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Dualisation with Respect to Restricted s-Tuples
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Dualisation with respect to restricted s-tuples for constructions of partially balanced in-
complete block designs is proposed. As a by-product, balanced incomplete block designs
are also obtained.
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1. Introduction

Bose and Nair (1939) first introduced the concept of “dualisation” in the field of design of
experiments. They derived a new class of block designs by interchanging the role of treatments
and blocks in a block design D. This is called a dual of D and denoted by Dj. This dualisation,
namely, writing the block numbers of blocks in which a treatment occurs in the original design,
is extended to another concept as writing the block numbers of blocks in which a pair of
treatments occurs in the original design. This is named as “dualisation with respect to pairs”,
denoted by D} for a given block design D, and is dealt with in Vanstone (1975) and Mohan
and Kageyama (1983).

Kageyama and Mohan (1984) generalized the concept of “dualisation with respect to pairs”
to “dualisation with respect to s-tuples” for any s > 1. Kageyama et al. (1995) and Philip
et al. (1997) used the concept of “restricted dualisation” to construct some nested balanced
incomplete block (BIB) designs and partially balanced incomplete block (PBIB) designs. In
this paper, we introduce the concept of “dualisation with respect to restricted s-tuples” for
any s > 1 to construct PBIB designs. This dual design is here denoted by D;*. Hence this
paper forms a companion of Kageyama and Mohan (1984).

A BIB design is an arrangement of v treatments into b blocks such that

(1) each block contains k(< v) distinct treatments,
(2) each treatment appears in 7 different blocks,
(3) every pair of distinct treatments appears together in exactly A different blocks.

Here, the parameters v, b, 7, k, A are related by identities vr = bk and A(v — 1) = r(k — 1).

A t-(v,k, ) design (or simply t-design) is a system with v treatments and b blocks
containing k distinct treatments, each treatment contained in r different blocks and every ¢
distinct treatments are contained in exactly A; different blocks. For a t-design \; (;’) = b(’:)
and for each 0 < s < t, every t-(v, k, \¢) design is an s-(v, k, ;) design with
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where (’T’) is a binomial coefficient and (:) =0ifn <r. Here, \o =band \; =r. A 2-design
coincides with a BIB design with parameters v, b, T, k, A(= Az).

For t > 2, a t-design is said to be quasi-symmetric if any of its two blocks have either z
or y common treatments, where z # y, namely, the number of treatments incident with two
blocks takes just two distinct values.

For the technical terms like association schemes and PBIB designs, we refer the reader
to Raghavarao (1971).

Lemma 1.1. If D is a quasi-symmetric BIB design with parameters v,b,r,k, A, then among
the r blocks which contain a particular treatment, say 6, each block has #; blocks having z —1
treatments in common with it other than 6 and t; blocks having y — 1 treatments in common
with it other than 6, where

-De -1 - (k=DA-1) w
y- |

t1 =

f = (k—1)A=1)—(z—1)(r—1)
2 = — .

(1.2)

Proof. Let the r blocks of D which contain 6 be denoted by By, Ba, ..., Br. Without loss of
generality, suppose that B; has t; blocks having z — 1 treatments in common with it other
than @ and ¢, blocks having y — 1 treatments in common with it other than . Then among
B;’s it clearly holds that

ti +ta=1r—1, (1.3)

(z—Dt1+ (y — Dtg = (k= DA - 1). (1.4)

Solving (1.3) and (1.4) for ¢; and 5 we can obtain their values as in (1.1) and (1.2), respectively.
O

2. Method

We consider here an equireplicate and proper block design D in which the number of
treatments (with the replication number r) is v and the number of blocks of size k each is b.
The present method is described as follows. Number the r blocks of a given block design D.
Now, in D?* if the ith block of D includes an s-tuple containing a fixed treatment, say 8, then
the corresponding block of D** will have the ith treatment of D;*.

For a given block design D with parameters v,b,7,k, it is obvious that its dual design
D:* with respect to restricted s-tuples for s < k is characterized by the parameters in the
following form

vt =r, b= (01), = (0)s
k** = the number of times s-tuples of treatments occur in the original design D,

2 = (";_‘11), where p, denotes the number of treatments common to any two blocks in D

where the treatment 6 occurs.

Note that if the number of times s-tuples of treatments occur and the number of treat-
ments common to any two blocks of D are not constant, then the values of k** and \** are
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varying. By noting this fact, in this paper, constructions of PBIB designs are discussed to
show some advantage of the present approach.

Theorem 2.1. For positive integers z,y (z # y), the existence of a quasi-symmetric t-(v, k, A¢)
design with any of its two blocks having either z or y common treatments implies the existence
of a 2-associate PBIB design with parameters

*k sk v—1 *k k-1 *k *k z-—1 ok y-‘l
vr=mnb —<s—1>’r _(s—1>’k =As _(5—1 A= s—1)’

g W=D —(k-DQA2 =1 . (-DO=1D - (@-Dr-1)
v y—a S y—a ’

for1<s<t.

