
CHARACTERIZATIONS OF HYPERBOLICALLY CONVEX REGIONS

SEONG-A KIM AND TOSHIYUKI SUGAWA

Abstract. Let X be a simply connected and hyperbolic subregion of the complex plane
C . A proper subregion 
 of X is called hyperbolically convex in X if for any two points
A and B in 
, the hyperbolic geodesic arc joining A and B in X is always contained in

:We establish a number of characterizations of hyperbolically convex regions 
 in X in
terms of the relative hyperbolic density �
(w) of the hyperbolic metric of 
 to X; that
is the ratio of the hyperbolic metric �
(w)jdwj of 
 to the hyperbolic metric �X(w)jdwj
of X: Introduction of hyperbolic di�erential operators on X makes calculations much
simpler and gives analogous results to some known characterizations for euclidean or
spherical convex regions. The notion of hyperbolic concavity relative to X for real-
valued functions on 
 is also given to describe some suÆcient conditions for hyperbolic
convexity.

1. Introduction

The Riemann sphere P = C [ f1g; the complex plane C and the unit disk D = fz 2
C : jzj < 1g have the canonical metrics �P(z)jdzj; �C (z)jdzj and �D (z)jdzj of constant
curvature +4; 0 and �4; respectively. Here �P(z) = 1=(1 + jzj2); �C (z) = 1 and �D (z) =
1=(1� jzj2):
It is well known that a region 
 in the Riemann sphere P with #(P n 
) � 3 admits

a (holomorphic) universal covering projection p of the unit disk D onto 
 and the region
is called hyperbolic. Since the metric �D (z)jdzj is invariant under the covering transfor-
mation group of p; the region 
 carries the unique metric �
(w)jdwj determined from
�
(p(z))jp

0(z)j = �D (z) for all z 2 D where w = p(z). The metric is independent of the
particular choice of p:We call �
(w)jdwj the hyperbolic metric of 
 and �
 the hyperbolic
density of the hyperbolic metric of 
. Note that the density �
 is real analytic and hence
it is smooth. Also, the hyperbolic metric has constant Gaussian curvature �4; that is,
�� log�
 = �4�2
:
The quantity �
(w) can be regarded as the ratio of the hyperbolic metric �
(w)jdwj

to the euclidean metric �C (w)jdwj: Thus, it is sometimes called the euclidean density of
the hyperbolic metric of 
:
Let X be a hyperbolic region in P or P itself or C and A;B 2 X:We denote by dX(A;B)

the distance between A and B measured by the metric �X(w)jdwj; namely,

dX(A;B) = inf

Z



�X(w)jdwj;
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where the in�mum is taken over all paths 
 in X joining A and B: It is known that there
exists an arc Æ joining two points A and B in X such that dX(A;B) =

R
Æ
�X(w)jdwj:

We call such an arc Æ a geodesic arc joining A and B in X: Note that the geodesic arc
joining A and B in X is uniquely determined by A and B when X is a simply connected
hyperbolic region.
For example,

dP(A;B) = arctan

���� A� B

1 + AB

���� and dD (A;B) = arctanh

���� A�B

1� AB

���� :
A geodesic arc is the shorter arc of the great circle joining two distinct points in P in
the case of P and the part of the circular arc joining two distinct points in D which is
perpendicular to the boundary of D in the case of D :
Characterizations of (euclidean) convex regions 
 in the complex plane C have been

given as analytic or geometric properties of the density �
(w) of the hyperbolic metric of

 ([2], [3], [11], [13], [14], and [15]). We state some of those characterizations in the next
theorem (see [3] for a uni�ed, geometric approach).

Theorem A.

Suppose that 
 is a hyperbolic region in C : Then the following are equivalent:

(i) 
 is convex.

(ii)

����@ 1

�


���� � 1:

(iii) �
1

�

� 0:

(iv) 1=�
 is concave on 
:

(v)
1

�


����@2 1

�


����+
����@ 1

�


����
2

� 1:

Analogous results for spherically convex regions 
 in the Riemann sphere P were also
obtained in terms of the spherical density

�
(w) =
�
(w)jdwj

�P(w)jdwj
= (1 + jwj2)�
(w)

of the hyperbolic metric of 
 by Kim and Minda [4]. Here, a region in P is called
spherically convex if it is convex relative to spherical geometry determined by �P(w)jdwj.
In the spherical case, the di�erential operators @; @2 and � should be replaced by the
spherical ones @P; @

2
P
and �P; respectively, and the notion of concavity should be modi�ed

to that of spherical concavity. Precise de�nitions of those notions will be given in Sections
2 and 3.
The following characterizations of spherically convex regions are due to Kim and Minda

[4] except for (ii) which was essentially found by Ma and Minda ([6], Theorem 4) earlier.

