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Feasibility of beam crystallization in a cooler storage ring
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It has been known theoretically that a charged-particle beam circulating in a storage ring exhibits an
“ordered” configuration at the space-charge limit. Such an ultimate state of matter is called a crystalline
beam whose emittance is ideally equal to zero except for quantum noise. This paper discusses how close
one can come to various ordered states by employing currently available accelerator technologies. The
dynamic nature of ultracold beams and conditions required for crystallization are briefly reviewed.
Molecular dynamics simulations are performed to study the feasibility of this unique phenomenon,
considering practical situations in general cooling experiments. It is pointed out that several essential
obstacles must be overcome to reach a three-dimensional crystalline state in a storage ring. Doppler laser
cooling of ion beams is also numerically simulated to explore the possibility of beam crystallization in an

existing machine.
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L. INTRODUCTION

Suppose a dynamical system consisting of many identi-
cal particles of mass m. The average kinetic energy is given
by W = ((p3) + (p3) + (p%))/2m where p = (p,, p,, p.)
is the momentum of a particle, and (X) stands for taking the
average of the quantity X over the whole phase space. W
divided by the Boltzmann constant kp is often referred to as
the temperature of the system while, more correctly, the
energy of “random” motion should be averaged to evalu-
ate the thermodynamic temperature 7. Specifically, W and
kgT are almost equal in a hot system. When the center of
mass is moving at a certain speed, we define T in the rest
frame, subtracting the contribution from the centroid and
ordered motions, so only random motion contributes. Even
after such subtraction, we find that the temperature of a
charged-particle beam propagating in a typical accelerator
is still quite high due to the betatron and synchrotron
oscillations driven by external electromagnetic forces;
seen from the rest frame of the beam, individual particles
randomly oscillate about the reference orbit at high speed,
which means that most beams naturally have rather large
energy spread in all 3 degrees of freedom and thus W =
kgT. This internal thermal energy can, however, be re-
moved by introducing dissipative interactions into the
system. As a dissipative process advances, the beam be-
comes denser in phase space or, in other words, the emit-
tance is more diminished. Ideally, we can reach a “zero-
emittance’” state where the beam is Coulomb crystallized
[1]. The space-charge repulsion of a crystalline beam just
balances the external restoring force provided by electro-
magnetic elements such as quadrupole magnets and radio-
frequency (rf) cavities.
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When the beam focusing force is uniform along the
reference orbit, it is possible to realize a completely ““fro-
zen” state in which W = 0. All particles are then fixed at
specific coordinates and never move in the rest frame.
Schiffer and co-workers numerically studied such an ideal
system, employing the molecular dynamics (MD) ap-
proach [2,3]. Particles forming a frozen beam are spatially
ordered so as to achieve a perfect balance between the
internal Coulomb repulsion and the beam focusing force. A
question is whether an analogous crystallized state can be
established in an actual accelerator where the beam is
exposed to nonuniform focusing forces. This important
subject was examined by Wei, Li, and Sessler who incor-
porated complex lattice structures into MD simulations [4].
They showed that it is still possible to form various ordered
configuration, although W is now nonzero (unlike uniform
focusing situations). As we can readily understand, any
beam must execute a breathing motion owing to the dis-
crete nature of a modern strong focusing lattice [5]. It is
thus only approximately feasible to produce a frozen beam
in reality.

In this paper, we explore whether beam crystallization is
practically achievable in a storage ring with the help of
realistic cooling methods. For the sake of completeness, we
devote Sec. II to reviewing the dynamics of coasting
crystalline beams. Current understandings are described
regarding the threshold densities of structural transitions,
lattice conditions required for beam stability, and single-
particle orbits in a crystalline state. We then outline, in
Sec. III, some essential obstacles toward beam crystalliza-
tion and present related MD results that verify theoretical
expectations. Emphasis is placed upon the effects of mo-
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mentum dispersion and asymmetric perturbations, both of
which can seriously affect the stability of ordered struc-
tures. Advanced MD simulations of laser cooling are per-
formed in Sec. IV to check if a phase transition to a
crystalline state can be accomplished in practice. Finally,
the present results are summarized in Sec. V.

II. CRYSTALLINE BEAMS
A. Transition density

The phase transition of a classical one-component
plasma is often defined with the Coulomb coupling pa-
rameter I', [6]. 'y is given by the ratio of the average
Coulomb energy to the average kinetic energy; namely,
I, = (4 /4meyd)/ kg T where q is the charge state of the
particle and 2d is the average interparticle spacing. It is
commonly said that a transition to a Wigner crystalline
state takes place when I', goes beyond 170 [6]. A similar
definition applies to beam crystallization as long as T is
properly evaluated. Since the external beam confinement
force varies periodically, we must carefully exclude the
kinetic energy of the ordered oscillation from kg7

