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Abstract. We investigate the finite source size effect in the context of the wave optics
in the gravitational lensing. The magnification of an extended source is presented in an
analytic manner for the singular isothermal sphere lens model as well as the point mass
lens model with the use of the thin lens approximation. The condition that the finite
source size effect becomes substantial is demonstrated. As an application, we discuss
possible observational consequences of the finite source size effect on astrophysical
systems.

1. Introduction

Gravitational lensing is a characteristic phenomenon of the general relativity and has

become a very important tool in the fields of cosmology and astrophysics [1, 2]. For

example, the existence of the massive compact halo objects (MACHO) in the Galaxy was

revealed by the detection of the lensed amplification of stellar objects [3], and the recent

measurements of the cosmic shear field provide a constraint on the matter distribution

independently of the clustering bias [4, 5, 6, 7]. Promisingly the gravitational lensing

will play a more important role with progress in the capability of observational facilities

in future. For example, it will be a useful probe of the nature of the dark energy

[8, 9, 10, 11].

As a fundamental aspect of the gravitational lensing, the effect of wave optics has

been investigated by many authors [12, 13, 14, 1]. Very recently, this subject is revisited

by several authors, motivated by a possible phenomenon which might be observed in the

future gravitational wave experiments [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

In the context of the wave optics of gravitational lensing, the argument on the distance-

redshift relation is also revisited [28].

The present paper focuses on the finite source size effect in the wave optics of the

gravitational lensing. In the first half part of this paper, we present an analytic solution

for the wave equation with the singular isothermal sphere lens model. In general, it

is difficult to obtain an exact solution for general lens model, excepting a few simple

lens models [29, 26]. Therefore it is useful to obtain such analytic solution for the wave

equation. The wave optics of the singular isothermal sphere lens has been investigated by
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Takahashi and Nakamura using a numerical technique [30, 31]. We present the analytic

expression for the amplification factor, which is the first aim of the present paper. Then,

as an application of the analytic formula, we investigate the finite source size effect in

the wave optics, which is the other aim of the present paper. Using the analytic formula,

we consider the energy spectrum from an extended source with a Gaussian distribution

of surface brightness [32]. We investigate the condition that the finite source size effect

becomes important in the wave optics, including the case near the caustic in the limit

of the geometrical optics.

This paper is organized as follows: In section 2, we review the basic formulas for the

wave optics in gravitational lensing. The limit of the geometrical optics is also reviewed

for self-containment. Then, we present analytic expressions of the amplification factor

for the point mass lens model as well as the singular isothermal sphere lens model in

section 3. In section 4, we investigate the finite source size effect with the use of the

analytic formulas. In section 5, the validity of the approximation of the point source

is discussed for the gravitational wave from a compact binary. The femtolensing of the

gamma ray burst source is also revisited [32, 33], and the finite source size effect is

considered. The last section is devoted to summary and conclusions. Throughout this

paper, we use the unit in which the light velocity equals 1.

2. Review of Basic Formalism

2.1. Wave Optics under the Thin Lens Approximation

We consider the background spacetime with the line element,

ds2 = gµνdxµdxν = −(1 + 2U(~r))dt2 + (1− 2U(~r))d~r2, (1)

where U(~r) is the Newtonian gravitational potential with the condition U(~r) ¿ 1. On

the Newtonian background spacetime, we consider the wave propagation of the scalar

field Φ. The propagation of the electro-magnetic wave and the gravitational wave can

be well described by the scalar wave equation [12, 1], which is given by

∂µ(
√−ggµν∂νΦ) = 0. (2)

This is rewritten as

(∇2 + ω2)Φ = 4ω2U(~r)Φ, (3)

on the spacetime with the line element (1), where we assume the monochromatic

wave with the angular frequency ω. In the present paper we consider the spherically

symmetric potential.

It is useful to introduce the amplification factor F (which is called the transmission

factor in Ref. [1]) by F = Φ/Φ0, where Φ0 is the wave amplitude in the absence

of the gravitational potential, U = 0. Then, under the thin lens approximation, the

amplification factor is given by

F (ω, ~η) =
dS

dLdLS

ω

2πi

∫ ∞

−∞
d2ξ exp[iωφ̂(~ξ, ~η)], (4)
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Figure 1. Configuration of the source, the lens and the observer. dL, dS and dLS are
the distances between the lens and the observer, the source and observer, and the lens
and the source, respectively. ~η is the position of the (point) source, and ~ξ is the impact
parameter. ~β is the unlensed source position angle, ~θ is the position angle of the image,
and the deflection angle is ~α. This sketch is based on the thin lens approximation that
the wave is scattered only on the thin lens plane.

where φ̂(~ξ, ~η) is the time delay function (Fermat’s potential), which is given by

φ̂(~ξ, ~η) =
dLdS

2dLS

(
~ξ

dL

− ~η

dS

)2

− ψ̂(~ξ), (5)

where dL is the distance between the lens and the source, dS is the distance between the

source and the observer, dLS is the distance between the lens and the source, respectively,

(see Figure 1 for the configuration of the lensing system and the definition of variables).

