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Theory of tapered cooling
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A theory of tapered cooling for fast circulating ion beams in a storage ring is constructed. We describe the
fundamentals of this cooling scheme, a scheme that effectively yields both transverse and longitudinal cooling
through radial-position-dependent longitudinal momentum cooling, emphasizing that it might be the most
promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating
condition. We discuss the physical implication of the tapering factor of the cooling force, and show how to
determine its optimum value. Molecular dynamics is employed to demonstrate the validity of the present
theory.[S1063-651X98)13009-X

PACS numbes): 41.75-i, 52.60:+h, 29.20.Dh, 61.50-f

I. INTRODUCTION simply too high for our final goal.
To overcome this difficulty, several methods applying ar-
The phase transition of fast ion beams in a storage rin;ﬁ%ﬁd&ﬂ dynamical coupling have been proposed. The simplest
has attracted a great deal of interest since Russian physicis$® laser cooling scheme is to use momentum dispersion at a
reported on a sudden jump of the Schottky signal detected iff9ular f cavity installed on a rinf8]. It has been shown
the NAP-M ring[1]. Discussions held on the interpretation oth analytically and numerically that one can enhance the

o . transverse cooling rates up to the same level as the longitu-
of the NAP-M results eventually mmated the comprehenswedinal rate. Introduction of a coupling cavity operating in the
study of the ultracold state of particle beams. These bea

- . ; M, mode is an alternative, mathematically equivalent
are ;ufflmently cold in the pearP rest f_rgme, so that partme%cheme[g]. We have verified that the coupling cavity im-
making up the beam “lock into” a position where the repel- o\es the transverse cooling efficiency even more. Accord-
ling Cqulomb force just balances the external focusing forcemg to the latest MD study10], the equilibrium transverse
Seen in the laboratory frame, the whole ordered structurgamperature achievable with these methods appears to be in
circulates at great speed. The concept of the crystallingne region of 0.01 K or less, far below the current achievable
beam, regarded as a new state of matter, has now opened tihge. In fact, we have successfully observed Coulomb or-
various future possibilities in fundamental and applied physdering in numerical simulations where only realistic longitu-
ics areas, including the study of completely space-chargedinal cooling devices are used. But, unfortunately, these
dominated beams, the study of Wigner crystal, the realizaschemes are limited to azimuthally bunched beams. Further-
tion of high-luminosity ion colliders, the application to more, in order to make the coupling effective, the machine
ultrahigh resolution nuclear experiments and to atomic physmust operate near a linear synchrobetatron resonance in ev-
ics research, etc. ery lattice period, which usually conflicts with the require-
The subject of beam crystallization was first studied usingnent for crystal maintenandd.1]. In the above-mentioned
the molecular dynamic@MD) approach by Schiffer and co- MD simulations, the maintenance condition was actually
workers[2]. In recent years, Wei, Li, and Sessler demon-broken since we considered only a single rf caviynd a
strated theoretically that beam crystallization is practicallysingle coupling cavityin a ring. Consequently, the ordered
achievable in a properly designed storage ring with a suffistructures would quickly melt away once the cooling force
ciently strong three-dimensionaBD) cooling force [3].  was removed.
However, in order to reach a crystalline ground state, we still The concept of tapered cooling was first introduced as a
need to develop cooling methods that are much more powpossible way to achieve a final crystalline state where mo-
erful than what has been conventionally used. mentum ©p/p) is a function of the radial displacemefx
Laser cooling[4], whose limiting temperature is of the [12,13. Recently, systematic studigs4] concluded that ta-
order of mK, is so far the most promising method to attainpered cooling not only works at low temperature, but works
crystalline beams. During recent years, extensive experimerat any finite temperature by effectively cooling both trans-
tal efforts have been made to achieve a longitudinal bearwerse (betatron and longitudinal phase space. In this
temperature in the mK ranggb,6]. However, since laser scheme, particles at different radial positions are cooled to-
cooling works on the Doppler principle, it does not producewards different momenta. The change in momentum devia-
direct transverse cooling. Although intrabeam Coulomb scattion at the cooling device is expressed in the laboratory
tering exchanges heat between transverse and longitudinttame by
directions, and the corresponding sympathetic cooling has s s
been reportefl7], the cooling process is too slow. The trans- A(_p) - _ fs[(_p
verse beam temperatures achieved in past experiments are p p
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wherep,, is the average radius of curvature in the bending X P+ Qo .
sections of the storage ring=1/\/1— 87 is the Lorentz fac- H=— ( 1+ ;) \/ c —mPc?—py— Py