Hasse and Schiffer have theoretically investigated the
structural transition of infinitely long Coulomb crystals,
assuming the time-independent linear potential for particle
confinement [7]. According to their analysis, the spatial
configuration of a crystal can be determined by the dimen-
sionless parameter

{ = Nays, (D

where N is the number of particles per unit length mea-
sured in the rest frame, and awyg is the Wigner-Seitz radius
expressed as aws = (3a3/4N)'/> when the transverse ex-
tent of the crystal is ay. In Fig. 1, we display typical
crystalline configurations obtained from MD simulations
where the lattice of the small laser-equipped storage ring
(S-LSR) at Kyoto University [8] has been adopted for our
numerical work. An ideal three-dimensional (3D) cooling
force has been employed in these simulations to achieve
complete ordering. Table I lists the structural transition
densities predicted in Ref. [7]. Since this theoretical pre-
diction is based on the harmonic potential model, it only
approximately explains the actual transition of coasting
crystalline structures exposed to a strong focusing force.
Once a longitudinal focusing field is switched on, the
ordered configuration depends also on how strongly the
beam is compressed in that direction. Even if the total
number of stored particles in a ring is unchanged, we can
alter the crystalline structure by either strengthening or
weakening the bunching force.

B. Required lattice condition

The lattice of a storage ring aiming at beam crystalliza-
tion must satisfy a couple of conditions [4,9]. First of all, in
order to form an ordered structure, the ring has to operate
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FIG. 1. Real-space configurations of typical coasting crystal-

line beams. The horizontal and vertical bare betatron phase
advances per lattice period have been both set at 86.6 degrees
in all three examples. Each dot ( e ) in the pictures corresponds
to a single >*Mg™ ion circulating in S-LSR at the kinetic energy
of 35 keV. The symbols (x,y, z) represent, respectively, the
horizontal, vertical, and longitudinal spatial coordinates in the
beam rest frame. At very low line density, a one-dimensional
(1D) string crystalline structure is formed (upper panel). By
increasing N, we can transform a string into a two-dimensional
(2D) zigzag crystal (middle panel) and, then, eventually attain a
3D shell crystal (lower panel). These ordered structures are
stable without dissipation.

below the transition energy yr. It is thus impossible to
crystallize a beam in a weak focusing machine. Second, the
following is required to maintain a crystalline beam:

2v2max(v,, v,) < Ny, 2)

where v, and v, are the horizontal and vertical betatron

TABLE I. Transition densities of coasting Coulomb crystals
confined in the time-independent potential [7].

Crystal structure

String (1D)
Zigzag (2D)
Single shell (3D)
Single shell + string (3D)
Double shells (3D)

Scaled density

0< ¢ <0.709
0.709 < ¢ < 0.964
0.964 < ¢ <3.10
310< ¢ <5.7
57<¢<95
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tunes, and N, is the lattice superperiodicity of the ring.
This is the condition to keep all phonon modes away from
linear resonance with the periodic driving force [4,10].
According to a recent simulation study [11], the mainte-
nance condition (2) is necessary but may not be sufficient
from a practical point of view. We will discuss this matter
in detail later.

The two requirements above can easily be met in a
compact ion trap system. Coulomb crystalline states simi-
lar to the numerical examples in Fig. 1 have already been
realized in many ion traps around the world by using the
laser-cooling technique [12—14]. This advanced technique
is currently the only means for us to generate Coulomb
crystals because of its high damping rate and very low
limiting temperature. Considering a physical analogy be-
tween a Paul trap and a linear beam transport [15], it should
be possible, at least in theory, to crystallize even a high-
energy ion beam if its orbit is linear. Laser cooling is,
however, applied only to a circulating beam in a storage
ring, so that each ion scatters many photons in one or more
straight sections every turn [16,17]. Because of this tech-
nical requirement for extending the effective cooling re-
gion, we are forced to introduce bending magnets that
make the beam orbit closed. As discussed in Sec. III, the
dipole fields peculiar to a circular machine play a crucial
role in crystalline states.

C. Single-particle orbit in a crystalline state

In a coasting crystalline beam as displayed in Fig. 1, the
trajectories of all particles are proportional to each other
[18]. The transverse motion of any single particle in the
beam can be expressed, with universal orbit functions D,
and Dy, as

x=C.D, y = C,D,, 3)

where C,, is a scaling constant that depends on which
particle we see. It has been proven that C, is equivalent to
the momentum deviation 8p/p of each particle [18]. D,
and D, satisfy coupled differential equations similar to the
Kapchinsky-Vladimirsky envelope equations for a zero-
emittance beam [18]. The 3D crystalline beam thus
breathes as a whole responding to external focusing forces.
The periodic particle oscillations driven by an alternating
gradient lattice make the average kinetic energy of the
crystal finite. In the lower case of Fig. 1, the energy of
the breathing motion is a few Kelvin that is much higher
than the Doppler cooling limit. This value becomes greater
and greater as the number of shells increases at higher line
density.