In general, we may add a term φ̂m(~η) in the right hand side of (5) [30]. However, the

inclusion does not alter our arguments and we omit it. The two dimensional gravitational

deflection potential is defined by

ψ̂(~ξ) = 2
∫ ∞

−∞
dzU(~ξ, z). (6)

Note that |F | = 1 in the absence of the lens potential U = 0.

The above formulas can be generalized so as to take the cosmological expansion

into account. Assuming that the wavelength of the scalar waves is much shorter than

the horizon scale, Eq. (4) is generalized as

F (ω, ~η) =
dS

dLdLS

ω(1 + zL)

2πi

∫ ∞

−∞
d2ξ exp[iω(1 + zL)φ̂(~ξ, ~η)], (7)

where dL, dS, and dLS are the angular diameter distances, and zL is the redshift of the

lens object.

It is useful to rewrite the amplification factor F in terms of dimensionless quantities.

We introduce

~x =
~ξ

ξ0

, ~y =
dL

ξ0dS

~η, (8)
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w =
dS

dLdLS

ξ2
0(1 + zL)ω, (9)

ψ =
dLdLS

dSξ2
0

ψ̂, (10)

where ξ0 is the normalization constant of the length in the lens plane, for which we

adopt

ξ0 = θEdL, (11)

where θE is the Einstein angle, i.e., the solution of the lens equation (16) with ~β = 0. (see

below.) The effect of the wave optics is characterized by the dimensionless parameter

w. We also introduce the dimensionless time delay function by

T (~x, ~y) =
dLdLS

dSξ2
0

φ̂(~ξ, ~η) =
1

2
|~x− ~y|2 − ψ(~x). (12)

Then, the amplification factor is written as

F (w, ~y) =
w

2πi

∫ ∞

−∞
d2x exp[iwT (~x, ~y)]. (13)

In the case of the spherically symmetric lens model, the gravitational deflection

potential ψ(~x) depends only on x = |~x|. Then, the amplification factor is reduced to

the relatively simple formula

F (w, y) = −iwe
i
2
wy2

∫ ∞

0
dx x J0(wxy) exp

[
iw

(
1

2
x2 − ψ(x)

)]
, (14)

where J0(z) is the Bessel function of the zeroth order and y = |~y|.

2.2. Geometrical Optics Approximation

In this subsection we consider the limit of the short wave length in the wave optics

(w À 1), which reproduces the conventional geometrical optics in the gravitational

lensing. In the limit of the geometrical optics, the diffraction integral (13) is evaluated

around the stationary points of the time delay function T (~x, ~y). Thus the stationary

points are determined by the solution of ∇xT (~x, ~y) = 0, which is written as

~y = ~x−∇xψ(~x). (15)

This is the lens equation to determine the image position ~xj. Eq. (15) is rewritten as

~β = ~θ − ~α(~θ), (16)

where ~β = (ξ0/dL)~y is the angular position of the source, ~θ = (ξ0/dL)~x is the angular

position of the images, and ~α = (ξ0/dL)∇xψ(~x) is the deflection angle (see Figure 1).

The time delay function T (~x, ~y) is expressed around the j-th image position ~xj as

T (~x, ~y) = T (~xj, ~y) +
1

2

∑

a,b=1,2

∂a∂bT (~xj, ~y)XaXb +O(X3), (17)

where ~X = ~x − ~xj. Here, the term in proportion to ~X vanishes because ~xj is the

stationary point of T (~x, ~y). Inserting Eq. (17) into Eq. (13), we obtain the amplification
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factor in geometrical optics limit [15, 30, 31]

Fgeo(w, ~y) =
∑

j

|µ(~xj)|1/2 exp
[
iwT (~xj, ~y)− i

nj

2
π

]
, (18)

where the magnification of the j-th image is µ(~xj) = 1/ det(∂~y/∂~xj) and nj = 0, 1, 2

when ~xj is a minimum, saddle, maximum point of T (~x, ~y), respectively. For the case of

multi-lensed images, in the geometrical optics approximation, the expression (18) means

that the observed wave is described by a superposition of each wave with the amplitude,

|µ(~xj)|1/2, and the phase, wT (~xj, ~y)− (njπ)/2 [15].

