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Abstract For any given projective variety Y , we construct a projective va-
riety X ⊂ PN whose general fiber of the Gauss map with reduced scheme
structure is isomorphic to Y when the characteristic > 0.
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1 Introduction

Let X ⊂ PN be a projective variety over an algebraically closed field K. The
Gauss map γ from X to the Grassmannian G(dimX,N) is the rational map,
defined by γ(p) = TpX for a smooth point p ∈ X, and TpX ∈ G(dimX, N)
is the projective tangent space.

If the characteristic of K is 0, then it is classically known that a general
fiber of the Gauss map is a linear subspace of dimension dimX − dim γ(X)
(see, for example, [9]). If the characteristic of K is positive, it is no longer
true. Wallace ([8, Section 7]) pointed out that there exists a plane curve
which has infinitely many multiple tangents, or equivalently, whose Gauss
map has separable degree > 1 onto its image (see also [5, I-3]). Kaji ([3,
Example 4.1],[4]) and Rathmann ([7, Example 2.13]) gave smooth curves
with infinitely many multiple tangents. Noma constructed smooth or normal
projective varieties whose Gauss maps have separable degree > 1 onto its
image ([6]). In these cases, Gauss fibers are finite number of points. In [1],
an example of a surface whose Gauss fibers are smooth conics is found. In
the author’s best knowledge, this is the first example that Gauss fibers are
not finite unions of linear subspaces. We are naturally led to the following
question:
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Question 1 What kind of variety appears in the general fiber of the Gauss
map?

Our answer in this paper is: “Any projective varieties can appear”. To be
more precise, we will prove the following:

Theorem 1 Let charK > 0. For any positive integers k ≥ 2, r ≤ k and
N ≥ k+r and any projective variety Y ⊂ Pk of codimension r, there exists a
closed variety X ⊂ PN of dimension k, not contained in any hyperplane, such
that for a general point p ∈ X, Y is the fiber of the Gauss map γ−1(γ(p)) ⊂
TpX ∼= Pk set-theoretically (up to choices of coordinates).

Notation Unless otherwise stated, the base field K is an algebraically closed
field of characteristic p > 0. G(k, N) is the Grassmannian of k-dimensional
linear subspaces of PN . Varieties are integral algebraic schemes. Points mean
closed points. [v] ∈ PN denotes the point of PN corresponding to the equiva-
lence class of v ∈ AN+1 \0. Given a linear subspace V ⊂ AN+1, P(V ) ⊂ PN

means the linear subspace of PN corresponding to V .

2 Construction

Let k ≥ 2, r ≤ k, N > k be positive integers and let Y ⊂ Pk be a closed
variety of codimension r. Let B ⊂ G(k−r,N) be a closed variety of dimension
r, IB = {(x, E) ∈ PN × B|x ∈ E} and let f : IB → PN , g : IB → B be
the natural projections. Let u1, . . . , ur be a local parameter system of B, and
let ρ0, . . . , ρk−r : U → AN+1 be a system of morphisms on some open set
U ⊂ B such that P(〈ρ0(s), . . . , ρk−r(s)〉) is equal to the (k − r)-dimensional
linear subspace given by s for all points s ∈ U . We assume that

(1) f is generically étale onto its image,
(2) dim

〈{
∂ρi

∂uj
|i, j

}〉
= r and τ1, . . . , τr form its base, and

(3) ∂
∂uj

( ∂ρl

∂ui
) = 0 for any i, j, l.

The conditions (1) and (2) imply that dim 〈ρ0, . . . , ρk−r, τ1, . . . , τr〉 = k + 1.
Let η : U ×Pk → PN ;

(s)× (Y0 : · · · : Yk) 7→
[Y0ρ0(s) + · · ·+ Yk−rρk−r(s) + Yk−r+1τ1(s) + · · ·+ Ykτr(s)],

and let X be the closure of η(U × Y ). Then, X is the closed subvariety in
PN of dimension ≤ k. Let τ := η|(U×Y ) : U × Y → X.

Let Ŷ ⊂ Ak+1 be the affine cone of Y ⊂ Pk. By changing the coordinate
system if necessary, we may assume that Y0− y0, . . . , Yk−r − yk−r are a local
parameter system of Ŷ at a smooth point (y0, . . . , yk) ∈ Ŷ .