Theorem B.

Suppose that 
 is a hyperbolic region in P: Then the following are equivalent:

(i) 
 is spherically convex.
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(ii)

����@P 1

�


���� � 1:

(iii)

����@P 1

�


����
2

� 1�
1

�2



:

(iv) �P

1

�


� �
8

�


:

(v) 1=�
 is spherically concave on 
:

(vi)
1

�


����@2P 1

�


����+
����@P 1

�


����
2

� 1�
1

�2



:

On the other hand, hyperbolically convex regions in the unit disk D which are con-
vex relative to the hyperbolic geometry of D appear quite naturally, for instance, as
Dirichlet fundamental regions of Fuchsian groups acting on D : Recently, conformal home-
omorphisms of the unit disk D onto hyperbolically convex regions in D ; which are called
hyperbolically convex functions, were intensively studied by Ma and Minda ([7], [9]) and
by Mej��a and Pommerenke [10]. Meanwhile, it seems that intrinsic characterizations of
hyperbolic regions are less known.
In this article, we de�ne the notion of hyperbolic concavity for a real-valued function

on a subregion 
 of a simply connected hyperbolic region X in C and deduce some
equivalent conditions for the concavity (Section 3). For a hyperbolic subregion 
 of a
simply connected hyperbolic region X; we consider the ratio �
;X(w) of the hyperbolic
metric �
(w)jdwj of 
 to the hyperbolic metric �X(w)jdwj of X:

�
;X(w) =
�
(w)jdwj

�X(w)jdwj
:

We call �
;X(w) the relative hyperbolic density of the hyperbolic metric of 
 to the hy-
perbolic metric of X or simply, the relative hyperbolic density of 
 to X. We write �
 for
�
;X when it is clear in the context. Note that �
(w) � 1 holds for all w 2 
 and equality
holds at some point precisely when 
 = X: We will say that 
(� X) is hyperbolically

convex in X if for any two points A;B in 
, the geodesic arc joining A and B in X lies
entirely in 
: We will give characterizing properties of hyperbolically convex regions of
X in terms of the relative hyperbolic density �
(w) in Section 4. To this end, we use
the natural di�erential operators @X ; @

2
X and �X ; called hyperbolic di�erential operators

(see Section 2 for precise de�nitions and fundamental properties of them). Moreover, by
using the notion of hyperbolic concavity (Section 4), we give some suÆcient conditions for
subregions of X to be hyperbolically convex, which are expected to be equivalent ones.
Meanwhile, the notion of hyperbolic concavity may be of independent interest.

2. Hyperbolic calculus

In the complex plane, the partial di�erential operators

@ =
@

@w
=

1

2

�
@

@u
� i

@

@v

�
;

�@ =
@

@ �w
=

1

2

�
@

@u
+ i

@

@v

�
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where w = u+ iv and the Laplacian � = 4@ �@ are of fundamental importance. However,
the following di�erential operators are more natural for the regionsX which is a hyperbolic
region in P or the Riemann sphere P when we are concerned with intrinsic geometry of
those regions (cf. [4]):

@X =
1

�X
@;

@2X =
1

�2X

�
@2 � 2(@X�X)@

�
=

1

�2X

�
@2 � 2(@ log�X)@

�
;

�X =
1

�2X
�:

We note that @2X is not equal to @X@X unlike the euclidean case: @2 = @@: For instance,

@2
D
r(z) = @D @D r(z)� �z@D r(z)

for the unit disk D : When X = P; the above-de�ned operators are called spherical di�er-
ential operators. When X is a hyperbolic region in P, we call them hyperbolic di�erential
operators relative toX:We now observe a behavior of these operators under a holomorphic
covering projection p: (The special case when X = D and p is an analytic automorphism
of D was given in Section 3.2 of [4].)