3. Analytic Expressions for the Amplification Factor

In this section we present analytic expressions for the amplification factor (14) for

the point mass lens model and the singular isothermal sphere (SIS) lens model. The

expression for the point mass lens model is well known [12, 13, 14, 1]. Recently the

amplification factor for the SIS lens model is investigated by Takahashi and Nakamura

with the use of a numerical method [30, 31]. However, we derive an analytic expression

for the SIS lens model in the present paper. The SIS lens model is often used to

study a lensing phenomenon by a galaxy halo and by a cluster of galaxies. In order to

understand the wave effect in the lensing by a halo, such an analytic formula is useful.

The amplification factor obtained using the analytic expression for the SIS lens model

gives us the results consistent with those by Takahashi and Nakamura through their

numerical method [30, 31].

3.1. Gravitational Deflection Potential

Let us here summarize the relation between the gravitational deflection potential ψ(~x)

and the density distribution of a lens object (see e.g., [1]). In general the deflection

potential is given by

ψ(~x) = 4G
dLdLS

dS

∫ ∞

−∞
d2s Σ(~s) log |~x− ~s|, (19)

where Σ(~s) is surface mass density in lens plane,

Σ(~x) =
∫ ∞

−∞
dzρ(~x, z), (20)

where ρ(~x, z) is the mass density distribution of the lens, which is related to the

Newtonian potential by ∇2U = 4πGρ. Thus the lens model is characterized by the

mass density distribution ρ(~x, z) as well as the gravitational deflection potential ψ(~x).

3.2. Point Mass Lens

The gravitational lensing by a black hole and a compact star is described by the point

mass lens model, in which we write ρ(~x, z) = Mδ(2)(~ξ)δ(1)(z), where M is the mass of



6

0.1 0.2 0.5 1 2 5 10 20
w

0.1
0.2

0.5
1
2

5
10
20

Μ
H
w
L

y=0.1

y=0.5

y=1

Figure 2. Magnification µ(w, y) as a function of dimensionless parameter w for the
point mass lens model. Here, the source position is fixed as y = 0.1, 0.5, and 1,
respectively.

the lens object. Then, the surface mass density is Σ(~x) = Mδ(2)(~ξ) = Mδ(2)(ξ0~x). In

this model the characteristic Einstein angle θE is

θE =

√
4GMdLS

dLdS

' 3× 10−6
(

M

M¯

)1/2(dLdS/dLS

1Gpc

)−1/2

arcsec, (21)

and the gravitational deflection potential is given by ψ(x) = log x. Using a mathematical

integral formula [34], the expression of the amplification factor (14) yields

F = e
i
2
w(y2+log(w/2))e

π
4
wΓ

(
1− i

2
w

)
1F1

(
1− i

2
w, 1; − i

2
wy2

)
, (22)

where 1F1(a, c, z) is the confluent hypergeometric function [35]. In this model we have

the dimensionless parameter from Eq. (9), which characterizes the wave optics,

w = 4GM(1 + zL)ω ' 1.2× 10−4(1 + zL)
(

M

M¯

)(
ν

1Hz

)
. (23)

Note that w has the meaning of the ratio of the Schwarzschild radius to the wavelength

of the propagating wave. The wave effect becomes significant when w ∼ O(1).

We define the magnification by µ(w, y) ≡ |F (w, y)|2, which gives us the expression

µ(w, y) =
πw

1− e−πw

∣∣∣1F1

(
i

2
w, 1;

i

2
wy2

)∣∣∣
2
, (24)

from expression (22). The maximum magnification is achieved when y = 0, which

provides the configuration of the Einstein ring,

µmax =
πw

1− e−πw
. (25)

Figure 2 shows the magnification (24) as a function of the wave characteristic parameter

w with the source position fixed y = 0.1, 0.5, and 1. For w >∼ 1, the oscillation feature

appears due to the interference in the wave effect between the double images (see also

Figure 3).

We next consider the approximation based on the geometrical optics explained in

the previous section. The point mass lens model has the two images in the geometrical
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Figure 3. Magnification as a function of the dimensionless parameter w. The solid
curve is the result of the wave optics µ(w, y), while the dashed curve is µgeo(w, y).
Here, the source position is fixed as y = 0.5.

optics. Namely, the lens equation has the two solution (the minimum and the saddle

points of the time delay function). Then, (18) yields

Fgeo(w, ~y) = |µ+|1/2 exp
[
iw

(
1

2
(p+ − y)2 − log |p+|

)]

− i|µ−|1/2 exp
[
iw

(
1

2
(p− − y)2 − log |p−|

)]
, (26)

where the magnification of each image is µ± = 1/2 ± (y2 + 2)/(2y
√

y2 + 4) and

p± = (1/2)(y ±√y2 + 4). Then, the corresponding magnification is

µgeo(w, y) =
y2 + 2

y
√

y2 + 4

+
2

y
√

y2 + 4
sin

[
w

(
1

2
y
√

y2 + 4 + log
∣∣∣
√

y2 + 4 + y√
y2 + 4− y

∣∣∣
)]

. (27)

Figure 3 shows the magnification (24) and (27), as a function of the parameter w with

the source position fixed y = 0.5. For w >∼ 1, both the curves agree, and the geometrical

optics is a very good approximation. For w <∼ 1, however, the two curves are not in

good agreement because the geometrical optics approximation is not suitable.