tor, f5 is a positive constant corresponding to the cooling

strength, and we call, the tapering factor[15]. While the X

tapered force does not directly affect the vertical motion, the —q( 1+ P As, (4)

dissipative effect can readily be extended to this direction by

introducing a linear coupling between the horizontal and verwherep is the curvature of the reference orbit and the lon-
tical degrees of freedo8,9], which is easily done by means  gjtudinal canonical momentum conjugatettioas been intro-

of a skew quadrupole magnet in a ring. _ duced ap,=dL¢/at’. Expanding the square root and keep-
Experimentally, we can realize tapered laser cooling bying the low order terms, we obtain

employing a special light whose photon frequency has a lin-
ear dependence on the horizontal coordinate. Such a laser p§+ pf,
could be obtained, for example, by means of a prism. Simi- H~— T )
larly, we can generate the tapered electron cooling force by

utilizing the dispersive effect from a bending magfh#6]. wherep is the total kinetic momentum given gy=mgyc
As demonstrated below, the tapered cooling scheme enables, /(5 +q4)2/cZ— mZc2. Taking only bending and quadru-

one to _rez_alch all kinds of crystalli_n_e structure if the ring lat- pole magnets into accouft9], Eq. (5) becomes
tice satisfies the necessary conditi¢mg].

In this paper, we give a theoretical description of the
physics of tapered cooling. First, we review the Hamiltonian H~— po( 1+
formalism for the study of space-charge-dominated beams in
Sec. Il. In Sec. lll, the cooling rates are evaluated under the Po
linear approximation, and the stability limit of a laser-cooled + > (K, X2+ Kyyz) +
beam is discussed. We then show, in Sec. IV, how to opti-

mize the tapering factor to crystallize fast circulating beams, here the quantities with the subscript 0 express the values
Finally, in Sec. V, the theoretical predictions are comparedNf h f q ticle 4K P th hp ontal and
with MD simulation results. of the reference particlek, andK, are the horizontal an

vertical focusing functions respectively, abdE=E—E, is
the total energy difference from the design vake Using
1. MEAN-FIELD HAMILTONIAN FORMALISM the Suzuki’s generating functic[QO] and then adopting the

_ _ _ relative timet=t— s/ B,c as the longitudinal coordinatkl, is
Before proceeding to the details of the tapered coolingransformed to

scheme, we first briefly outline a Hamiltonian formalism for

the study of cold beams. A general theory of space-charge- ~ 1 _, -~ 1 ~5

dominated beams is available in REE7]. H=35 (Pt KX+ 5 (py+Kyy*)
The starting point is the variational principle

X
1+; qu+p_ (5)

X
p

AE . Po ( AE >2+ p>2<+p§
B3Eo 275 \ BoEo 2po
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2 ;g X PoBoCYo ¢ p)|\Boc
5 f Ldt=0, @) .
: (&F“Aﬂ @)
PoBoCYh o BoC)’

wherelL, is the relativistic Lagrangian describing the motion

of a charged-particle beam. For later convenience, we changehere the new canonical variables of the system are

the independent variable from the timt® the reference path (X, Py S/,E)y ff,ATE), the function:ﬁ is related to the original

length s, mod.ifying Eq.(2) to 6fLds=0 in terms of the  coulomb potential as?ﬁ=¢(x=7<—DXAE/,Boc,y=’§/;s),

new Lagrangian andF. is thes-dependent periodic function associated with
the space-charge detuning to the horizontal dispersion func-