The horizontal (vertical) emittance is usually defined as
the area occupied by the beam in x-x’ (y-y') phase space,
where x' = dx/ds (y' = dy/ds). Equations (3) indicate
that all particles have the same x'/x and y'/y at any
location of the ring, which implies that the phase-space
distribution is always a straight line as shown in Fig. 2. The

0.2 T e \ T T
i - 001 % .
0.1+ - [N
£ oL K {1 E o |
L_‘ r o'. = L Y
= o - *
01 ¢ . .
L. * -0.01+ .
J bl I P B | P I |
O'2-0.5 0 0.5 02 01 0 01 02
X [mm] y [mm]

FIG. 2. Phase-space configuration of the double-shell crystal-
line beam in Fig. 1. The linear distribution is maintained all
around the storage ring, although the tilt angle changes periodi-
cally according to the function (dD,(,)/ds)/ D). If the focusing
force is uniform along the orbit, all particles are aligned on the
x' =0 and y’ = 0 axes (thus, W = 0) and never move.

transverse emittance of a crystalline beam is, therefore,
zero regardless of its configuration in real space. This is
true no matter whether the crystal is continuous or
bunched. We can thus state that crystalline beams have
achieved the lowest possible emittance that a beam may
have.

III. OBSTACLES TO BEAM CRYSTALLIZATION

A. Intrabeam scattering

Even if the two necessary conditions in Sec. IIB are
satisfied, crystallizing a beam is not always possible in
practice. There are additional undesirable factors that can
seriously disturb a cooling process toward crystallization.
First of all, intrabeam scattering starts to dominate the
beam as the emittance is more diminished. If the cooling
efficiency is too low, the beam will settle into a sort of
equilibrium at a rather high temperature determined by the
balance between the internal heating and external damping
forces. We expect that the heating rate comes to a peak in
the liquid phase where the average Coulomb potential is on
the same order as the thermal energy k7. Once the beam
goes beyond the peak, the heating due to random Coulomb
collisions becomes less dangerous and eventually disap-
pears in a perfect crystalline state [9]. The cooling force
must, therefore, be strong enough to overcome the heating-
rate mountain. Figure 3 shows two MD results in which
identical simulation parameters have been assumed except
for the cooling strength. In the upper pictures, the momen-
tum of each particle is reduced by 1% every lattice period
while the friction has been doubled in the lower pictures.
Only a 1% increase of the cooling strength has made the
final beam state essentially different. Note that this effect
does not take place in a spatially uniform lattice.

B. Coherent resonance

Another critical effect that may limit the achievable
beam emittance is the so-called coherent resonance.
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FIG. 3. MD results of two ion beams cooled with a linear
frictional force. The 3D cooling force has been slightly strength-
ened in the lower pictures, compared to the upper case. The
lattice parameters are the same as those assumed in Fig. 1. The
beam is continuous and the line density is 2.5 X 10° m™!.

Equation (2) can actually be interpreted as a sufficient
condition to avoid the occurrence of the linear coherent
resonance at the space-charge limit. This suggests that we
should be careful in applying Eq. (2) because ordinary
beams are far from the space-charge limit before cooling;
there is no guarantee as to whether the beam can reach a
crystalline state starting from a usual high-temperature
regime. A problem is that the effective operating point of
the ring moves toward the origin on the tune diagram as the
beam density becomes higher; the actual oscillation fre-
quency of each particle gradually decreases due to the
increasing Coulomb repulsion during a cooling process
(see Fig. 12). Consequently, the beam inevitably crosses
many stop bands lying between the initial and final oper-
ating points. Recent 2D particle-in-cell simulations have
revealed that a beam of high line density cannot go across a
linear-resonance stop band even under the influence of a
strong cooling force [11]. Once the lowest-order resonance
is excited, the coherent tune of the beam is locked around a
certain value and no further cooling can be done. A similar
phenomenon has been observed experimentally in a
European storage ring [19]. In order to suppress the possi-
bility of linear-resonance crossing over the whole tempera-
ture region, the betatron phase advance per single focusing
period must be taken below 7r/2 (rather than 7/+/2) [20—
22]. Whenever the phase advance per lattice period ex-
ceeds 90 degrees, the beam will eventually encounter a
severe resonance stop band before an ordered state is
reached. Figure 4 is a MD result that supports this expec-
tation. The betatron tunes have been increased from v, =
vy, = 1.444 assumed in Figs. 1 and 3 to v, = v, = 1.830.
These tunes still satisfy the maintenance condition (2), but
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FIG. 4. MD result of an ion beam cooled with a linear fric-
tional force. The simulation parameters are the same as those in
Fig. 3 except that the transverse bare tunes have been raised to
(v, vy) = (1.80, 1.80). The strength of the friction is identical to
that employed in case (b) of Fig. 3. The multishell crystal is no
longer formed with these tunes whereas the maintenance condi-
tion (2) has been satisfied.

not the linear-resonance-free condition
4max(v,, vy) < N, )

