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Abstract. In this paper, nonlinear integral operators on normalized analytic functions

in the unit disk are investigated in connection with the pre-Schwarzian derivative and the

Hornich operation. In particular, several non-trivial relations between these operators

and the class of strongly starlike functions will be deduced.

1. Introduction

H. Hornich [13] de�ned an unusual operation (often called the Hornich operation) on the

set of locally univalent (analytic) functions in the unit disk (or, more generally, a convex

domain). Without essential loss of generality, we may restrict ourselves to the set A of

analytic functions f in the unit disk D = fjzj < 1g normalized by f(0) = 0 = f 0(0) � 1:

Let f and g be locally univalent functions in A and � be a complex number. Then the

Hornich operation is de�ned by

f � g(z) =

Z z

0

f 0(w)g0(w)dw; and

� ? f(z) =

Z z

0

�
f 0(w)

	�
dw;

where the branch of (f 0)� = exp(� log f 0) is taken so that (f 0)�(0) = 1: Thus, this manip-

ulation gives a structure of vector space to the set LU of locally univalent functions in A;
namely, LU = ff 2 A : f 0(z) 6= 0 8z 2 D g:

Hornich [13] also introduced a norm to a subset of LU which makes it a separable real

Banach space with the above operation. After then, J. A. Cima and J. A. Pfaltzgra�

[9] gave another separable real Banach space structure to a slightly di�erent set from

Hornich's one. These spaces, however, both do not contain the whole set S of normal-

ized univalent functions. On the other hand, D. M. Campbell, Cima and Pfaltzgra� [8]

considered a complex Banach space structure on the set of locally univalent functions of
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�nite order, where the order of a function f is de�ned by

ord(f) = sup
z2D

������z +
1

2
(1� jzj2)f

00(z)

f 0(z)

���� ;
see [24]. This space is non-separable, but has the advantage that it contains the whole S
as a closed subset with non-empty interior as we shall explain later. It is quite easy to

see that ord(f) <1 if and only if the norm

kfk = sup
z2D

(1� jzj2)jTf(z)j

is �nite, where Tf = f 00=f 0 denotes the pre-Schwarzian derivative Tf = f 00=f 0 of f: Note

that the Schwarzian derivative of f is de�ned as Sf = (f 00=f 0)0�(f 00=f 0)2=2 = T 0
f�(Tf )2=2:

It should also be noted that the norm kfk is nothing but the Bloch semi-norm of the

function log f 0: The above norm is not same as, but equivalent to, that considered in [8].

S. Yamashita observed in [29] that f 2 LU is of �nite order if and only if f is uniformly

locally univalent in D ; namely, there is a positive constant � for which f is univalent in

every hyperbolic disk in D of radius �: Earlier than this, Ch. Pommerenke obtained in

[24, Satz 2.6] an explicit estimate for the radius � of the univalent hyperbolic disk for f

in terms of ord(f):

We can now view the Hornich operation more naturally through the pre-Schwarzian

derivative. Indeed, since Tf�g = Tf + Tg and T�?f = �Tf ; it is just the transformation

of the usual linear operation under the inverse of taking pre-Schwarzian derivative. This

simple fact is, however, a source of ideas developed in the present paper. Note that this

point of view was used by Yamashita [28] in a more general context.

The complex Banach space B = ff 2 LU : kfk <1g with the Hornich operation and

the norm kfk is thus a natural object to investigate. It is well known that S is closed in B
and contained in ff 2 B : kfk � 6g: The Koebe function is an example so that kfk = 6:

Also, suÆcient conditions for univalence and boundedness for f are known.

Theorem A.

(i) If kfk � 1; then f is univalent in D and kfk � k < 1; then f has a K-quasiconformal

extension to C ; where K = (1 + k)=(1� k):

(ii) If kfk < 2; then f is bounded in D :

The bounds 1 and 2 are sharp.

The �rst assertion was proved by J. Becker [4]. The sharpness of the constant 1 is due

to [5]. The second assertion is immediate. The reader can �nd a proof of it in [15] with

examples showing the sharpness of the bound.

