
we can solve Eq.~13! analytically to discover scaling law
for the cooling rates and stability limits. When horizont
and vertical tunes are well separated, the cooling rates ca
obtained by using the perturbative method,

Im~m!'2GCxs

Im~m!! f s

Im~m!' f s24GCxs

~ for the horizontal motion!
~ for the vertical motion!

~ for the longitudinal motion!
~14!

TABLE I. TARN II machine and beam parameter used f
simulation.

Quantity Value

Ring circumference 77.7 m
Horizontal tunenx 1.68–2.1
Vertical tuneny 1.7–2.3
Transition energy 1.82–2.29
Skew quad integral strength

per lattice period
0.02 m21

Dipole bending radiusrm 4.01 m
Ion species 24Mg1

Kinetic energy 1 MeV
Relativistic factorg 1.000 044
Dispersion at cooling stationdc 3.4–5.0 m
Dispersion at skew quaddq 1.7–2.9 m
f
ge

g

hat

l
be

where G[g0dcf s/4rm , and we have assumed thatdc'dq
for simplicity. Interestingly, the cooling rates of all thre
directions depend linearly on the tapering factorCxs. As is
clearly seen from Fig. 2, these analytic formulas agree w
with the exact solutions evaluated from the dispersion re
tion.

In order to achieve strong simultaneous cooling in
three dimensions, the machine needs to operate near t

FIG. 1. Cooling rates vs tapering factorCxs in the case where
f s50.9. We have assumed a 1 MeV 24Mg1 beam stored in the
storage ring TARN II. The main TARN II parameters are summ
rized in Table I. Two different sets of betatron tunes have be
considered:~a! nx51.7 andny52.1 and~b! nx52.1 andny52.3.
For case~a!, dc55.004 m while, for case~b!, dc53.384 m.

FIG. 2. Cooling rates vs tapering factorCxs in the case where
f s50.1. All parameters except forf s are the same as those em
ployed in Fig. 1.
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PRE 58 3821THEORY OF TAPERED COOLING
verse coupling resonances where horizontal and ver
tunes are about equal,nx'ny @8#. Provided that both beta
tron tunes are identical@24#, we have, instead of Eq.~14!,

Im~m!'GCxs ~ for the transverse motions!,
~15!

Im~m!' f s24GCxs ~ for the longitudinal motion!,

where half of the horizontal cooling power has been given
the vertical direction. Equations~14! and ~15! both indicate
that the stable operating region is given by

Cxs,
rm

g0dc
, ~16!

which is independent of the cooling strengthf s . When the
betatron tunes are adjusted to (nx ,ny)5(1.7,2.1) in TARN
II, the dispersion in the cooling section becomes 5.004
which gives the limiting tapering factor of 0.801 accordin
to Eq. ~16!. In the case where (nx ,ny)5(2.1,2.3), we find
dc53.384 m and, then, the threshold value ofCxs is 1.185.
Obviously, these predictions are in good agreement ag
with the numerical results displayed in both figures.

IV. OPTIMIZATION OF THE TAPERING FACTOR

In this section, we determine the optimum tapering fac
both for achieving the maximum cooling rates at high te
perature and for achieving a crystalline structure at low te
perature. For tapered electron cooling, the tapering fa
may be controlled by varying the dispersion of the elect
beam. For tapered laser cooling, the tapering factor may
changed by effectively adjusting the diffraction index of t
prism.

A. Optimum tapering for cooling at high temperature

At high temperature, the optimum tapering factor for
multaneously achieving the maximum cooling rates in va
ous directions can be obtained, in an ideal resonant situa
from Eq. ~15! as Cxs5 f s/5G. Physically, cooling in the
transverse directions comes from the change of betatron
cillation amplitude upon the change of particle momentum
well as the particle closed orbit at the cooling location. Wh
the change of momentum varies linearly with the radial p
sition and thus depends on the betatron phase, the differ
in the amount of increase and decrease of the betatron
plitude at opposite betatron phase results in a net ampli
reduction@25#.