Although the other parameters including the cooling
strength are unchanged, no ordering has been achieved.
Figure 5 summarizes MD results obtained with various
tunes and cooling rates. The line density of the beam has
been fixed at 2.5 X 10° m~! in all these simulations. This
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FIG. 5. Required cooling strength for beam crystallization vs
transverse tune. The simulation parameters are the same as those
assumed in Fig. 3 except for the betatron tunes and cooling
strength. For the sake of simplicity, the horizontal and vertical
tunes have been set equal in all MD simulations, i.e., v, = Vy(E
). The beam is cooled with a 3D linear frictional force that has
identical cooling rates in the three directions. In the region vy >
1.8, a crystalline state cannot be reached at this line density even
if the friction is considerably enhanced. Even when vy < 1.5, it
is difficult to achieve crystallization with a low cooling rate
because of the heating from intrabeam scattering (see Fig. 3).
Note that the lattice of S-LSR has sixfold symmetry (N, = 6).
The vertical broken line in the picture indicates the threshold
tune determined by Eq. (4).
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diagram indicates that beam crystallization becomes more
and more difficult as the transverse tune increases. We thus
conclude that 3D crystalline states cannot generally be
established with a realistic cooling force unless the ring
satisfies the condition (4).

Since this condition is relevant only to a regular beam
with finite transverse dimensions, 1D and 2D crystalline
beams may be free from it. Past MD simulations have
actually indicated that both string and zigzag states can
be stable above the present threshold. Similarly to the
collisional heating, this instability does not occur provided
that the external force is uniform.

C. Dispersive effect

So far, nobody has succeeded in crystallizing an ion
beam in a storage ring [23]. There are several primary
reasons for that. First, laser cooling is inefficient in damp-
ing the transverse betatron oscillations of stored ions.
Second, a storage ring is much more complex than com-
pact ion traps: magnetic field imperfections and other noise
sources are inevitable which may give rise to beam heating.
Third, the effects of momentum dispersion caused by
dipole fields are present in a circular system. This third
factor has made beam crystallization extremely difficult to
achieve in practice.

The problem is, in one word, that dipole fields couple the
transverse and longitudinal motions of particles. The path
length of each particle depends on the horizontal coordi-
nate x in a crystalline state whenever the beam orbit is
closed; a radially outer particle at larger x has to travel a
longer distance than inner particles every turn. In the
meanwhile, all particles must have an identical revolution
frequency in order for the ordered configuration to be
maintained. The average longitudinal velocities are, there-
fore, slightly different depending on their horizontal posi-
tions. A regular cooling force, designed to simply equalize
the longitudinal momenta of stored particles, is not suitable
for the dispersive character of a crystalline beam. In order
to stabilize an ordered structure, we need to develop a
“tapered” force represented as [9,24]

(D) olleg) o

where the left-hand side denotes the change in Sp/p
before and after the cooling section, vy is the Lorentz factor,
po is the radius of curvature in the bending regions, f,
corresponds to the strength of the damping force, and C,, is
called the tapering factor determined by the lattice design.
Tapered cooling is a key to form a circulating crystalline
beam with a finite horizontal extent [25]. Such a special
force becomes unnecessary only in a dispersion-free sys-
tem. A possible scheme to eliminate dispersive effects was
first proposed by Pollock in Ref. [26]. Later, Ikegami et al.
studied the same scheme in more detail with a general
Hamiltonian formalism [27]. The idea has been incorpo-

rated in S-LSR where an electrostatic deflector is inserted
in every bending region to control the linear momentum
dispersion [8].

Once we switch on an rf cavity in a storage ring, a
crystalline beam comes to show even more unique behav-
ior that can never be reproduced in an ion trap [28]. Since
the rf field accelerates or decelerates particles, the trans-
verse motion of a crystalline beam is influenced by the
energy modulation via the dispersive coupling from bend-
ing magnets. Then, even a string crystal can no longer stay
on the reference orbit but horizontally oscillates about it
[29]. Figure 6 exhibits a typical bunched Coulomb chain in
a storage ring. 2D and 3D bunched crystalline beams also
execute analogous ‘“‘head-tail”” oscillations driven by mo-
mentum dispersion. The stability property of crystalline
beams in a storage ring is thus much more complicated
than that of “regular” Coulomb crystals in a linear ion
trap. The ring-shaped Paul trap system “PALLAS” con-
structed by German researchers [30] may enable us to
make a systematic study of these important subjects on
beam crystallization. Since dispersion exists in such a
circular system, a usual “untapered” laser will heat up
circulating Coulomb crystals unless the shear force is
sufficiently weak; we expect that the maximum shear per
single focusing period should be less than the average
interparticle spacing [31]. In fact, recent PALLAS experi-
ments have suggested an instability mechanism for which
the bending shear is probably responsible [32].