Proposition 1 τ is generically étale, and Tτ(s,y)X = η(s×Pk) for a general
point s ∈ B and a general point y ∈ Y .
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Proof Let τ̂ : U × Ŷ → AN+1 be the affine lifting of τ . By the assumption
(3) and easy computation, we have

∂τ̂
∂u1

= Y0
∂ρ0
∂u1

+ . . . + Yk−r
∂ρk−r

∂u1
...

∂τ̂
∂ur

= Y0
∂ρ0
∂ur

+ . . . + Yk−r
∂ρk−r

∂ur
∂τ̂
∂Y0

= ρ0 + ∂Yk−r+1
∂Y0

τ1 + . . . + ∂Yk

∂Y0
τr

...
∂τ̂

∂Yk−r
= ρk−r + ∂Yk−r+1

∂Yk−r
τ1 + . . . + ∂Yk

∂Yk−r
τr.

By the assumptions (1) and (2), for a general point (s, y) ∈ B × Ŷ ,

Im d(s,y)τ̂ = 〈τ1(s), . . . , τr(s), ρ0(s), . . . , ρk−r(s)〉 .
This implies our assertion.

We have the following theorem:

Theorem 2 Let k ≥ 2, r ≤ k, N > k be positive integers and let Y ⊂
Pk be a closed variety of codimension r. We assume that there exists an r-
dimensional closed variety B ⊂ G(k − r,N) with a system of rational maps
satisfying the conditions (1), (2) and (3) as above, such that

⋃
E∈B E ⊂ PN is

not contained in any hyperplane and P(〈ρ0(s), . . . , ρk−r(s), τ1(s), . . . , τr(s)〉)
= P(〈ρ0(s′), . . . , ρk−r(s′), τ1(s′), . . . , τr(s′)〉) implies s = s′ for general points
s, s′ ∈ B.

Then, there exists a closed variety X ⊂ PN of dimension k, not contained
in any hyperplane, such that for a general point p ∈ X, Y is the fiber of the
Gauss map γ−1(γ(p)) ⊂ TpX ∼= Pk set-theoretically.

Proof We construct X ⊂ PN as above consideration. Let τ be as above. By
Proposition 1, τ(s×Y ) is contained in γ−1(γ(τ(s, y))) for each general point
(s, y) ∈ B×Y . If the tangential space P(〈ρ0(s), . . . , ρk−r(s), τ1(s), . . . , τr(s)〉)
is uniquely determined from a general point of B then τ is generically one-
to-one, because a point contained in two distinct Y s is a singular point of
X. This implies that τ(s × Y ) coincides with the fiber γ−1(γ(τ(s, y))) for a
general point (s, y) ∈ B × Y .

The nondegeneration of X follows from the nondegeneration of the tan-
gent variety Tan Z of the ruled variety Z =

⋃
E∈B E, because Tan Z is also

the tangent variety of X.

Theorem 1 is given as the corollary of Theorem 2.

Proof (Proof of Theorem 1) If N ≥ k + r then we can take B as the closure
of the image of the morphism Ar → G(k − r,N); s 7→ P(〈v, p1, . . . , pk−r〉),
where v is the morphism from Ar to AN+1 given by

v = (1, 0, . . . , 0, u1, . . . , ur, u
p
1, . . . , u

p
r , u

p2

r , . . . , upN−k−r+1

r )
and pi ∈ AN+1 is the point whose l-th coordinate is 0 for any l 6= i and 1 for
l = i. We have the result by Theorem 2.