B. Optimum tapering for beam crystallization

As the beam approaches the ultracold state, the optim
tapering factor for crystallization is determined by requiri
all the particles to circulate with the same revolution fr
quency~or average angular velocity!. In order for a crystal-
line beam to maintain its ordered structure, a radially ou
particle has to traverse at an average velocity faster than
of an inner particle. Figure 3 shows the phase-space pr
of a typical 3D crystal. We clearly observe the linear dep
dence of the longitudinal momentum on the horizontal co
dinate. This observation also suggests that a too strongun-
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tapered cooling force may destroy multidimensiona
crystalline structures since it tries to equalize the longitudi
velocities of all particles.

It is straightforward to estimate the optimum value
Cxs. First, note that the revolution time of a test particle w
the velocitybc can be given by

T5
1

^b&c E
0

2pR

dsAS dx

dsD
2

1S 11
x

r D 2

, ~17!

where ^A& stands for taking the average of the quantityA
over one turn, and the particle is assumed to move on
horizontal plane. On the other hand, at the final equilibriu
state reached by the tapered cooling,D(dp/p) in Eq. ~1!
would vanish leading todp/p5gCxsx/rm , which is equiva-
lent to

b2b0

b0
'Cxs

x

g0rm
. ~18!

Requiring T to be equal to the design revolution tim
2pR/b0c, Eq. ~17! together with Eq.~18! yield

DL'
2pR

g0rm
^Cxsx&, ~19!

whereDL is the path-length difference defined by

DL5E
0

2pR

dsAS dx

dsD
2

1S 11
x

r D 2

22pR. ~20!

Recalling thatux/ru!1 and udx/dsu!1, the integral in Eq.
~20! takes a finite value, in the first-order approximatio
only within bending regions. Assuming thatx'^x& in dipole

FIG. 3. Real-space and phase-space configurations of a sin
shell crystalline beam. The lattice parameters of the storage
TARN II @23# have been considered in this molecular dynam
simulation. The stored ions are 1 MeV24Mg1, and the betatron
tunes have been adjusted tonx5ny51.7.
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3822 PRE 58HIROMI OKAMOTO AND JIE WEI
magnets of bending radiusrm , we obtain, from Eqs.~19!
and ~20!, the average optimum tapering factor

C̄xs[
^Cxsx&

^x&
'

g0rm

R
. ~21!

In order to determine more precisely the optimum taper
factor at the exact location of the cooling device, we need
consider thes dependence ofCxs. Of course, the exact valu
of the optimumCxs can be numerically evaluated from th
relation betweenx and dp/p in the ground-state crystallin
structure~Fig. 3! obtained by MD simulation. Alternatively
we present, in the following, its analytical expression ba
on a mean-field potential model.

We first investigate the theoretical basis as to how
revolution frequencies of all stored particles become ide
cal in a ground state. Noting that the physical-space den
of a crystalline beam is roughly uniform, the mean spa
charge potential is dominated by the linear force terms
other words, we may approximately retain only the quadra
terms in the potentialf. Assuming that the cross section
the beam is elliptical as (x/a)21(y/b)251, we can solve
Poisson’s equation to find

f52
qN

2p«0
F x2

a~a1b!
1

y2

b~a1b!G , ~22!

wherea andb ares-dependent functions that have the sa
periodicity of the lattice structure, andN is the number of
particles per unit length. To analytically determine the bea
size functions, we take the model

a91Kxa2
«x

2

a3 5
2Ksc

a1b
, b91Kyb2

«y
2

b3 5
2Ksc

b1a
, ~23!

where«x,y are related to the average beam dimensionssx,y

by «x,y5^sx,y
2 /jx,y&, with jx,y as the transverse amplitud

functions, andKsc[2Nrp /b0
2g0

3 with r p as the classical ra
dius of the particle. Notice that Eq.~23! is identical to the
envelope equation familiar in the standard theory for lin
transport systems@26#. We can prove that, in spite of th
existence of momentum dispersion due to bending fields,
dynamical system treated here is perfectly self-consisten
long as the beam possesses a uniform density profile in
space@27#. The validity of the present model will be checke
out in Sec. V by comparing the theoretical predictions w
MD simulation results@28#.

