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ABSTRACT

We consider multi-target models for use in analyzing data of the dose-response relationship.
The target sizes we are concerned with here are both homogeneous, as assumed in the classical
model, and heterogeneous, as simplified using geometric progression. We apply two models for
establishing the multi-target models: a Poisson regression model constructed by assuming that
the response variable Y follows Poisson distribution, and a gamma-frailty model as a Poisson
mixture model derived by adding random common risks having a gamma distribution. Applying
these models to experimental data relating the effects of miso fermentation-stages on the sur-
vival rate of cells of intestinal crypts of mice exposed to radiation yielded the result that there
were substantial frailties associated with all miso fermentation-stages. Short-term and medi-
um-term fermented miso provided similar effects, whereas long-term fermentation had the low-
est relative risk value, indicating a significant protection of the crypts against exposure effects.
A gamma-frailty model based on heterogeneous target size was more suitably applied when
there were at least 3 dead stem cells having 10 target genes.
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Radio protective effects

For more than fifty years, the multi-stage model
proposed by Armitage and Doll has continued to
influence biomedical thinking on cellular changes,
particularly in regard to the processes underlying
carcinogenesis (e.g., see 2, 15, 17, 21, and 23). This
model, however, is derived according to a proba-
bilistic mechanism that is precisely described on
the basis of reasonable assumptions?®, of which
correspondence to actual events in biomedical
fields has not been established. Therefore,
Moolgavkar!® noted that the multi-stage model
needs to be embellished in various ways to accom-
modate our current thinking on carcinogenesis.

Building on the idea of removing stages from
the multi-stage model of cell changes, the purpose
of the present paper is to establish mathematical
models for examining the relation of the dose
response level of exposure to cellular changes on
the pathway to cell death. These dose-response-
based models, called multi-target models, consider
a unit in exposed cells as a target.

Survival curves for most mammalian cells
exposed to low-LET radiation, such as gamma and
X-rays, show a shoulder-shaped curvature, in
which there is less cell inactivation per unit dose
at the initial low dose region and a tendency
towards a constant slope at the higher dose. This

constant final slope is caused by the effect of the
repair of DNA single strand breaks during expo-
sure. The shoulder region of the curve can be
interpreted in two possible ways. Firstly, the given
dose is considered as a total of dose fractions that
are individually capable of repairing sub-lethal
damage in between them!®, but become lethal
damage when added together. In this situation, we
assume that each dose fraction is given acutely
and that the repair of the single strand breaks
during the radiation can be ignored. Secondly,
lesions are individually reparable, but when the
efficiency of the enzymatic repair mechanisms
diminishes due to the number of lesions, they are
become irreparable and kill the cell. This means
that it requires more than two targets getting
exposure to radiation on the pathway to cell death.
For these reasons, we applied multi-target models
to cellular mortality due to radiation exposure.
Suppose that the probability of a target surviv-
ing after exposure at dose D is expressed by the
survival function S(D|p)=e#P, where B is an
unknown parameter describing the coefficient of
exposure effects. Under such a condition, the prob-
ability of a target having vital damage is denoted
by the failure distribution!? F(D | f)=1-eP. In the
classical multi-target model, it is assumed that
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lethal damage occurs after independent hits on a
certain number of targets (say %), and that the tar-
get size is homogeneous. Here, the target size is
related to its sensitivity level to radiation effects.
The larger the target sizes the higher probability
of it getting hit when exposed to radiation. The
target survivor function is thus

Sk(DIB) =1— (1-ePP)*, (1)

However, the assumption of homogeneous target
size is sometimes unrealistic. It is therefore appro-
priate to remove this assumption. A general exten-
sion of the target survivor function shown in
equation (1) that allows each hit target to have a

different exposure effect can be formulated by
k

Sk(DlB1, - ,Bk) =1 - [J(1 - eA5P), (2)
j=1
where (unknown) parameter f; represents the
coefficient of sensitivity for the j-th target, j=1, 2,
. k. .

For establishing the multi-target models, we
apply two models: a Poisson regression model con-
structed by assuming that the response variable Y
follows Poisson distribution, and a gamma-frailty
model as a Poisson mixture model derived by
adding random common risks having a gamma
distribution.

