Bull. Grad. School Educ. Hiroshima Univ., Part I, No. 52, 2003,1—6
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In this paper a new class of efficiency balanced two-way elimination of heterogeneity
designs, derived from F-squares, has been obtained. These designs have potential appli-
cations in sericulture.

Keywords: F-squares, Generalized row-column design, orthogonal generalized row-
column design

1. Introduction

Two-way elimination of heterogeneity designs are useful in field experiments if the fertility
gradient exists in two directions. The available literatures on the constructions of such designs
are, indeed, plenty. The most common useful two-way elimination of heterogeneity design is
the latin square design. A generalization of a latin square design is the F-square design, due to
Federer. In this paper, the definition of an F-derivative design is introduced. It has been shown
that such designs can be used in sericultural experiments wherein better strains of silkworms
are screened from a number of competitive strains. This paper begins with an enunciation of a
real life problem encountered in sericultural research. The motivation of the paper stems from
an effort to have a solution to the sericulture-research problem.

Farmers engaged in sericulture are interested in such strains of silkworra which can pro-
duce cocoon in the least possible time after the formation of egg owing to the economic ad-
vantage that they can have for being able to process the cocoon for extraction of silk. The
procedure of selection of better strains from a set of v strains to be compared is governed by
observing the above time period and subsequently the judgement is done on the basis of the
criterion of the above-mentioned least possible time. Experimental researches based on this
objective are conducted in sericultural farms. Perennial Mulberry trees are planted in orchards,
usually, in squared layouts, the field having two-way heterogeneity along rows and columns,
and the leaves of such plants are used for feeding the larvae of silkworms. Normally, owing to
the requirement of such experiments, latin squares/F-squares (of type F(m,a)) for allowing
replications within rows and columns are chosen. Thus, m? Mulberry trees, planted under a
two-way heterogeneity set-up in the orchard in conformity with the existing two-dimensional
heterogeneity, simulating a frequency square set-up with v different above-mentioned strains,
to be compared, following an F(m, @) set-up, each strain being replicated a times in each row
and in each column.

In sericulture, the silkworm larvae need be reared with utmost care since they are very
susceptible to disease. Rearing medium (house) need be thoroughly cleaned and disinfected.
In the above rearing medium, m? boxes, each with the same aged 20,000 eggs, are taken for
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rearing. Each of the m? boxes is designated by a level (i, j), the identity of its placement, i, j =
1,2,...,m. These boxes kept in rearing houses are exposed to a totally controlled environment
except for the presence of unidentifiable/uncontrollable factors operating in each box. Eggs of
v different strains (pure/monohybrid/polyhybrid) of Bombyz mori are taken for comparison
of the length of their larval periods (from egg to cocoon formation) and are placed in the
above-mentioned m? boxes allowing «a replications in each row and in each column in respect
of each strain, generating a lay-out of an F(m,a) design. Leaves from each of m? Mulberry
plants are then supplied to the eggs in the corresponding box out of the m? boxes considered
above. Thus, the positional effects (rows and columns) of Mulberry trees exist implicitly in
the corresponding box. The usual analysis of F-squares is valid on the observations (lengths
of larval period) recorded from the boxes.

The motivation of the present communication is delineated below. It is, indeed, possible
that v strains can be compared in m? boxes under an F((m,a) design arranged in m rows and
m columns. However, in the orchard, m — z (not m rows, r # 0) and m columns, m(m — x)
plots, may be available in many practical situations. In such cases, the larvae contained in
the first set of z boxes in the first column may be fed with the leaves of the tree positioned
in the first row and first column in the orchard. Technically, it means that the larvae in the
boxes having the serial positions, (1,1), (2,1), ..., (z,1), respectively, are fed with the leaves
of the tree occurring in the first (1,1) position, first row and first column, in the orchard.
Similarly, the larvae in the boxes having the serial positions, (1, j), (2, j), ..., (z, j), respectively,
are fed with the leaves of the tree occurring in the position (1, ),j = 2, 3, ..., m, in the orchard.
Thus, the feeding system adopted here tentamounts to a new arrangement of the m rows in an
F(m,a) design such that the first z rows of the F(m, ) design are adjoined to form a single
row in which x treatments are placed in each of the m cells of the newly-constructed row. The
arrangement in the rest m — z rows remains unaltered. Obviously, it is understood that the
m — z row effects and m column effects do also influence the response variable, the length of
the larval period, as before. The z observations occurring in each of the m cells in the first row
remain independent owing to the fact that the = boxes are different. In fact, the constructed
design mentioned above is seen to be an orthogonal generalized row-column design. A variant
of the above design is also obtained which is found to be an efficiency balanced orthogonal
generalized row-column design.