L= —mey(ct)2—u'-u +q(A-u'— ¢t'), &) tion D, [21]; namely,

" 1 q
Dy+ KDy +

—— Fq.. (8)
PoBoCYo 5

where g and m are, respectively, the charge state and rest
mass of stored iong; is the speed of lighty is the coordi-
nate vector in real space is the scalar potential of space It is evident from Eq.(7) that the longitudinal canonical
charges satisfying Poisson’s equatidhs=(Ay,Ay,As) iINn-  momentum is a constant of motion. We therefore wiite
cludes the potential of the space-charge field as well as that\y=const. In this cas€& .. may generally involveN as a
of external magnetic fields, and the prime stands for differ'parameter. The horizontal betatron equation derived from
entiation with respect t®. Without loss of generality, we suggests that it is beneficial to defifig, as

consider only coasting beams for simplicit¥8] and thus ¢
neglect the longitudinal component of space-charge force W (9;‘5
(i.e., Ac=0=A,). The Hamiltonian can now be derived, — SC=(—>
from Lg, as BoC %=0

X L ©)
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such that the linear force terms balance along closed orbits in A. Evaluation of the linear cooling rates
a ground state. For crystalline beams under a mean-field ap-
proximation,F.is proportional toD, and independent oV
as shown later, due to the linearity of the potenitdsee Eq.

(22)].

In the high temperature regime, we can simplify the
Hamiltonian of Eq(7) by neglecting the space-charge poten-
tial. It is then possible to express the solution of the equa-
tions of motion by a transfer matriM (s;|sy) for the canoni-

cal variables from positios, to s;, which are defined by
Ill. COOLING RATES

In this section, we demonstrate that tapered cooling effec- (X1 Px:Y:Py LAE)(S1) = M (s1]80) (X, Px. Y. Py ,t,AE)(Sp).
tively reduces the temperature in both transverse and longi-

tudinal directions. Cooling rates, operating points, and stabilFor the section of the machine consisting of regular bending
ity limits are discussed at high temperature, neglectinglipoles and alternating-gradie(G) focusing quadrupoles,

intraparticle interaction. the transfer matrix from the Hamiltoniat is written aq22]
R sin
COS fy V—’ux
_ § 0 0
vy SIN u
_ % COS fiy
R sin
COS uy =y
Mo = 0 vy o | (10
vy sin u,
S COS uy
1 277R
0 0 (BoC)
0 1

where the horizontal and vertical betatron tunes are denotegliadrupole magnet, needed to couple transverse motion for a
by v, andv,, respectively is the phase slip factoRis the ~ simultaneous cooling in both horizontal and vertical direc-
average ring radiud) represents the 22 zero matrix,uy tions, is
=2mvy, anduy,=2mv,. The effect of tapered cooling can

be expressed by a second transfer matrix just across the cool-

ing device, obtained by linearizing E¢{L), 0 0
[ Iy 0
-— 0
M R
T 0 0 0o o0
d
1— 0 0 ey Yo M= r I d,l'q |, (12
9 0 (919 2 ¢ Tl -2 o o 21
R RB.C
0 1 0 0
Lo _ 9l |
- 0 0 0 RBoC
01 0 0
0 0 1 0
c 0 ' ' ion si
_ 9bo 0 0 1-f4g whered, is the dispersion size at the skew maghetenotes

the identity matrix, and’ is the coupling constant. For a
quadrupole magnet having the axial length, I’y is defined
(1) by I'y/R=/4/BpiBl/dy, whereB is the magnetic field.

The linear cooling rates in the transverse and longitudinal
whered. is the magnitude of momentum dispersion in thedirections are defined as the reduction per sraf the rela-
cooling section, and is the dimensionless parameter definedtive transverse oscillation amplitude and momentin It
by g=y,fCxd:/pm. Specifically,d. must be finite to pro- can be obtained by evaluating the eigenvalues of the one-
duce a horizontal dissipative force. The effect of the skewtune transfer matrixM =Mp-Mq-Myc. Substituting Egs.
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TABLE I. TARN Il machine and beam parameter used for

simulation.