MULTI-TARGET MODELS
1. Geometric Structure on Heterogeneous
Targets

By assuming that the parameter of the sensitiv-
ity coefficient for the j-th target (f;) in classical
theorem has regularity following geometrical pro-
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Fig. 1. Survival curves of the multi-target models at
various values of p and given exposure dose (D), in a
case where the number of targets % is equal to 10 and
where the coefficient of exposure effects (f) is fixed.
Significant decreases in the survival curve can be
seen when the index value of p is greater than 1. A
steady increase in the value of p results in an acceler-
ated increase in the hazard rate.

gression, we constructed one of the simplest mod-
els for heterogeneity. That is, assume that S=8p"1,
where the unknown parameter p describes the
index of heterogeneity of the target size. Then, the
survival function in equation (2) can be specified
as

k
Se(DIB,p) =1 - [J(1 —e?"7'P), 3)

i=1
From a graphical point of view, in the case that
the number of targets £=10 for a given exposure
dose (D), the heterogeneity index value of p>1 pro-
vides significant decreases in the survival curve as
compared with that of p=1, as shown in Fig. 1.
Continued increases in the value of p may give

accelerated increases in the hazard rate.

2. Poisson Regression Model

Let Y be a response variable following Poisson
distribution with mean (D, x|6*)=poSk(De?" |3, p),
a function of exposure dose (D) for given covari-
ates vector x and unknown parameters vector
0*=(k, o, B,p,¥")T, where uo denotes the baseline
mean parameter and Si(DeY=|3, p) expresses the
survival function, which is specified as

k
. Ty
Se(De"®|B,p) =1 - [J(1 = #7277, (g
=1
where ¥z = y121 4+ vo22 4+ - .- + Yz, is a linear com-
bination of p covariates. Then,

* D,:z: 0* Y _ p.
P(y|D,z,0%) = {_“Ly!_|-).}_e ux(D,x|8%) 5)

Given a set of n independent samples
(v:,Dix:),i=1,2, ... , n, where y; is the observed
response, D; is the exposure dose and x;=(x1,%:2, ... ,
x;p)T is the covariates vector for the ith individual,
we denote the actually observed data set by
dobs=(y,DxT)T. Then, the likelihood function for
estimating the unknown parameters based on the
observed data set can be specified by

L(6*|d(ops) = [ [ P(wil Di, s, 6%). (6)

i=1

3. Gamma-frailty Model for Heterogeneous

Background

It is important to take account of heterogeneity
between individuals in population-based survival
studies?. A systematic way of describing hetero-
geneity is by entering an unobserved quantity
called frailty, here denoted by the letter Z. This
quantity describes common risk factors, measur-
able or non-measurable, and is not included in the
model?10.22).

Till now, most studies have used a frailty having
a gamma distribution, which is mathematically
convenient. Gamma distributions have been used
for many years to generate a Poisson mixture
model. From a computational point of view, they fit
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very well with survival models, because it is easy
to derive the formulas for any number of events®.
For finite mean frailty distributions, it is required
that the mean of the frailty be unity in order for
the parameters of the model to be identifiable?.
Furthermore, regarding the heterogeneous popula-
tion, Hougaard® has examined the consequences of
the difference between gamma distribution and
inverse Gaussian distribution as the distribution of
frailties, and remarked that the inverse Gaussian
makes the population homogeneous with time,
whereas for the gamma the relative heterogeneity
is constant. For these reasons, we adopt the
gamma distribution as the distribution of frailties.

Assume that the mean of the survival rate at
given exposure dose D is

/‘k(D>m|Z7 0*) = Zuk(D, wle*)y .

where Z denotes a random variable having gamma
distribution with mean unity and variance o
(unknown). Then, the density function of Z can be
described as

-0
4 o711 —o 1z

o(z|o) = o) 2 e . (7)

Let d=(y,D,xTz)" be the complete data set
including the unobserved frailty term Z. The like-
lihood function can be formulated for a given com-
plete data set d as

L(6"d) = [] P(wilz, Di, =i, 6%, (8)
=1

where P(y|z,D,z,8") denotes the probability densi-
ty function of Poisson distribution with mean
pr(D,z|2,6%). Thus, the likelihood function based
on the observed data set d»s) excluding the frailty
term Z is obtained by integrating the likelihood
function in equation (8) with respect to the density
function of the frailty term of the ith individual, z;.
And, we have