3.3. Singular Isothermal Sphere Lens

We next consider the SIS lens model, which can be used for modeling a halo. In this

model, the density profile is

ρ(~x, z) =
σ2

v

2πG(|~ξ|2 + z2)
=

σ2
v

2πG(|ξ0~x|2 + z2)
, (28)

where σv is the velocity dispersion. Then, the surface density is given by

Σ(~x) =
σ2

v

2G|~ξ| =
σ2

v

2Gξ0x
, (29)
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and the gravitational deflection potential is given by ψ(x) = x. The Einstein angle of

the SIS lens model is

θE = 4πσ2
v

dLS

dS

' 3× 10−5
(

σv

1km/s

)2(dLS

dS

)
arcsec, (30)

therefore, the dimensionless parameter w is given by

w = (1 + zL)ω(4πσ2
v)

2dLdLS

dS

' 3× (1 + zL)
(

σv

1m/s

)4( h̄ω

1keV

)(
dLdLS/dS

1Mpc

)

' 0.01(1 + zL)
(

σv

1km/s

)4( ν

1Hz

)(
dLdLS/dS

1Gpc

)
. (31)

For the SIS lens model, from Eq. (14), the amplification factor is written analytically

(see Appendix A for derivation),

F (w, y) = e
i
2
wy2

∞∑

n=0

Γ(1 + n
2
)

n!

(
2wei3π/2

)n/2

1F1

(
1 +

n

2
, 1; − i

2
wy2

)
. (32)

Hence, the magnification is written as

µ(w, y) =
∣∣∣
∞∑

n=0

Γ(1 + n
2
)

n!

(
2wei3π/2

)n/2

1F1

(
−n

2
, 1;

i

2
wy2

)∣∣∣
2
. (33)

The maximum magnification is given by setting y = 0,

µmax =
∣∣∣
∞∑

n=0

Γ(1 + n
2
)

n!

(
2wei3π/2

)n/2 ∣∣∣
2

(34)

=
∣∣∣1 +

1

2
(1− i)e−

i
2
w
√

πw
[
1 + Erf

(√
w

2
(1− i)

)]∣∣∣
2
, (35)

where Erf(z) is the error function (see Appendix A).

Figure 4 shows the magnification µ(w, y) for the SIS model as a function of w with

the dimensionless source position fixed as y = 0.1, 0.5, and 1, respectively. Note that

when y = 1 (a single image is formed in the geometrical optics limit), the oscillatory

behavior appears. Our result is consistent with the previous result [30, 31].

Finally in this section let us consider the amplification factor based on the

geometrical optics estimation. In the SIS lens model, the two stationary points (the

minimum and the saddle points) appear for y < 1, while only one stationary point

appears for y ≥ 1. Therefore we have

Fgeo(w, y) =





|µ+|1/2e(−iw(y+1/2)) − i|µ−|1/2e(iw(y+1/2)) (y < 1),

|µ+|1/2 (y ≥ 1),

,(36)

from Eq. (18), where µ± = ±1+ 1/y. Then, the magnification in the geometrical optics

is written

µgeo(w, y) =





2/y + 2
√
−1 + 1/y2 sin(2wy) (y < 1),

1 + 1/y (y ≥ 1).

(37)
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Figure 4. Same as figure 2 but for the SIS lens model. The behavior is very similar
to that in Figure 2.
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Figure 5. Same as figure 3 but for the SIS lens model. The solid curve is the
magnification µ(w, y) and the dashed curve is the corresponding geometrical optics
formula µgeo(w, y). Here, the source position is fixed as y = 0.5. The geometrical
optics approximation is not valid for w <∼ 1.

Figure 5 compares the magnification (33) and (37) as a function of the parameter w,

where the source position is fixed as y = 0.5.