D. Asymmetric perturbation

Notice that the condition (4) can be met only approxi-
mately. Strictly speaking, the superperiodicity of any stor-
age ring is unity because of error fields and various
insertion elements. An important question arises then;
namely, what degree of symmetry breakdown is acceptable
in attaining a crystalline beam? Sensitivity studies have
pointed out that magnetic imperfection at less than 0.1%
level can be tolerated [33]. Resonances induced by error
fields are, therefore, not so severe provided that dipole and
quadrupole magnets are well built and well aligned. On the
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FIG. 6. Example of a bunched string crystalline beam in the
storage ring S-LSR. The top views at two different locations of
the ring have been depicted. The synchrotron tune is 0.07 in the
absence of space charge.
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other hand, attention must be paid to the facts that we
usually cool a beam in one or two straight sections and
also that rf cavities are put only in limited lattice periods.
As a result, additional symmetry breakdown is caused in
the external forces felt by the beam. These sources of
asymmetry, which are generally negligible at high tem-
perature, start to play an important role in the ultracold
regime. We have confirmed, through a number of MD
simulations, that it is almost hopeless to ensure the stability
of a multishell crystalline beam unless the cooling force is
properly tapered and N, cavities are symmetrically placed
around the ring. In contrast, 1D and 2D crystalline beams
have been found relatively insensitive to the asymmetric
perturbations.

The optimum tapering factor can be evaluated from the
formula C,, = po/yD, [18]. Since D, is a function of s in
a strong focusing machine, C,, varies along the design
orbit. For instance, it ranges from 0.31 to 0.36 in a straight
section of S-LSR when (v,, v,) = (1.444, 1.444). Needless
to say, the s dependence of C,, makes it even more difficult
to actually develop an adequate tapered force. The MD
results in Fig. 7 illustrate the importance of optimized
tapered cooling. A “‘thin” tapered force has been employed
here whereas a cooling region always extends over some
distance in reality. Ideally, we do not have to do tapered
cooling in every lattice period because the right hand side
of Eq. (5) automatically vanishes after crystallization,
which means that this special dissipative force has no effect
in an ordered state. In case (a), we have applied an ideal
tapered force once in every turn [34]. The 3D crystalline
beam attained is quite stable and the ordered configuration
lasts for many turns even after the cooling force is re-
moved. The normalized root-mean-squared (rms) emit-
tance is on the order of 107! mrad in both transverse
directions. MD results in the middle and lower pictures
demonstrate what happens when the tapering factor is
deviated from the optimum value. Though the resultant
beams in cases (b) and (c) look still ordered (left panels),
they are unstable and blow in a few hundred turns without
the dissipation (right panels). These simulations convince
us that it is impossible to make a multishell crystal with
regular laser cooling as long as the beam is exposed to
strong momentum dispersion.

As mentioned in the last subsection, the energy modu-
lation caused by an rf cavity complicates the transverse
motion of an ordered beam. All kinds of bunched crystals
are forced to perform periodic head-tail oscillations as
identified in Fig. 6. Nevertheless, it is still possible to
produce a large 3D crystalline beam with tapered cooling
if cavities are sitting in all lattice periods symmetrically.
We give, in Fig. 8(a), an example of a bunched multishell
crystal whose axis oscillates periodically on the horizontal
plane. Six cavities have been switched on so that the
bare synchrotron tune v, is 0.15. The oscillation pattern
of the ellipsoid axis is identical to that of a bunched
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FIG. 7. Cross-sectional views of ultralow-emittance *Mg™"
beams circulating in S-LSR at the kinetic energy of 35 keV.
The transverse bare tunes have been set at (v, v,) =
(1.444, 1.444), such that the condition (4) is fulfilled. We have
applied a thin tapered force and weak transverse dissipation in a
certain lattice period to cool a coasting beam whose line density
is 2.5 X 10® m™!. The friction coefficient £, is 1.0 (full cooling).
The tapering factor has been adjusted to the following value: (a)
0.310 (optimum), (b) 0.326 ( + 5% error), and (c) 0.295 ( — 5%
error). In order to improve the beam stability, we have gradually
weakened the cooling forces to zero in 2000 turns. This proce-
dure generally makes the survival time of a crystalline structure
considerably longer. The left panels show the beam configura-
tion at the moment when the cooling forces are damped away.

Coulomb chain formed at much lower line density; it is
thus predictable with the theory in Ref. [29]. Turning off
five of the six cavities, we find that the maintenance of the
ordered configuration is no longer possible [Fig. 8(b)].
Since the sixfold symmetry of the longitudinal force has
been broken, the period of the head-tail oscillation agrees
not with the magnetic lattice period but with the ring
circumference.
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FIG. 8. Top views of ultralow-emittance beams in S-LSR. The
fundamental lattice parameters are the same as those assumed in
the previous figures except that we have now switched on rf
fields to bunch the beam. The number of 2*Mg™ ions in a bunch
is 800 in these simulations. Case (a) corresponds to the situation
where we have turned on six rf cavities symmetrically set around
the ring. The amplitude of the rf voltage has been chosen to be
48.8 V. In case (b), five of them have been switched off. In order
to keep the synchrotron tune unchanged, the rf amplitude has
been increased to 272 V.