L(8lde)) /0 L(6|d) o(zil0) d

n 00
I1 [~ Ples D 0°) o) da
=10

I f@lDs, =:.0), 9)

i=1

where f(y|D,z,0) denotes the density function of
negative binomial distribution with parameters
vector @ = (68*7,0)T expressed by

f(levzwo) =

- {l+a(i-1 g )Y -1
Bale = M A0 Y 109

PARAMETER ESTIMATION
The maximum likelihood estimation method
based on the log-likelihood function on the
observed data set dss) is applied for estimating
unknown parameters 6. The function can be writ-
ten as

£(0\d(ops)) = log L(6ldops))- (1)

In many cases, an analytical method is not
available for maximizing the function. Therefore,
the maximization must be performed using a
numerical method, often of an iterative character.
The Newton-Raphson method, with its combina-
tion of simplicity and power, is the most widely
used, although in general we know very little
about its global convergence properties!V. The
method often becomes impractical in problems
involving many parameters.

Ohtaki & Izumi'®, therefore, have proposed an
algorithm called SPIDER for optimization without
derivatives of the function. For the p-dimensional
function, this alternative technique has iterative
maximization procedures with cyclic fixing of
groups of parameters, maximizing over the
remaining parameters. (The steps of the algorithm
are presented in Appendix C)

According to the general asymptotic theory, the
maximum likelihood estimator has many useful
properties, including consistency and sufficiency.
The ability to achieve the Cramer-Rao minimum
variance asymptotically is another remarkable
property of the estimator. Under the regularity
conditions, the vector of maximum likelihood esti-
mators of 6 denoted by 6 is best asymptotically
normal (BAN) if Y8 € ©, then 6 is the approxima-
tion to the normal distribution with mean ¢ and
variance-covariance matrix +I:(6)! as n goes to
infinity'¥, or more explicitly we have

V(8- 8) ~ N(0,1,(6) ™),

where 1:(0) is the Fisher information matrix of
sample size 1. Furthermore, the Fisher informa-
tion matrix of sample size n, that is I,(8)=nl:(8), is
given by the symmetric matrix expressed as a neg-
ative form of expectation of the Hessian matrix
whose ij-th element is specified by

02£(8|dyops
L(0)y = —E [m‘(o—)) -
i 00

Moreover, inverting the form of the information
matrix yields a matrix containing the variances of
the parameters on its diagonal and the asymptotic
covariance in the off-diagonal positions. The
Hessian matrix elements of the models are
described in detail in Appendix B.
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APPLICATION TO REAL DATA ANALYSIS
1. Data Set

As an example of an application of multi-target
models in the biomedical field, we will attempt to
analyze experimental data on the density of the
small intestinal crypt of mice after exposure to
gamma rays. The aim of the experiment conducted
by Ohara et al'® was to verify the effect of giving a
diet supplemented with miso (Japanese fermented
soy bean paste) at various fermentation stages on
crypt survival.

For this experiment, the mice were fed a com-
mercial diet MF alone or a diet supplemented with
miso for one week before the exposure. The miso
had been fermented for a short-term (immediate
fermentation), medium-term (4 months) or long-
term (6 months). Groups of mice (each 5 mice)
were whole-body exposed to 7, 8, 10 or 12 Gy of X-
rays without anaesthetization. The number of sur-
viving crypts was counted in 10 gut cross sections
in each mouse.

2. Model for Growth and Disappearance of
Intestinal Crypt
Ohara et all® remarked that in the absence of

question the previous assumption. They proposed
an alternative hypothesis in regard to the number
of stem cells required to maintain the crypts, and
gave an explanation based on multiple crypt stem
cells with random cell loss after stem cell division.
Consider that a crypt contains multiple stem
cells, and let the (unknown) parameter be m.
Suppose that all of the stem cells will disappear
after £ independent hits cause the crypt to cease
growing. Then, for given exposure dose D and
covariates vector x=(x1,x2,x3)7, we can apply the
survival function in equation (4) with a slight
modification for the survivor crypt data:

k

Sk,m(De7Tm|ﬂ, p) =1= { H (1 — e~ﬂpi‘1De'mi)} , (12)

J=1

where the covariates vector x is constructed by
setting a dummy variable to account for the dura-
tion of fermentation:

