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Oscillating Coulomb chain in a storage ring

H. Okamoto, Y. Yuri, and K. Okabe
Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama,
Higashi-Hiroshima 739-8530, Japan
(Received 13 December 2002; published 11 April 2003

The dynamic behavior of a bunched one-dimensional crystalline beam is studied theoretically. It is shown
that, owing to the existence of momentum dispersion, a Coulomb chain traveling in a storage ring performs a
complex periodic oscillation whenever it is exposed to a longitudinal radio-frequency force. The equations of
motion are derived to predict the oscillation pattern in an arbitrary lattice structure. The validity of the present
theory is confirmed through multiparticle simulations. Various features of an oscillating string beam, such as
the lattice-parameter dependence of the orbit, the stability, and critical line density, etc., are also discussed.
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[. INTRODUCTION erly designed so as to prevent the occurrence of collective
instability during a cooling proce$44]. These facts suggest

The first application of the laser-cooling technique to athat it is almost hopeless at present to crystallize a fast stored
relativistic ion beam was carried out in 1990 at the Heidel-beam of high line density. By contrast, the production of a
berg TSR storage ringil]. It was experimentally demon- one-dimensional string crystal may be possible. Since its
strated that the longitudinal motion of a fast stored beam iheating rate due to Coulomb collisions is rather Ipfy, it
well controllable by the photon pressure. This seminal workwould be relatively easy to overcome the instabilit]. As
followed by another important experiment at the ASTRID a matter of fact, in the middle 1990s, a sudden jump of the
storage ring of Aarhus Universifi2], opened up a possibility Schottky signal from highly charged ions, similar to that re-
for reaching the ultimate state of a charged-particle beam. Iported from Russian researchers in the late 1916§ was
fact, the Doppler limit of laser cooling is typically in a milli- observed in electron cooling experiments at the ESR ring of
Kelvin range or even below, several orders of magnitudeGSI[17]. An analogous phenomenon was also confirmed at
lower than the beam temperature achievable with other coolERYRING of Manne Siegbahn Laboratoryl8]. These
ing methodq 3]. If the Doppler limit is reached in all three anomalies observed at very low line density are thought to be
degrees of freedom, the beam will then be Coulomb crystala sign of the phase transition to a sort of liquid state. A
lized as theoretically suggested by Schiffer and co-workersheoretical investigation has concluded that the beam estab-
[4]. lished a stringlike order where the individual ions still ex-

After the experiments at TSR and ASTRID, theoreticalecute transverse oscillations but cannot pass each other lon-
and experimental studies of beam crystallization becamgitudinally [19].
more active, and many new insights have been gained con- Needless to say, understanding the nature of a one-
cerning the dynamics of highly space-charge-dominatedlimensional crystalline beam is practically very important; it
beamq[3,5-10. Nevertheless, nobody has succeeded so fawould be impossible to realize other crystal configurations if
in realizing beam crystallization in a storage ring, althoughthe string cannot be formed. All particles forming@asting
circulating Coulomb crystals were recently obtained in aCoulomb chain sit exactly on the design closed orbit of the
compact ring-shaped Paul trap system called PALLAS. storage ring. In this simple case, nothing physically interest-
To our current knowledge, there are three primary reasonmg takes place as the beam is completely frozen in the rest

why crystallizing a relativistic beam is so difficult: frame. However, once a longitudinal radio-frequencf)

(a) it is impossible for existing cooler storage rings to field is switched on, even a string crystalline beam comes to
meet the stability requirements of a crystalline state; exhibit a complicated dynamic behavif20]. Since the rf

(b) laser-cooling force directly operates only in the longi- force induces finite energy difference among particles, even
tudinal direction of beam motion; an ideal string can no longer stay on the design orbit but is

(c) any storage-ring lattice contains dipole magnets thaforced to oscillate horizontally due to the existence of mo-
inevitably yield momentum dispersion. mentum dispersion. In this paper, we extensively study the

