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Oscillating Coulomb chain in a storage ring
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Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyam

Higashi-Hiroshima 739-8530, Japan
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The dynamic behavior of a bunched one-dimensional crystalline beam is studied theoretically. It is shown
that, owing to the existence of momentum dispersion, a Coulomb chain traveling in a storage ring performs a
complex periodic oscillation whenever it is exposed to a longitudinal radio-frequency force. The equations of
motion are derived to predict the oscillation pattern in an arbitrary lattice structure. The validity of the present
theory is confirmed through multiparticle simulations. Various features of an oscillating string beam, such as
the lattice-parameter dependence of the orbit, the stability, and critical line density, etc., are also discussed.
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I. INTRODUCTION

The first application of the laser-cooling technique to
relativistic ion beam was carried out in 1990 at the Heid
berg TSR storage ring@1#. It was experimentally demon
strated that the longitudinal motion of a fast stored beam
well controllable by the photon pressure. This seminal wo
followed by another important experiment at the ASTR
storage ring of Aarhus University@2#, opened up a possibility
for reaching the ultimate state of a charged-particle beam
fact, the Doppler limit of laser cooling is typically in a milli
Kelvin range or even below, several orders of magnitu
lower than the beam temperature achievable with other c
ing methods@3#. If the Doppler limit is reached in all three
degrees of freedom, the beam will then be Coulomb crys
lized as theoretically suggested by Schiffer and co-work
@4#.

After the experiments at TSR and ASTRID, theoretic
and experimental studies of beam crystallization beca
more active, and many new insights have been gained
cerning the dynamics of highly space-charge-domina
beams@3,5–10#. Nevertheless, nobody has succeeded so
in realizing beam crystallization in a storage ring, althou
circulating Coulomb crystals were recently obtained in
compact ring-shaped Paul trap system called PALLAS@11#.
To our current knowledge, there are three primary reas
why crystallizing a relativistic beam is so difficult:

~a! it is impossible for existing cooler storage rings
meet the stability requirements of a crystalline state;

~b! laser-cooling force directly operates only in the long
tudinal direction of beam motion;

~c! any storage-ring lattice contains dipole magnets t
inevitably yield momentum dispersion.

At sufficiently high line density, the resultant crystallin
structure is multidimensional; the two-dimensional zigzag
a three-dimensional shell configuration is formed@12#. We,
however, need a specialtapered force to stabilize such a
crystalline beam with a finite transverse dimension, wher
no practical method has been established so far for tape
the photon pressure@7,13#. Further, as mentioned above
the item ~a!, the transverse betatron motion eventually b
comes unstable unless the lattice of the ring has been p
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erly designed so as to prevent the occurrence of collec
instability during a cooling process@14#. These facts sugges
that it is almost hopeless at present to crystallize a fast sto
beam of high line density. By contrast, the production o
one-dimensional string crystal may be possible. Since
heating rate due to Coulomb collisions is rather low@7#, it
would be relatively easy to overcome the instability@15#. As
a matter of fact, in the middle 1990s, a sudden jump of
Schottky signal from highly charged ions, similar to that r
ported from Russian researchers in the late 1970s@16#, was
observed in electron cooling experiments at the ESR ring
GSI @17#. An analogous phenomenon was also confirmed
CRYRING of Manne Siegbahn Laboratory@18#. These
anomalies observed at very low line density are thought to
a sign of the phase transition to a sort of liquid state.
theoretical investigation has concluded that the beam es
lished a stringlike order where the individual ions still e
ecute transverse oscillations but cannot pass each other
gitudinally @19#.

Needless to say, understanding the nature of a o
dimensional crystalline beam is practically very important
would be impossible to realize other crystal configuration
the string cannot be formed. All particles forming acoasting
Coulomb chain sit exactly on the design closed orbit of
storage ring. In this simple case, nothing physically intere
ing takes place as the beam is completely frozen in the
frame. However, once a longitudinal radio-frequency~rf!
field is switched on, even a string crystalline beam come
exhibit a complicated dynamic behavior@20#. Since the rf
force induces finite energy difference among particles, e
an ideal string can no longer stay on the design orbit bu
forced to oscillate horizontally due to the existence of m
mentum dispersion. In this paper, we extensively study
dynamics ofbunchedCoulomb chains in a storage ring. W
first derive in Sec. II a set of equations that govern the m
tion of a bunched string. The validity of the proposed equ
tions is tested in Sec. III through multiparticle simulation
Section IV is devoted to describing various unique featu
of oscillating crystalline beams. In particular, we discuss
lattice-parameter dependence of string motion, the stab
and equilibrium temperature of ground states, etc. Fina
the present results are summarized in Sec. V.
©2003 The American Physical Society01-1
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II. EQUATION OF MOTION OF A BUNCHED
COULOMB CHAIN