_[1, if “Early” (short-term fermentation),
o, otherwise
2_[1, if “Medium” (medium-term fermentation),

surviving crypt stem cells, the crypts disappear. In 0, otherwise

both the large and small intestine, mutagen _{1, if “Long” (long-term fermentation),
administration leads to the occurrence of isolated ra= 0, otherwise

crypts that are completely populated by a mutated

phenotype. Therefore, it has been proposed that 3. Results

crypts are maintained by a single stem cell.
On the other hand, the results of studies on the
small intestine by Williams et al?¥ lead them to

The results show that there are substantial
frailties for all miso fermentation-stages. The
Akaike Information Criterion (AIC) values as a fit-

Table 1. Estimated Parameter Values in the Non-Frailty Poisson Regression Model

A. Homogeneous multi-target model

~

Number of targets B RR, RR,, RR, AIC
12 0.3163 (0.3092, 0.3233) 0.913 0.921 0.871 1253.12
B. Heterogeneous multi-target model with single stem cell assumption
Number of targets B RR, RR, RR, AlIC
10 0.2609 (0.2602, 0.2617) 1.035 0.910 0.919 0.869 1261.14
20 0.2356 (0.2351, 0.2361) 1.069 0.912 0.921 0.871 1236.30
30 0.2357 (0.2354, 0.2361) 1.069 0.912 0.921 0.871 1235.28
40 0.2358 (0.2355, 0.2361) 1.069 0.912 0.921 0.871 1235.28
C. Heterogeneous multi-target model with multiple stem cell assumption
Number of Number of ~ ~ . — e
stem cells targets B P ER. REn RE AIC
2 10 0.2430 (0.2425, 0.2434) 1.144 0.912 0.921 0.871 1236.38
15 0.2432 (0.2428, 0.2435) 1.143 0.912 0.921 0.871 1235.40
20 0.2432 (0.2429, 0.2434) 1.144 0.912 0.921 0.871 1235.40
3 10 0.2505 (0.2501, 0.2508) 1.225 0.912 0.921 0.871 1235.61
12 0.2504 (0.2501, 0.2507) 1.225 0.912 0.921 0.871 1235.60
4 8 0.2576 (0.2573, 0.2580) 1.314 0.912 0.921 0.871 1235.90
10 0.2576 (0.2573, 0.2579) 1.314 0.912 0.921 0.871 1235.90

Note: Values in parentheses are the 95% confidence intervals
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Table 2. Estimated Parameter Values in the Gamma-Frailty Model

A. Homogeneous multi-target model

~

~

Number of targets B p RR. RR, RR, AIC
11 0.3088 (0.2937, 0.3240) 1.0 0.914 0.912 0.859 996.11
B. Heterogeneous multi-target model with single stem cell assumption
Number of targets [3 ;3 RR, RR,, RR, AIC
10 0.2362 (0.2343, 0.2380) 1.067 0.910 0.912 0.856 996.29
20 0.2313 (0.2307, 0.2319) 1.075 0.912 0.912 0.859 993.06
30 0.2315 (0.2311, 0.2319) 1.075 0.913 0.912 0.859 992.98
40 0.215 (0.2312, 0.2318) 1.075 0.913 0.912 0.859 992.98
C. Heterogeneous multi-target model with multiple stem cell assumption
Number of Number of - ~ 555 55 55
stem cells  targets B P RE. REn RE AIC
2 10 0.2391 (0.2386, 0.2397) 1.157 0.912 0.912 0.859 993.08
15 0.2393 (0.2389, 0.2397) 1.156 0.912 0.912 0.859 993.03
20 0.2393 (0.2390, 0.2396) 1.156 0.912 0.912 0.859 993.03
3 8 0.2468 (0.2463, 0.2472) 1.248 0.912 0.912 0.859 993.04
10 0.2468 (0.2465, 0.2471) 1.247 0.912 0.912 0.859 993.03
12 0.2468 (0.2465, 0.2471) 1.247 0.912 0.912 0.859 993.03
4 10 0.2544 (0.2541, 0.2546) 1.349 0.912 0.912 0.859 993.08
12 0.2543 (0.2540, 0.2546) 1.349 0.912 0.912 0.859 993.08