4. Magnification of an Extended Source

In this section we investigate the finite source size effect in the wave optics. We consider

the magnification from an extended source with a Gaussian distribution of the surface

brightness. The analytic formulas for the magnification in the previous section are useful

in the investigation in this section.
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Figure 6. Configuration of the gravitational lens system for an extended source. Here,
dL, dS and dLS are the angular diameter distances between the observer and the lens,
between the observer and the source, between the lens and the sources, respectively. ~ξ

and ~η are the dimensional coordinates in the lens and the source planes, respectively.
r̂S specifies the position of the source center, and âS is the source size. This sketch is
based on the thin lens approximation.

4.1. Formulation

Following Ref. [32], we consider the integral of the point source magnification weighted

by the source intensity

µ̄(w, aS, rS) =

∫∞
−∞ W (~y)µ(w, y)d2y∫∞

−∞ W (~y)d2y
, (38)

where we assume the Gaussian distribution of the source intensity

W (~y) = exp
(
−|~y −

~Y |2
2a2

S

)
, (39)

where ~Y (|~Y | = rS) specifies the dimensionless source position, and aS is the

dimensionless source size. These dimensionless quantities of the source position and

the source size are related to the dimensional quantities by

rS =
r̂S

dSθE

, aS =
âS

dSθE

, (40)

where r̂S and âS are the source position and the source size, respectively (see Figure

6). Note that the modified magnification depends on the source size aS as well as the

source position rS.

We find the magnification can be written as

µ̄(w, aS, rS) =
1

a2
S

e
− r2

S
2a2

S

∫ ∞

0
dy y e

− y2

2a2
S I0

(
rS

a2
S

y
)
µ(w, y), (41)
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where I0(z) is the modified Bessel function of the zeroth order.

We will find the analytic expression for the integral (41) with the use of the result

obtained in the previous section. Using the Taylor expansion of the magnification µ(w, y)

around y = rS,

µ(w, y) =
∞∑

n=0

1

n!
µ(n)(w, y = rS)(y − rS)n, (42)

where µ(n)(w, y) is the n-rank derivative of µ(w, y) with respect to y, the magnification

(41) can be written in the form

µ̄(w, aS, rS) =
∞∑

n=0

An µ(n)(w, y = rS), (43)

where the coefficient is

An =
1

a2
Sn!

e
− r2

S
2a2

S

∫ ∞

0
dy y e

− y2

2a2
S I0

(
rS

a2
S

y
)
(y − rS)n. (44)

We can evaluate the coefficients in an analytic manner. For example, for the first two

terms, we have

A0 = 1, (45)

A1 = aS

[
− rS

aS

+

√
π

2
e
− r2

S
4a2

S

((
1 +

r2
S

2a2
S

)
I0

(
r2
S

4a2
S

)
+

r2
S

2a2
S

I1

(
r2
S

4a2
S

))]
(46)

'




a2
S/rS (rS À aS)

aS

√
π/2 (rS ¿ aS)

, (47)

where I1(z) is the modified Bessel function of the first order. The other terms can be

evaluated in a similar way. Note that the zeroth order term of Eq. (43) reproduces the

magnification of the point source. Hence, our expression (43) is based on the expansion

around the point source limit.

4.2. Point Mass Lens

For the point mass lens case, with the use of the expression (24), we can evaluate the

magnification of the extended source. Here, we write the first two terms,

µ̄(w, aS, rS) ' A0µ
(0)(w, rS) + A1µ

(1)(w, rS) (48)

= µ(w, rS)

[
1− A1w

2rS<
[

1F1(1 + i
2
w, 2; i

2
wr2

S)

1F1(
i
2
w, 1; i

2
wr2

S)

]]
. (49)

For the point mass lens model, with the use of the approximate expression (27),

the magnification of the extended source is evaluated in the geometrical optics. Figure

7 shows µ̄(w, aS, rS) and the corresponding magnification with the geometrical optics

approximation. Here, in evaluating µ̄(w, aS, rS), we summed the terms up to n = 20,

and the position of the source center and the radius of the source are fixed as aS = 0.5

and rS = 0.5, respectively. Note that both the curves agree for w >∼ 1. Comparing it

with Figure 3, the oscillation-amplitude decreases as w becomes large.
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Figure 7. The magnification of the extended source µ̄(w, aS , rS) for the point mass
lens model, as a function w. Here, the position of the source center and the source
radius are fixed rS = 0.5 and aS = 0.5. For w >∼ 1, the wave optics agrees with the
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Figure 8. The magnification µ̄(w, aS , rS) as a function of w for the point mass
lens model. Here, the position of the source center is fixed as rS = 0.5, and the
three curves show the different source sizes specified by aS = 0, aS = 0.05 and
aS = 0.1, respectively. As the source size becomes larger, the oscillation-amplitude
of the magnification decreases. In the computation of this magnification, we used the
approximation of the geometrical optics. This provides a good approximation as long
as w >∼ 1, as demonstrated in figure 7.