Quantity Value
Ring circumference 77.7m
Horizontal tunev, 1.68-2.1
Vertical tunew, 1.7-2.3
Transition energy 1.82-2.29
Skew quad integral strength 0.02m?

per lattice period
Dipole bending radiugp,, 401 m
lon species 2Mg*
Kinetic energy 1 MeV
Relativistic factory 1.000 044
Dispersion at cooling statiod, 3.4-5.0m
Dispersion at skew quad, 1.7-29m

(109, (11, and (12

into the characteristic equation

M —\1|=0, we eventually find the dispersion relation

1
At X_Z cos,uy)

X

(A—1+fs—0)
1
_g(g_fs)(x_ COSMX)]

oo

=0,

1-9
N+ T—(Z—g)cos,uX

13

where rz(zqu)Z SiN uy Sin uy /pgsy . When  writing A
=exp(w), the imaginary part of. can be directly related to
the cooling rates. A larger Imd) implies a higher cooling
rate while the beam becomes unstable if i¢0.

As an example, we choose among a wide range of
choices, the beam and machine parameters of the storage

cooler ring TARN Il listed in Table I[23]. In Fig. 1 we
display numerical solutions of E13) under a strong cool-

ing situation. We recognize that one of the three cooling

rates becomes negative beyond a cer@j in other words,
too steep tapering causes beam heating. It can be shown that 00 02 04 06 08 10 12 14 16
there always exists a threshold value @f; beyond which

the cooling process becomes unstable.

B. Operating point consideration and limiting tapering factor

For a more practically achievable cooling ratefgf1,
we can solve Eq(13) analytically to discover scaling laws
for the cooling rates and stability limits. When horizontal

and vertical tunes are well separated, the cooling rates can be -0.02

obtained by using the perturbative method,

Im(u)~2GCys
Im(p)<fs
Im(u)~fs—4GCys

(for the horizontal motion
(for the vertical motion
(for the longitudinal motioh

14
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FIG. 1. Cooling rates vs tapering fact@ in the case where
fs=0.9. We have assurdea 1 MeV ?*Mg* beam stored in the
storage ring TARN Il. The main TARN Il parameters are summa-
rized in Table I. Two different sets of betatron tunes have been
considered(a) v,=1.7 andv,=2.1 and(b) »,=2.1 andr,=2.3.

For casg@), d.=5.004 m while, for caséb), d.=3.384 m.

where G= yd.fs/4py,, and we have assumed thdg~d,
for simplicity. Interestingly, the cooling rates of all three
directions depend linearly on the tapering faod®g. As is
clearly seen from Fig. 2, these analytic formulas agree well
with the exact solutions evaluated from the dispersion rela-
tion.

In order to achieve strong simultaneous cooling in all
three dimensions, the machine needs to operate near trans-

0.10
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T T T T T T T 1

Tapering factor Cy,
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008 (b) [, v=C )
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0.04 —+

Im()

0.02 —~

0.00

00 02 04 06 08 10 12 14 16
Tapering factor C,,

FIG. 2. Cooling rates vs tapering fact@g in the case where
fs=0.1. All parameters except fdr; are the same as those em-
ployed in Fig. 1.
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verse coupling resonances where horizontal and vertical

tunes are about equat,~ v, [8]. Provided that both beta- T 154 ® ®
tron tunes are identicdR4], we have, instead of Eq14), g 10
£ 05
Im(u)~GC for the transverse motio E
(m) s ( ns (15) -g 00 4g % e
Im(u)~fs—4GCys (for the longitudinal motioh, 3 fz_
£ 10
o
where half of the horizontal cooling power has been given to > 15 ® | Ld
the vertical direction. Equationd.4) and (15) both indicate 2 o 2
that the stable operating region is given by - Horizontal coordinate (scaled)
% 1.0 o
C < tm (16) . P
m 5
x® Yodc %
. . . £ o0 ®
which is independent of the cooling strendth When the g
betatron tunes are adjusted te, (»,)=(1.7,2.1) in TARN ,g 05 - &
I, the dispersion in the cooling section becomes 5.004 m, 2
which gives the limiting tapering factor of 0.801 according E 1.0 "o : | :