Note: 62=0.006

Values in parentheses are the 95% confidence intervals
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Fig. 2. Curve of the density of the intestinal crypt
after an exposure event based on the Poisson regres-
sion model according to the fermented-stage of miso,
with mice fed with a commercial diet of MF used as
controls. The survival rate of crypts of mice fed long-
term fermented miso has a higher rate indicated by
the slope of the curve slightly decreasing as com-
pared with the others. On the other hand, the short-
term and medium-term fermentations confer almost
the same level of protection on the crypts after expo-
sure. In the scatter plot results for the mice exposed
to 7, 8, 10 or 12 Gy of X-rays after being fed a com-
mercial diet of MF marked by a circle or a diet sup-
plemented with miso fermented for a short-,
medium-, or long-term marked by a triangle, square,
and asterisk respectively.
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Fig. 3. Curve of the density of the intestinal crypt
after an exposure event based on the gamma-frailty
model according to the fermented-stage of miso, with
mice fed a commercial MF diet used as controls. The
survival curve of the crypts of mice fed long-term fer-
mented miso has a slightly decreasing slope, indicat-
ing that the crypt-survival rate in this group was
higher than in the other groups. On the other hand,
the short-term and the medium-term fermentations
confer exactly the same level of protection on the
crypts after exposure. In the scatter plot results for
the mice exposed to 7, 8, 10 or 12 Gy of X-rays after
being fed a commercial diet of MF marked by a circle
or a diet supplemented with miso fermented for a
short-, medium-, or long-term marked by a triangle,
square, and asterisk respectively.



14 I Made Arcana and M. Ohtaki

ted model measurement were significantly lower
when the gamma-frailty model was applied than
when the Poisson regression model was used. For
protecting the crypts after exposure, both the
Poisson regression model and gamma-frailty
model yielded similar results on short-term and
medium-term fermented miso, as shown by the
similar values of the relative risk corresponding to
the fermentation terms RR. and RR., respective-
ly. On the other hand, the relative risk values of
the long-term group (RR;) were a little lower than
the others, indicating significant protection of the
crypts against the exposure effects (see Table 1
and Table 2). Furthermore, from a graphical point
of view, the survival curve of the long-term group
has a slightly decreasing slope, which means that
the rate of crypt survival of this group is higher
than that of the other groups (see Fig. 2 and Fig.
3). Moreover, these results show that the gamma-
frailty model based on assumed heterogeneity in
the target size, as indicated by the values of the
heterogeneity index, is more suitable for applica-
tion to such empirical data, in which the number
of targets was 30 genes and the AIC value was
992.98. Regarding the number of stem cells in the
crypt, it was suggested that the fitted model could
be obtained when m=3 and there were at least 10
genes, as indicated by the AIC value of 993.03.

DISCUSSION

Results of Data Analysis

As mentioned in the previous section, the
results showed that the dose-incidence curves
reached a plateau at about 3 dead cells per crypt
section in the mouse small intestine. This result is
close to the result reported by Hendry et al® of
about 3 to 4 dead cells per crypt section.
Furthermore, they pointed out that the production
of apoptotic cells by low doses of gamma-rays was
independent of the dose rate between 0.27 and 450
cGy per min. Moreover, Hendry and Potten”
reported that the cells that die via apoptosis repre-
sent a very sensitive subpopulation of about 6 cells
per crypt that may or may not be clonogenic.
Fujikawa et al® similarly reported that 5.1 + 0.3
somatic crossing-over mutations were induced by
X-rays in Drosophila melanogaster and Takai et
al?9 estimated that 4.3 + 0.6 such mutations were
induced by X-rays in medaka fish (Oryzias
latipes).

Identifiability

Application of a gamma-frailty multi-target
model to this experimental exposure data revealed
that the survival curves flattened out when the
number of targets was more than 10, as indicated
by the relatively stable AIC values. This may indi-
cate either that the model is less sensitive in iden-
tifying cell changes in more than 10 targets, or
that the cell changes have no significant effect on

the model. Furthermore, the index value p related
to the survival rate indicated that as the exposure
dose (D) approached infinity, the number of tar-
gets % does not affect the change of survival rate
when the index value p is greater than 1. On the
contrary, when p equals 1, the survival rate of %
targets tends to be % times the survival rate of one
target (see Proposition 1 in Appendix A).

Related Topics

There is a long history of attempts to establish a
theoretical model of exposure-induced cell
changes. The multi-stage model proposed by
Armitage and DollV based on the hypothesis of
Fisher and Hollomon® has been used in biomed-
ical fields for more than fifty years. This hypothe-
sis assumed that carcinogenic transformation of
cells in a tissue requires that independent changes
occur in six or seven cells according to a specified
form of relationship to age of the individual and
for weighting concentration as a function of age in
order to determine a hazard function. Thomas??
remarked that the essence of this model is the
peaked weighting function for exposure as a func-
tion of age, such that the later the sensitive stage
of the model, the later the peak.

