Satoru Fukasawa

Varieties with non-linear Gauss fibers

Received: date / Revised: date

Abstract For any given projective variety Y, we construct a projective variety $X \subset \mathbf{P}^N$ whose general fiber of the Gauss map with reduced scheme structure is isomorphic to Y when the characteristic > 0.

Mathematics Subject Classification (2000) 14N05

1 Introduction

Let $X \subset \mathbf{P}^N$ be a projective variety over an algebraically closed field K. The Gauss map γ from X to the Grassmannian $\mathbf{G}(\dim X, N)$ is the rational map, defined by $\gamma(p) = \mathbf{T}_p X$ for a smooth point $p \in X$, and $\mathbf{T}_p X \in \mathbf{G}(\dim X, N)$ is the projective tangent space.

If the characteristic of K is 0, then it is classically known that a general fiber of the Gauss map is a linear subspace of dimension dim $X - \dim \gamma(X)$ (see, for example, [9]). If the characteristic of K is positive, it is no longer true. Wallace ([8, Section 7]) pointed out that there exists a plane curve which has infinitely many multiple tangents, or equivalently, whose Gauss map has separable degree > 1 onto its image (see also [5, I-3]). Kaji ([3, Example 4.1],[4]) and Rathmann ([7, Example 2.13]) gave smooth curves with infinitely many multiple tangents. Noma constructed smooth or normal projective varieties whose Gauss fibers are finite number of points. In [1], an example of a surface whose Gauss fibers are smooth conics is found. In the author's best knowledge, this is the first example that Gauss fibers are *not* finite unions of linear subspaces. We are naturally led to the following question:

Satoru Fukasawa

E-mail: sfuka@hiroshima-u.ac.jp

Department of Mathematics, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan

Question 1 What kind of variety appears in the general fiber of the Gauss map?

Our answer in this paper is: "Any projective varieties can appear". To be more precise, we will prove the following:

Theorem 1 Let charK > 0. For any positive integers $k \ge 2$, $r \le k$ and $N \geq k+r$ and any projective variety $Y \subset \mathbf{P}^k$ of codimension r, there exists a closed variety $X \subset \mathbf{P}^N$ of dimension k, not contained in any hyperplane, such that for a general point $p \in X$, Y is the fiber of the Gauss map $\gamma^{-1}(\gamma(p)) \subset$ $\mathbf{T}_{p}X \cong \mathbf{P}^{k}$ set-theoretically (up to choices of coordinates).

Notation Unless otherwise stated, the base field K is an algebraically closed field of characteristic p > 0. $\mathbf{G}(k, N)$ is the Grassmannian of k-dimensional linear subspaces of $\mathbf{P}^{\vec{N}}$. Varieties are integral algebraic schemes. Points mean closed points. $[v] \in \mathbf{P}^N$ denotes the point of \mathbf{P}^N corresponding to the equiva-lence class of $v \in \mathbf{A}^{N+1} \setminus 0$. Given a linear subspace $V \subset \mathbf{A}^{N+1}, \mathbf{P}(V) \subset \mathbf{P}^N$ means the linear subspace of \mathbf{P}^N corresponding to V.

2 Construction

Let $k \geq 2, r \leq k, N > k$ be positive integers and let $Y \subset \mathbf{P}^k$ be a closed variety of codimension r. Let $B \subset \mathbf{G}(k-r, N)$ be a closed variety of dimension $r, I_B = \{(x, E) \in \mathbf{P}^N \times B | x \in E\}$ and let $f: I_B \to \mathbf{P}^N, g: I_B \to B$ be the natural projections. Let u_1, \ldots, u_r be a local parameter system of B, and let $\rho_0, \ldots, \rho_{k-r}: U \to \mathbf{A}^{N+1}$ be a system of morphisms on some open set $U \subset B$ such that $\mathbf{P}(\langle \rho_0(s), \ldots, \rho_{k-r}(s) \rangle)$ is equal to the (k-r)-dimensional linear subspace given by s for all points $s \in U$. We assume that

- (1) f is generically étale onto its image,
- (2) dim $\left\langle \left\{ \frac{\partial \rho_i}{\partial u_j} | i, j \right\} \right\rangle = r$ and τ_1, \dots, τ_r form its base, and (3) $\frac{\partial}{\partial u_j} \left(\frac{\partial \rho_l}{\partial u_i} \right) = 0$ for any i, j, l.

