Self-limiting atomic-layer deposition of Si on SiO₂ by alternate supply of Si₂H₆ and SiCl₄

Shin Yokoyama,^{a)} Kenji Ohba, and Anri Nakajima

Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

(Received 10 January 2001; accepted for publication 4 June 2001)

Atomic-layer deposition of Si on SiO₂ with a self-limiting growth mode was achieved at substrate temperatures between 355 and 385 °C by means of alternate supply of Si₂H₆ and SiCl₄ gas sources. The growth rate was saturated at 2 ML per cycle at these temperatures and for Si₂H₆ exposure time over 120 s. The smooth surface (~0.26 nm in arithmetic average roughness) was obtained under the self-limiting condition irrespective of a film thickness up to 6.5 nm. © 2001 American Institute of *Physics.* [DOI: 10.1063/1.1389508]

Atomic-layer-controlled deposition (ALD) has recently been attracting a great deal of attention as the size of the electronic devices decreases. Especially for gate insulators with a high dielectric constant such as Al_2O_3 , ¹ ZrO_2 , ² and HfO_2 , ³ the ALD process is recognized as a practical method because of its excellent thickness uniformity, low growth temperature, and less particle generation.

Besides the dielectric films, the ALD of semiconducting Si films on SiO_2 is very useful, for example, for quantum devices, in which a small Si island with precisely controlled size is necessary to be sandwiched in the insulating films.⁴ This technology will be useful for the ultra-large-scale integrated (ULSI) circuits, for example, to fabricate a precisely size-controlled floating gate memory and accurate resistors. It is also applicable to fabricate a silicon on insulator substrate having an extremely flat thin Si layer.

Although there are many reports on the atomic-layer epitaxy (ALE) of Si,⁵⁻⁸ there are only a few reports concerning the ALD of Si on SiO₂.^{9,10} Tanaka *et al.*^{9,10} reported the ALD of Si on SiO₂ by cryogenic laser-induced deposition using Si₂H₆. They obtained a self-limiting growth mode, in which the growth rate is automatically adjusted to a monolayer per cycle, at substrate temperatures -26 to -49 °C. However, it may be difficult to obtain a high-purity Si film because the residual impurity gases in the vacuum chamber will be easily adsorbed on the cooled substrate. In this letter, we have achieved atomic-layer deposition of Si on SiO₂ with a selflimiting growth mode at more practical substrate temperatures by means of alternate supply of SiCl₄ and Si₂H₆. The growth rate is nearly constant (~2 ML/cycle) at temperatures between 355 and 385 °C, and a very smooth surface is obtained irrespective of the film thickness.

The time sequence for temperature and gas supply is shown in Fig. 1. The ALD system consists of a quartz chamber (volume of ~100 cm³), a turbomolecular pump (1500 l/s), and computer-controlled halogen lamp and gas valves.¹¹ The substrate is OH-terminated SiO₂, ¹² which was obtained by dilute HF treatment of thermally oxidized *p*-Si(100) at 1000 °C, followed by a short deionized water rinse (1 min) and spin dry. After evacuating the chamber into $<2 \times 10^{-7}$ Torr, SiCl₄ (200 Torr, at a substrate temperature $T_1 = 375$ °C: fixed) and Si₂H₆ (20%, He base, 200 Torr, $T_2 = 345-420$ °C) gases are alternately supplied. For the SiCl₄ exposure, we employed the same condition used in the self-limiting atomic-layer deposition of silicon nitride by alternate supply of SiCl₄ and NH₃,¹³ because the SiCl₄ adsorption was reported to be saturated at ~1 ML at this condition. The typical growth cycle was 20. The film thickness was measured by the ellipsometry.

The growth rate is shown in Fig. 2 as a function of reciprocal substrate temperature at Si₂H₆ exposure. The Si growth rate for the exposure of only Si₂H₆ (the same condition except for no supply of SiCl₄) is also plotted in Fig. 2. For the alternate gas supply of SiCl₄ and Si₂H₆, the growth rate is nearly constant (~ 2 ML/cycle) in the temperature range between 355 and 385 °C. On the other hand, for the gas exposure of only Si_2H_6 , the growth rate exponentially increases with the temperature and the activation energy of \sim 2.0 eV is obtained from Fig. 2, which coincides with that for the thermal dissociation of Si_2H_6 into SiH_4 and SiH_2 .¹⁴ Without the exposure of Si_2H_6 , i.e., only the SiCl₄ exposure, the film growth did not take place. Therefore, the HCl desorption reaction of SiCl₄ with the surface H-Si bond, and/or HCl desorption reaction of Si2H6 with the surface Cl-Si bond probably cause the self-limiting growth of ~ 2 ML/cycle in the temperature range 355–385 °C. Namely,