At sufficiently high line density, the resultant crystalline dynamics ofounchedCoulomb chains in a storage ring. We
structure is multidimensional; the two-dimensional zigzag offirst derive in Sec. Il a set of equations that govern the mo-
a three-dimensional shell configuration is forn{d@]. We,  tion of a bunched string. The validity of the proposed equa-
however, need a speciéhperedforce to stabilize such a tions is tested in Sec. Il through multiparticle simulations.
crystalline beam with a finite transverse dimension, whereaSection IV is devoted to describing various unique features
no practical method has been established so far for taperingf oscillating crystalline beams. In particular, we discuss the
the photon pressurg?,13]. Further, as mentioned above in lattice-parameter dependence of string motion, the stability
the item(a), the transverse betatron motion eventually be-and equilibrium temperature of ground states, etc. Finally,
comes unstable unless the lattice of the ring has been prophe present results are summarized in Sec. V.
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Il. EQUATION OF MOTION OF A BUNCHED these particles actually form a straight line in an arbitrary
COULOMB CHAIN two-dimensional space. An analogous expression applies to

. . . multidimensional coasting crystalline beams as \Wed].
Consider a storage ring composed of dipole and quadru- Let us now keep our eyes on, sayh particle. We drop

pole magnets. We further put one or more identical rf cavitie . . e . :
that produce longitudinal electric force. Charged particle§he subscriptn, simply writing the canonical variables as

traveling in this system obey the following canonical equa-().(’z’ Px 'P2). I this is not the syng:hronous part_|cle, the '0_”'
tions of motion in the rest framg]: gitudinal momentunp, suddenly jumps every time when it

goes across a cavity. Because of the periodic nature of the

X' =Py, (1)  string motion, each jump will occur symmetrically; if the
value ofp, were —pg just before a cavity, it would jump to
y ry dUc(X,2) + pg after the interaction with the rf field. Further, the varia-
Py = —pP,— Ky(7)X— 22 ax (2)  tion of p, is expected to be smooth and simple in-between
p By X two adjacent cavities since no longitudinal artificial force is
there. It is, therefore, reasonable to assume
, Y
2'=p;= o (3 -
p,=Cha(7) L 2/ (7)
, ro dUc(x,2) q U (z;7) @ o . N
P; g2,2 0z mo(Byc)? 9z where the origin ofr has been taken at the cavity position.

a(7) is a r-dependent function represented @br)=a[1

wherer,, g, andm, are, respectively, the classical radius, + 5(7)], wherea denotes the average value @fr), and
total charge, and rest mass of the particés the speed of #(7) is a periodic modulation satisfyingy|<1 andL|7’|
light, B andy are the Lorentz factorg, is the local curvature <1. The total amount of a momentum jump at each cavity is

of the design orbitK, is the horizontal focusing function, clearly C,a that can be related to the energy gain of the
the scaled rf potential denoted bl is uniform in the trans-  particle. Assuming a usual sinusoidal rf potential with the
verse directions, the independent variable has been definegyrmonic number ofh and the amplitude of Vo,

as 7= Byct with t being the proper time, and the prime we obtain the approximate relation C.a
stands for differentiation with respect ta Note that the ~[q/mo(ByC)2]V,sin (2mhyIN )(C.DA0)/L)] whereN nis
vertical degree of freedom has been ignored because in thifa |attice periodicity of the rirs1g. This relation givessp
section, we concentrate upon the behavior of an ideal one-
dimensional crystalline beam. The scaled Coulomb potential — (27,2 D,(0)

is then given by a~ &N o (8)
sp

Ug(x z)=2 1 (5) where ¢, is the phase slip factor and vf

e T Nx—x%+(zj—2)% =hq|&|Vo/27mgy(Bc)2. The parameter, directly corre-

) ) ] ) sponds to the synchrotron tune provided tha&1. Substi-
wherex; andz; are the spatial coordinates ¢h particle.  tuting Eq.(7) into Eq. (4), we have the equation relevant in
Since the rf force has been introduced only for the purpose ohe region between two neighboring cavities:
beam bunching, the synchronous phase is always chosen to