Lemma 1. Let X and Y be hyperbolic regions in C and suppose that p : Y ! X is a

holomorphic (unbranched) covering projection of Y onto X: Let r be a function of class

C2 de�ned in a neighborhood of a point a 2 X and let b 2 p�1(a): Then the following

formulae hold near the point b :

@Y (r Æ p) =
p0

jp0j
[(@Xr) Æ p];

@2Y (r Æ p) =

�
p0

jp0j

�2

[(@2Xr) Æ p];

�Y (r Æ p) = (�Xr) Æ p:

Proof. A straightforward computation together with the fundamental relation (�X Æ
p)jp0j = �Y yields these formulae.

In particular, the quantities j@Xrj; j@
2
Xrj and �Xr are invariant under analytic auto-

morphisms of X: This fact will be crucial in the proof of our main theorems. We also
remark that the hyperbolic di�erential operators @X and @2X cannot be de�ned at the
point at in�nity although the absolute value of them is well de�ned there.
We now recall another kind of invariant di�erential operators [7]. For a holomorphic

map f : D ! D ; we de�ne

Dh1f(z) =
(1� jzj2)f 0(z)

1� jf(z)j2

and

Dh2f(z) =
(1� jzj2)2f 00(z)

1� jf(z)j2
+
2 (1� jzj2)2f(z)f 0(z)2

(1� jf(z)j2)2
�

2�z (1� jzj2)f 0(z)

1� jf(z)j2
:
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It is sometimes convenient to use the notation

Qf (z) =
Dh2f(z)

Dh1f(z)
= (1� jzj2)

f 00(z)

f 0(z)
� 2�z +

2(1� jzj2)f(z)f 0(z)

1� jf(z)j2
:

In terms of these operators, Ma and Minda (Theorems 3 and 5 in [7], Corollary 3.2 and
Theorem 5.1 in [9]) established the following characterizations of hyperbolically convex
regions in D :

Theorem C. Let f be a holomorphic universal covering projection of the unit disk D

onto a subregion 
 of D : Then, the following are equivalent:

(i) 
 is hyperbolically convex in D :
(ii) jDh2f(z)=(2Dh1f(z))j = jQf(z)=2j < 1 for z 2 D :
(iii) jDh2f(z)=(2Dh1f(z))j = jQf(z)=2j � 1� jDh1f(z)j

2 for z 2 D :

(iv) (1� jzj2)2jSf(z)j +
3

4
jQf(z)j

2 � 3 for z 2 D :

In the above theorem, equalities hold when 
 is a hyperbolic half plane of D in (iii) and
(iv), and Sf denotes the Schwarzian derivative of f :

Sf(z) =
f 000(z)

f 0(z)
�

3

2

�
f 00(z)

f 0(z)

�2

:

It is also easy to verify the following chain rules (cf. Section 3.5 in [4]).

Lemma 2. Let 
 be a subregion of the unit disk D and r : 
! R be a function of class

C2: For a holomorphic map f : D ! 
; the following formulae hold:

@D (r Æ f) = (@D r) Æ f �Dh1f;

@2D (r Æ f) = (@2D r) Æ f � (Dh1f)
2 + (@D r) Æ f �Dh2f:

We also have the following analog of formulae (4) and (5) in [4].

Lemma 3. Let f : D ! D be a locally injective holomorphic map. Then

@D jDh1f j =
1

2
jDh1f jQf ;

@2D jDh1f j =
1

2
jDh1f j

�
��2
D
Sf +Q2

f

�
:

Proof. It is easy to check the �rst formula. In order to show the second, we observe that

@2
D
jDh1f j = @D (@D jDh1f j)� �z@D jDh1f j

= @D

�
1

2
jDh1f jQf

�
�

�z

2
jDh1f jQf

=
1

2
Qf @D jDh1f j+

1

2
jDh1f j@DQf �

�z

2
jDh1f jQf

=
1

2
jDh1f j

�
@DQf +

1

2
Q2

f � �zQf

�
:
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A straightforward computation yields the relation,

(@DQf )(z) = (1� jzj2)2Sf(z) +
1

2
Qf (z)

2 + �zQf (z);

and hence, we obtain the desired identity.