The set T � S consisting of those functions f which have quasiconformal extensions

to the Riemann sphere bC = C [ f1g is known to be an open set in B and considered as
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a model of the universal Teichm�uller space. See [2] and [31]. One of the most interesting

features of T is the following theorem due to I. V. Zhuravlev [31].

Theorem B. The space T decomposes into the uncountably many connected components

T0 and T� ; � 2 @D ; where

T0 = ff 2 T : f(D ) is bounded g and T� = ff 2 T : f(z) !1 as z ! �g:

Moreover, ff 2 B : kf �L�k < 1g � T� holds for each � 2 @D ; where L�(z) = z=(1� ��z):

We can see, in particular, that ff 2 B : kfk < 1g � T0 and ff 2 B : kf � L�k < 1g �
T� � ff 2 B : 2 < kfk < 6g for � 2 @D : The non-separability of B follows also from the

above result (cf. [8]). K. Astala and F. W. Gehring showed in [2] that the interior of S in

B coincides with T but the closure of T does not coincide with S:
The above aspects can be used to consider problems about some integral operators.

Let I�[f ] = � ? f for f 2 LU and J�[f ] := I�[J [f ]] for f 2 ZF = ff 2 A : f(z) 6=
0 for all z 2 D nf0gg; where � 2 C and J stands for the Alexander transformation. More

explicitly,

I�[f ](z) =

Z z

0

�
f 0(w)

	�
dw and J�[f ](z) =

Z z

0

�
f(w)

w

��

dw:

Note that the map J = J1 : ZF ! LU is bijective and that the inverse of J can be

represented by J�1[f ](z) = zf 0(z): It is also well known that J(S�) = K; where S� and

K stand for the classes of starlike and convex functions, respectively (see [1]). These

operators have been studied by many authors. We refer the reader to [10, x 8.5] and [12,

Chapter 15] for basic information about these operators, and standard terminology in the

theory of univalent functions, as well.

Problems concerning the operator J� can reduce to ones concerning I� instead, if we

once know about the image under the Alexander transformation J because of the relation

J� = I� Æ J: For example, we know that J(S�) = K; and therefore, J�(S�) = I�(K):

Though one can regard J as a smoothing operator, the behaviour of J is not so simple

as it is known that J(S) is not contained in S: On the other hand, we certainly have a

better estimate for functions in J(S) than the estimate kfk � 6 for f 2 S: In Section

2, we give a proof of the following result as well as some remarks. Compare with the

inequality kI�[f ]k = j�jkfk � 6j�j for f 2 S:
Theorem 1.1. The inequality kJ�[f ]k � 4j�j holds for every f 2 S and every complex

number �: The bound is sharp.

Pfaltzgra� [23] showed that I�(S) � S if j�j � 1=4: On the other hand, W. C. Royster

[25] proved that, for each number � other than 1 with j�j > 1=3; there is a function f in

S with I�(f) =2 S: Up to now, nothing better has been obtained in this general situation.
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The problem to �nd the sharp constant now reduces to �nd the supremum of the ratio of

the outer and the inner radii of the set

U(f) = f� 2 C : � ? f 2 Sg(1.1)

around the origin when f runs all over the set S: Indeed, Royster's observation was

essentially that U(f1) = f� 2 C : j�j � 1 or j�� 2j � 1g; where f1(z) = log(1 + z): Note

that kf1k = 2 and that 2 ? f1 = L�1: Especially, it may be interesting to observe that

f� 2 C : � ? f1 2 T0g = fj�j < 1g and f� 2 C : � ? f1 2 T�1g = fj� � 2j < 1g (see

Theorem B). The diÆculty of determining the set f� 2 C : I�(S) � Sg seems to come

from the fact that we have only very few functions f for which the shapes of U(f) are

completely determined.