be zero. In this case, the synchronous ion located at the cen- __ [ . r D,
ter of the string crystal passes through a cavity at a momentCpan’ (E —3t Cnf(l+ n)=— ez 5 Sh (D24 D)%
when the rf electric field switches from decelerating phase to Y x Pz

accelerating phase. We also assume, for the sake of simplic- ©)

ity, that the cavities are symmetrically arranged; i.e., 5 o 13 _

Uf(2)=U,¢(z+L), whereL is the distance from one cavity where S,=2,;1,(C Ca)/IC;=Cal" -Slnce |77|<1_ and

to the next. If the ring has only one cavity, of course, L|7'|<1, Eq. (9 can be approximated a€,a/L~

agrees with the total length of the design closed orbit. —(rp/B?¥?)S:D,/(D5+D2)*2 This equation indicates that
In any crystalline ground state, all particles are preciselyD is nearly constant, because the longitudinal extent of a

aligned in the transverse phase space, which means that tR#ing crystal is generally much greater than the horizontal

emittance is equal to zeffd.0]. Since a string crystal has a extent, i.e.|D,/D,|<1. From Eqs(1) and(2) together with

linear configuration even in real space, we can express thegs.(5)—(9), we eventually find

coordinates of individual particles in the form

DK (D (27v,)?
XJ':C]'DX(T), Zj:CjDz(T)a (6) X X(T) X_NSpL |§0|

(10

Dy 7 1\vyD,
L L 2 p
whereC; is a particle-dependent constant, wHi¢ andD,

are periodic functions universal among all particles. Specifiwhere we have replace®,(0) by D,(7) recalling that

cally, the value oD, cannot cross zero; otherwise, the string D,(7)~const as pointed out above. Similarly, E8) leads
configuration is destroyed. It is straightforward to show thatto
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TABLE |. Simulation parameters.

lon species

Total kinetic energy
Lattice

Superperiodicity
Circumference

Bare betatron tunesy(,v)
Transitiony

Phase slip factor

24Mg+
1 MeV
TARN 1l
gwithout cavities
77.7m
Case 1(2.10, 2.10 and Case 1(2.30, 2.30
2.255(Case ), 2.444(Case 1)
—0.803(Case }, —0.832(Case )

rf harmonic number 1000
rf voltage amplitude <150V
Bare synchrotron tune 0.610.1

Under these conditions, the beam finally reached an ordered
state as shown in Fig. 1 where the real-space configuration
observed at a certain location of TARN Il has been depicted.
Each small circle stands for a singt@g™ ion. We confirm

that the ions are horizontally deviated from the design orbit
due to the momentum dispersion. They execute periodic os-
cillations in the horizontal plane, keeping the linear configu-
ration as a whole. On the other hand, the beam profile in the
vertical plane was almost static.

In order to test whether Eq610) and(11) can well repro- Figure 2 demonstrates the trajectories of three ions arbi-
duce the motion of a bunched Coulomb chain, systematiéarily picked from the crystal in Fig. 1. It is evident from the
multiparticle simulations were performed. In our code, welast panel that the assumption in Eq) is adequate. The
numerically iterate the three-dimensional equations of parcavity is sitting at the coordinate=25.9 m where the sharp
ticle motion, incorporating the characteristics of an actuamomentum jump has occurred. Scaling these single-particle
storage ring like bending and straight sections, andrajectories via Eq(6), we obtain Fig. 3. The three orbits,
alternating-gradient focusing. Since the number of particle®lotted in broken lines, have now completely overlapped
ina Sing|e bunch is not too |arge, real partic|es are emp|0yeWith each other. The solid lines represent the stationary SO-
to evaluate the exact Coulomb interactions among them. As
to the lattice structure, we chose the design parameters of the
cooler storage ring TARN [[22]. The lattice of TARN I,
whose circumference is 77.7 m, has sixfold symmetry. The
betatron phase advance per single superperiod can be re-
duced to near 90° or even less, so that the stability condition
of crystalline beams is fulfilledi7]. The ion species consid-
ered here is*Mg™ that has been often used in past laser- -10
cooling experiments. The main simulation parameters are ! ' :
listed in Table I. — T T T

In this section, we take the case-l lattice in which the 10
betatron tunes have been adjusted #9,¢,) =(2.10,2.10).