3. Hyperbolically concave functions

Concavity (or convexity) for real-valued functions is a fundamental notion in real anal-
ysis. Beckenbach [1] developed a theory of generalized convexity for real-valued functions
on (one-dimensional) intervals while some people used the notion of geodesically convex
functions on a Riemannian manifold which are convex along each geodesic arc with con-
stant speed. We somewhat combine these notions to give a de�nition of hyperbolically
concave functions in this article.
Recall that a real-valued function r de�ned on a plane region 
 � C is said to be

concave in 
 if the inequality

r((1� t)w0 + tw1) � (1� t)r(w0) + tr(w1)

holds for every t 2 [0; 1] whenever the line segment [w0; w1] joining two points w0 and w1

in 
 is contained in 
 (cf. [3]). Note that we do not require 
 to be convex.
Similarly, we can de�ne hyperbolic concavity. Let 
 be a subregion of a simply con-

nected hyperbolic region X in C : A real-valued function r on 
 is said to be hyperbolically
concave relative to X if the inequality

r(wt) �
sinh[2(1� t)d]r(w0) + sinh[2td]r(w1)

sinh[2d]
(3.1)

holds for each t 2 [0; 1]; where d = dX(w0; w1) and wt is the unique point in X such that
dX(w0; wt) = td and that dX(wt; w1) = (1 � t)d for w0; w1 2 
; whenever the geodesic
arc 
 joining w0 and w1 in X lies entirely in 
: We remark that the point wt lies in 

necessarily. For brevity, we will write wt = PX(w0; w1; t):
First we show a continuity of this function for completeness though we do not use it

in this article. In the proof of the next lemma, set DX(w0; d) = fw 2 X : dX(w0; w) � dg
for a point w0 2 
.

Lemma 4. A hyperbolically concave function r : 
! R relative to X is continuous.

Proof. Let w0 be an arbitrary point in 
. First we assume that r � �M in the neigh-
borhood V = DX(w0; d0) � 
, where M and d0 are positive constants. Note that for
t 2 [0; 1], DX(w0; td0) = fPX(w0; w; s) : 0 � s � t; w 2 @V g. We take an arbitrary point
w1 on @V and set wt = PX(w0; w1; t): By (3.1), for each t where 0 � t � 1; we get the
inequality

r(wt)� r(w0) �

�
sinh[2(1� t)d0]

sinh[2d0]
� 1

�
r(w0)�

sinh[2td0]

sinh[2d0]
M(3.2)

In order to get an upper bound of [r(wt)� r(w0)], we choose a point w�1 2 @V so that
w0 is the hyperbolic midpoint of w1 and w�1 in X: Since w0 = PX(w�1; wt; 1=(1 + t)); we
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obtain the inequality

r(w0) �
sinh[2td0]r(w�1) + sinh[2d0]r(wt)

sinh[2(1 + t)d0]

by (3.1), and hence,

r(wt)� r(w0) �

�
sinh[2(1 + t)d0]

sinh[2d0]
� 1

�
r(w0) +

sinh[2td0]

sinh[2d0]
M:(3.3)

Both of the right-hand sides in (3.2) and (3.3) tend to 0 as t! 0. Hence we have shown
that r is continuous at w0 if it is locally bounded below.
On the other hand, the local lower boundedness of r can be easily shown. Indeed,

consider a compact hyperbolic triangle T in 
 relative to X: Then, by (3.1), the function
r is bounded below on each side of T: Applying (3.1) again, we can deduce that r is
bounded below on T: Since 
 is covered by such triangles, the local lower boundedness
follows.

Now, we give characterizations of hyperbolic concavity when r is of class C2. First,
we need a kind of minimum principle for solutions to a boundary value problem for an
ordinary di�erential equation. See [8] for a proof of the following result or apply the
Strong Minimum Principle to the function v � u (see [12], p. 260).

Lemma 5. Let u and v be real-valued functions of class C2 on the interval [a; b] and
suppose that v00 � 4v and u00 = 4u there. If u(a) = v(b) and u(b) = v(b), then either v = u
on [a; b] or v > u on (a; b).

We are now ready to state our important result for hyperbolic concavity.

Theorem 1. Let 
 be a subregion of a simply connected hyperbolic region X in C and r
be a real-valued function of class C2 on 
: Then the following are equivalent:

(i) r is hyperbolically concave on 
 relative to X:
(ii) Whenever the geodesic arc joining w0 and w1 in X is contained in 
; the midpoint

m of it satis�es the inequality,

r(m) �
r(w0) + r(w1)

2 cosh dX(w0; w1)
:(3.4)

(iii) Whenever the geodesic arc w(s) in X parametrized by its hyperbolic arclength is

contained in 
; the function v(s) = r(w(s)) satis�es the di�erential inequality v00(s)�
4v(s) � 0:

(iv) The inequality

j@2Xr(w)j+
1

4
�Xr(w) � 2r(w)(3.5)

holds on 
:

Proof.