By virtue of the relation J(S�) = K; Theorem 1 of E. P. Merkes [19] can read as

I�(K) � S for j�j � 1=2; where the constant 1=2 is sharp. Relating this result, he gave

in [19] the conjecture that I�(K) � S for j�� 1j � 1=2: We will use the above aspects to

settle the conjecture by giving a complete characterization of � satisfying I�(K) � S:
Theorem 1.2. The set M = f� 2 C : I�(K) � Sg = f� 2 C : J�(S�) � Sg equals the

union of the closed disk j�j � 1=2 and the line segment [1=2; 3=2]:

Concerning the Hornich operation, the linear structure of typical classes of univalent

functions has been investigated. For convenience, we denote by [f; g] the closed line

segment joining f and g; namely, [f; g] = f(1� t) ? f � t ? g : 0 � t � 1g: It is shown in [9]

that the class K of convex functions is convex, namely, [f; g] � K for any pair of functions

f and g in K: Y. J. Kim and Merkes [17] proved that the class C of close-to-convex

functions is also convex. In contrast, we will see that the class S� of starlike functions is

not convex in Section 3. At least, however, it is reasonable to pose the following problem:

Problem 1.3. Is the class S� starlike with respect to the origin concerning the Hornich

operation?

In other words, is it true that [id; f ] � S� for each f 2 S�? We consider this problem and

give some partial solutions to it in Section 3.

Let � be a non-negative number. A function f 2 A is called strongly starlike of order � if

jarg(zf 0(z)=f(z))j � ��=2 for z 2 D : (Here and hereafter, for a zero-free analytic function

p on D with p(0) = 1; arg p(z) is thought of a single-valued harmonic function in D with

normalization arg p(0) = 0:) We denote by SS(�) the set of strongly starlike functions

in A of order �: Note that SS(�) � SS(1) = S� for 0 � � � 1: As is well known, for

� 2 (0; 1); each function f 2 SS(�) is bounded (see [7]) and has a K(�)-quasiconformal

extension to C ; where K(�) = (1 + sin(��=2))=(1� sin(��=2)) (see [11]). In particular,

SS(�) � T0 for � 2 (0; 1): For further properties of strongly starlike functions, see, in

addition, [26] and [27].

We will next consider the following problem.
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Problem 1.4. Find a suÆcient condition on f 2 A under which I�[f ] 2 SS(�) for all

� 2 [0; 1]:

Note that f 2 S� \ T0 is a necessary condition for the above property. In particular,

a function f in S� \ T� (such as f = L�) for some � 2 @D does not have the above

property. On the other hand, the condition I�[f ] 2 SS(�) for all � 2 [0; 1] clearly implies

[id; f ] � S�:
One may suspect that the conclusion in this problem is too strong. However, a mild

condition can guarantee the positive answer to the problem as we see in the next couple

of results, which will be proved in Section 4 in a slightly more general form.

Theorem 1.5. Let f 2 A: Suppose that Re f 0 > 0 in D and that arg f 0(tz) lies between

0 and arg f 0(z) for each t 2 [0; 1] and z 2 D : Then I�[f ] 2 SS [�] for � 2 [0; 2]: In

particular, f 2 S�:
As is well known, J. W. Alexander [1] showed that if f 2 A satis�es Re f 0 > 0 in D

then f 2 S: However, without any additional condition, Re f 0 > 0 does not imply f 2 S�:
The authors learned from J. Stankiewicz that this fact was �rst pointed out by J. Krzy_z

[18]. For convenience of the reader, we will give a simpli�ed example as well as related

results in Section 4.
We give a di�erent kind of suÆcient condition for Problem 1.4:

Theorem 1.6. Suppose that f 2 A satis�es the condition����Im zf 00(z)

f 0(z)

���� � �2

8G
; z 2 D ;

where G is Catalan's constant. Then I�[f ] 2 SS[�] for each � 2 [0; 1]: In particular,

f 2 S�:
The proof of the theorem will be given also in Section 4. We recall that Catalan's

constant G is given by

G =
1X
n=0

(�1)n

(2n + 1)2
= 0:915965594 : : : :(1.2)

For interesting formulae involving Catalan's constant, see [6, Chapter 9]. Note also that

�2=8G � 1:346885252:

2. Proof of Theorems 1.1 and 1.2

We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Since TJ�[f ] = �TJ[f ]; it is enough to show the inequality kJ [f ]k �
4 for f 2 S: For a function f in S; the inequality due to Grunsky����log

zf 0(z)

f(z)

���� � log
1 + jzj
1� jzj
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holds (see [10, p. 126]). Set w = log(zf 0(z)=f(z)): Then we compute����zf 0(z)

f(z)
� 1

���� = jew � 1j �
1X
k=1

jwjk
k!