IV. 3D LASER COOLING

A. The resonant coupling method

We are now in a position to discuss the experimental
feasibility of beam crystallization. Since it is not difficult to
construct a machine that simultaneously fulfills the con-
ditions (4) and y < 7y, the most essential issue is how to
develop a proper 3D cooling force. For this purpose, we
here consider the application of the resonant coupling
method (RCM) to laser cooling [35,36]. The dissipative
force generated by a laser light is known to work only in
the longitudinal direction. RCM is employed to extend this
powerful 1D cooling force to the transverse degrees of
freedom quite easily. All we have to do is simply the
excitation of linear coupling resonances. A possible cou-
pling source that induces sufficient correlation between the
longitudinal and transverse directions is either a special rf

cavity operating in a deflective mode [35] or a regular rf
cavity installed at a position with finite dispersion [36].
The two transverse degrees of freedom can be correlated by
a solenoid or a skew quadrupole magnet. In order to
enhance the efficiency of indirect cooling, the storage
ring must operate near difference resonances:

y = integer,

vV, — V v, — v, = integer.  (6)
It is obvious that RCM is not limited to laser cooling but
can be applied to any general situation where we have one
or two dimensional dissipative force that should be ex-
tended to the other degree(s) of freedom.

In order to examine how much we can expect from the
combination of RCM and the laser-cooling technique, we
performed advanced MD simulations in which realistic
photon-ion interactions can be incorporated [37]. Table II
summarizes main simulation parameters adopted in this
subsection. Two cooling lasers, one copropagating and the
other counterpropagating with the beam, are introduced in
separate straight sections. The three tunes have been
chosen so that the resonance conditions above are approxi-
mately satisfied. As a source of synchrobetatron coupling,
we put a regular rf cavity at a dispersive position. We also
turn on a solenoid magnet to couple the horizontal and
vertical directions. According to the linear theory in
Ref. [36], there is an optimum value for the solenoid
coupling. In order to minimize the lattice symmetry break-
ing, a lower solenoidal field By is preferable. On the basis
of the data of test MD simulations, we decided to use
By, = 40 G. Since this field is sufficiently weak, the origi-
nal sixfold symmetry roughly holds as is clear from Fig. 9.

When the synchrotron tune is much less than the opti-
mum resonant value, no transverse cooling occurs as has
been known in past experiments [38]. By moving the
operating point near full 3D coupling resonances, we
can cool all 3 degrees of freedom simultaneously.
Theoretically, it is possible to equalize the damping rates
of the three directions by means of RCM [36]. The effec-
tiveness of RCM has been demonstrated in Fig. 10 where

TABLE II. Parameters for laser-cooling simulations.
Lattice S-LSR
Ton species XMg*t
Kinetic beam energy 35 keV
Design superperiodicity N, 6
Bare tunes (v,, vy, v,) (2.067, 1.073, 0.07)
Rf harmonic number 100
Axial length of a solenoid 0.80 m
Strength of the solenoid field B, 40 G
Length of a cooling section 2.66 m
Transition wavelength A 280 nm
Saturation intensity 0.25 W/cm?

Saturation parameter (on axis) S, 1.0
Waist radius of lasers wy 5 mm

114201-7



YOSUKE YURI AND HIROMI OKAMOTO

Phys. Rev. ST Accel. Beams 8, 114201 (2005)

6 T T T T

i

~

[\

Lattice functions [m]
W

0 10 20
s [m]

FIG. 9. Lattice functions of S-LSR with a solenoid magnet
switched on. B, and 7, are, respectively, the betatron and
dispersion functions in the absence of space charge.

we observe dramatic 3D cooling. The normalized rms
emittances of the beam have finally reached around
107" m rad in all directions. The total number of stored
2*Mg™" ions assumed here is 3 X 10* corresponding to 300
particles in a bunch. The equilibrium distribution of ions
after laser cooling has been depicted in Fig. 11. Although
the beam is in an ultralow-emittance regime, no clear
crystallization can be seen because of the heating mecha-
nisms explained in the last section. The axial distribution
of particles in the bunch is not Gaussian but nearly
parabolic.
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FIG. 10. Time evolution of normalized rms emittances of a
%Mg* beam cooled with two counterpropagating lasers in S-
LSR. A regular rf cavity is located in the middle of a straight
section where the size of momentum dispersion is 0.8 m. The
bare tunes have been adjusted to be (2.067, 1.073, 0.07) for full
3D coupling resonances. A scan of the laser frequency is finished
at the 80 000th turn. It is possible to make the scan speed faster,
but the efficiency of ion capture becomes worsened at high line
density due to intrabeam scattering.
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FIG. 11. Real-space configuration (top view) of the laser-

cooled beam obtained in the MD simulation of Fig. 10.