Currently, radiation exposures associated with
human activity are expected to be low-dose, for
example low dose-rate radiation from medical
tests, waste cleanup and environmental isolation
of materials associated with nuclear weapons and
nuclear power production. An exposure-based
event can cause a variety of damage scenarios: (1)
the damage may be reparable if the damaged cells
can repair themselves, and thus there will be no
permanent damage; (2) millions of cells may die
according to the natural processes of cell death; (3)
mutations may occur if the damaged cells exhibit
a change in their reproductive structure, resulting
in potentially pre-cancerous cells. For such issues,
in addition to the frailty model for heterogeneous
background presented in this paper, we must con-
sider a model of low-dose exposure based on risk
factors describing heterogeneous sensitivity by
assuming that each target before the exposure
event contains random risk factors. We describe
such a model in detail in Appendix B.3.
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Appendix A

When the exposure dose (D) approaches infinity, the ratio of the survival rate of all targets to the sur-
vival rate of one target satisfies the following proposition.

Proposition 1. Let p21, and let

k

Sk(D|B,p) =1~ H(l —eBP7ID)

j=1

for £21. Then, it holds that

lim Sk(D'ﬂa p) - k’ if p=1,
D—+o0 Sl(D}ﬂ,p)

1, ifp>1.
Proof:
If p=1, then
i SeDIBp) _ 1 (1= e DR
D—+oo S1(D|B, p) D—+o0 e=PD
_ o k(- e PP 1(emAD)(—p)
= pim, (@ PD)(—p)
= lim k(1—ePD)k-?
D—+
= k.
If p>1, then
SeDlpp) _ L= -e®7P)
D54oo 81(D|B,p) Do+ e~BD
= lim e [_ﬂ”ikle_ﬂ"] TP g1 - e"””_lD)]
D—+oc0 —ﬁC«ﬁD
X [Pl TP, L - e )
- DE)I-{-IOO e—hD
k j—1 k ; jx—1 k j—1
= DETW H(l _ e B¥ D) + Z {p’ =1=B(p"*"1-1)D H (1- e B D)}
=2 i*=2 i#5*
= 1.
Appendix B

B.1. Poisson Regression Model

The log-likelihood function of the model as shown in equation (6) is specified as

n
U6 |d(os)) = Y log P(y:| D, x:,8").
i=1

Then, elements of the Hessian matrix are given by

ae(G*Id(obs)) Yi — l‘k(Dz, a:,]O ) Oug(Di, x;|60")
T = 3| i ]
69; 1k (D;, 24|0%) 69;‘, ’

0050r 2 ; :

[2) 1,4]6% i,:0* * 2 i,2410"
a2[(0*|d(obs)) n Ui [ ”k(?ﬁ* ) )jl I:allk(g_oicf )] +(yz —‘/Jk(-Dz,wzlo ))[%}
= [kr(Di, 2:|67)]2 pe(Di, z;|0%)
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B.2. Gamma-frailty Model for Heterogeneous Background

The log-likelihood function of the model presented in equation (9) is given by
£(81d (b)) = D _ log f(3:| Di, :, 6).
i=1

Elements of the Hessian matrix are therefore specified as follows:

0UBldin) _ g~ (il Do 2097) [Pl
96; — w(Di, :l0)(1 + 0® e (D;, 3] 67))’

2 [ Bp (Ds,:]0*) 1 [ Ops (D x:10*)
a2e(0|d(obs)) — i 4 I: : 063 ]l: = 60; }
863006 P (14 02ux(D;, ©;)6*))?
(yi(1 + 202uk(D;, 2:|6%))) [auk(%o’;ile')} [a%(gie’;ile*)]
pi(Di, 25|0%)?(1 + 02 (D;, 2]0"))*

(yi — px(Ds, :|67)) [%6%%9_*)] }

+ % %
1i(Di; 2i]07) (1 + 02 g (D, ] 67))

0t(6ld(obs)) _ Zn:{ 20y (1 + pr(D;, ©5]0%))
(

202 g (D;, x;|0%)
do —1+02)(1 4 o?uk(D;, x;|0*)) ’