(i))(ii): Just put t = 1=2 in the inequality (3.1).
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(ii))(iii): Let w(s) be a geodesic arc in 
 parametrized by its hyperbolic arclength
and set s = s0: For w0 = w(s0 � Æ) and w1 = w(s0 + Æ); we obtain the inequality

v(s0) �
v(s0 � Æ) + v(s0 + Æ)

2 cosh[2Æ]

by (3.4) or, equivalently,

v(s0 � Æ) + v(s0 + Æ)� 2v(s0)

Æ2
� 2

cosh[2Æ]� 1

Æ2
v(s0):

Letting Æ ! 0; we obtain the inequality v00(s0) � 4v(s0):
(iii))(i): Let w0; w1 2 
 and suppose that the geodesic arc joining w0 and w1 in X

is contained in 
. Set w(s) = ws=d = P (w0; w1; s=d) for s 2 [0; d]; where d = dX(w0; w1)
and u(s) = (sinh[2(d� s)]r(w0)+ sinh[2s]r(w1))= sinh[2d]: Then u satis�es the di�erential
equation u00 � 4u = 0 and the boundary conditions u(0) = r(w0); u(d) = r(w1): Applying
Lemma 5 to the function v(s) = r(w(s)) yields the inequality r(ws=d) � u(s) for s 2 [0; d];
which is same as (3.1).
(iii),(iv): Since the left-hand side of (3.5) is conformally invariant by Lemma 1, we

may assume that X = D :
Let 
 : s 7! w(s) be a smooth arc parametrized by hyperbolic arclength in D and

suppose that 
 lies in 
: (For a while, we do not assume 
 to be a geodesic arc.) Letting
�(s) = argw0(s); we may write w0(s) = jw0(s)jei�(s) = (1� jw(s)j2)ei�(s):
Since r is real-valued, the derivative of v(s) = r(w(s)) can be obtained by

v0(s) = @r(w(s))w0(s) + �@r(w(s))w0(s)

= 2Re f@r(w(s))w0(s)g

= 2Re
�
(1� jw(s)j2)@r(w(s))ei�(s)

	
= 2Re fei�(s)@D r(w(s))g:

Let �D (w(s); 
) and �C (w(s); 
) be the hyperbolic curvature and the euclidean curvature
of 
 at w(s), respectively (cf. [5]). That is,

�C (w(s); 
) =
Im
n

w00(s)
w0(s)

o
jw0(s)j

=
Im
n

w00(s)
w0(s)

o
1� jw(s)j2

and
�D (w(s); 
) = (1� jw(s)j2)�C (w(s); 
) + 2 Imfw(s)ei�(s)g:

Then

Im

�
w00(s)

w0(s)

�
= �D (w(s); 
)� 2 Im fw(s)ei�(s)g:

By the relation w0(s) = (1� jw(s)j2)ei�(s), we get

Re

�
w00(s)

w0(s)

�
= �2Re fw(s)ei�(s)g;

and hence,

w00(s) = �2w(s)(1� jw(s)j2)e2i�(s) + i(1� jw(s)j2)ei�(s)�D (w(s); 
):

By using the previous equality, we have
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v00(s) = 2Re
�
@2r(w(s))w0(s)2

	
+ 2Re f@r(w(s))w00(s)g+ 2 @ �@r(w(s))jw0(s)j2

= 2Re
nh

(1� jw(s)j2)2@2r(w(s))� 2w(s)(1� jw(s)j2)@r(w(s))
i
e2i�(s)

o
+2 (1� jw(s)j2)2@ �@r(w(s))� 2 �D (w(s); 
)Im

�
(1� jw(s)j2)@r(w(s))ei�(s)

	
:

Hence,

v00(s) = 2Re
�
e2i�(s) � @2

D
r(w(s))

	
+
1

2
�D r(w(s))

�2 �D (w(s); 
) � Im fe
i�(s)@D r(w(s))g:

From now on, we assume 
 to be a geodesic arc. So, �D (w(s); 
) = 0, and therefore,

v00(s) = 2Re fe2i�(s) � @2D r(w(s))g+
1

2
�D r(w(s)):

Since the argument �(s) can be chosen arbitrarily for a given point w = w(s) by taking
a suitable geodesic arc passing through w; the inequality (3.5) holds at the point w: The
converse is obvious by the last formula.