Consider a storage ring composed of dipole and qua
pole magnets. We further put one or more identical rf cavit
that produce longitudinal electric force. Charged partic
traveling in this system obey the following canonical equ
tions of motion in the rest frame@21#:

x85px , ~1!

px85
g

r
pz2Kx~t!x2

r p

b2g2

]Uc~x,z!

]x
, ~2!

z85pz2
g

r
x, ~3!

pz852
r p

b2g2

]Uc~x,z!

]z
2

q

m0~bgc!2

]Ur f ~z;t!

]z
, ~4!

where r p , q, and m0 are, respectively, the classical radiu
total charge, and rest mass of the particle,c is the speed of
light, b andg are the Lorentz factors,r is the local curvature
of the design orbit,Kx is the horizontal focusing function
the scaled rf potential denoted byUr f is uniform in the trans-
verse directions, the independent variable has been de
as t5bgct with t being the proper time, and the prim
stands for differentiation with respect tot. Note that the
vertical degree of freedom has been ignored because in
section, we concentrate upon the behavior of an ideal o
dimensional crystalline beam. The scaled Coulomb poten
is then given by

Uc~x,z!5(
j

1

A~xj2x!21~zj2z!2
, ~5!

wherexj and zj are the spatial coordinates ofj th particle.
Since the rf force has been introduced only for the purpos
beam bunching, the synchronous phase is always chose
be zero. In this case, the synchronous ion located at the
ter of the string crystal passes through a cavity at a mom
when the rf electric field switches from decelerating phase
accelerating phase. We also assume, for the sake of sim
ity, that the cavities are symmetrically arranged; i.
Ur f (z)5Ur f (z1L), whereL is the distance from one cavit
to the next. If the ring has only one cavity,L, of course,
agrees with the total length of the design closed orbit.

In any crystalline ground state, all particles are precis
aligned in the transverse phase space, which means tha
emittance is equal to zero@10#. Since a string crystal has
linear configuration even in real space, we can express
coordinates of individual particles in the form

xj5CjDx~t!, zj5CjDz~t!, ~6!

whereCj is a particle-dependent constant, whileDx andDz
are periodic functions universal among all particles. Spec
cally, the value ofDz cannot cross zero; otherwise, the stri
configuration is destroyed. It is straightforward to show th
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these particles actually form a straight line in an arbitra
two-dimensional space. An analogous expression applie
multidimensional coasting crystalline beams as well@10#.

Let us now keep our eyes on, say,nth particle. We drop
the subscriptn, simply writing the canonical variables a
(x,z,px ,pz). If this is not the synchronous particle, the lo
gitudinal momentumpz suddenly jumps every time when
goes across a cavity. Because of the periodic nature of
string motion, each jump will occur symmetrically; if th
value ofpz were2p0 just before a cavity, it would jump to
1p0 after the interaction with the rf field. Further, the vari
tion of pz is expected to be smooth and simple in-betwe
two adjacent cavities since no longitudinal artificial force
there. It is, therefore, reasonable to assume

pz5Cna~t!S t

L
2

1

2D , ~7!

where the origin oft has been taken at the cavity positio
a(t) is a t-dependent function represented asa(t)5ā@1
1h(t)#, whereā denotes the average value ofa(t), and
h(t) is a periodic modulation satisfyinguhu!1 andLuh8u
!1. The total amount of a momentum jump at each cavity
clearly Cnā that can be related to the energy gain of t
particle. Assuming a usual sinusoidal rf potential with t
harmonic number of h and the amplitude of V0,
we obtain the approximate relation Cnā
'@q/m0(bgc)2#V0sin@(2phg/Nsp)(CnDz(0)/L)# whereNsp is
the lattice periodicity of the ring. This relation gives

ā'
~2pnz!

2

uj0uNsp

Dz~0!