to Eq. (16). In the case whereif,»,)=(2.1,2.3), we find 2 0 2
d.=3.384 m and, then, the threshold value@f; is 1.185. Horizontal coordinate (scaled)
Obviously, these predictions are in good agreement again

with the numerical results displayed in both figures. FIG. 3. Real-space and phase-space configurations of a single-

shell crystalline beam. The lattice parameters of the storage ring
TARN Il [23] have been considered in this molecular dynamics
IV. OPTIMIZATION OF THE TAPERING FACTOR simulation. The stored ions are 1 Me¥Mg™*, and the betatron

. . . . . tunes have been adjusted i =1.7.
In this section, we determine the optimum tapering factor - v i =y

both for achieving the maximum cooling rates at high tem-

df hievi li I apered cooling force may destroy multidimensional
perature and for achieving a crystalline structure at low M yqiailine structures since it tries to equalize the longitudinal
perature. For tapered electron cooling, the tapering factofqj.ities of all particles

may be controlled by varying the dispersion of the electron It is straightforward to estimate the optimum value of

beam. For tapereq laser (.:oolling, the t_apering factor may béxs. First, note that the revolution time of a test particle with
changed by effectively adjusting the diffraction index of thethe velocity B¢ can be given by
prism.

2

: (17

2 X
+l1+ =
p

1 27R dx
A. Optimum tapering for cooling at high temperature T= (B)c fo ds\/(d_S

At high temperature, the optimum tapering factor for si- )
multaneously achieving the maximum cooling rates in vari-Where (A) stands for taking the average of the quantty
ous directions can be obtained, in an ideal resonant situatio@Ve" one tumn, and the particle is assumed to move on the
from Eq. (15) as C,=fJ/5G. Physically, cooling in the horizontal plane. On the other hand_, at the fmal equilibrium
transverse directions comes from the change of betatron o§tate reached by the tapered coolidd,5p/p) in Eq. (1)
cillation amplitude upon the change of particle momentum agvould vanish leading t@p/p= yCy/pm, Which is equiva-
well as the particle closed orbit at the cooling location. Wherf€nt to
the change of momentum varies linearly with the radial po-

sition and thus depends on the betatron phase, the difference B~ Po ~Cys X ) (18)
in the amount of increase and decrease of the betatron am- Bo YoPm
félét(i(taioar:[gg]posne betatron phase results in a net amIOIItUdI?Eequiring T to be equal to the design revolution time
' 27R/Byc, Eq. (17) together with Eq(18) yield
B. Optimum tapering for beam crystallization 27R
. AL~ (CyeX), (19
As the beam approaches the ultracold state, the optimum YoPm
tapering factor for crystallization is determined by requiring
all the particles to circulate with the same revolution fre-whereAL is the path-length difference defined by
guency(or average angular velocityln order for a crystal- . >
line beam to maintain its ordered structure, a radially outer AL= jzﬂRd \/ d_X X\°
. ; = s +| 1+ 27R. (20
particle has to traverse at an average velocity faster than that 0 d p

of an inner particle. Figure 3 shows the phase-space profile

of a typical 3D crystal. We clearly observe the linear depenRecalling that{x/p|<1 and|dx/ds|<1, the integral in Eq.
dence of the longitudinal momentum on the horizontal coor{20) takes a finite value, in the first-order approximation,
dinate. This observation also suggests that a too stnamg, only within bending regions. Assuming thet (x) in dipole
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magnets of bending radiys,,, we obtain, from Eqs(19) indicating that the momentum dispersibry can be strongly

and(20), the average optimum tapering factor detuned by the space-charge force. The longitudinal canoni-

cal equation of motion suggests that the usual definition of

the phase slip factop= a.— 1/v; [22], where the momen-

tum compaction factorg.= (27R) ~1$ds(D,/p) is linearly

dependent on the dispersi@n,, still applies to the case of

In order to determine more precisely the optimum taperingcold beams. As the beam approaches the ground state of

factor at the exact location of the cooling device, we need t@rystallization,as. changes considerably to naturally accom-

consider thes dependence oE,s. Of course, the exact value plish the isochronous condition=0 such that the revolu-

of the optimumC,, can be numerically evaluated from the tion frequencies of all stored particles are identical.