An rf cavity is installed in one of the six straight sections to
bund a 1 MeV ?*Mg*-ion beam. The amplitude of the rf
voltage is set at 38.65 V corresponding to the single-particle
synchrotron tune of 0.05. In a test simulation, we initially -10
distributed 27 particles at random positions in phase space . s s
and, then, applied a three-dimensional modest dissipative 2 0
force to cool them. To save the computing time, the simplest Z[mm]
cooling model was adopted; we damped the transverse and g, 1, Spatial configuration of a bunched “string” crystalline

longitudinal momenta of all ions once in a turn, using thepeam obtained from a multiparticle simulation. The TARN Il lattice
linear transformation containing a single rf cavity has been taken into account. The hori-
zontal and vertical betatron tunes aig (v,)=(2.10,2.10), and the
synchrotron tune is 0.05 in the absence of space charge. Each circle
represents a singl&Mg™ ion traveling at the kinetic energy of 1
MeV. The friction coefficients have been chosen to fge=f,
=0.01 andf,=0.11.

1 (2171/2)2(
NspL |§0|
In these equations, the independent variabharies in the

region 0<7/L<1. The basic properties of a bunched Cou-
lomb chain can be predicted by solving E¢80) and (11).

T 1

D;'= L 2

)DZ—ZDX. (11)
p

Ill. SIMULATION RESULTS
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where @,)i, and ;). are the canonical momenta before
and after the cooling point, anfj is the cooling strength.
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FIG. 2. Single-particle orbits in a bunched string crystalline
beam. The trajectories of thrééMg™ ions arbitrarily selected from
the beam in Fig. 1 have been plotted.

Path length 7 [m]

FIG. 4. Horizontal and longitudinal scaled orbits obtained from

. S a multiparticle simulation. An rf cavity is installed in each lattice
lution to Egs.(10) and(11), which indicates that the present period. Other conditions are identical to those assumed in Fig. 1.

theory explains the multiparticle simulation result fairly well. sjnce the ring now contains six cavities, the rf voltage has been
It is also recognized that all particles are on the design beargduced to 6.44 V in order to maintain the bare synchrotron tune at
line when passing through the cavity. Since the rf force 1on-0.05. The small arrows in the lower picture indicate the longitudinal
gitudinally compresses the beam, the bunch length should hgositions where the cavities are located.

maximum at the cavity. However, the changdxfwas gen-
erally negligible according to our simulations. This implies
that the total length of the Coulomb chain is nearly constant
all around the ring, because the ratio,/D,| is always
small.

IV. CHARACTERISTICS OF OSCILLATING
COULOMB CHAINS

A. Lattice dependence

In the case-l lattice with a single rf cavity, a string crys-
talline beam oscillates about the design closed orbit two
times per turn regardless of the synchrotron tune and cavity

FIG. 3. Horizontal and longitudinal scaled orbits. The three tra-

= 20 ; ; ; - o

e ] position. Note, however, that the number of rf cavities plays
E Lol i an essential role in the orbit equatiofi®) and (11); it has

s actually determined the oscillation period of the stationary
2 o 1 solution. Since the energy jump occurs only at the cavity
g - position, the period of the longitudinal motion is inevitably

£ -10p— equal to the ring circumference as long as the lattice contains
8 Theory (D,) . . .