L
, ~8!

where j0 is the phase slip factor and nz
2

[hquj0uV0 /2pm0g(bc)2. The parameternz directly corre-
sponds to the synchrotron tune provided thatnz!1. Substi-
tuting Eq.~7! into Eq. ~4!, we have the equation relevant i
the region between two neighboring cavities:

Cnāh8S t

L
2

1

2D1Cn

ā

L
~11h!52

r p

b2g2
Sn

Dz

~Dx
21Dz

2!3/2
,

~9!

where Sn5( j
j Þn

(Cj2Cn )/uCj2Cnu3. Since uhu!1 and

Luh8u!1, Eq. ~9! can be approximated asCnā/L'
2(r p /b2g2)SnDz /(Dx

21Dz
2)3/2. This equation indicates tha

Dz is nearly constant, because the longitudinal extent o
string crystal is generally much greater than the horizon
extent, i.e.,uDx /Dzu!1. From Eqs.~1! and~2! together with
Eqs.~5!–~9!, we eventually find

Dx91Kx~t!Dx5
1

NspL

~2pnz!
2

uj0u FDx

L
1S t

L
2

1

2DgDz

r G ,
~10!

where we have replacedDz(0) by Dz(t) recalling that
Dz(t)'const as pointed out above. Similarly, Eq.~3! leads
to
1-2
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TABLE I. Simulation parameters.

Ion species 24Mg1

Total kinetic energy 1 MeV
Lattice TARN II
Superperiodicity 6~without cavities!
Circumference 77.7 m
Bare betatron tunes (nx ,ny) Case I~2.10, 2.10! and Case II~2.30, 2.30!
Transitiong 2.255~Case I!, 2.444~Case II!
Phase slip factor 20.803~Case I!, 20.832~Case II!
rf harmonic number 1000
rf voltage amplitude ,150 V
Bare synchrotron tune 0.01;0.1
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Dz85
1

NspL

~2pnz!
2

uj0u S t

L
2

1

2DDz2
g

r
Dx . ~11!

In these equations, the independent variablet varies in the
region 0,t/L,1. The basic properties of a bunched Co
lomb chain can be predicted by solving Eqs.~10! and ~11!.

III. SIMULATION RESULTS

In order to test whether Eqs.~10! and~11! can well repro-
duce the motion of a bunched Coulomb chain, system
multiparticle simulations were performed. In our code,
numerically iterate the three-dimensional equations of p
ticle motion, incorporating the characteristics of an act
storage ring like bending and straight sections, a
alternating-gradient focusing. Since the number of partic
in a single bunch is not too large, real particles are emplo
to evaluate the exact Coulomb interactions among them
to the lattice structure, we chose the design parameters o
cooler storage ring TARN II@22#. The lattice of TARN II,
whose circumference is 77.7 m, has sixfold symmetry. T
betatron phase advance per single superperiod can b
duced to near 90° or even less, so that the stability condi
of crystalline beams is fulfilled@7#. The ion species consid
ered here is24Mg1 that has been often used in past las
cooling experiments. The main simulation parameters
listed in Table I.

In this section, we take the case-I lattice in which t
betatron tunes have been adjusted to (nx ,ny)5(2.10,2.10).
An rf cavity is installed in one of the six straight sections
bunch a 1 MeV 24Mg1-ion beam. The amplitude of the r
voltage is set at 38.65 V corresponding to the single-part
synchrotron tune of 0.05. In a test simulation, we initia
distributed 27 particles at random positions in phase sp
and, then, applied a three-dimensional modest dissipa
force to cool them. To save the computing time, the simp
cooling model was adopted; we damped the transverse
longitudinal momenta of all ions once in a turn, using t
linear transformation

~p,!out2~p,! in52 f ,~p,! in ~,5x,y,z!, ~12!

where (p,) in and (p,)out are the canonical momenta befo
and after the cooling point, andf , is the cooling strength
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Under these conditions, the beam finally reached an orde
state as shown in Fig. 1 where the real-space configura
observed at a certain location of TARN II has been depict
Each small circle stands for a single24Mg1 ion. We confirm
that the ions are horizontally deviated from the design o
due to the momentum dispersion. They execute periodic
cillations in the horizontal plane, keeping the linear config
ration as a whole. On the other hand, the beam profile in
vertical plane was almost static.