Remark. We can similarly de�ne spherical concavity for a real-valued function de�ned
on a hyperbolic region in P by replacing dX(w0; w1) and sinh by dP(w0; w1) and sin;
respectively in the inequality (3.1). When r is of class C2; our de�nition is equivalent
to that of Kim and Minda [4]: A real-valued function r of class C2 is called spherically
concave in 
 if the function v given by v(s) = r(w(s)) satis�es the inequality v00(s) +
4v(s) � 0 for a spherical geodesic arc w(s) in 
 which is parametrized by its spherical
arclength.

The composition of a hyperbolically concave function with a certain function can also
be hyperbolically concave. We show this in the next lemma.

Lemma 6. Suppose that a function h : (0;M)! R satis�es the following three conditions

on (0;M): (a) h is non-decreasing, (b) h(x)=x is non-increasing, and (c) h is concave.

Let 
 be a subregion of a hyperbolic region X in C : If a hyperbolically concave function

r : 
 ! R relative to X takes its values in (0;M); then the composed function h Æ r is

also hyperbolically concave on 
 relative to X.

Proof. We need to show the inequality (3.1) for h Æ r. First, we put

c =
sinh[2(1� t)d] + sinh[2td]

sinh[2d]
and s =

sinh[2td]

sinh[2(1� t)d] + sinh[2td]
:

Note that 0 < c � 1 because sinhx is super-additive: sinh(x + y) > sinhx + sinh y for
x; y > 0: Now the hyperbolic concavity of r gives

r(wt) � c[(1� s)r(w0) + sr(w1)]:
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By the condition (b), h(cx) � ch(x) for x 2 (0;M): This together with (a) and (c) implies

h(r(wt)) � h(c[(1� s)r(w0) + sr(w1)])

� ch([(1� s)r(w0) + sr(w1)])

� c[(1� s)h(r(w0)) + sh(r(w1))];

which is the desired inequality.

4. Main theorems

In this section, we give characterizations of hyperbolically convex regions 
 in a simply
connected hyperbolic region X in C in terms of the relative hyperbolic density �
 of 
 to
X:

Theorem 2. Let 
 be a subregion of a simply connected hyperbolic region X in C and

let �
 be the relative hyperbolic density of 
 to X: Then the following are equivalent:

(i) 
 is hyperbolically convex in X:

(ii)

����@X 1

�


���� � 1:

(iii)

����@X 1

�


���� � 1�
1

�2

:

(iv) �X
1

�

�

4

�

:

(v) 1=�
 is superharmonic in 
:

(vi) �X
1

�

� �

4

�


�
1�

1

�2


�
.

(vii)
1

�


����@2X 1

�


���� � 3

2

 
1�

����@X 1

�


����
2
!
:

Equalities hold in (iii), (vi) and (vii) when 
 is a hyperbolic half plane of X: Note that
we do not assume 
 to be simply connected in the theorem. In euclidean convex regions,
a condition analogous to (iii) cannot appear as a characterizing property of euclidean
convex regions since equality holds for a half plane in (ii) of Theorem A.
We now give suÆcient conditions for hyperbolic convexity in terms of hyperbolic con-

cavity of some functions involving the relative hyperbolic density.

Theorem 3. Let 
 be a subregion of a simply connected hyperbolic region X in C and let

�
 be the relative hyperbolic density of 
 to X: Then, concerning the following conditions,

the implication relations (i), (ii)) (iii)) (iv) hold:

(i)
1

�


����@2X 1

�


���� +
����@X 1

�


����
2

� 1 +
1

�2

:

(ii) 1=�
 is hyperbolically concave on 
 relative to X:
(iii) tanh(1=�
) is hyperbolically concave on 
 relative to X:
(iv) 
 is hyperbolically convex in X:
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In view of the equivalence of the condition (iv) in Theorem A or B to the correspond-
ing convexity of the subregion, it is expected that the conditions in Theorem 3 are all
equivalent. The authors, however, did not succeed in showing it.

Next, we establish characterizations of hyperbolically convex regions in X in terms of
two-point distortion. Theses are hyperbolic analogs of the results in [15] for the euclidean
case and in [4] for the spherical case.

Theorem 4. Let 
 be a subregion of a hyperbolic region X in C and denote by �
 the

relative hyperbolic density of 
 to X: Then the following are equivalent:

(i) 
 is hyperbolically convex in X:

(ii)

���� 1

�
(A)
�

1

�
(B)

���� � 2 dX(A;B) for all A;B 2 
.