2. Preliminaries and definitions

The following preliminaries and definitions are presented for the sake of clarity. In what
follows, only connected two-way elimination of heterogeneity designs are considered. Most of
the symbols have been recalled from Pal (1977) and Dean and Voss (1999).

Throughout this paper, 1, is a v x 1 column vector with ones, I, is the identity matrix
of order v, Jsx: = 1,1} and especially J, = 1,1,,.

Definition 2.1. A generalized row-column (GRC) design, with v treatments, b rows and b’
columns, is defined as a two-way elimination of heterogeneity design in which the estimates of
row effects ignoring treatment effects are orthogonal to the estimates of column effects ignoring
treatment effects (see also Chakrabarti, 1962).

It is known (Pal, 1977) that a sufficient condition for a two-way elimination of het-
erogeneity design to be a GRC design is N* = n~'kq’, where N* is the row-column inci-
dence matrix, n is the total number of observations, k = [k, k, ..., k)’ (row-size vector) and
q = (91,92, ...,qv] (column-size vector). In case a GRC design has N* = Jyyp, a b x ¥
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row-column (RC) design is obtained. For a GRC design, the coefficient matrix, C, under
the usual two-way elimination of heterogeneity model can be written as Ca = Q, where
C =1~ Nk*’N - Nqg*N +nlrr', Q = Nk°B - Nq~°C’ + n~1Gr, a is the es-
timate of the vector of treatment effects, N*, N and IN are the incidence matrices of row
vs column effects, treatment vs row effects, and treatment vs column effects, respectively, r
= [r1,72,...,T)’ (replication vector), ® = diag{ri,r2,...,7}, k=% = diag{1/k;,1/ka,...,1/ks},
q~% = diag{1/q1,1/q2,...,1/qr}, Q is the vector of adjusted treatment totals, and T', B and
C are the treatment-total vector, row-total vector and column-total vector, respectively, and
G is the grand total.
An important matrix M (see Caliriski and Kageyama, 2000, 2002) is defined below.

My, = SNk N +r3Ng N —2n~11,¢
= (r*NE°N -n1,7)+ (r *Nqg°N' —n711,7)
= Moy + Mo (say).

Definition 2.2. A GRC design or an RC design is said to be orthogonal if the estimates of the
column effects = after eliminating treatment and row effects are orthogonal to the estimates of
row effects 3 after eliminating treatment and column effects (see also Pal, 1977).

It is mentioned (cf. Pal, 1977) that Cov (3,) = 0 (orthogonality condition) holds under
the satisfaction of the condition N* = N'r~°N.

Definition 2.3. A GRC design or an RC design is said to be efficiency balanced (EB) if the
relation Mys = us, where s is any vector in a set of v — 1 independent vectors of treatment
effect contrasts and p is the non-zero unique eigenvalue of the information matrix M.

In this case, Mo = u(I, — n~11,7’) holds.

Definition 2.4. Let A = (a;;) be an n X n matrix and ¥ = {cj, ¢z, ..., ¢m } be an ordered set of
distinct elements of A. In addition, suppose that for each k (= 1,2, ...,m), cx appears precisely
Ak (> 1) times in each row and in each column of A. Then A is called a frequency square or
simply, an F-square on X of order n with frequency (A1, Az, ..., Amm).