Proof. Consider a quasi-symmetric ¢-(v, k, A¢) design with any of its two blocks having either
x or y common treatments. Dualise this quasi-symmetric t-design with respect to restricted
s-tuples for 1 < s < t. Then, the parameters v**,b**,r**,k**, A*, A3* are obvious from the
definition of the dualisation with respect to restricted s-tuples. Also, the values of n1* and n3*
follow from Lemma, 1.1. The proof is complete. O

Example 2.1. Consider a quasi-symmetric 5-(7,5,1) design with parameters b6 = 21,7 =
15, ), = 10,z = 3,y = 4, whose blocks are given by (1, 2, 3, 4, 5), (1, 2, 3, 4, 6), (1, 2,
3,4, 7, (1,23,5,6), (1,23,57,@1,23,6,7), (1, 2, 4,5, 6), (1, 2, 4,5, 7), (1,
2,4,6,7), (1,256 7, (1,3,4,5,6), (1,3, 4,5, 7), (1, 3, 4,6, 7), (1, 3, 5, 6, 7),
(1, 4, 5,6, 7), (2,3,4,5,6), (2,3,4,57), (2 3,4,6,7), (2356, 7), (24, 5 6,
7), (3, 4, 5, 6, 7). Then Theorem 2.1 yields a 2-associate PBIB design D3* with parameters
v** = 15,b** = 6,7** = 4,k* = 10,A]* = 2,\3* = 3,n1* = 6,n3* = 8, whose blocks are as
follows.

(1,2,3,4,5,6,7,8,9,10), (1,2,3,4,5,6,11,12,13,14),

(1,2,3,7,8,9,11,12,13,15), (1,4,5,7,8,10,11,12,14,15),

(2,4,6,7,9,10,11,13,14,15), (3,5,6,8,9,10,12,13,14,15).
Note that the complement of this resulting design is a 2-associate PBIB design with parameters
v=15b=6,r=2,k=5MX =0, A2 =1,n1 =6,n, =8.

Example 2.2. Consider a quasi-symmetric 5-(7,5,1) design with parameters b = 21,r =
15,A\ = 10,3 = 6,z = 3,y = 4, having blocks given in Example 2.1. Then Theorem 2.1
yields a 2-associate PBIB design Dj* with parameters v** = 15,b** = 15,7** = 6,k™ =
6, \1* = 1, \3* = 3,n}* = 6,n3* = 8, whose blocks are as follows.

(1,2,3,4,5,6), (1,2,3,7,8,9), (1,4,5,7,8,10), (2,4,6,7,9,10),

(3,5,6,8,9,10), (1,2,3,11,12,13), (1,4,5,11,12,14), (2,4,6,11,13,14),

(3,5,6,12,13,14), (1,7,8,11,12,15), (2,7,9,11,13,15), (3,8,9,12,13,15),

(4,7,10,11,14,15), (5,8,10,12,14,15), (6,9,10,13,14,15).

Example 2.3. There exists a quasi-symmetric 4-(23,7,1) design with r = 77, A\ = 21, A3 =
5,2 = 1 and y = 3 (see, e.g., Hedayat and Kageyama, 1980; Kageyama and Hedayat, 1983).
Then Theorem 2.1 yields 2-associate PBIB designs for ni* = 16 and n3* = 60:

Di* . v™ = 77,6 = 22,7 = 6,k = 2L, A{* = 0, \* = 2;

Di* . v™ = 77,6 = 231,7** = 15,k* = 5, \* = 0,\3* = L

Remark 2.1. In Theorem 2.1, if the starting design is affine resolvable, then b = v +r — 1,
z =0 and y = k?/v (see, e.g.,Hedayat and Kageyama, 1980; Kageyama and Hedayat, 1983).
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Hence an idea of the present procedure yields a BIB design. This observation implies that we
can utilize an affine resolvable t-design as a starting quasi-symmetric block design. In fact, an
affine resolvable block design has z = 0. Available affine resolvable t-designs yield some new
BIB designs. For example, Kimberley (1971) showed that all resolvable 3-(v, k, A3) designs are
affine resolvable if and only if they are 3-(4\3 +4,2)\3 + 2, A3) designs. In this case, they have
other parameters as b = 2(4\3 +3),7 = 4 3+ 3, 2 = 23+ 1,z = 0 and y = A3 + 1. Hence
the present procedure yields two BIB designs, D3* and D3*, with parameters

*% ok 423 +3 *k 2A3+1 ok *k __ A3
vt =43 +3, b _(3_1),7» _(8_1>,k =X, A= ()

for s = 2,3. .

As another example that is not affine resolvable, we can consider a quasi-symmetric 3-(22,
6, 1) design with r = 21,2 = 5,z = 0 and y = 2 (see, e.g., Kageyama and Hedayat, 1983).
In this case the present procedure yields a BIB design, D3*, with parameters v** = 21,b** =
21, r** =5,k =5, A" =1.
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