= ejwj � 1 � 1 + jzj
1� jzj � 1 =

2jzj
1� jzj :

Therefore, we come to the estimate

(1� jzj2)jTJ[f ](z)j = (1� jzj2)
����f 0(z)

f(z)
� 1

z

���� � (1� jzj2) 2

1� jzj = 2(1 + jzj):

Hence, kJ [f ]k � 4: The sharpness of the bound can be seen by the Koebe function.

The idea of using the Grunsky inequality was suggested by Vladimir Gutlyanski��

to one of the authors. They would like to express their sincere thanks to him.

As a consequence of the inequality kJ [f ]k � 4 for f 2 S; it follows that J [f ] is uniformly

locally univalent in D : Note that the same is no longer true for functions f in B because

f(z)=z may have zeros.

Combining Theorem 1.1 with Theorem A, we obtain the assertion that J�(S) � S for

each � with j�j � 1=4: Note that Y. J. Kim and Merkes [16] �rst showed this relation by

using the weaker inequality (1� jzj2)jzTJ[f ](z)j � 4 for f 2 S:
We next show Theorem 1.2.

Proof of Theorem 1.2. The part fj�j � 1=2g � M was proved by Merkes [19]. On the

other hand, the inclusion relation [0; 3=2] � M is due to M. Nunokawa [22]. We show

that any other point does not belong to M: By de�nition, the set M can be described by

M =
\
f2K

U(f);

where U(f) is the set given by (1.1). First, we consider the function f1(z) = log(1+z) and

set f� = I�[f1] for � 2 C : As we noted in Introduction, Royster [25] showed that U(f1) =

fj�j � 1 or j�� 2j � 1g: We observe here the simple relation U(f�) = f� : �� 2 U(f1)g
for � 2 C : By the relation 1+zf 00�=f

0
� = 1��z=(1+z) and by the fact that the image of D

under z=(1 + z) is the half-plane Rew < 1=2; we see that f� 2 C : f� 2 Kg = [0; 2]: Since

f2 2 K; we get �rst M � U(f2) = fj�j � 1=2 or j� � 1j � 1=2g: This is the reason why

Merkes came to the aforementioned conjecture. In particular, we obtain M � fj�j � 3=2g:
Secondly, we take any number r0 from (1=2; 3=2]: Then f1=r 2 K; and thus, M � U(f1=r)

for each r 2 (1=2; r0): In particular,

f� 2M : j�j = r0g �
\

1=2<r<r0

f� 2 U(f1=r) : j�j = r0g = fr0g:

It is now shown that f� 2M : j�j > 1=2g � (1=2; 3=2]:
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3. The class of starlike functions

In this section, we consider the familiar class S� of starlike functions. First, we show the

next result by giving an example of two starlike functions f and g so that h = (1=2)?(f�g)

is not starlike.

Theorem 3.1. The class S� of starlike functions is not convex concerning the Hornich

operation.

We remark on the subtlety of this fact. Since S� � C and C is convex [17], we can see

that the segment [f; g] is contained entirely in C for f; g 2 S�: Therefore, when we try to

construct such an example as above, we cannot choose f and g so that the midpoint h is

not univalent.