The use of Eq.~22! reduces the Hamiltonian in Eq.~7! to
the simple form

H̃5
1

2S 1

g0
22

Dx

r D W2

~b0c!2 1
p̃x

21 p̃y
2

2
1

1

2FKx2
2Ksc

a~a1b!G x̃2

1
1

2FKy2
2Ksc

b~a1b!G ỹ2, ~24!

where we have, from Eqs.~8! and ~9!,

Dx91FKx2
2Ksc

a~a1b!GDx5
1

r
, ~25!
g
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indicating that the momentum dispersionDx can be strongly
detuned by the space-charge force. The longitudinal can
cal equation of motion suggests that the usual definition
the phase slip factorh5asc21/g0

2 @22#, where the momen-
tum compaction factorasc5(2pR)21rds(Dx /r) is linearly
dependent on the dispersionDx , still applies to the case o
cold beams. As the beam approaches the ground stat
crystallization,asc changes considerably to naturally accom
plish the isochronous conditionh50 such that the revolu-
tion frequencies of all stored particles are identical.

Apparently, betatron motion has been completely s
pressed in ground states, which means that the coordinax̃
is very close to zero. Recalling thatx5 x̃2DxW/b0c, the
transverse trajectory mainly originates from the dispers
function, i.e.,x'2DxW/b0c. Substitution of this formula
into Eq. ~18! leads to (b2b0)c'2WCxsDx /g0rm . This
equation can be rewritten as

Cxs'
rm

g0Dx
. ~26!

Thus, to obtain the optimum tapering factor along the ref
ence orbit, we only need to insert the dispersion funct
Dx , solved from Eqs.~23! and ~25!, into Eq. ~26!.

We readily notice, from the isochronous condition, th
the average dispersion in a ground state is roughly equa
R/g0

2. Therefore, by taking the average of Eq.~26! over one
turn, we obtain̂ Cxs&'g0rm /R, which is consistent with Eq
~21!. Equation~26! also gives us a simple interpretation
the limiting tapering factor discussed in Sec. III B. For
initial hot beam, the dispersion in the cooling section isdc .
On the other hand, the tapered cooling force pushes
momentum particles onto particular closed orbits determi
by the space-charge-detuned dispersion functionDx in Eq.
~25!. To prevent an input beam from average moment
increase after the interaction with a tapered laser,dc must be
less than the ground-state value ofDx , i.e., Dx.dc in Eq.
~26!, which yields the same condition as Eq.~16!. Note that
this argument again does not depend on the cooling stre
f s . In fact, Fig. 1 illustrates that Eq.~16! holds even for a
large f s .

V. MOLECULAR DYNAMICS RESULTS

We have performed molecular dynamics studies of spa
charge-dominated and crystalline beams to confirm and g
eralize our findings presented in the earlier sections. In th
studies, we numerically iterate the equations of motion,
corporating the characteristics of actual storage rings
bending and straight sections, and AG focusing. An Ewa
type @29# summation is performed in the azimuthal directio
to evaluate the long-ranged Coulomb forces among parti
and their image charges modeled in periodic ‘‘supercel
for computing efficiency.

We again choose the TARN II parameters summarized
Table I as an example to provide specific numerical resu
The cooler ring ‘‘TARN II,’’ whose circumference is abou
77.7 m, has the superperiodicity of 6 and contains four be
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ing magnets in each lattice period. The orbit curvature in
bending regions is 4.01 m. Since the operating betatron
is usually set at around 2 or even less, this ring is cry
friendly @30#.