£ | ---- Simulation 1 only one cavity. The horizontal motion must then have the
= 20 : ' ' same oscillation period despite the fact that the transverse
7 L5 . . . focusing force repeats an identical variation pattern six times
< Lasl 1 around the ring.

T | ] A question is what happens if we put an rf cavity in every
3 1446—/\/\«’/\«\,\//; lattice period so that the ring recovers strict sixfold symme-
< E ] . . .
2 a4 ] try. Figure 4 shows an example of the scaled orbit when six
é ' cavities are set at intervals of 12.95 m. Other conditions are
£ 1'42_igh3011"y.(Dz) T the same as those assumed in the previous figureite the

£ 4 -1 . rf voltage has been reduced to 6.44 V in order to keep the
= % 20 40 60

Path length 7 [m]

bare synchrotron tune at 0, 0®&nlike the result in Fig. 3, the

particle trajectory has exhibited approximate sixfold symme-
try. The weak symmetry breakdown comes from the cooling
force; we can verify that oscillation patterns within the six

jectories shown in Fig. 2 have been scaled according tg@gThe - . - o -
values of the scaling parameters used here Gye —1.00, C, lattice periods perfectly agree with each other if six cooling

=1.13, andC;=6.88. The scaled orbits plotted in broken lines Sections are symmetrically inserted in the ring.

have completely overlapped with each other. The solid lines in both We have also confirmed numerically that the scaled orbit
pictures show the orbit functiond, andD, evaluated from Egs. Strongly depends on the positions of the rf cavities. To illus-
(10) and(11). We see that the theoretical prediction is in excellenttrate this, let us shift all the cavities in Fig. 4 by 3.1 m along

agreement with the multiparticle simulation resuilt. the beam line. The orbit is then completely altered as dis-
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FIG. 5. Horizontal and longitudinal scaled orbits obtained from
a multiparticle simulation. We have assumed exactly the same lat- FIG. 7. Long-term stability of an oscillating Coulomb chain.
tice parameters as used in Fig. 4, except for the locations of the siRlotted is the spatial configuration of the crystalline beam in Fig. 1,
rf cavities. 15000 turns after the cooling was stopped.

played in Fig. 5. Each ion now executes a small periodiccoasting Coulomb chain is completely static in the rest
oscillation not about the design orbit but about a certain horiframe.(This does not necessarily mean that we can, in prac-
zontal coordinate. The maximum value Of, calculated tice, crystallize any low line-density beamé#. is, however,
from Eqgs.(10) and(11) has been plotted in Fig. 6 as a func- uncertain about whether a bunched Coulomb chain is as
tion of the cavity position. In this plot, we have consideredstable as coasting ones. Since it inevitably has a finite oscil-
six cooling sections in order for the particle orbit to achievelation amplitude in the horizontal direction, transverse col-
exact sixfold symmetry. Only when a cavity is located within lective instabilities may be induced more seriously. It has
the shaded regions in Fig. 6, the orbits of individual ionsactually been known that a multidimensional crystalline
cross zero just like the case in Fig. 4. Outside this area, thbeam is unstable in a storage ring that does not satisfy the

oscillation pattern becomes similar to that in Fig. 5. condition[7]
B. Stabilit N
aniy max vy, vy) < . (13
Without the rf force, it will always be possible to con- 22

struct a one-dimensional crystalline state because ideally a

Though the case-l lattice meets this requirement because

= 0'5> R B Ngp,=6 and (,,vy)=(2.10,2.10), we must remember that
S o4 the longitudinal rf force substantially affects the transverse
< motion of a Coulomb chain. In the case of Fig. 1, for in-
3 03 stance, the actual superperiodicity of the ring is one rather
—?g’ : than six as is evident from the single-particle trajectories in
= 02 Fig. 2; the condition(13) has thus been broken. If this oscil-
E & 1' lating Coulomb chain is really in a complete ground state, it
g should be stable even without the dissipative force. Figure 7
= o shows its spatial profile, 15000 turns after the cooling effect
0 3 10 was removed. We observe that the linear configuration is still