relation betweerx and Sp/p in the ground-state crystalline Apparently, betatron motion has been completely sup-

structure(Fig. 3) obtained by MD simulation. Alternatively, pressed in ground states, which means that the coordinate

we present, in the following, its analytical expression baseds very close to zero. Recalling that=X—D,W/B,c, the

on a mean-field potential model. transverse trajectory mainly originates from the dispersion
We first investigate the theoretical basis as to how thdunction, i.e.,x~—D,W/Byc. Substitution of this formula

revolution frequencies of all stored particles become identiinto Eq. (18) leads to 83— Bg)c~—WC,D,/yopm. This

cal in a ground state. Noting that the physical-space densitgquation can be rewritten as

of a crystalline beam is roughly uniform, the mean space-

charge potential is dominated by the linear force terms. In

other words, we may approximately retain only the quadratic Pm

terms in the potentiap. Assuming that the cross section of Cxs™ 70_D'

. . . 2 2_ X
the beam is elliptical asx{a)-+(y/b) =1, we can solve
Poisson’s equation to find

(CyeX) - YoPm
(x) R

Cu= (21)

(26)

Thus, to obtain the optimum tapering factor along the refer-
22) ence orbit, we only need to insert the dispersion function
D,, solved from Egs(23) and(25), into Eq.(26).

We readily notice, from the isochronous condition, that
wherea andb are s-dependent functions that have the samethe average dispersion in a ground state is roughly equal to
periodicity of the lattice structure, anld is the number of R/yg. Therefore, by taking the average of E86) over one
particles per unit length. To analytically determine the beamtyrn, we obtain C,o)~ yopm/R, Which is consistent with Eq.
size functions, we take the model (21). Equation(26) also gives us a simple interpretation of
the limiting tapering factor discussed in Sec. Ill B. For an
initial hot beam, the dispersion in the cooling sectiomlis
On the other hand, the tapered cooling force pushes off-
momentum particles onto particular closed orbits determined
wheree, , are related to the average beam dimensieps by the space—charge—_detuned dispersion funciignin Eq.
by 8ny:<g)2<vy/gxyy>, with £, , as the transverse amplitude (25). To prevent an mpu_t beam from average momentum
functions, andK =2N fp/ﬂéyg with r, as the classical ra- increase after the interaction with a tapered Iadgmust be
dius of the particle. Notice that Eq23) is identical to the |€sS than the ground-state value[df, i.e., D,>d. in Eq.
envelope equation familiar in the standard theory for lineal(26), which yields the same condition as Ed6). Note that
transport systemf26]. We can prove that, in spite of the this argument again does not depend on the cooling strength
existence of momentum dispersion due to bending fields, thés- In fact, Fig. 1 illustrates that Eq16) holds even for a
dynamical system treated here is perfectly self-consistent dargefs.
long as the beam possesses a uniform density profile in real
spacg27]. The validity of the present model will be checked
out in Sec. V by comparing the theoretical predictions with V. MOLECULAR DYNAMICS RESULTS
MD simulation result§28].