A typical Cxs dependence of final beam temperature@31#
in TARN II is displayed in Fig. 4. We observe a sharp dr
of temperature atCxs'0.267 where the beam has been fu
crystallized to a 3D structure. For the tapering stability lim
we notice that the beam would heat up whenCxs exceeds
around 0.9, in agreement with the mean-field prediction
Eq. ~16!, which gives a stability border of 0.98. For the o
timum tapering gradient, the estimate ofC̄xs'0.324 from
Eq. ~21!, corresponding to the averagedCxs over the ring, is
again in reasonable agreement with the MD result thatCxs
'0.267.

We further compare the optimum taperingCxs between
the MD results and the mean-field prediction, Eq.~26!,

FIG. 4. Typical dependence of the equilibrium beam tempe
ture on the tapering factor. The result was obtained with a M
code, assuming a 1 MeV24Mg1 beam stored in TARN II. The tota
number of the stored ions isNtot53.383106. Here,nx51.68 and
ny51.85, and we have installed two skew quadrupoles in each
tice period, whose integral strength per lattice period is 0.02 m21

corresponding to the coupling factorGq'0.247. The optimum ta-
pering factor found in this simulation is 0.267 at which the be
has been completely crystallized.
e
ne
al

,

f

studying thes dependence ofCxs along the ring circumfer-
ence. Figure 5 shows the results from the MD simulati
illustrating the longitudinal variation ofrm(dp/p)/gx of ten
arbitrarily picked particles within one lattice period. Apa
from small thermal noises, all particles have an identi
rm(dp/p)/gx, which represents the optimum tapering fa
tor. In this simulation, the cooling section is located at bo
ends of the picture, where the quantityrm(dp/p)/gx
50.267 is consistent with the optimumCxs.

The task now is to examine whether the mean-field the
can reproduce the same result as Fig. 5. For convenience
rewrite Eqs.~23! as

ã91Kxã2
ẽx

2

ã3
5

2

ã1b̃
, b̃91Kyb̃2

ẽy
2

b̃3
5

2

b̃1ã
, ~27!

where ã5a/AKsc, b̃5b/AKsc, ẽx5ex /Ksc, and ẽy
5ey /Ksc. Similarly, the parameterKsc is eliminated from
Eq. ~25! as

Dx91FKx2
2

ã~ ã1b̃!
GDx5

1

r
. ~28!

For the TARN II example considered in this section, we m
set ẽx'ẽy([ẽ) since the betatron tunes are close to ea

-

t-

FIG. 5. Variation of the functionrm(dp/p)/gx along the refer-
ence orbit.rm(dp/p)/gx of ten particles, calculated from a MD
result, have been plotted. We have taken into account the s
TARN II parameters as used in Fig. 4, and setCxs50.267.
d line
it,
FIG. 6. Theoretical predictions:~a! The solid line corresponds to the momentum dispersion in a ground state while the dotte
corresponds to that in the absence of space charge, i.e., the case ofKsc50; ~b! the optimum tapering factor along the reference orb
predicted by Eq.~26!.



nu

si
h
.
t
at

in
ow
n

bl
e
a

be

in
c

ne
d
iv

is
ed.

de-
on-
rse-

a
a

ted
as

tures
w,
are
de-
ame
rsion
yed
ny
nd
in

dy-

so
for
of
r
dy-

lu
3D
icl

s at

3824 PRE 58HIROMI OKAMOTO AND JIE WEI
other. To choose a proper value ofẽ in Eq. ~27!, the isoch-
ronous conditionh50 is employed. By numerically finding
periodic solutions to Eqs.~27! and ~28!, we conclude thatẽ
must be about 5.4 in the present case for the slip factorh to
be zero. The dispersion function obtained through this
merical procedure has been plotted in Fig. 6~a!. Obviously,
the effect of space-charge detuning on momentum disper
is significant for a beam at crystalline-state density. T
functionDx shown in Fig. 6~a! is further substituted into Eq
~26! to generate Fig. 6~b!, which is in excellent agreemen
with the MD results in Fig. 5. This inversely indicates th
the envelope model introduced in Eq.~23! is valid for our
discussion, and that the isochronous condition is certa
realized in the ground states. Furthermore, we have sh
that ground-state dispersion can uniquely be determined o
the lattice structure of a storage ring is fixed.