2
2, 20 (Ds. 2:]6)) —
+ g log(1+ 0% u(Ds, :/67)) o3(1 + o?ui(D;, :0%))

i=1
328(0ld(0b3)) _ i {Qﬂk(Di, z;|6%)(3 + 5(72l4k(Di1 xz;|0%)) 3 6log(1 + 02ﬂk(Di’ x;|6%))
0o (0 + o3 (D, 2:6%))? ot
_ le(l + /,l,k(DlL, mllﬂ*))(l + 02 + 0'2(—1 + 302),uk(Dz,mZ|9*)) }
(=1 +02)%(1 + 02uy(D;, x;]6%))? ’

PllOldiy) _ g 20070+ 1n(Dil07) .
00300 p (1 + o2ug(D;, 2:|0%))*

i=1

In the case of the model for a given exposure dose D, covariates vector x=(x1,x2, ... ,%p)7, and unknown
parameters 6* = (k, uo, 8, p,77)T having a homogeneous target size expressed as

T\ k
D,l6") = o {1 - (127",

we have
Ak (D, z|6*) .
T ope 1 [F(D|B,)]",
ouD2l0) D .
a5 = — g HDIBNEPDIE) Y
%(_%fﬂ?_) = —zppoDkf(DIB, 7)[F(D|B, N,
%}fw*l = —polF(D|B, 7)) loglF(D|B, 7)),
Fu(D2l0) _
o -
O’ur(D,x|6") _ kD .
“omop _ ~ g [PIBIEDIE) Y
PuDae)
oDy = -z, kD f(D|B,7)[F(D|B, )",

(D, 216")

ook = —[F(DIB, ’)’)]’c log[F(D|8,7)],
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2 x|0* _

TSI = P16 { iy — F) S DIBIPDIB

2 * z _

6 ”lca(ﬂDa,7t|0 ) - _ Pﬂng {D(kf(DLf(’g?ﬂ’:')(D|ﬂ:7)) +1}f(Dl,@,’Y)[F(D',@,’)’)}k—l,
2 *

T D.2I67) #kggé,fla) = —%{1+log[F(Dlﬂ,7)]}f(Dlﬂ,v)[F(Dlﬂ,7)]’”‘1

2 *

THEET) — sy { PELPGT WD) o 01, ) im (I,
0?ux(D, z|6") 1

T opok | ~ap po D{1 + klog[F(D|B,v)]}f(D|B,7)|F(D|B,7)]

2 *

% = —polF(D|B,7)]*(log[F(D|B,7)])?,

where F(D|B,v) = 1-e#P<""® £(D|B,7) = Be=P" *+¥"= and h(D|B,~) = fe7"®

B.3. Gamma-frailty Model for Heterogeneous Sensitivity (Low Dose)

Let us denote risk factors on the j-th target in each observed individual as zj, j=1,2, ... , k. For a given
exposure dose D, covariates vector x=(x1,xs, ... ,%»)7, and risk factors Z, we construct a model having the
form

k T
Mk(D’w!z,e*) :.U'U{]‘—'H(l _e—BjDe»’ mzi)}‘ (13)
j=1
If BiD comes close to zero for Vj=1,2, ..., k, then the model can be approximately expressed by
k T
p(D, x|2,0") = uo{l - [18;Dze” w)}~ (14)
j=1

By assuming that the sensitivity coefficient of the j-th target (§;) has regularity following geometrical pro-
gression, that is, §=fp-1, the model will be specified by

(D, x|z, 6%) ~p0{1 — (Bp*Dz"e ==)} (15)
where p*=p**#-172 and z*=]]%_;z;. Thus, the likelihood function based on the complete data set d is

L(6°|d) = [ [ P(wilz, Di, =:,6%), (16)

i=1

where P(y|z,D,=,0*) expresses the probability density function of Poisson distribution with mean
px(D, xlz,6%), as shown in equation (15). Integrating the form of the likelihood function in equation (16)
with respect to the density function of Z in equation (7) provides the likelihood function based on observed
data set d(zs) given by

L(Oldis) = /0 L(6*|d) p(zl0) dz

11 /0 P(yilz, Di, w1, 6%) o(zlo) dz
i=1

Hg(yilDi7 E2?) 9),
=1 17

where



Multi-target Models and their Application to Data Analysis 19

Ye=ro [1_ (y+ DeY @ pzk(k=1)
94D, 2,0) = 12 W ko) “p" 1. (18)
y: {1—ﬁDe’7 Zp2 ( )}a(1+‘7)