Remark 1 The conditions (1) and (2) force the ruling of B ⊂ G(k− r,N) to
be developable, i.e. tangent spaces of the ruled variety

⋃
E∈B E ⊂ PN are

constant on each linear subspace E ∈ B ([1]).
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3 Examples

Example 1 Let charK = 2. We consider the hypersurface X in P3 given
by F = X6 + Y 6 + Z6 + Y Z4W + Y 2Z2W 2 + Y 3W 3. For a general point
(x : y : z : w) ∈ X, the tangent plane given by wY + yW = 0 because
the Gauss map is given by (∂F/∂X : ∂F/∂Y : ∂F/∂Z : ∂F/∂W ) = (0 :
Z4W + Y 2W 3 : 0 : Y Z4 + Y 3W 2) = (0 : W : 0 : Y ). The intersection of
X and this plane is the plane curve wY + yW =

√
y3X3 +

√
y3 + w3Y 3 +√

y3Z3 +
√

y2wY Z2 +
√

yw2Y 2Z = 0. This is the fiber of the Gauss map at
T(x:y:z:w)X ∈ P3∗. This curve is smooth and of degree 3 (for a general point
(x : y : z : w) ∈ X), hence this is an elliptic curve.

The above surface X is given by our method in Section 2: B is the closure
of the image of the morphism A1 → G(1, 3) ⊂ P5; u 7→ (p01 : p02 : p03 : p12 :
p13 : p23) = (1 : u : u2 : 0 : 0 : 0) where pij are Plücker coordinates, and
Y ⊂ P2 is the hypersurface given by Y 3

0 + Y 3
1 + Y 3

2 = 0 where Y0, Y1, Y2 are
coordinates on P2.

Example 2 Let charK = 3. Let B be the closure of the image of the morphism
A1 → G(1, 3) ⊂ P5; u 7→ (p01 : p02 : p03 : p12 : p13 : p23) = (1 : u : u3 : 0 : 0 :
0), and Y ⊂ P2 be the hypersurface given by Y 4

0 + Y 4
1 + Y 4

2 = 0. Then we
have the surface X given by X12+Y 12+Z12+2Y 2Z9W +2Y 6Z3W 3+Y 8W 4.
By easy computation, we can check that the general fibers of the Gauss map
of this surface are smooth curves of genus 3.

Example 3 Now, we give an example of a 3-fold X ⊂ P4 whose general fibers
of the Gauss map are twisted cubic curves.

Let charK = 2. Let B ⊂ G(1, 4) be the closure of the image of the
morphism A2 → G(1, 4), (u, v) 7→ P(〈ρ0, ρ1〉) where

ρ0 = (1 0 u 0 u2)
ρ1 = (0 1 0 v v2),

and let Y ⊂ P3 be a curve given by Y0Y2−Y 2
1 , Y1Y3−Y 2

2 , Y0Y3−Y1Y2. Then
our construction in Section 2 gives the hypersurface X ⊂ P4 whose defining
polynomial is X0X

5
1 +X6

1 +X3
0X1X

2
2 +X4

0X2
3 +X4

0X1X4 (by using Groebner
Basis).

Example 4 We give an example of a hypersurface X ⊂ P9 whose general
Gauss fibers are abelian surfaces.

Let charK = 2. Let B ⊂ G(1, 4) be the closure of the image of the
morphism A6 → G(2, 9), (u1, u2, u3, u4, u5, u6) 7→ P(〈ρ0, ρ1, ρ2〉) where

ρ0 = (1 0 0 u1 0 0 u2 0 0 u3
1 + u3

2)
ρ1 = (0 1 0 0 u3 0 0 u4 0 u3

3 + u3
4)

ρ2 = (0 0 1 0 0 u5 0 0 u6 u3
5 + u3

6),

and let Y be the surface E × E ⊂ P2 × P2 where E is the elliptic curve in
P2 given by x3

0 + x3
1 + x3

2 = 0. We embed Y to P8 by Segre embedding. We
have the hypersurface X ⊂ P9 as the closure of the image of the morphism
U × Y → P9 (where U is an open subset of B), (s) × (x0 : x1 : x2) × (y0 :
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y1 : y2) 7→ [x0y0ρ0(s) + x1y1ρ1(s) + x2y2ρ2(s) + x0y1
∂ρ0
∂u1

(s) + x0y2
∂ρ0
∂u2

(s) +
x1y0

∂ρ1
∂u3

(s) + x1y2
∂ρ1
∂u4

(s) + x2y0
∂ρ2
∂u5

(s) + x2y1
∂ρ2
∂u6

(s)].

Recently, varieties with non-constant Gauss fibers are found, which result
will be published in [2].
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