Finally, it is of practical interest to evaluate the accepta
range of error inCxs for achieving beam crystallization. Th
definition of the threshold temperature is, however, quite
bitrary because no sharp phase transition has so far
encountered in coasting beams@32#. Therefore, we simply
define here a crystal temperature of 0.02 K@33, Fig. 8#, be-
low which the beam is considered crystallized. Figure
shows the upper and lower limit of the acceptable taper
factor according to this definition. It is evident that the a
ceptable range becomes particularly large for o
dimensional~1D! crystals. We have further verified, base
on systematic MD simulations, that this range is insensit

FIG. 7. Acceptable range of tapering factor;Cxs
1 andCxs

2 repre-
sent, respectively, the upper and lower limit ofCxs required for
beam crystallization. The dot-dash line indicates the ideal va
predicted by the theory. Note that the transition from 1D to
crystalline structure takes place when the number of stored part
is around 1.23106 in the present example.
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-
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to the value off s when f s is greater than about 0.3, and
also insensitive to whether the beam is azimuthally bunch

VI. SUMMARY

To conclude, we have given a satisfactory theoretical
scription of the tapered beam cooling. It has been dem
strated that this cooling scheme provides both transve
longitudinal coupling essential for 3D beam cooling, and
promising method for achieving the crystalline beams in
storage ring. The linear cooling rates have been evalua
from a characteristic equation. A mean-field Hamiltonian h
also been established to understand some important fea
of crystalline beams. In particular, we have shown ho
when the necessary conditions for beam crystallization
satisfied, the revolution frequencies of all particles are
tuned by the space-charge force to converge on the s
value in a ground state. The space-charge-detuned dispe
function and the isochronous condition have been emplo
to predict the optimum value of the tapering factor at a
arbitrary location along the design orbit. It has been fou
that analytical predictions from the mean-field model are
excellent agreement with the results from the molecular
namics calculations.

ACKNOWLEDGMENTS

The authors would like to thank Dr. X.-P. Li for originally
developing the MD simulation program. They would al
like to express their sincere gratitude to Dr. A. M. Sessler
his stimulating suggestions in the course of this work. One
the authors~H.O.! is indebted to Professor S. Y. Lee fo
valuable discussions on space-charge-dominated beam
namics.

e

es

FIG. 8. Heating rate curves for bunched and coasting beam
different line densities.
i,

.

D.
@1# V. V. Parkhomchuk and N. S. Dikansky, Sov. J. Tech. Ph
50, 1411~1980!; E. E. Dement’ev, N. S. Dikansky, A. S. Med
venko, V. V. Parkhomchuk, and D. V. Pestrikov, Zh. Tek
Fiz. 50, 1717~1980!.

@2# A. Rahman and J. P. Schiffer, Phys. Rev. Lett.57, 1133
~1986!; R. W. Hasse and J. P. Schiffer, Ann. Phys.~NY! 203,
419 ~1990!; J. P. Schiffer, Phys. Rev. Lett.70, 818 ~1993!.

@3# J. Wei, X.-P. Li, and A. M. Sessler, Brookhaven Nation
. Laboratory Report No. BNL-52381, 1993; J. Wei, X.-P. L
and A. M. Sessler, Phys. Rev. Lett.73, 3089~1994!.

@4# D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc.20, 637
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@TBx ,TBy ,TBz#5
b0

2g0
2mc2

2kB
F~«rms!x

^bx&
,

~« rms!y

^by&
,

1

g0
2 S dp

p D
rms

2 G ,

wherekB is the Boltzmann constant, (« rms)x,y are the unnor-
malized root-mean-squared~rms! beam emittance, (dp/p)rms

is the rms momentum spread, and^bx,y& are the average beta
tron amplitude functions. However, when the beam is coo
longitudinally so thatdp/p and TBz both approach zero, the
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motion is coupled with thex motion through dispersion, and
that transverse temperature is still high.
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