The log-likelihood function of the model as shown in equation (17) can be specified by

n
£(6ld(obs)) = Y _ log g(u:| Ds, x:, 6).
i=1

Then, elements of the Hessian matrix are

0£(6|dops)) _ Z { Yi 4 + M(D; |0*)(Q(%’|Di, 9) _ 02R(yi|Di,9))}’

Ao = Lo Ho Yi + poo?
az(eld(obs)) = 1
%)) N ZT(y| Dy, 6),
az(old(ol')s))

n
= T(yi|D;, 0
6’)’;, ;xp (y1| (3] )’

0£(6|dops)) "\ k(k—1)
dp Z

YIS ” 1
0l6ldiobs) > (k- E)T(yﬂDi,O) log p,

ok =
0%4(6|dops i ;
w _ Z{UQM(DZ-W*)U(yilDi,O)— y—2}
Ho i=1
azl(o | d(obs) ) 21
CoTeb)) ST 2y (y| Dy, 6),
OuodpB ;ﬂo ®:lD:, 6)
92£(6]d oss)) =
—_— = U(yi|D;, 9),
5#03"/;: ;xP (yl )
02(6dops)) " k(k—-1)
A _ a. _ - ——U zD’Lve )
Bodp ; 55— VwlD:,6)
924(01d 0ps)) - 1
otk ;(k - 5)U (il Ds, 0) log p,
0%0(6ld(obs)) zn:( (Di]B*))2{ Hoo?*Q(wil Di,8) (yi + poo®)R(yi| D;, 0) }
op? P 5 1— poo?M(D;|0") 1 — (yi + poo?)M(D;|6%) |’
824(6]d b)) =
~—Qaaa.__ . - =V 1.Dz’07
oF0n, ;5 (wlD;, 6)
9°(6]d obs)) = k(k )
Sl {1D;,6),
92(6]d ops)) i (2k—1)10gp
92£(8]d oss)) =
_— = T2,V (y;|D;, 0),
8,),?67(1 ; pq (y| )
aze(eld(obs)) = k(k - 1)1,‘},
) B Sy, g),
205 ; % (il Ds, )
9%£(0\d ops)) "\ (2k - 1)log p
ok ;—2 V(% Di, 0),
924(0|d 0ps)) k(k 1) 2 . 2y; M (D;|6%)]?
8%4(61d(ops)) " k(k - 1)(2k — 1) 2 2y;[M(D;i|6*)]?
bl b DL N id Wi LG ) - 21 — poo*M(D;|6" D, ,
s > (s — 1)log o+ 2(1 ~ ioo M(D116™)) )V (sl Di, 0) +-—- 2= S
62{(0|d(abs)) = log p 2 2 * 4y [M(DiIO* )]2
S el .ZT ((2k—1) log p + 4(1 — poo M (D;|6 )))V(y,-|D,»,e)+1_(yi+u002)M(Di|9*)
=1
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where:

M(D|g*) = BDe""®pik-D),

_ (1 +a®)po
Q) = T (DY
RGID,6) = v+ oo

= (y+ nor) M(DIE)’
T(4D,6) = M(D|6"){Q(DI6) - RyID,6)},

B . Q(DI9) o?R(yD, )

viD,6) = M(DI6") {uo(l — 10t DT~ Ty + o)L= (y + oo M (DIEY) } :
B . Q(D|9) R(y\D,0)

VID.6) = M(DIo) {1— 100 M(DIBY) ~ 1= (5 & uoo?) M(DIG") }

Appendix C
The algorithm of SPIDER proposed by Ohtaki & Izumi!® are described as the following steps:

Step 1. Set initial values of the parameters for maximizing of p-dimensional function £, and let denote it as

.

Step 2. By starting with a((,s), where s=0,1,2, ... , perform loop at the s stage. Define the function
Fo®) = F(@?, +t8)for £=1, ..., p, where 8¢ = (de1,0e,- -+ ,8¢5)7, a vector of Kronecker’s delta. Optimize
the function f; and set

te = t
¢ argte(gg’)im)fz()

QES) = 0‘38—)1 +1q0¢

Step 3. Calculate A,=||af’ — a,(zs) |. If A: becomes small enough, then quit. Otherwise go back to Step 2 with

af™ = o). Continue Step 2 and Step 3 until convergence.