The use of Eq(22) reduces the Hamiltonian in EG?) to
the simple form

2 2

~ON X y
¢= " Jmeq |a(atb) T blath)

2

ey 2K

a"+K,a— 3= ,
**a® a+b

]

2
2K

” y Sc
b +Kyb— F_

b+a

(23

We have performed molecular dynamics studies of space-
charge-dominated and crystalline beams to confirm and gen-
eralize our findings presented in the earlier sections. In these
studies, we numerically iterate the equations of motion, in-

2 =2, =2
ﬁzl _12_ &) lz*‘ Px* Py +£[KX— &ﬁ corporating the characteristics of actual storage rings like
2\ys p | (BoC) 2 2 a(a+b) bending and straight sections, and AG focusing. An Ewald-
type[29] summation is performed in the azimuthal direction
1 2Kge o .
o Ky — —=[y2, (24 1o evaluate the long-ranged Coulomb forces among particles
2|7 b(at+b) and their image charges modeled in periodic “supercells”

for computing efficiency.
where we have, from Eqs8) and(9), We again choose the TARN Il parameters summarized in
Table | as an example to provide specific numerical results.
The cooler ring “TARN II,” whose circumference is about
77.7 m, has the superperiodicity of 6 and contains four bend-

" KSC
Dyt K™ atarb)

X

Kx

1
Dy=—, (25
p
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FIG. 5. Variation of the functiom,,(dp/p)/yx along the refer-
0.2 T°-4, ; O'SC 08 ence orbit.p,(Sp/p)/yx of ten particles, calculated from a MD
apering factor €. result, have been plotted. We have taken into account the same

. . TARN Il parameters as used in Fig. 4, and €gt=0.267.
FIG. 4. Typical dependence of the equilibrium beam tempera-

ture on the tapering factor. The result was obtained with a MD

: 2400+ :
code, assumga 1 MeV™Mg " beam stored in TARN II. The total - o0 Figure 5 shows the results from the MD simulation,

number of the stored ions N,,=3.38x1C°. Here,»,=1.68 and . . o L
v,=1.85, and we have installed two skew quadrupoles in each ipdliustrating the longitudinal variation gbn(5p/p)/yx of ten

tice period, whose integral strength per lattice period is 0.02 m ?rbltrarlly I?';l](ed p?rtlc_les W'trlllm or:gllattlrc]:e perlod..dAp’?rtl
corresponding to the coupling factbr,~0.247. The optimum ta- rom sma ermal noises, all particles have an idaentica

pering factor found in this simulation is 0.267 at which the beampm(ép/p)_ly)?’ Whi(_:h represent_s the OPtim_“m tapering fac-
has been completely crystallized. tor. In this simulation, the cooling section is located at both

ends of the picture, where the quantity,(sp/p)/yx
. . . . . . =0.267 is consistent with the optimu@s.
ing magnets in each lattice period. The orbit curvature in the 116 task now is to examine whether the mean-field theory

bending regions is 4.01 m. Since the operating betatron tung;, reproduce the same result as Fig. 5. For convenience, we
is usually set at around 2 or even less, this ring is crystalerite Eqs.(23) as

studying thes dependence o€, along the ring circumfer-

friendly [30].

A typical C,, dependence of final beam temperat[8#] 22 2 5 .2 9
in TARN Il is displayed in Fig. 4. We observe a sharp drop3a”+K,a— 2= b+ Kyb— = (27)
of temperature a€,.~0.267 where the beam has been fully a® a+b b® b+a

crystallized to a 3D structure. For the tapering stability limit, _ ~ _ _
we notice that the beam would heat up whep, exceeds Where @=a/\VKs, b=b/\Ks, &=6/Ks, and %,
around 0.9, in agreement with the mean-field prediction of= €,/Ks.. Similarly, the parameteKs is eliminated from
Eq. (16), which gives a stability border of 0.98. For the op- EQ. (25) as
timum tapering gradient, the estimate Gfs~0.324 from
Eq. (21), corresponding to the averag€q over the ring, is D"+ | K
again in reasonable agreement with the MD result gt X
~0.267.