Figure 8 plots the magnification of the extended source, as a function of w. Here,

the source position is fixed as rS = 0.5, and the three curves assume the source size

aS = 0, aS = 0.05, and aS = 0.1, respectively. As the source size becomes larger, the

oscillation-amplitude of the magnification decreases. This can be understood as follows.

The oscillation feature comes from the interference of two waves in the geometrical optics

in the case of the point source. In the case of an extended source, the wave magnification

is determined by a superposition of many waves. Then, the clear interference disappears

by averaging over the phase.

Now let us evaluate the condition that the finite source size effect becomes

substantial in an analytic manner. The ratio of the second term to the first term
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of the right hand side of Eq. (49) is

δµ̄/µ = − A1w
2rS<

[
1F1(1 + i

2
w, 2; i

2
wr2

S)

1F1(
i
2
w, 1; i

2
wr2

S)

]
(50)

' − w2rSA1 +O(w4). (51)

The condition that the finite source size effect becomes substantial is |δµ̄/µ| ∼ O(1).

For the case rS À aS, we may approximate A1 ' a2
S/rS, and we have

δµ̄/µ ' −(aSw)2. (52)

Thus, aSw is a key parameter of the finite source size effect in the wave optics.

Next, let us examine the finite source size effect near the caustic rS = 0 in detail.

Some aspects have been discussed in Ref. [15]. The above argument is based on the

expansion of the magnification in terms of w, which is not suitable for the large value

of w. We here consider the regime of the geometrical optics. In the limit w À 1 and

y ¿ 1/w1/2, we may write

µ(w, y) = πwJ0(wy)2, (53)

where we used the mathematical formula [35]

lim
a→∞ 1F1(a, 1; z/a) = I0(2

√
z) (54)

with z fixed. Note that the approximate formula (53) is rather general, which can be

derived from (14) with the saddle point method for w À 1 ([15], see also below).

Substituting (53) into (41), the magnification can be evaluated as

µ̄(w, aS, rS) =
πw

a2
S

e
− r2

S
2a2

S

∫ ∞

0
dy y e

− y2

2a2
S I0

(
rS

a2
S

y
)
J0(wy)2, (55)

which is valid for rS < aS ¿ 1/w1/2 ¿ 1. Using the definition of the modified Bessel

function

I0(z) =
∞∑

m=0

z2m

(m!)222m
, (56)

we can write

µ̄(w, aS, rS) =
πw

a2
S

e
− r2

S
2a2

S

∞∑

m=0

(−1)m (rS/a2
S)2m

(m!)222m

∂mα0(β)

∂βm

∣∣∣∣
β=1/2a2

S

, (57)

where we defined

α0(β) =
∫ ∞

0
dy y e−βy2

J0(wy)2 =
1

2β
e−w2/2βI0(w

2/2β). (58)

Using the condition, rS < aS ¿ 1/w1/2 ¿ 1, the first two terms of (57) yield

µ̄(w, aS, rS) ' πwe−r2
S/2a2

Se−w2a2
SI0(w

2a2
S)

(
1 +

1

2

r2
S

a2
S

)
, (59)
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Figure 9. Magnification µ̄(w, aS , rS) as a function of w. Here, the source size is
fixed as aS = 0.05, and the position of the source center is rS = 0, 0.025, and 0.05,
respectively.
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Figure 10. Magnification µ̄(w, aS , rS) as a function of w. Here, the position of the
source center is fixed as rS = 0, and the source size is aS = 0, 0.03, 0.04, and 0.05,
respectively.

which reduces to

µ̄(w, aS, rS) '





πwe−r2
S/2a2

S

(
1 +

1

2

r2
S

a2
S

)

= πw
(
1 +O(r4

S/a4
S)

)
(waS ¿ 1)

√
π

2

1

aS

e−r2
S/2a2

S

(
1 +

1

2

r2
S

a2
S

)

=

√
π

2

1

aS

(
1 +O(r4

S/a4
S)

)
(waS À 1)

. (60)

This expression means the followings: the result of the point source is reproduced for

waS ¿ 1 and rS = 0, while the finite source size effect becomes substantial for waS À 1

and µ̄ approaches to the constant value
√

π/2/aS for rS = 0. The magnification µ̄

becomes smaller as rS/aS becomes large.

Figure 9 shows µ̄(w, aS, rS) as a function of w with the source size aS = 0.05 for

the different source position rS = 0, 0.025, and 0.05, respectively. In this figure we see
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that µ̄ approaches a constant value (∼ 1/aS) slightly depending on rS, as w becomes

large. Figure 10 plots µ̄(w, aS, rS) with the source position fixed as rS = 0, and the

different source size aS = 0, 0.03, 0.04, and 0.05, respectively. Even for the Einstein

ring configuration, due to the finite source size effect, the maximum amplification is

limited by the the factor (∼ 1/aS) for w >∼ 1/aS. These behaviors are consistent with

those expected from the above analytic argument.