A matrix A is said to be an F(n; A1, Ag, ..., Ap,) square array if A is an F-square of order n
with frequency (A1, A2, ..oy Am),s 3. ; Aj = n. An F-square array produces an F-square design. An
F(n; A\™) square represents an F(n; A, ), ..., \) square array, while an F(n; A3, A3, A3) represents
an F(n; A1, A1, A2, A2, A2, A3). In particular, in an F(n; A™) square, m is determined uniquely
by n and A, i.e., n = mA. Hence such a square is represented by F(n; ).

Example 2.1. Let & = {1,2,3}. Then the following array is an F(6;23) on .

(1 2 3 3 2 1]
2 31132
312213
312213
2 31132

1233 2 2|

The above array is also an F-square design with the three treatments 1, 2, 3, each replicated
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twice in each row and in each column.

The definitions of variance balanced and efficiency balanced block/RC designs can also
be found in Pal (1977) and Caliniski and Kageyama (2000, 2002).

3. Construction of efficiency balanced orthogonal generalized row-column designs

In what follows, two methods of construction, one on orthogonal GRC designs and the
other on efficiency balanced orthogonal GRC designs, are presented. These designs are con-
structed from F-square designs.

Method 3.1. Let us take any successive p (> 2) rows/columns, say, ji,J2,...,jp, of an F-
square design of order m and these are combined into a single row/column. The set of p
observations at m column/row positions constitute in all m sets of p values corresponding to m
column/row positions forming a new design (obtained after merging) with its first row/column
having p observations at each of the m column/row positions in that row/column. The other
rows/columns of the basic design remain unchanged. The new design so obtained contains
m — p+ 1 rows/columns and m columns/rows. The process of combining can be extended for
a second and third, etc., sets of rows/columns.

The procedure of construction explained in Method 3.1 can be well understood through
the following. Let us take an F-square design F(6;23) on £ = {1,2,3}, as in Example 2.1.
Now if we merge the first two rows, then the following design is obtained.

(L2) (2,3 31 B1) (23 (1,2
3 1 2 2 1 3

NN W

3 1 2 2 1
2 3 1 1 3
1 2 3 3 2

The new design has 5 rows and 6 columns, each of the treatments in the first row has 2
treatments instead of one treatment.

By following the above method, an orthogonal GRC design can be developed in which
any treatment effect contrast is estimated with full information.

Proof (by construction)

Case I: Let A be an F(m,2) square design with v treatments, each replicated twice in
each row and in each column, so m = 2v. The first p rows are now merged into only one
row with p treatments in each cell (at each column position) of the first row. Recalling the
notations, the new design has the following (structural) vectors and matrices:

T =4vl,, k= [2pv, 201, .|, ¢ = 2vl,, N = [2pl, : 21,1;,_ ],

* _ Pl,zv
N = [ lm—P]"2v )

Let IN be the v x 2v treatment-column incidence matrix. Thus, IV = 21, 15,. Then it follows
that

/ 1
N'r™°N = [ 1 plzv, } and Ekq' =N'r°N with n=m2
m—p-2v
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According to Definition 1.1, the above-modified F-square is an orthogonal GRC design.

Case II: Let B be an F-square design as F(m;AY, A5 ") with v treatments for m and
u being positive integers and m > v. Here, uA; + (v — u)A2 = m and the total number of
observations is n = m?2.

Let k = ml,,, row-size vector, ¢ = ml,,, column-size vector, and further » = [mA;1/,
mA21,_. ), replication vector. Further let us impose Method 3.1 to the F-square design B
to construct an orthogonal GRC design. The corresponding (structural) vectors and matrices
of the modified B (after imposition) are given as k = [pm,m1;,_,]', row-size vector, ¢ =
m1l,,, column-size vector, and r = [mA;1,,,mA21,_, ], replication vector. The treatment-row
incidence matrix is given by

N=[ paly MLl ]’

p)\21v—u /\21v—u1;n_p
while the treatment-column incidence matrix is given by

_ Al,10,
N~ [ Aalo_ull, }

Then it follows that

pludi+(w=u)A3) 4/ /
) _ m . plm
Again, it holds that
1, , _ rly, _ 1,.—6
s = |y | = e
Thus the modified design B is an orthogonal GRC design. O