We further compare the optimum taperifys between For the TARN Il example considered in this section, we may
the MD results and the mean-field prediction, Hg6), set’e,~€, (=€) since the betatron tunes are close to each

2
A(a+Db)

Dy=-—. (28

20 — 0.40 —
. . W b
E (a)  Ground-state dispersion 8* 038 (b)
=)
§ 15+ o 0.36
g g 0.34 —
& g
B 10 £ 0.32
g —
g K= E 0.30
g 5 . P D 0.28
g TN e g
s £ 0.26
0 T T T T T T 024 T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Longitudinal coordinate [m] Longitudinal coordinate [m]

FIG. 6. Theoretical predictionga) The solid line corresponds to the momentum dispersion in a ground state while the dotted line
corresponds to that in the absence of space charge, i.e., the clse=df; (b) the optimum tapering factor along the reference orbit,
predicted by Eq(26).
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FIG. 8. Heating rate curves for bunched and coasting beams at

FIG. 7. Acceptable range of tapering fact@;, and C. repre- different line densities.

sent, respectively, the upper and lower limit Gfs required for
beam crystallization. The dot-dash line indicates the ideal valug¢o the value off; whenf is greater than about 0.3, and is

predicted by the theory. Note that the transition from 1D to 3Dalso insensitive to whether the beam is azimuthally bunched.
crystalline structure takes place when the number of stored particles
is around 1.X 1P in the present example. VI. SUMMARY

To conclude, we have given a satisfactory theoretical de-
scription of the tapered beam cooling. It has been demon-

ronous condition=0 is employed. By numerically finding . ; )
oo ! ~ strated that this cooling scheme provides both transverse-
periodic solutions to Eq427) and (28), we conclude that longitudinal coupling essential for 3D beam cooling, and a

must be about 5.4 in the present case for the slip fagtiar . hod f hieving th lline b _
be zero. The dispersion function obtained through this nuPromising me'E”? I_or ac |ev||_ng the cr;r/]sta 'T)e eamsl In ad
merical procedure has been plotted in Figg)6Obviously, storage ring. The finear cooling rates have been evaluate

) . . from a characteristic equation. A mean-field Hamiltonian has
the effect of space-charge detuning on momentum dispersi

o . \
is significant for a beam at crystalline-state density. Thear\]so been established to understand some important features

. L . ; . of crystalline beams. In particular, we have shown how,
function D, shown in Fig. 6a) s fgrther substituted into Eq. when the necessary conditions for beam crystallization are
(26) to generate Fig. ®), which is in excellent agreement

: N . S satisfied, the revolution frequencies of all particles are de-
with the MD results in Fig. 5. This inversely indicates that ’
the envelope model introduced in E@3) is valid for our tuned by the space-charge force to converge on the same

discussion, and that the isochronous condition is certainlValue In a ground state. The space-charge-detuned dispersion

realized in the ground states. Furthermore, we have shovsfr%JnCtion and the isochronous condition have been employed
grot ; : . ' ; to predict the optimum value of the tapering factor at any
that ground-state dispersion can uniquely be determined once, . . : :
: LA arbitrary location along the design orbit. It has been found

the lattice structure of a storage ring is fixed.

Finally, it is of practical interest to evaluate the acceptablethat analytical predictions from the mean-field model are in

range of erTor IrC, for achieving beam crystallization. The excellent agreement with the results from the molecular dy-

o : . nami Iculations.
definition of the threshold temperature is, however, quite ar- amics calculations

bitrary because no sharp phase transition has so far been
encountered in coasting bearf®2]. Therefore, we simply
define here a crystal temperature of 0.0238, Fig. §, be- The authors would like to thank Dr. X.-P. Li for originally
low which the beam is considered crystallized. Figure 7developing the MD simulation program. They would also
shows the upper and lower limit of the acceptable taperindike to express their sincere gratitude to Dr. A. M. Sessler for
factor according to this definition. It is evident that the ac-his stimulating suggestions in the course of this work. One of
ceptable range becomes particularly large for onethe authors(H.O) is indebted to Professor S. Y. Lee for
dimensional(1D) crystals. We have further verified, based valuable discussions on space-charge-dominated beam dy-
on systematic MD simulations, that this range is insensitivenamics.

other. To choose a proper value'®in Eqg. (27), the isoch-
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