The above results demonstrate that the condition that the finite source size effect

becomes substantial is waS > 1. The reason can be understood as follows: As shown

in Appendix B, the condition, waS = 1, is equivalent to the condition that the path

difference between the PATH A and the PATH B in Figure 6 becomes comparable to

the wavelength. Therefore, the observed wave is a superposition of many waves with

different phases for waS À 1. This eliminates the interference feature and decreases the

oscillation feature in the energy spectrum. The finite source size effect near the caustic

rS = 0 is also understood in the similar way. The maximum magnification is decreased

by averaging over the magnification of different phases that depend on the position on

the source surface.

4.3. Singular Isothermal Sphere Lens

We here consider the finite source size effect in the SIS lens model. In this case, the

magnification of the extended source (43) can be evaluated with the expression (33).

Figure 11 shows the magnification µ̄ (solid curve), where we set rS = 0.5 and aS = 0.5.

The dashed curve is the corresponding geometrical optics with (37) instead of (33). In

the numerical computation, we performed the sum with respect to n up to 20.

Figure 12 plots the magnification of the extended source, as a function of w. Here,

the source position is fixed as rS = 0.5, and the three curves assume the source size

aS = 0, aS = 0.05, and aS = 0.1, respectively. As the source size becomes larger, the

oscillation-amplitude of the magnification decreases. Similarly to the case of the point

mass lens model, the clear oscillation feature disappears as the source size becomes

large. In this figure we used the approximation of the geometrical optics in evaluating

the magnification because of a convenience of numerical technique. The validity of its

approximation is demonstrated in Figure 11 at lease for w >∼ 5. The approximation is

not very good for w <∼ 5, however, it does not alter our conclusions.

We write down the first two terms of the magnification

µ̄(w, rS, aS) ' A0µ
(0)(w, rS) + A1µ

(1)(w, rS), (61)

= µ(w, rS)

[
1− A1wrS

× <
[∑∞

n=0
Γ(1+n

2
)

n!
(−in)

(
2wei3π/2

)n/2

1F1(1− n
2
, 2; i

2
wr2

S)
∑∞

n=0
Γ(1+n

2
)

n!
(2wei3π/2)

n/2
1F1(−n

2
, 1; i

2
wr2

S)

]]
.

(62)
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Figure 11. Same as Figure 7, but for the SIS lens model. For w >∼ 5, the difference
between the wave optics and the geometrical optics is negligible. Here, we fixed
rS = 0.5 and aS = 0.5.
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Figure 12. Same as Figure 8, but for the SIS lens model. Here, the position of the
source center is fixed rS = 0.5, and the magnification is plotted for aS = 0, 0.05, and
0.1, respectively.

The ratio of the second term to the first term of the right hand side of Eq. (62) is

δµ̄/µ = − A1wrS

×<
[∑∞

n=0
Γ(1+n

2
)

n!
(−in)

(
2wei3π/2

)n/2

1F1(1− n
2
, 2; i

2
wr2

S)
∑∞

n=0
Γ(1+n

2
)

n!
(2wei3π/2)

n/2
1F1(−n

2
, 1; i

2
wr2

S)

]
(63)

' −
√

π

2
w3/2rSA1 +

(
2− π

2

)
w2rSA1 +O(w5/2). (64)

The condition that the point source approximation breaks is |δµ̄/µ| ∼ O(1). In the

limit rS À aS, we have A1 ' a2
S/rS, then

δµ̄/µ ' −
√

π

2
a2

Sw3/2 +
(
2− π

2

)
w2a2

s +O(w5/2). (65)

Next, similarly to the point mass lens model, we examine the finite source size effect

near the caustic rS = 0. Here, let us consider the approximate estimation of Eq. (14)

using the saddle point method, as demonstrated in Ref. [15]. Using the approximate
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Figure 13. Same as Figure 9, but for the SIS lens model.
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Figure 14. Same as Figure 10, but for the SIS lens model.

method, for w À 1 and y ¿ 1/
√

w, we obtain

µ(w, y) ' 2πwx2
∗

|1− ψ′′(x∗)|J0(wx∗y)2, (66)

where x∗ is a positive solution of the lens equation x = ψ′(x). For the SIS model, we

have

µ(w, y) ' 2πwJ0(wy)2. (67)

Substituting Eq. (67) into (41), we have the same expressions of the magnification as

Eqs. (55) and (60), but with multiplied by the constant factor 2.