Position of rf cavity 7 [m] maintained. The root-mean-squareths) emittances at this

FIG. 6. Maximum amplitude of the horizontal orbit functién, moment are 2.2810 " mrad in the horizontal direction

vs longitudinal position of an rf cavity. We have assumed exactly@nd 2.95¢10 n rlgrad in the IongltudlnlaSI direction, near the
the same lattice parameters as used in Fig. 5. Six cooling sectionélues 1.8X 10" mrad and 2.8% 10" *> mrad just before
have been inserted symmetrically, so that we can consider only W€ stopped cooling.

single lattice period in the picture. When the cavity is located within It is also worthy to examine the stability of a bunched
the shaded area in each peridd, shows an oscillation pattern string in the case-Il lattice wherev{,»,)=(2.30,2.30). In
similar to that in Fig. 4. This result agrees fairly well with numeri- this case, the conditio(L3) never holds even after six cavi-
cal simulations. ties are symmetrically installed in the ring. We, however,
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[¢] . . .
-10F o’ 1 distancekg is the Boltzmann constant, afidis the thermo-
r dynamic temperature of the bed@4]. It is often said that
o oy .
2 1T 2 the phase transition to a crystalline state takes place When
2z[mm] exceeds about 17[25]. In an alternating-gradient focusing

system, however, this statement is clearly irrelevant because
FIG. 8. Spatial configuration of a bunched beam cooled by thehe envelope of any multidimensional crystalline beam is
linear dissipative force wittf,=f,=0.01 andf,=0.33. Other pa-  forced to “breathe” periodically. Provided that the beam is
rameters are identical to those in the case of Fig. 1. bunched, even a one-dimensional crystal oscillates trans-
versely as verified in previous sections. Further, the thermo-
found that the string motion is quite stable without the cool-dynamic temperature of a three-dimensional crystal is ex-
ing force. pected to grow as the number of shells increases, while the

Another factor that crucially influences beam stability is value ofd is roughly maintained. Consequently, thevalue
the cooling force itself. Owing to dispersion, the averageof a crystalline beam is generally much smaller than 170. For
velocities of individual particles forming a crystalline beam jnstance, the plasma parameter of the Coulomb chain in Fig.
are slightly different depending on their horizontal positions;1 is only 4.4. Since the transverse oscillation amplitude of a
in order for all particles to have an identical revolution fre- Coulomb chain depends on the rf voltagg, I is alsoV,
quency, a radially outer particle must travel faster than innegiependent. One possible way to avoid this ambiguity i
particles. This suggests that, at an ultralow temperaturghe use of the emittance concept. The rms emittance of an
simple dissipation as defined in EG.2) no longer operates ideal crystalline beam is actually zero regardless of its spatial
as a cooling force but can rather cause a heating effect beonfiguration[10]. It may thus be useful and convenient to
cause it tries to equalize the longitudinal velocities of allredefine the threshold of phase transition on the basis of
particles. The usual laser-cooling force basically has th&eam emittance.
same defect. In the simulation of Fig. 1, we have considered The threshold number of ions, at which a string converts
a modest linear friction wittf,=f,=0.01 andf,=0.11, so into a zigzag, is plotted in solid line in Fig. 9, while the
that the dispersive heating is not too serious. If the longituproken line indicates the corresponding plasma parameter.
dinal friction coefficientf, is, for example, tripled, then the The interparticle spacing_i in this case was always over

ordered structure is completely destroyed as demonstrated %Oﬂm, more than twice as large as the theoretical predic-

Fig. 8. The normalized rms emittances are now roughl.ytion for coasting crystalline beanf42]. We have also con-

10 ¥ mrad in all three directions, several orders of magni-g.mad that the threshold depends not only\gnbut also on
tude larger than the values in Fig. 1. We thus conclude that e cooling strength; conversion to a zigzag crystal tends to

is desirable to properly “taper the Ia§er cqolmg force in occur at a smaller number of ions as the cooling force be-
order to compensate the destructive dispersive efgit comes weaker