Since an rf field has been excited, the untracold ellipsoid
in Fig. 11 executes the head-tail oscillation exactly peri-
odic in each turn. Figure 12 shows the Fourier spectra
calculated from the transverse and longitudinal single-
particle orbits. Before cooling, the dominant Fourier com-
ponents have the frequencies corresponding to the bare
tunes. After cooling, however, the effective betatron tunes
are 2.0 in the horizontal direction and 1.0 in the vertical
direction [39], while the synchrotron motions of the ions
have been completely suppressed. Notice that the tune
shifts in the three directions are the same; they are all
about 0.07. As the beam is cooled, the effective tunes
are gradually depressed by space-charge interactions.
Nevertheless, the resonance conditions (6) are approxi-
mately retained throughout the cooling process owing to
the dispersive oscillation that forces the final incoherent
transverse tunes to converge at nonzero round numbers
[37]. The normalized rms emittances achievable with
RCM are plotted in Fig. 13 as a function of ion number
in a bunch. The possible lowest emittance increases due to
dispersive heating as we add more particles in a bunch.

With the present simulation setup, a multishell crystal-
line state cannot be reached not only because the photon
pressure is untapered but also because the horizontal phase
advance is too large. There is, however, a possibility of
attaining a 1D or 2D crystalline beam. At v, = 0.07, we
expect the formation of a string when the number of ions in
a bunch is less than 10. Figure 14(a) shows an MD result
where an ion number near this threshold has been taken.
We see that, after a laser scanning, ions in each rf bucket
are arranged into a linear chain analogous to that in Fig. 6.
By adding two more ions, we can convert the string into a
vertical zigzag configuration as indicated in Fig. 14(b). A
similar structural transition takes place with eight ions
when v, exceeds 0.09. These ordered states are fairly stable
and can survive for many turns even without the cooling
force.
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B. Tapered cooling with displaced lasers

The dissipative force exerted by a single laser on an ion
beam operates along the direction of the photon propaga-
tion and is expressed as

S
1+S+ QAN

1

where hik; is the photon momentum, I" is the natural line
width of the cooling transition, S is the saturation parame-
ter of the laser, and A is the frequency detuning depending
on the magnitude of the Doppler shift. Assuming a
Gaussian laser for instance, we have an inhomogeneous
saturation parameter S = S;exp[—2(x> + y?)/w?] where
S corresponds to the laser intensity on axis, and w is the
laser spot size that depends on the longitudinal coordinate.
It is evident that the cooling force in Eq. (7) can be tapered
by horizontally shifting the laser axis by ox [40]. As
pointed out in Ref. [9], a tapered force naturally yields
horizontal dissipation as well if the cooling section has
finite dispersion. We, therefore, anticipate some transverse
damping effect free from mutual particle interactions. This
idea was experimentally tested at the cooler storage ring in
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FIG. 13. Final normalized rms emittances of laser-cooled

beams vs the number of ions in a bunch.

Heidelberg [40]. The experiment was successful, confirm-
ing the indirect transverse cooling by the tapered force
[41]. A detailed description of the optimum operating
condition and possible cooling rate have been given in
Ref. [24].

We can use two [42] or even more displaced lasers [43]
to obtain higher flexibility in controlling the tapering co-
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FIG. 14. Real-space configurations (side view) of laser-cooled
beams at ultralow intensity. The total number of stored ions is
800 in case (a) and 1000 in case (b). Both beams execute a head-
tail oscillation about the reference orbit on the horizontal plane.
The individual ions do not pass each other longitudinally.
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efficient C,,. Expanding the saturation parameter of dis-
placed lasers about the reference orbit and comparing the
first-order term in F with the definition (5), we find an
approximate tapering factor as

_TA_py_ 8x1+(8/TY
“ T 2w Bylew’ (F280/1)

®)

where A is the transition wavelength of the ion, A, denotes
the detuning for an ion with the design longitudinal veloc-
ity, and we have taken into account two counterpropagat-
ing lasers symmetrically shifted on the horizontal plane
[42]. It turns out that, with a proper detuning and a mod-
erate Ox, the tapering factor realizable by two displaced
lasers is on the order of 1072 much smaller than the
required value of around 0.3 in S-LSR.