(iii)

���� arctanh
�

1

�
(A)

�
� arctanh

�
1

�
(B)

����� � 2 dX(A;B) for all A;B 2 
.

To prove the above theorems, we �rst establish a formula related to the hyperbolic
Laplacian of �
: This is an analogous result to [4, Lemma 1 (8)] for the spherical case.

Lemma 7. Let 
 be a subregion of a hyperbolic region X in C : Then the relative hyper-

bolic density �
 of 
 to X satis�es the relation

1

4 �

�X

�
1

�


�
=

����@X
�

1

�


�����
2

�

�
1�

1

�2


�
:(4.1)

Proof. By the curvature equation for the hyperbolic metric, we have

�X log �
 =
1

�2X
� log �


=
1

�2X
(� log�
 �� log�X)

=
1

�2X
(4�2
 � 4�2X)

= 4 (�2
 � 1):

On the other hand, by de�nition of �X ; we have

�X log �
 = �
1

�2X
� log

1

�

= �

4

�2X
@ �@ log

1

�


= �
4

�2X
@

�
�
 �@

�
1

�


��

= �
4�

�2X

@ �@

�
1

�


�
�

4

�2X
@�
 �@

�
1

�


�

= ��
�X

�
1

�


�
+
4�2

�2X

@

�
1

�


�
� �@

�
1

�


�

= ��
�X

�
1

�


�
+ 4�2


����@X
�

1

�


�����
2

:
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In view of these two representations of �X log �
; we obtain

�
�X

�
1

�


�
= 4�2


����@X
�

1

�


�����
2

� 4(�2
 � 1):

Let 
 be a subregion of a hyperbolic region X in C and g : X ! Y be a conformal
homeomorphism. Then, we have the obvious relation �
;X = �
0;Y Æ g on 
 where 
0 =
g(
). Therefore, the conditions which appear in Theorem 2 are invariant under conformal
mappings and hence, it is enough to prove the theorem for X = D .
By combining the formulae in the following lemma with conditions in Theorem C, we

can obtain some of our conditions in Theorem 2.

Lemma 8. Let f be a holomorphic universal covering projection of the unit disk D onto a

subregion 
 of D : Then the relative hyperbolic density �
 of 
 to D satis�es the following

relations: �
1

�


�
Æ f = jDh1f j;(4.2) �

@D
1

�


�
Æ f =

jf 0j

f 0
�
Dh2f

2Dh1f
=

jf 0j

f 0
�
Qf

2
;(4.3) �

@2
D

1

�


�
Æ f =

jf 0j

f 0
�
��2
D
Sf

2Dh1f
:(4.4)

Proof. By using �
(f(z))jf
0(z)j = �D (z) = 1=(1�jzj2); we obtain (4.2) immediately. The

second relation is deduced by Lemmas 2 and 3. Now, we show the third one. By Lemma
2, we have �

@2D
1

�


�
Æ f = (Dh1f)

�2

�
@2D

�
1

�

Æ f

�
� @D

�
1

�

Æ f

�
Dh1f

Dh2f

�
= (Dh1f)

�2
�
@2
D
jDh1f j � @D jDh1f jQf

	
We then apply Lemma 3 to get (4.4).

We are now ready to prove our main theorems by making use of the previous lemmas.

Proof of Theorem 2. In view of Lemma 8, the equivalence of (i), (ii), (iii) and (vii) in
Theorem 2 is just a restatement of Theorem C. Furthermore, by (4.1) in Lemma 7, we
have the relations

�
�X

�
1

�


�
= 4�2


(����@X
�

1

�


�����
2

� 1

)
+ 4

= 4�2


(����@X
�

1

�


�����
2

�

�
1�

1

�2


�2
)
� 4

�
1�

1

�2


�
;

which show the equivalence of (ii) and (iv) and the equivalence of (iii) and (vi). Hence, (iv)
and (vi) are equivalent. We recall that 1=�
 is superharmonic if and only if �(1=�
) � 0;
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equivalently, �X(1=�
) � 0: Clearly, (vi) implies (v) and (v) implies (iv). Therefore, we
have shown that (i) through (vii) are all equivalent.