It should be informative to mention the simulation results Finally, let us briefly look at the configuration of a

in which we ponsidere_d one cavity and Si.x cqoling S.eCtionsounched zigzag beam for reference. Since the oscillating
arognd the fing. In_ this case, we found it still possible ©coulomb chain in Fig. 1 has the critical line density, we can
realize one-d|men5|_onal orderlng_. The ordered structure Wa$,ansform it to the zigzag configuration simply by adding one
however, unstable; it was immediately melted away once the, e jon. Figure 10 shows the simulation result. Unlike a
cooling force was removed. This should again be attributeqating zigzag beam, these 28 ions execute betatron oscil-
to momentum dispersion. lations, passing by each other in the vertical direction. They
also oscillate horizontally just like in the case of a bunched
string. These systematic oscillations of particles have made
the beam temperature even higher than the level of bunched
The be_havior of a classical one-component plasma can b€oulomb chains; it is over 0.5 K, two orders of magnitudes
characterized by the Coulomb coupling paramétatefined  greater than the Doppler limit of laser cooling. Similar to the
by I' = (q%/4me,d)/kg T, whered is the average interparticle case of one-dimensional crystalline beams, the oscillation

C. Temperature, transition density, and oscillating zigzag
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oL ] tum dispersion. Systematic numerical simulations revealed

I ] that the periodic oscillatory motion of a Coulomb chain is
10F oo, i quite sensitive to the lattice design such as the number and
= %00y, 1 positions of rf cavities. To predict the oscillation pattern in an
§ U o°°°°°o°°°° . arbitrary ring, we derived approximate equations of string
*_10'_ °°°o°°° ] motion making some fundamental assumptions. It was con-
I ° ] firmed that the stationary solution to Eq40) and(11) can
20k i well reproduce the complex motion of an oscillating Cou-
RN R S E— lomb chain.
—————ge T Bunched one-dimensional crystals turned out to be stable
201 o ° °o . even without the maintenance conditi¢td) satisfied. The
10'_ o ] present results, however, suggest that it is essential to mini-
—— ° ] mize the heating effect caused by momentum dispersion. The
§ Ok o000 ® 000 - best way to suppress the dispersive instability is the use of a
= ° o ] tapered cooling force although how to develop such a special
-10- o T force is a future issue.
_20'_ o . ° ] One possible scenario for the production of a string crys-
. %0po ., |, talline beam may be as follows: At high temperature and/or
-2 -1 0 1 2 low line density, the longitudinal laser-cooling force does not
z[mm] affect the transverse betatron motion because the natural

Coulomb coupling among stored ions is negligible. We,

FIG. 10. Spatial configuration of a bunched zigzag crystalline heref fi | h i hot arti
beam obtained from a multiparticle simulation. The lattice param-t erefore, first employ theesonant coupling met arti-

eters are identical to those in the case of Fig. 1. ficially improve the transverse cooling efficieni®6]. Since
a synchrobetatron resonance is used in this three-dimensional

pattern of each particle depends on the details of the latticE°0ling scheme, the beam must be bunched at the beginning
structure. [27]. After the beam has reached an ultracold equilibrium
state, we adiabatically reduce the rf voltage or laser power
V. CONCLUDING REMARKS ((_)r bc_)tt‘) to weaken th_e dispersive heating. If the lattice de-

sign is proper, we will then observe an anomalous beam

In this paper, we theoretically investigated the dynamicresponse similar to those in the electron-cooling experiments
properties of one-dimensional crystalline beams under that NAP-M, ESR, and CRYRING. Considering the fact that
influence of a longitudinal rf potential. It was demonstratedthe Doppler limit is much lower than the temperature of

that, unlike a coasting string, a bunched string in a storageurrently available cold electron beams, the final state can be

ring shows unique features due to the existence of momera Coulomb crystal.
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