Figure 2 demonstrates the trajectories of three ions a
trarily picked from the crystal in Fig. 1. It is evident from th
last panel that the assumption in Eq.~7! is adequate. The
cavity is sitting at the coordinatet525.9 m where the sharp
momentum jump has occurred. Scaling these single-par
trajectories via Eq.~6!, we obtain Fig. 3. The three orbits
plotted in broken lines, have now completely overlapp
with each other. The solid lines represent the stationary

FIG. 1. Spatial configuration of a bunched ‘‘string’’ crystallin
beam obtained from a multiparticle simulation. The TARN II lattic
containing a single rf cavity has been taken into account. The h
zontal and vertical betatron tunes are (nx ,ny)5(2.10,2.10), and the
synchrotron tune is 0.05 in the absence of space charge. Each
represents a single24Mg1 ion traveling at the kinetic energy of 1
MeV. The friction coefficients have been chosen to bef x5 f y

50.01 andf z50.11.
1-3
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lution to Eqs.~10! and~11!, which indicates that the presen
theory explains the multiparticle simulation result fairly we
It is also recognized that all particles are on the design be
line when passing through the cavity. Since the rf force lo
gitudinally compresses the beam, the bunch length shoul
maximum at the cavity. However, the change ofDz was gen-
erally negligible according to our simulations. This impli
that the total length of the Coulomb chain is nearly const
all around the ring, because the ratiouDx /Dzu is always
small.

FIG. 2. Single-particle orbits in a bunched string crystalli
beam. The trajectories of three24Mg1 ions arbitrarily selected from
the beam in Fig. 1 have been plotted.

FIG. 3. Horizontal and longitudinal scaled orbits. The three t
jectories shown in Fig. 2 have been scaled according to Eq.~6!. The
values of the scaling parameters used here areC1521.00, C2

51.13, andC356.88. The scaled orbits plotted in broken lin
have completely overlapped with each other. The solid lines in b
pictures show the orbit functionsDx and Dz evaluated from Eqs.
~10! and ~11!. We see that the theoretical prediction is in excelle
agreement with the multiparticle simulation result.
04650
m
-
be

t

IV. CHARACTERISTICS OF OSCILLATING
COULOMB CHAINS

A. Lattice dependence

In the case-I lattice with a single rf cavity, a string cry
talline beam oscillates about the design closed orbit t
times per turn regardless of the synchrotron tune and ca
position. Note, however, that the number of rf cavities pla
an essential role in the orbit equations~10! and ~11!; it has
actually determined the oscillation period of the stationa
solution. Since the energy jump occurs only at the cav
position, the period of the longitudinal motion is inevitab
equal to the ring circumference as long as the lattice cont
only one cavity. The horizontal motion must then have t
same oscillation period despite the fact that the transve
focusing force repeats an identical variation pattern six tim
around the ring.

A question is what happens if we put an rf cavity in eve
lattice period so that the ring recovers strict sixfold symm
try. Figure 4 shows an example of the scaled orbit when
cavities are set at intervals of 12.95 m. Other conditions
the same as those assumed in the previous figures~while the
rf voltage has been reduced to 6.44 V in order to keep
bare synchrotron tune at 0.05!. Unlike the result in Fig. 3, the
particle trajectory has exhibited approximate sixfold symm
try. The weak symmetry breakdown comes from the cool
force; we can verify that oscillation patterns within the s
lattice periods perfectly agree with each other if six cooli
sections are symmetrically inserted in the ring.

We have also confirmed numerically that the scaled o
strongly depends on the positions of the rf cavities. To illu
trate this, let us shift all the cavities in Fig. 4 by 3.1 m alo
the beam line. The orbit is then completely altered as d

-

th

t

FIG. 4. Horizontal and longitudinal scaled orbits obtained fro
a multiparticle simulation. An rf cavity is installed in each lattic
period. Other conditions are identical to those assumed in Fig
Since the ring now contains six cavities, the rf voltage has b
reduced to 6.44 V in order to maintain the bare synchrotron tun
0.05. The small arrows in the lower picture indicate the longitudi
positions where the cavities are located.
1-4
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played in Fig. 5. Each ion now executes a small perio
oscillation not about the design orbit but about a certain h
zontal coordinate. The maximum value ofDx calculated
from Eqs.~10! and~11! has been plotted in Fig. 6 as a fun
tion of the cavity position. In this plot, we have consider
six cooling sections in order for the particle orbit to achie
exact sixfold symmetry. Only when a cavity is located with
the shaded regions in Fig. 6, the orbits of individual io
cross zero just like the case in Fig. 4. Outside this area,
oscillation pattern becomes similar to that in Fig. 5.

B. Stability

Without the rf force, it will always be possible to con
struct a one-dimensional crystalline state because idea

FIG. 5. Horizontal and longitudinal scaled orbits obtained fro
a multiparticle simulation. We have assumed exactly the same
tice parameters as used in Fig. 4, except for the locations of the
rf cavities.