Proof of Theorem 3. Set r = 1=�
 for simplicity. Then, (4.1) in Lemma 7 yields the
relation

r

�
j@2Xrj+

1

4
�Xr � 2r

�
= rj@2Xrj+ j@Xrj

2 � 1� r2:

By Theorem 1, we see that the conditions (i) and (ii) are equivalent.
In order to show (ii))(iii), we use Lemma 6. For h(x) = tanh x, it is suÆcient to check

that the function h(x) satis�es conditions (a), (b) and (c) in the lemma. We omit the
proof for this since it is quite elementary.
Finally, we show that (iii) implies (iv). Since these conditions are conformally invariant,

we may assume that X = D : Suppose that the condition (iii) is satis�ed but 
 is not
hyperbolically convex in D : Then, there are distinct points a and b in 
 such that the
geodesic arc joining a and b in D is not contained in 
: Without loss of generality, we
may further assume that a = 0: Note that any geodesic arc in D passing through 0 is a
line segment. Since 
 is connected, 0 and b can be connected by a smooth simple arc

 : s 7! w(s); 0 � s � 1; with w(0) = 0 and w(1) = b in 
: Let �s be the closed line
segment joining 0 and w(s): Since 0 is an interior point of 
; the segment �s is contained in

 for suÆciently small s > 0: Let s0 be the smallest number such that �s0 is not contained
in 
: It is clear that 0 < s0 � 1: Choose a point c in �s0 \ @
 and put d0 = dD (0; w(s0))
and t0 = dD (0; c)=d0: For any number 0 < s < s0; let c(s) be the point lying in �s
such that t0 = dD (0; c(s))=d(s); where d(s) = dD (0; w(s)): It is evident that c(s) ! c
as s ! s0 � : Since the hyperbolic metric is complete, it follows that �
(c(s)) ! +1;
and hence, �
(c(s)) ! +1 as s ! s0 � : On the other hand, by (3.1) for the function
r = tanh(1=�
); we have

tanh
1

�
(c(s))
�

sinh[2(1� t0)d(s)] tanh(1=�
(0)) + sinh[2t0d(s)] tanh(1=�
(w(s)))

sinh[2d(s)]
:

Clearly, the right-hand side of the above inequality tends to a positive number as s! s0�;
which contradicts the divergence of �
(c(s)): Thus, 
 must be hyperbolically convex in
D :

Proof of Theorem 4. Suppose that 
 is a hyperbolically convex region in D : Fix A;B 2 
.
Let 
 : w = w(s), 0 � s � L, be the hyperbolic geodesic arc from A to B parametrized
by hyperbolic arclength. Then 
 � 
 and L = dD (A;B). If we set v(s) = 1=�
(w(s)),
then

jv0(s)j = 2Re

�
@
1

�

(w(s))w0(s)

�
� 2

����@D 1

�

(w(s))

���� :
By using the condition (iii) of Theorem 2, we obtain

jv0(s)j � 2

�
1�

1

�2
(w(s))

�
= 2(1� v2(s))
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or, equivalently,

�2 �
v0(s)

1� v2(s)
� 2:

By integrating these inequalities over [0; L]; we obtain

j arctanh(v(L))� arctanh(v(0))j � 2L;

namely, ���� arctanh
�

1

�
(B)

�
� arctanh

�
1

�
(A)

����� � 2dD (A;B):(4.5)

Next, we prove that if the preceding inequality (4.5) holds for all A;B 2 
, then 
 is
hyperbolically convex in D : We show that the inequality (4.5) implies����@D 1

�


���� � 1�
1

�2


and so 
 is hyperbolically convex by Theorem 2. Fix w0 2 
. Let 
 : w = w(s) be
a hyperbolic geodesic arc in 
 parametrized by hyperbolic arclength on some interval
containing 0 with w0 = w(0): Let v(s) = 1=�
(w(s)), then we have

j arctanh(v(s))� arctanh(v(0))j � 2 dD (w(s); w(0)) = 2s

for all s suÆciently small. We now divide the both sides by s and let s tend to 0 to obtain

jv0(0)j

1� v2(0)
� 2:

Since

v0(0) = 2Re

��
@D

1

�


�
(w0) e

i�

�
;

where � = argw0(0), and we can �nd a geodesic arc containing w0 in any direction there,
we conclude that ����

�
@D

1

�


�
(w0)

���� � 1�
1

�2
(w0)

holds by choosing a suitable �. Thus, we have shown that (i) and (iii) are equivalent. In
a similar way (even more easily), we can also show that (i) and (ii) are equivalent.
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