Method 3.2. Consider a design D which is an F(m,a), with m = va. If a particular
row/column is deleted from such a design, the residual design D* so formed is called an F-
derivative RC design. The deleted row/column makes the column/row incomplete. However,
the deleted row/column does not disturb the equality of the number of paired occurrences of
any two treatments (the proof is given below). The design D* has the following properties:
Without loss of generality, let the last row of the above F'(m, a) design be deleted. Then

the treatment-row two-way design of D* is complete as each row contains all freatments, each
treatment occurring o times and hence an orthogonal design, while the treatment-column
two-way design of D* is a variance balanced (two-way) design, as shown below:

- If N* is the treatment-column incidence matrix of D*, then N* = (a — 1)1,1/, + K*,
where K" is the v x m incidence matrix of a identical replicates of a balanced incomplete block
design with parameters v,b =v,r =v -1, k=v—1,A=v — 2. In fact,

N*(N®) = [(@=Dl1,+ K[(e@ - 111, + K]
= m(a—1)2J, + (@ - 1)1,1, (K*)' + (e - 1)K*1,,1, + K*(K*)’
= av(ia—-1)?% T, +ala-1)(v—-1)J,+ala—1)(v-1)J,
+ al, +a(v—2)J,
= al,+ao*(m—-2)J,.

Thus, the two-way treatment-column design is variance balanced and the constancy (= a?(m—
2)) of the occurrences of the pair of treatments is maintained in the said two-way design.
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If N* and N™** are the incidence matrices between treatment vs row and row vs column,
respectively, of D*, then it is shown that N** = (N*)'r~*N*, where N** = 1,, 1/, r~% =
[a(m —1)]7I, and N* = al1,1/,_;.

Now, (N*)'r°N = [a(m — 1)]" al,_11,{(a — D)1,1/, + K*} = [v(a — 1)/(m —
Dllm-11n, 4+ [(v = 1)/(m = D]lp_11y, = 111y,

The coefficient matrix C* of D* can be written as C* = a(m — 1)I, — J, — (m —
1) Hal, + a?(m - 2)J,} + {a?*(m — 1)?/[m(m — 1)]}J, = al, + o?(m — 2)J,. Thus the
F-derivative RC design is a variance balanced orthogonal RC design.

Lastly, Method 3.1 is employed on the first p rows of the design D*, the design so
obtained is denoted by D**. Then D** has the following (structural) vectors and matrices. The
replication, row-size and column-size vectors, treatment-row, treatment-column, row-column
incidence matrices, are written as follows: r = r1,, k = av[p,1}_,|'’, ¢ = (m — D)1y, 7 =
a(m—1), m = av, h = m —p, n = m(m — 1), n;; being the frequency of occurrences
of the ith treatment in the jth column, i = 1,2,...,v; j = 1,2,...,m, 3 ;n;; = m — 1 for
all j; 3 :mi; = 7 for all 4; Y nymy; = A = a?(m — 2) for all 4 and '(# i) = 1,2,...,v,
>;nij=(m—2)a?+a=Rforali, N =[pal,: al,1;, ., ;] and N = (n;;) of size v X m.
Then it follows that

1,,—6 a(m —1) pl;, _ | pln _ 1,
NroN == [ 1h-11}, } = [ 1p-11), ] = ok
Thus D** is an orthogonal GRC design. Further recall that My = My, + My,. Hence, for
the design D**, it follows that

My = (@ °NEk’N -n 1)+ (r°Ng N — n~11,7)
= Jla(m—-1)"Y(R-MNI,+AT,}—v"1J,
= {a/[a(m - D)}, + {(m ~ 2)o?/[a(m - 1)*] — 1/v}J,
(m —1)"2(I, —v~1J,).
Thus the D** gives a new class of efficiency balanced orthogonal GRC design with efficiency

1—(m—1)~2. The D** is also a variance balanced orthogonal GRC design. These designs are
useful in the above sericultural experiments and have potential application in clinical trials.
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