Although the use of many displaced lasers with slightly
different frequencies enables us to raise C,, up to an ideal
level [43], such a complex scheme is not preferred from a
practical point of view. In the following MD simulations,
therefore, we consider only two cooling lasers for the sake
of simplicity and practicability. The lasers are introduced
in separate straight sections and horizontally displaced to
opposite directions. The average dispersion of the cooling
section is about 1.8 m that should be sufficient to have
noticeable transverse cooling effect. A typical time evolu-
tion of the beam quality in S-LSR is plotted in Fig. 15
where 6x = 3 mm and (v,, v,) = (1.60, 1.80). We observe
a rapid reduction of the longitudinal momentum spread
that has reached near 107° at the end of a laser scanning.
The horizontal degree of freedom has also been cooled,
while nothing occurs in the vertical direction as expected.
The best way to make the vertical cooling rate finite is the
application of RCM [24]. For this purpose, we first switch
on a weak solenoidal field (or a skew quadrupole magnet)
and, then, move the operating point onto a transverse
coupling resonance [44]. The consequence of this proce-
dure has been shown in Fig. 16. The operating betatron
tunes are now (v,, v,) = (2.067, 1.073) in the absence of
space charge. In the case where dx = 3 mm, the beam has
been cooled three dimensionally and its final configuration
is a linear chain as displayed in Fig. 17. Since the tapering
factor can never be optimized, it is impossible to form a
shell crystalline structure at higher line density. When both
lasers are shifted to the other way (i.e., x = —3 mm), the
transverse degrees of freedom heats up as predicted by the
theory [24]. The experiment in Ref. [40] certainly con-
firmed this heating mechanism. Note also that the horizon-
tal cooling always takes place after the scan of the laser
frequency is almost finished. This is because the transverse
cooling rate is too low at a large detuning. We may thus
have trouble cooling a beam of high line density with this
scheme.
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FIG. 15. Time evolutions of the transverse normalized rms
emittances and longitudinal rms momentum spread of a
35keV **Mg* beam cooled with two counterpropagating lasers.
Both lasers have been horizontally displaced by éx = 3 mm.
The line density of the beam is 4.8 X 10° m™!, and the bare
betatron tunes are (v,, ¥,) = (1.60, 1.80) in this simulation. The
final detuning after a laser-frequency scan completed at 6000th
turn is Ay = —75 MHz in the beam rest frame.

V. SUMMARY

An ideal crystalline beam circulating in a storage ring
possesses the following general characteristics:

(a) The transverse emittances are zero except for quan-
tum noise. The Coulomb coupling parameter is then much
higher than the theoretical threshold of 170.

(b) The ordered structure is stable and lasts for many
turns without cooling forces.

(c) The orbits of individual particles are periodic and
exactly proportional to each other. The periodicity coin-
cides with the lattice periodicity of the ring.

Another important point is, as extensively discussed in
the previous sections, whether the beam is exposed to
strong momentum dispersion. If dispersion is negligible,
the system is physically equivalent to a Paul ion trap in
which Coulomb crystallization can quite easily be realized.

In theory, it is possible to crystallize a charged-particle
beam even in a dispersive environment if an ideal 3D
cooling force is available. The emittance of such an ulti-
mate beam is extremely low in spite of the periodic breath-
ing motion driven by the strong focusing force. In order to
establish various crystalline states, the lattice of a storage
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FIG. 16. Time evolutions of the transverse normalized rms emittances and longitudinal rms momentum spread of a 35 keV **Mg*
beam cooled with two counterpropagating lasers. The lasers have been horizontally displaced by 6x = 0 mm in case (a), 6x = 3 mm
in case (b), and 6x = —3 mm in case (c). The beam line density and final detuning after a laser scan are the same as assumed in
Fig. 15, but the betatron tunes are (v,, Vy) = (2.067, 1.073). The horizontal and vertical cooling (or heating) rates have been equalized
by the application of RCM. The transverse coupling source considered here is a solenoid magnet.

ring should satisfy several design criteria; specifically, the
ring must operate below the transition energy and have a
low betatron phase advance to avoid dangerous resonance
crossing. It is also necessary for the cooling efficiency to
exceed the rate of heating originating from random
Coulomb collisions. The present MD study has demon-
strated that the simultaneous use of laser cooling and RCM
enables us to attain 1D and 2D crystalline beams. However,
the production of a 3D crystalline beam has been found
extremely difficult in practice. Most of the difficulties are
associated with the existence of momentum dispersion
peculiar to a circular system. As clarified by systematic
MD simulations, the shear force from bending magnets
gives rise to serious complications of the dynamic beam
behavior in the ultralow-emittance regime. Since a multi-
shell crystalline beam is very sensitive to external noises,
its stability can easily be affected by inevitable sources of
perturbation. For instance, even weak lattice asymmetry
due to the arrangements of rf cavities and cooling sections

-2 -1 0 1 2
z [mm]

FIG. 17. A coasting string produced by the tapered cooling
scheme with displaced counterpropagating lasers.

makes it unfeasible to accomplish a 3D crystalline state.
Even if the lattice symmetry is strictly maintained, a large
crystalline beam can never be stabilized without the ta-
pered force that compensates dispersive heating mecha-
nisms. Considering the sensitivity of a 3D crystalline state
as well as the limitation in matching the tapering factor, it
seems almost hopeless to generate a stable multishell
crystalline beam in reality unless dispersive effects are
negligible. The most promising way toward 3D crystalli-
zation should probably be the construction of a dispersion-
less storage ring [26,27] that has high lattice symmetry and
low tunes.
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