Proof. Putting 
 = e�i=4; we now de�ne the functions f and g in S� by f 0(z) = (1 +


z)=(1 � 
z)3 and g0(z) = (1 + �
z)=(1 � �
z)3: Note that f and g both are rotations of

the Koebe function z=(1� z)2; and therefore, starlike functions. Then the midpoint h of

f and g can be expressed in the form

h(z) =

Z z

0

(1 + 
w)1=2(1 + �
w)1=2

(1� 
w)3=2(1� �
w)3=2
dw =

Z z

0

s
1 +

p
2w + w2

(1�p
2w + w2)3

dw;

which is a variant of the Schwarz-Christo�el transformation. Indeed, on the boundary of

the unit disk, we can write

h(ei�) =

8>>>><>>>>:
h(1) +

i

2

Z �

0

s
cos t + 1=

p
2

(cos t� 1=
p

2)3
dt; j�j < �=4;

h(�1) � i

2

Z ���

0

s
cos t� 1=

p
2

(cos t + 1=
p

2)3
dt; j� � �j < 3�=4:

Therefore, we see that h(D ) = fz 2 C : Re z < h(1)g n E; where E is the closed half

parallel strip given by fz 2 C : Re z � h(�1) and jIm zj � ag and a is the positive

number de�ned by

a =
1

2

Z �=4

0

s
cos t� 1=

p
2

(cos t + 1=
p

2)3
dt:

In particular, the image h(D ) is not starlike with respect to the origin.

We next consider Problem 1.3. So far, we have no complete solution to it. We have yet

the following suÆcient condition for a function f 2 S� to satisfy [id; f ] � S�:
Theorem 3.2. Let f 2 A: Suppose that the function zf 00(z)=f 0(z) takes no values in the

set E0 = fx + yi : x � �1 and jyj � �p3xg: Then f� = I�[f ] 2 S� for 0 � � � 1:
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This result can be obtained as an immediate consequence of the following special case

of the Open Door Lemma due to P. Mocanu [21]. Here, E1 denotes the closed subset

f�1 + yi : jyj � p
3g of C consisting of two rays.

Lemma 3.3 (Open Door Lemma). Let f be a function in A: If zf 00(z)=f 0(z) 2 C n E1

for every z 2 D ; then f is starlike.

Proof of Theorem 3.2. For � 2 [0; 1]; zf 00�(z)=f 0�(z) = �zf 00(z)=f 0(z) 2 f�w : w 2 E0g �
C n E1: Now Lemma 3.3 yields that f� 2 S�:

Note that, for the Koebe function K(z) = z=(1 � z)2; the function zK 00(z)=K 0(z) =

2z(2 + z)=(1 � z2) is known to map the unit disk conformally onto the slit domain C n
E1: Lemma 3.3 means exactly that if zf 00(z)=f 0(z) is subordinate to zK 00(z)=K 0(z) then

zf 0(z)=f(z) is subordinate to zK 0(z)=K(z) = (1 + z)=(1 � z) for a function f 2 A: We

also see that the Koebe function does not satisfy the hypothesis of Theorem 3.2 because

the set E0 is larger than E1: Though Theorem 3.2 does not imply [id; K] � S�; this claim

itself can be proved directly (see Proposition 4.5 in the next section). Since the Koebe

function is extremal in various aspects, the validity of the statement [id; K] � S� may be

thought as supporting evidence for the aÆrmative answer to Problem 1.3. For suÆcient

conditions of di�erent types for f 2 S� to satisfy [id; f ] � S�; see also results concerning

Problem 1.4.

4. Strongly starlike functions

In this section, we concentrate on Problem 1.4. We �rst prove Theorem 1.5 by showing

a slightly more general result. For �0; �1 2 R; we set

�[�0; �1] = fz 2 C : z 6= 0; arg z = (1� t)�0 + t�1 for some t 2 [0; 1]g
and

�(�0; �1) = fz 2 C : z 6= 0; arg z = (1� t)�0 + t�1 for some t 2 (0; 1)g:
It is important in the sequel to note that the set �[�0; �1] is convex if j�1 � �0j < � and

that �(�0; �1) is convex if j�1 � �0j � �: Then one can prove the following result, from

which Theorem 1.5 follows.