The conditions (1) and (2) imply that dim $\langle \rho_0, \ldots, \rho_{k-r}, \tau_1, \ldots, \tau_r \rangle = k+1$. Let $\eta: U \times \mathbf{P}^k \to \mathbf{P}^N$;

 $(s) \times (Y_0 : \cdots : Y_k) \mapsto$

 $[Y_0\rho_0(s) + \dots + Y_{k-r}\rho_{k-r}(s) + Y_{k-r+1}\tau_1(s) + \dots + Y_k\tau_r(s)],$ and let X be the closure of $\eta(U \times Y)$. Then, X is the closed subvariety in \mathbf{P}^N of dimension $\leq k$. Let $\tau := \eta|_{(U \times Y)} : U \times Y \to X$.

Let $\widehat{Y} \subset \mathbf{A}^{k+1}$ be the affine cone of $Y \subset \mathbf{P}^k$. By changing the coordinate system if necessary, we may assume that $Y_0 - y_0, \ldots, Y_{k-r} - y_{k-r}$ are a local parameter system of \widehat{Y} at a smooth point $(y_0, \ldots, y_k) \in \widehat{Y}$.

Proposition 1 τ is generically étale, and $\mathbf{T}_{\tau(s,y)}X = \eta(s \times \mathbf{P}^k)$ for a general point $s \in B$ and a general point $y \in Y$.

Proof Let $\hat{\tau}: U \times \hat{Y} \to \mathbf{A}^{N+1}$ be the affine lifting of τ . By the assumption (3) and easy computation, we have

$$\frac{\partial \hat{\tau}}{\partial u_1} = Y_0 \frac{\partial \rho_0}{\partial u_1} + \ldots + Y_{k-r} \frac{\partial \rho_{k-r}}{\partial u_1} \vdots \frac{\partial \hat{\tau}}{\partial u_r} = Y_0 \frac{\partial \rho_0}{\partial u_r} + \ldots + Y_{k-r} \frac{\partial \rho_{k-r}}{\partial u_r} \frac{\partial \hat{\tau}}{\partial Y_0} = \rho_0 + \frac{\partial Y_{k-r+1}}{\partial Y_0} \tau_1 + \ldots + \frac{\partial Y_k}{\partial Y_0} \tau_r \vdots \frac{\partial \hat{\tau}}{\partial Y_{k-r}} = \rho_{k-r} + \frac{\partial Y_{k-r+1}}{\partial Y_{k-r}} \tau_1 + \ldots + \frac{\partial Y_k}{\partial Y_{k-r}}$$

By the assumptions (1) and (2), for a general point $(s, y) \in B \times Y$,

Im
$$d_{(s,y)}\hat{\tau} = \langle \tau_1(s), \dots, \tau_r(s), \rho_0(s), \dots, \rho_{k-r}(s) \rangle$$
.

 τ_r .

This implies our assertion.

We have the following theorem:

Theorem 2 Let $k \ge 2$, $r \le k$, N > k be positive integers and let $Y \subset \mathbf{P}^k$ be a closed variety of codimension r. We assume that there exists an r-dimensional closed variety $B \subset \mathbf{G}(k-r,N)$ with a system of rational maps satisfying the conditions (1), (2) and (3) as above, such that $\bigcup_{E \in B} E \subset \mathbf{P}^N$ is not contained in any hyperplane and $\mathbf{P}(\langle \rho_0(s), \ldots, \rho_{k-r}(s), \tau_1(s), \ldots, \tau_r(s) \rangle)$ = $\mathbf{P}(\langle \rho_0(s'), \ldots, \rho_{k-r}(s'), \tau_1(s'), \ldots, \tau_r(s') \rangle)$ implies s = s' for general points $s, s' \in B$.

Then, there exists a closed variety $X \subset \mathbf{P}^N$ of dimension k, not contained in any hyperplane, such that for a general point $p \in X$, Y is the fiber of the Gauss map $\gamma^{-1}(\gamma(p)) \subset \mathbf{T}_p X \cong \mathbf{P}^k$ set-theoretically.

Proof We construct $X \subset \mathbf{P}^N$ as above consideration. Let τ be as above. By Proposition 1, $\tau(s \times Y)$ is contained in $\gamma^{-1}(\gamma(\tau(s, y)))$ for each general point $(s, y) \in B \times Y$. If the tangential space $\mathbf{P}(\langle \rho_0(s), \ldots, \rho_{k-r}(s), \tau_1(s), \ldots, \tau_r(s) \rangle)$ is uniquely determined from a general point of B then τ is generically oneto-one, because a point contained in two distinct Ys is a singular point of X. This implies that $\tau(s \times Y)$ coincides with the fiber $\gamma^{-1}(\gamma(\tau(s, y)))$ for a general point $(s, y) \in B \times Y$.