FIG. 6. Maximum amplitude of the horizontal orbit functionDx

vs longitudinal position of an rf cavity. We have assumed exac
the same lattice parameters as used in Fig. 5. Six cooling sec
have been inserted symmetrically, so that we can consider on
single lattice period in the picture. When the cavity is located wit
the shaded area in each period,Dx shows an oscillation pattern
similar to that in Fig. 4. This result agrees fairly well with nume
cal simulations.
04650
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coasting Coulomb chain is completely static in the r
frame.~This does not necessarily mean that we can, in pr
tice, crystallize any low line-density beams.! It is, however,
uncertain about whether a bunched Coulomb chain is
stable as coasting ones. Since it inevitably has a finite os
lation amplitude in the horizontal direction, transverse c
lective instabilities may be induced more seriously. It h
actually been known that a multidimensional crystalli
beam is unstable in a storage ring that does not satisfy
condition @7#

max~nx ,ny!,
Nsp

2A2
. ~13!

Though the case-I lattice meets this requirement beca
Nsp56 and (nx ,ny)5(2.10,2.10), we must remember th
the longitudinal rf force substantially affects the transve
motion of a Coulomb chain. In the case of Fig. 1, for i
stance, the actual superperiodicity of the ring is one rat
than six as is evident from the single-particle trajectories
Fig. 2; the condition~13! has thus been broken. If this osci
lating Coulomb chain is really in a complete ground state
should be stable even without the dissipative force. Figur
shows its spatial profile, 15 000 turns after the cooling eff
was removed. We observe that the linear configuration is
maintained. The root-mean-squared~rms! emittances at this
moment are 2.20310218 m rad in the horizontal direction
and 2.95310215 m rad in the longitudinal direction, near th
values 1.82310219 m rad and 2.87310215 m rad just before
we stopped cooling.

It is also worthy to examine the stability of a bunche
string in the case-II lattice where (nx ,ny)5(2.30,2.30). In
this case, the condition~13! never holds even after six cav
ties are symmetrically installed in the ring. We, howev

t-
ix

y
ns
a

FIG. 7. Long-term stability of an oscillating Coulomb chai
Plotted is the spatial configuration of the crystalline beam in Fig
15 000 turns after the cooling was stopped.
1-5
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found that the string motion is quite stable without the co
ing force.

Another factor that crucially influences beam stability
the cooling force itself. Owing to dispersion, the avera
velocities of individual particles forming a crystalline bea
are slightly different depending on their horizontal position
in order for all particles to have an identical revolution fr
quency, a radially outer particle must travel faster than in
particles. This suggests that, at an ultralow temperat
simple dissipation as defined in Eq.~12! no longer operates
as a cooling force but can rather cause a heating effect
cause it tries to equalize the longitudinal velocities of
particles. The usual laser-cooling force basically has
same defect. In the simulation of Fig. 1, we have conside
a modest linear friction withf x5 f y50.01 andf z50.11, so
that the dispersive heating is not too serious. If the long
dinal friction coefficientf z is, for example, tripled, then the
ordered structure is completely destroyed as demonstrate
Fig. 8. The normalized rms emittances are now roug
10213 m rad in all three directions, several orders of mag
tude larger than the values in Fig. 1. We thus conclude th
is desirable to properly ‘‘taper’’ the laser cooling force
order to compensate the destructive dispersive effect@23#.

It should be informative to mention the simulation resu
in which we considered one cavity and six cooling sectio
around the ring. In this case, we found it still possible
realize one-dimensional ordering. The ordered structure w
however, unstable; it was immediately melted away once
cooling force was removed. This should again be attribu
to momentum dispersion.

C. Temperature, transition density, and oscillating zigzag

The behavior of a classical one-component plasma ca
characterized by the Coulomb coupling parameterG defined
by G5(q2/4p«0d̄)/kBT, whered̄ is the average interparticl