Theorem 4.1. Let � be a positive constant and f 2 A: If jarg f 0(z)j < ��=2 and if

f 0(tz) 2 �[0; arg f 0(z)] for each t 2 [0; 1] and z 2 D ; then the function f� = I�[f ] is

strongly starlike of order �� provided that �� � 2:

Proof. Let � � 2=�: By assumption, f 0�(tz) = (f 0(tz))� 2 �[0; � arg f 0(z)] for t 2 [0; 1]

and z 2 D : Therefore, the average

f�(z)

z
=

Z 1

0

f 0�(tz)dt(4.1)
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of f 0�(tz) belongs to the convex set �[0; � arg f 0(z)] for each z 2 D : Hence, zf 0�(z)=f�(z) 2
�[0; � arg f 0(z)] � �[����=2; ���=2]: Now the conclusion follows.

Without the additional assumption about f 0(tz) in Theorem 4.1, we would only have

the conclusion that f�(z)=z 2 �[����=2; ���=2] for � 2 [0; 1=�] merely from the above

argument. Therefore, we still have the inequality jarg(zf 0�(z)=f�(z))j � ��� for � 2
[0; 1=�]: We record it as a proposition for a future reference.

Proposition 4.2. Suppose that f 2 A satis�es jarg f 0(z)j � ��=2 in D : Then f� 2
SS(2��) for � 2 [0; 1=�]: In particular, if f 0 has positive real part, jarg(zf 0�(z)=f�(z))j
� �� for z 2 D and � 2 [0; 1]:

Example 4.3. We consider the case when f(z) = �2 log(1�z)�z: This function clearly

satis�es the hypothesis in Theorem 1.5. Therefore, the function F� de�ned by

F�(z) = I�[f ](z) =

Z z

0

�
1 + w

1� w

��

dw(4.2)

is strongly starlike of order � for � 2 [0; 2]; and hence, univalent in D for � 2 [0; 1]: On

the other hand, F� is not univalent in D for � > 1; see [15].

We next show the following assertion, from which Theorem 1.6 follows as a corollary.

Theorem 4.4. Suppose that a function f 2 A satis�es the inequality����Im zf 00(z)

f 0(z)

���� � ��

2

in jzj < 1; where � is a positive constant Then f� = I�[f ] 2 SS(4G��=�) holds as long

as 4G�� � �; where G is Catalan's constant given in (1.2).

Proof. Set v(z) = Im (zf 00(z)=f 0(z)): Then v is a bounded harmonic function in D with

jvj � ��=2: Since v(0) = 0; the harmonic Schwarz lemma (cf. [3, Chapter 6]) yields the

inequality

jv(z)j � 2� arctan jzj; z 2 D :(4.3)

Next we observe the formula

d

ds
log f 0(sz) =

zf 00(sz)

f 0(sz)

for z 2 D and positive parameter s � 1: Taking the imaginary part of the both sides and

integrating it in s over the interval [t; 1]; we obtain

arg
f 0(z)

f 0(tz)
=

Z 1

t

Im

�
zf 00(sz)

f 0(sz)

�
ds =

Z 1

t

v(sz)

s
ds:
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By (4.3), we have ����arg
f 0(z)

f 0(tz)

���� � 2�

Z 1

t

arctan(sjzj)
s

ds

< 2�

Z 1

0

arctan s

s
ds

for each t 2 [0; 1]: Since arctanx =
P1

n=0(�1)nx2n+1=(2n + 1); we have the well-known

relation Z 1

0

arctan x

x
dx =

1X
n=0

(�1)n

2n + 1

Z 1

0

x2ndx =
1X
n=0

(�1)n

(2n + 1)2
= G:

We now conclude that the value f 0(z)=f 0(tz) belongs to the set �(�2G�; 2G�): This

implies that (f 0(tz)=f 0(z))� lies in �(�2G��; 2G��): Therefore, the average

f�(z)

zf 0�(z)
=

Z 1

0

�
f 0(tz)

f 0(z)

��

dt

belongs to the convex set �(�2G��; 2G��) as long as 2G�� � �=2: This means that

f� = I�[f ] 2 SS(4G��=�) when 4G�� � �:

We are now ready to show the fact that [id; K] � S� by giving a more re�ned relation.