FIG. 1. Typical time sequence of gas supply and substrate temperature control. T_1 and T_2 indicate the substrate temperature during SiCl₄ exposure and Si₂H₆ exposure, respectively. The substrate temperature was computer-controlled synchronized with the gas supply. The vacuum evacuation time between SiCl₄ and Si₂H₆ exposures is 90 s. The pressure in the chamber just before each gas supply is $\sim 2 \times 10^{-4}$ Torr.

617

Downloaded 17 Jun 2007 to 133.41.149.126. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

^{© 2001} American Institute of Physics

FIG. 2. Growth rate of Si as a function of substrate temperature at Si_2H_6 exposure. The $SiCl_4$ and Si_2H_6 exposures times are 4 and 2 min, respectively. Two monolayer thicknesses of 0.27 nm for Si(100) and 0.31 nm for Si(111) are indicated in the figure.

each HCl desorption reaction automatically stops when 1 ML of Si covers the surface. Here, the Cl- and/or H-terminated surface acts as a surfactant to operate the self-limiting mechanism.¹⁵ While at higher temperatures (>400 °C) the dissociation of Si₂H₆ becomes predominant and the growth rate increases independent on the SiCl₄ exposure.

The deposition rate for the SiCl₄/Si₂H₆ alternate supply at a substrate temperature of 355 °C (at Si₂H₆ exposure) is shown in Fig. 3 as a function of Si₂H₆ exposure time. The deposition rate saturates at a roughly 2 ML/cycle for the Si₂H₆ exposure time longer than 120 s.

Here, we discuss the reason for the success in the selflimiting growth in our method. In order to obtain the selflimiting growth mode, an alternate supply of chloride and hydride gas sources has been usually employed for the ALD or ALE.^{5,8,16–18} Gates *et al.*⁵ reported an ALE of Si using Si₂Cl₆ and Si₂H₆, however, the self-limiting growth mode was not achieved. The essential reason for our success in the self-limiting growth for the SiCl₄/Si₂H₆ system is probably an employment of a relatively low substrate temperature (355–385 °C) at Si₂H₆ exposure. While in the Si₂Cl₆/Si₂H₆ case,⁵ the substrate temperature was relatively high (465 °C), which may cause continuous Si deposition through thermal dissociation of Si₂H₆ at the substrate surface. In compensation for using the low substrate temperature, we employed a high gas pressure of 200 Torr in order to gain the growth

FIG. 4. Surface roughness vs substrate temperature at Si_2H_6 exposure. The growth cycle is 20. The $SiCl_4$ and Si_2H_6 exposure times are 4 and 2 min, respectively.

rate. While in the Si₂Cl₆/Si₂H₆ case,⁵ a low Si₂H₆ gas pressure of 2×10^{-3} Torr was sufficiently enough to obtain a practically large growth rate because of the high substrate temperature. On the other hand, concerning the SiCl₄ exposure condition, the monolayer adsorption of SiCl₄ on the OH-terminated SiO₂ surface¹⁸ and on the NH-terminated silicon nitride surface¹³ has been indirectly proven, respectively, from the ALD of SiO₂ using a SiCl₄/H₂O system¹⁸ and from the ALD of silicon nitride using a SiCl₄/NH₃ system.¹³ In these cases, a relatively high gas pressure of 1-10 Torr (Ref. 18) or 200 Torr (Ref. 13) and a relatively low temperature [427 °C (Ref. 18) or 375 °C (Ref. 13)] conditions were used. Therefore, we have employed the same SiCl₄ exposure condition as the SiCl₄/NH₃ system.¹³ It is speculated from the rate saturation of the \sim 2 ML/cycle in Figs. 2 and 3 that the SiCl₄ adsorption is also saturated at ~ 1 ML on the SiH-terminated surface at the condition used.