The nondegeneration of X follows from the nondegeneration of the tangent variety Tan Z of the ruled variety $Z = \bigcup_{E \in B} E$, because Tan Z is also the tangent variety of X.

Theorem 1 is given as the corollary of Theorem 2.

Proof (Proof of Theorem 1) If $N \ge k + r$ then we can take B as the closure of the image of the morphism $\mathbf{A}^r \to \mathbf{G}(k-r,N)$; $s \mapsto \mathbf{P}(\langle v, p_1, \ldots, p_{k-r} \rangle)$, where v is the morphism from \mathbf{A}^r to \mathbf{A}^{N+1} given by

 $v = (1, 0, \dots, 0, u_1, \dots, u_r, u_1^p, \dots, u_r^p, u_r^{p^2}, \dots, u_r^{p^{N-k-r+1}})$ and $p_i \in \mathbf{A}^{N+1}$ is the point whose *l*-th coordinate is 0 for any $l \neq i$ and 1 for

l = i. We have the result by Theorem 2.

Remark 1 The conditions (1) and (2) force the ruling of $B \subset \mathbf{G}(k-r, N)$ to be developable, i.e. tangent spaces of the ruled variety $\bigcup_{E \in B} E \subset \mathbf{P}^N$ are constant on each linear subspace $E \in B$ ([1]).

3 Examples

Example 1 Let charK = 2. We consider the hypersurface X in \mathbf{P}^3 given by $F = X^6 + Y^6 + Z^6 + YZ^4W + Y^2Z^2W^2 + Y^3W^3$. For a general point $(x : y : z : w) \in X$, the tangent plane given by wY + yW = 0 because the Gauss map is given by $(\partial F/\partial X : \partial F/\partial Y : \partial F/\partial Z : \partial F/\partial W) = (0 :$ $Z^4W + Y^2W^3 : 0 : YZ^4 + Y^3W^2) = (0 : W : 0 : Y)$. The intersection of X and this plane is the plane curve $wY + yW = \sqrt{y^3}X^3 + \sqrt{y^3 + w^3}Y^3 + \sqrt{y^3}Z^3 + \sqrt{y^2w}YZ^2 + \sqrt{yw^2}Y^2Z = 0$. This is the fiber of the Gauss map at $\mathbf{T}_{(x:y:z:w)}X \in \mathbf{P}^{3*}$. This curve is smooth and of degree 3 (for a general point $(x : y : z : w) \in X$), hence this is an elliptic curve.

The above surface X is given by our method in Section 2: B is the closure of the image of the morphism $\mathbf{A}^1 \to \mathbf{G}(1,3) \subset \mathbf{P}^5$; $u \mapsto (p_{01} : p_{02} : p_{03} : p_{12} : p_{13} : p_{23}) = (1 : u : u^2 : 0 : 0 : 0)$ where p_{ij} are Plücker coordinates, and $Y \subset \mathbf{P}^2$ is the hypersurface given by $Y_0^3 + Y_1^3 + Y_2^3 = 0$ where Y_0, Y_1, Y_2 are coordinates on \mathbf{P}^2 .

Example 2 Let charK = 3. Let B be the closure of the image of the morphism $\mathbf{A}^1 \to \mathbf{G}(1,3) \subset \mathbf{P}^5$; $u \mapsto (p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}) = (1: u: u^3: 0: 0: 0)$, and $Y \subset \mathbf{P}^2$ be the hypersurface given by $Y_0^4 + Y_1^4 + Y_2^4 = 0$. Then we have the surface X given by $X^{12} + Y^{12} + Z^{12} + 2Y^2Z^9W + 2Y^6Z^3W^3 + Y^8W^4$. By easy computation, we can check that the general fibers of the Gauss map of this surface are smooth curves of genus 3.

Example 3 Now, we give an example of a 3-fold $X \subset \mathbf{P}^4$ whose general fibers of the Gauss map are twisted cubic curves.