Proposition 4.5. Let K(z) = z=(1 � z)2 be the Koebe function. Then K� = I�[K] 2
SS(minf1; 3�g) for � 2 [0; 1]:

Proof. We �rst note that argK 0(tz) 2 �[0; argK 0(z)] for t 2 [0; 1]: Indeed, when Im z � 0;

we have 0 � arg((1 + tz)=(1 � tz)) � arg((1 + z)=(1 � z)) and 0 � arg(1=(1 � tz)) �
arg(1=(1 � z)): Since argK 0(z) = arg((1 + z)=(1 � z)) + 2 arg(1=(1 � z)); the required

claim follows when Im z � 0: When Im z � 0; we show it in the same way as above.

Since jargK 0(z)j < 3�=2 in D ; we conclude that K� 2 SS(3�) for 0 � � � 1=3 from

Theorem 4.1.
Next, we consider the case when 1=3 < � < 1: Then the desired conclusion is that

p�(z) = zK 0
�(z)=K�(z) has positive real part in D : First note that p� extends to a holo-

morphic function in some open neighbourhood of D n f1;�1g: We now examine the be-

haviour of p�(z) around z = 1: Since (1 + z)� = 2�(1� (1� z)=2)� = 2�[1��(1� z)=2 +

�(�� 1)(1� z)2=8 + � � � ] as z ! 1; one obtains the asymptotic expansion of K 0
� near to

z = 1 in D :

K 0
�(z) = 2�(1� z)�3� � �2��1(1� z)1�3� + �(�� 1)2��3(1� z)2�3� + O(1):

Integrating the above gives us the expansion

K�(z) =
2�

3�� 1
(1� z)1�3� � �2��1

3�� 2
(1� z)2�3� + O(1)
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as z ! 1 in D ; where the second term should be eliminated when 2� 3� � 0: Therefore,

p�(z) = (3�� 1)
z

1� z

�
1 + O(j1� zj)

�
= c

1 + z

1� z
+ O(1)

as z ! 1 in D ; where c = (3�� 1)=2 > 0:

On the other hand, p�(z) is bounded around z = �1: Therefore, the real part of p�(z)

can be written in the form h(z) + c(1 � jzj2)=j1 � zj2; where h is a bounded harmonic

function in D : Now it remains to show that h > 0 in D : To this end, it suÆces to see that

P�(�) := 1=p�(�e�i�) has non-negative real part for each � 2 (0; �): We have used here

the symmetric property P�(��) = P�(�) of P�:

Since

K 0
�(�e�i�) =

(1� e�i�)�

(1 + e�i�)3�
= 2�2�ei�(�+�=2) sin�(�=2) cos�3�(�=2); � 2 (0; �);

we compute

K�(�e�i�) =

 Z �1

0

+

Z �e�i�

�1

!
(1 + w)�

(1� w)3�
dw

= �
Z 1

0

(1� x)�

(1 + x)3�
dx + iei��=22�2�

Z �

0

ei(��1)t sin�(t=2) cos�3�(t=2)dt

for � 2 (0; �): Therefore, we obtain

cos3�(�=2)

sin�(�=2)
P�(�) = 22�ei�(�+�=2)�i�C� + i

Z �

0

ei(1��)(��t) sin�(t=2) cos�3�(t=2)dt;

where C� =
R 1

0
(1 � x)�(1 + x)�3�dx > 0; and thus, the real part of P�(�) has the same

signature as

22�C� cos
�

(1� �)� � ��=2
	

+

Z �

0

sin(1� �)(� � t) sin�(t=2) cos�3�(t=2)dt:

It is clear that the integrand of the second term is nonnegative. On the other hand, since

(1 � �)� � ��=2 � (1 � �)� � ��=2 = �=2 + (1 � 3�)�=2 � �=2; the �rst term is also

nonnegative. The proof has been completed.

Remark. It is easy to see that K� = I�[K] is unbounded when � � 1=3: Recalling

the fact that strongly starlike functions of order < 1 are bounded, we see that f = K�

does not satisfy the conclusion in Problem 1.4 for � > 1=3: On the other hand, the above

proposition asserts that the function f = K1=3 does!