FIG. 8. Spatial configuration of a bunched beam cooled by
linear dissipative force withf x5 f y50.01 andf z50.33. Other pa-
rameters are identical to those in the case of Fig. 1.
04650
-

e

;

r
e,

e-
l
e
d

-

in
y
-
it

s

s,
e
d

be

distance,kB is the Boltzmann constant, andT is the thermo-
dynamic temperature of the beam@24#. It is often said that
the phase transition to a crystalline state takes place wheG
exceeds about 170@25#. In an alternating-gradient focusin
system, however, this statement is clearly irrelevant beca
the envelope of any multidimensional crystalline beam
forced to ‘‘breathe’’ periodically. Provided that the beam
bunched, even a one-dimensional crystal oscillates tra
versely as verified in previous sections. Further, the therm
dynamic temperature of a three-dimensional crystal is
pected to grow as the number of shells increases, while
value of d̄ is roughly maintained. Consequently, theG value
of a crystalline beam is generally much smaller than 170.
instance, the plasma parameter of the Coulomb chain in
1 is only 4.4. Since the transverse oscillation amplitude o
Coulomb chain depends on the rf voltageV0 , G is alsoV0
dependent. One possible way to avoid this ambiguity ofG is
the use of the emittance concept. The rms emittance o
ideal crystalline beam is actually zero regardless of its spa
configuration@10#. It may thus be useful and convenient
redefine the threshold of phase transition on the basis
beam emittance.

The threshold number of ions, at which a string conve
into a zigzag, is plotted in solid line in Fig. 9, while th
broken line indicates the corresponding plasma parame
The interparticle spacingd̄ in this case was always ove
100 mm, more than twice as large as the theoretical pred
tion for coasting crystalline beams@12#. We have also con-
firmed that the threshold depends not only onV0 but also on
the cooling strength; conversion to a zigzag crystal tend
occur at a smaller number of ions as the cooling force
comes weaker.

Finally, let us briefly look at the configuration of
bunched zigzag beam for reference. Since the oscilla
Coulomb chain in Fig. 1 has the critical line density, we c
transform it to the zigzag configuration simply by adding o
more ion. Figure 10 shows the simulation result. Unlike
coasting zigzag beam, these 28 ions execute betatron o
lations, passing by each other in the vertical direction. Th
also oscillate horizontally just like in the case of a bunch
string. These systematic oscillations of particles have m
the beam temperature even higher than the level of bunc
Coulomb chains; it is over 0.5 K, two orders of magnitud
greater than the Doppler limit of laser cooling. Similar to t
case of one-dimensional crystalline beams, the oscilla

e

FIG. 9. Threshold number of ions in a bunch and the cor
sponding plasma parameter vs bare synchrotron tune. The la
parameters are identical to those in the case of Fig. 1.
1-6
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pattern of each particle depends on the details of the la
structure.

V. CONCLUDING REMARKS

In this paper, we theoretically investigated the dynam
properties of one-dimensional crystalline beams under
influence of a longitudinal rf potential. It was demonstrat
that, unlike a coasting string, a bunched string in a stor
ring shows unique features due to the existence of mom

FIG. 10. Spatial configuration of a bunched zigzag crystall
beam obtained from a multiparticle simulation. The lattice para
eters are identical to those in the case of Fig. 1.
,

.

04650
e

c
e

e
n-

tum dispersion. Systematic numerical simulations revea
that the periodic oscillatory motion of a Coulomb chain
quite sensitive to the lattice design such as the number
positions of rf cavities. To predict the oscillation pattern in
arbitrary ring, we derived approximate equations of stri
motion making some fundamental assumptions. It was c
firmed that the stationary solution to Eqs.~10! and ~11! can
well reproduce the complex motion of an oscillating Co
lomb chain.

Bunched one-dimensional crystals turned out to be sta
even without the maintenance condition~13! satisfied. The
present results, however, suggest that it is essential to m
mize the heating effect caused by momentum dispersion.
best way to suppress the dispersive instability is the use
tapered cooling force although how to develop such a spe
force is a future issue.

One possible scenario for the production of a string cr
talline beam may be as follows: At high temperature and
low line density, the longitudinal laser-cooling force does n
affect the transverse betatron motion because the na
Coulomb coupling among stored ions is negligible. W
therefore, first employ theresonant coupling methodto arti-
ficially improve the transverse cooling efficiency@26#. Since
a synchrobetatron resonance is used in this three-dimens
cooling scheme, the beam must be bunched at the begin
@27#. After the beam has reached an ultracold equilibriu
state, we adiabatically reduce the rf voltage or laser po
~or both! to weaken the dispersive heating. If the lattice d
sign is proper, we will then observe an anomalous be
response similar to those in the electron-cooling experime
at NAP-M, ESR, and CRYRING. Considering the fact th
the Doppler limit is much lower than the temperature
currently available cold electron beams, the final state can
a Coulomb crystal.
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