Let charK = 2. Let $B \subset \mathbf{G}(1,4)$ be the closure of the image of the morphism $\mathbf{A}^2 \to \mathbf{G}(1,4), (u,v) \mapsto \mathbf{P}(\langle \rho_0, \rho_1 \rangle)$ where

$$\rho_0 = (1 \ 0 \ u \ 0 \ u^2)
\rho_1 = (0 \ 1 \ 0 \ v \ v^2),$$

and let $Y \subset \mathbf{P}^3$ be a curve given by $Y_0Y_2 - Y_1^2$, $Y_1Y_3 - Y_2^2$, $Y_0Y_3 - Y_1Y_2$. Then our construction in Section 2 gives the hypersurface $X \subset \mathbf{P}^4$ whose defining polynomial is $X_0X_1^5 + X_1^6 + X_0^3X_1X_2^2 + X_0^4X_3^2 + X_0^4X_1X_4$ (by using Groebner Basis).

Example 4 We give an example of a hypersurface $X \subset \mathbf{P}^9$ whose general Gauss fibers are abelian surfaces.

Let charK = 2. Let $B \subset \mathbf{G}(1,4)$ be the closure of the image of the morphism $\mathbf{A}^6 \to \mathbf{G}(2,9), (u_1, u_2, u_3, u_4, u_5, u_6) \mapsto \mathbf{P}(\langle \rho_0, \rho_1, \rho_2 \rangle)$ where

$$\begin{array}{l} \rho_0 = (1 \ 0 \ 0 \ u_1 \ 0 \ 0 \ u_2 \ 0 \ 0 \ u_1^3 + u_2^3)\\ \rho_1 = (0 \ 1 \ 0 \ 0 \ u_3 \ 0 \ 0 \ u_4 \ 0 \ u_3^3 + u_4^3)\\ \rho_2 = (0 \ 0 \ 1 \ 0 \ 0 \ u_5 \ 0 \ 0 \ u_6 \ u_5^3 + u_6^3) \end{array}$$

and let Y be the surface $E \times E \subset \mathbf{P}^2 \times \mathbf{P}^2$ where E is the elliptic curve in \mathbf{P}^2 given by $x_0^3 + x_1^3 + x_2^3 = 0$. We embed Y to \mathbf{P}^8 by Segre embedding. We have the hypersurface $X \subset \mathbf{P}^9$ as the closure of the image of the morphism $U \times Y \to \mathbf{P}^9$ (where U is an open subset of B), $(s) \times (x_0 : x_1 : x_2) \times (y_0 : x_1$

$$\begin{split} y_1:y_2) &\mapsto [x_0y_0\rho_0(s) + x_1y_1\rho_1(s) + x_2y_2\rho_2(s) + x_0y_1\frac{\partial\rho_0}{\partial u_1}(s) + x_0y_2\frac{\partial\rho_0}{\partial u_2}(s) + \\ x_1y_0\frac{\partial\rho_1}{\partial u_3}(s) + x_1y_2\frac{\partial\rho_1}{\partial u_4}(s) + x_2y_0\frac{\partial\rho_2}{\partial u_5}(s) + x_2y_1\frac{\partial\rho_2}{\partial u_6}(s)]. \end{split}$$

Recently, varieties with non-constant Gauss fibers are found, which result will be published in [2].

Acknowledgements I am most grateful to Professor Shun-ichi Kimura for his continuous encouragement. I thank Professor Hajime Kaji for his thoughtful and helpful advices. I also thank Kentaro Saji and Yukinori Kitadai for valuable discussions.

References

- 1. Fukasawa, S.: Developable varieties in positive characteristic. Hiroshima Math. J. **35**, 167–182 (2005)
- Fukasawa, S.: Varieties with nonconstant Gauss fibers. Submitted to Hiroshima Math. J.
- 3. Kaji, H.: On the tangentially degenerate curves. J. London Math. Soc. (2) 33, 430-440 (1986)
- Kaji, H.: On the Gauss maps of space curves in characteristic p. Compositio 4. Math. 70, 177–197 (1989)
- 5. Kleiman, S. L.: Tangency and duality. Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conference Proceedings. AMS 6, 163-226 (1986)
- 6. Noma, A.: Gauss maps with nontrivial separable degree in positive characteristic. J. Pure Appl. Algebra **156**, 81–93 (2001)
- 7. Rathmann, J.: The uniform position principle for curves in characteristic p. Math. Ann. 276, 565–579 (1987)
- Wallace, A. H.: Tangency and duality over arbitrary fields. Proc. London Math.
- Soc. (3) 6, 321–342 (1956)
 9. Zak, F. L.: Tangents and secants of algebraic varieties. Transl. Math. Monographs, 127. Amer. Math. Soc., Providence, RI, (1993)