As we noted in Introduction, the condition Re f 0 > 0 does not imply starlikeness of f:

J. Krzy_z [18] constructed a counterexample in a clever but a little complicated way. Since
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the reference [18] may be diÆcult to access for the reader, we give a somewhat simpli�ed

example for convenience.

Example 4.6. Let 
 be the Jordan domain fz 2 C : Re z > 0; Im z > �1g and p : D ! 


be the conformal homeomorphism determined by p(0) = 1 and p(1) = 0: We can give an

explicit form of p by p(z) = (1+ i)
p

(�� z)=(� + z)� i; where � = (3+4i)=5; although it

does not matter below. Then f(z) =
R z

0
p(�)d� is such a function, namely, Re f 0 > 0 while

zf 0(z)=f(z) takes a value with negative real part for some z 2 D : Note that p analytically

extends to the point z = 1: We now use the following claim. We can see it directly but

we prefer to give a geometric proof below in order to clarify what conditions are essential.

Claim. Im p(x) > 0 for 0 < x < 1:

Set q(z) = f(z)=z: Since q(1) can be written as the average
R 1

0
p(x)dx of p(x) over

the interval [0; 1]; the above claim implies Im q(1) > 0: By continuity, Im q(ei�) > 0

holds for suÆciently small � > 0: On the other hand, p(ei�) takes the form i P (�); where

P (�) < 0 for suÆciently small � > 0: Therefore, Re (zf 0(z)=f(z)) = Re (p(z)=q(z)) =

P (�)jq(ei�)j�2Im q(ei�) < 0 for z = ei� with � > 0 small enough.

Proof of Claim. Note that the image of the segment (0; 1) under p is the hyperbolic

geodesic in 
 joining 1 and 0: Therefore, the claim follows from the inequality �
(�z) <

�
(z) for z 2 
� = fz 2 
 : Im z < 0g; where �
 denotes the hyperbolic (or Poincar�e)

density of the domain 
: The last inequality is implied by the re
ection principle of

hyperbolic metric due to D. Minda [20, Theorem 3].

We end this section with a small remark on Problem 1.4. If I�[f ] 2 SS(�) for some

� < 1; then the function I�[f ] is necessarily univalent and bounded in D : This conclusion

itself can be deduced only from the assumption Re f 0 > 0: Indeed, we have a stronger

result as in the following.

Theorem 4.7. Suppose that ei�f 0 has positive real part in D for some f 2 A and a

real constant �: Then, I�[f ] 2 S whenever j�j � 1=2 or � 2 [0; 1] and I�[f ] is bounded

whenever j�j < 1: The latter bound is sharp.

Theorem 4.7 follows immediately from the next more general theorem up to the asser-

tion that I�[f ] 2 S for � 2 [0; 1]; which is, however, a direct consequence of the convexity

of C because f 2 C in this case.

A function p analytic in D with p(0) = 1 is called Gelfer if p(z)+p(w) 6= 0 for every pair

of points z; w 2 D : In particular, if ei�p has positive real part for some real constant �;

then p is Gelfer. We refer the reader to [30] for interesting properties of Gelfer functions.

Theorem 4.8. Suppose that the derivative of a function f 2 A is Gelfer. Then I�[f ] 2 S
whenever j�j � 1=2 and I�[f ] is bounded whenever j�j < 1: The latter bound is sharp.
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Proof. Gelfer's theorem implies that kfk = sup(1 � jzj2)jf 00(z)=f 0(z)j � 2 (see [14] for a

simple proof). Therefore, kI�[f ]k = j�jkfk � 1 for j�j � 1=2: Becker's theorem (Theo-

rem A) now yields the univalence of I�[f ]: The boundedness follows from the inequality

kI�[f ]k < 2 for j�j < 1: We see that this bound is sharp by considering the function

F� = I�[f ] de�ned in (4.2).

Since J� = I� Æ J; the above theorem is translated into the following equivalent form

through the Alexander transformation J:

Corollary 4.9. Suppose that the function f(z)=z is Gelfer for some f 2 A: Then J�[f ] 2
S whenever j�j � 1=2 and J�[f ] is bounded whenever j�j < 1: The latter bound is sharp.
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