Figure 4 shows the surface roughness measured by atomic-force microscopy as a function of substrate temperature at Si₂H₆ exposure. Below 395 °C the surface is smooth (~0.26 nm in arithmetic average roughness: R_a), while it becomes rough at temperatures over 395 °C, possibly due to Si nucleation.⁵ Figure 4 indicates the growth mode change from the layer by layer (Frank–Van der Merwe¹⁵) mode to island growth (Volmer–Weber¹⁹ or Stranski–Krastanov²⁰) mode at high temperatures. The surface roughness is also

FIG. 3. Deposition rate of Si vs Si_2H_6 exposure time at a substrate temperature of 355 °C. The SiCl₄ exposure time is fixed at 4 min.

FIG. 5. Surface roughness vs film thickness. The substrate temperature at Si_2H_6 exposure is fixed at 355 °C. The gas exposure times are the same as in Fig. 4. It was confirmed that the film thickness was proportional to the growth cycle.

Downloaded 17 Jun 2007 to 133.41.149.126. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

plotted as a function of the film thickness in Fig. 5. It is recognized that the surface is maintained smooth up to a film thickness of 6.5 nm as far as the self-limiting condition is employed.

In conclusion, we have demonstrated the self-limiting growth of Si on SiO₂ at practical growth temperatures 355-385 °C using chloride/hydride gas sources. A smooth surface was obtained under the self-limiting growth condition. The epitaxial Si growth with the self-limiting mechanism would be expected under this growth condition. This technique will help in the realization of sophisticated ULSI and quantum devices.

This work has been supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Science, Sports and Culture, the Japanese Government (Project No. 11450125), and the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST).

- ⁴ For example, see A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, and N. Yokoyama, Appl. Phys. Lett. **71**, 353 (1997).
- ⁵S. M. Gates, D. D. Koleske, J. R. Heath, and M. Copel, Appl. Phys. Lett. **62**, 510 (1993).
- ⁶J. Murota, M. Sakuraba, and S. Ono, Appl. Phys. Lett. **62**, 2353 (1993).
- ⁷D. D. Koleske and S. M. Gates, Appl. Phys. Lett. 64, 884 (1994).
- ⁸D. D. Koleske and S. M. Gates, J. Appl. Phys. 76, 1615 (1995).
- ⁹T. Tanaka, T. Fukuda, Y. Nagasawa, S. Miyazaki, and M. Hirose, *Proceed-ings of 1989 Dry Process Symposium Tokyo, 1989* (The Institute of Electrical Engineers of Japan, Tokyo, 1989), p. 103.
- ¹⁰T. Tanaka, T. Fukuda, Y. Nagasawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 56, 1445 (1990).
- ¹¹K. Ooba, Y. Nakashima, A. Nakajima, and S. Yokoyama, *Ext. Abst. Conf. Solid State Devices and Mater., Hiroshima, 1998* (Business Center for academic Societies Japan, Tokyo, 1998), p. 22.
- ¹²S. Miyazaki, Y. Hamamoto, E. Yoshida, M. Ikeda, and M. Hirose, Thin Solid Films **369**, 55 (2000).
- ¹³S. Yokoyama, Y. Nakashima, and K. Ooba, J. Korean Phys. Soc. 35, S71 (1999).
- ¹⁴M. Browery and J. H. Purnell, Proc. R. Soc. London **321**, 341 (1971).
- ¹⁵ M. Copel, M. C. Reuter, M. Horn von Hoegen, and R. M. Tromp, Phys. Rev. B 42, 11682 (1990).
- ¹⁶J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Electrochem. Soc. 137, 1898 (1990).
- ¹⁷ M. Pessa, R. Makela, and T. Suntola, Appl. Phys. Lett. **38**, 131 (1981).
- ¹⁸J. W. Klaus, A. W. Ott, J. M. Johnson, and S. M. George, Appl. Phys. Lett. **70**, 1092 (1997).
- ¹⁹H. Kawabata, H. Ueba, and C. Tatsuyama, J. Appl. Phys. 66, 634 (1989).
- $^{20}\text{E.}$ Bauer and H. Poppa, Thin Solid Films 12, 167 (1972).

¹S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, Appl. Surf. Sci. 82/83, 460 (1994).

 ²M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. **76**, 436 (2000).
³K. Kukli, J. Ihanus, M. Ritala, and M. Leskela, Appl. Phys. Lett. **68**, 3737 (1996).