Figure 13 shows µ̄(w, aS, rS) as a function of w with the source size aS = 0.05 for

the different source position rS = 0, 0.025, and 0.05, respectively, for the SIS lens model.

Similarly, Figure 14 plots µ̄(w, aS, rS) with the source position fixed as rS = 0, and the

different source size aS = 0, 0.03, 0.04, and 0.05, respectively. These figures show the

similar behaviors to those in the point mass lens model.

Finally in this section, we mention our computation and the numerical convergence.

We have performed the numerical computation using the package MATHEMATICA.

The terms in Eq. (43) with respect to n are summed up to n = 20. The dashed curves

in Figure 15 shows each term of Anµ(n) as a function w for the point mass lens model,
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Figure 15. Anµ(n) in Eq. (43) as a function of w for the point mass lens model. The
dashed curves are the terms for n = 0, 2, 4, 6, 8, 12, 14, and 16, respectively, while
the solid curve is the sum up to the term for n = 20. Here, we fixed the parameters as
aS = 0.05 and rS = 0.
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Figure 16. Same as Figure 15, but for the SIS lens model.

where we adopted the parameters aS = 0.05 and rS = 0. The solid curve is the (summed)

magnification µ̄(w). Figure 16 is same as Figure 15 but for the SIS lens model. As long

as w <∼ 20, the convergence of our computation is evident. But for the large value of

w, our method is not advantageous because higher terms with respect to n is required.

The numerical methods developed in Refs. [15, 30, 31] would be useful for numerical

computation of general cases.

5. Discussion

In this section, let us discuss astrophysical consequences of the result in the previous

section. We first summarize the conditions that the lensing signature of the wave optics

may appear in the spectral feature, as follows:

w ∼ 1, (68)

|δµ̄/µ| <∼ 1. (69)



19

The first condition (68) is that the wave optics in lensing becomes important for a

monochromatic wave from a point source. The second condition (69) is that the

oscillation feature in energy spectra survives against the finite source size effect. Here,

we consider the case rS
>∼ aS. Therefore, with Eqs. (52) and (65), combination of both

the condition simply gives aS
<∼ 1.

Then, we discuss possible observational consequences of the wave effect in the

astrophysical situation, the lensing of the gravitational wave from a binary compact

objects [15] and the femtolensing of the gamma ray burst [32, 33].

5.1. Gravitational Wave from a Compact Binary

For the point mass lens model, the dimensionless parameter w is given by Eq. (23). The

condition w ∼ 1 yields
(

ν

1Hz

)
∼ 0.8

1 + zL

(
M

104M¯

)−1

. (70)

We also have

aS ' 1× 10−11
(

âS

103km

)(
M

104M¯

)−1/2( H−1
0

dLSdS/dL

)1/2

, (71)

where H−1
0 = (70km/s/Mpc)−1 = 1.3 × 1026m is the Hubble distance. On the other

hand, for the SIS model, w is given by (31). Then, from w ∼ 1, we have

(
ν

1Hz

)
∼ 20

1 + zL

(
σv

1km/s

)−4
(

dLdLS/dS

H−1
0

)−1

. (72)

We also have

aS ' 6× 10−11
(

âS

103km

)(
σv

1km/s

)−2(H−1
0

dLS

)
. (73)

Let us consider the binary compact objects, which consists of the two equal objects with

the mass m. For the binary we have the relation (Gm)2/2L = 4−2/3(Gm)5/3(ω/2)2/3,

where L is the distance between the two objects and ω is the angular frequency of the

gravitational wave. This equation is rewritten as

L ' 3× 103
(

m

M¯

)1/3( ν

1Hz

)−2/3

km. (74)

If we set L ∼ âS, it is clear that aS ¿ 1 as long as we consider the gravitational wave

of the frequency around 1Hz. This means that the point source approximation is very

good for the gravitational wave of this frequency.

5.2. Femtolensing

We next consider the femtolensing, which was pointed out by Gould, and Stanek,

Paczynski and Goodman [32, 33]. The femtolensing is the lens effect by a tiny mass on

the gamma ray burst.
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For the point mass lens model, the condition w ∼ 1 is rewritten as
(

hν

1keV

)
∼ 0.7

1 + zL

(
M

1020g

)−1

, (75)

where h is the Planck constant. The dimensionless source size may be written as

aS ' 0.5×
(

âS

105km

)(
M

1020g

)−1/2( H−1
0

dLSdS/dL

)1/2

. (76)

This suggests that the finite source size effect is important in the femtolensing by the

point mass lens. If the source size is larger than 105km, the finite source size effect

becomes significant. In this case the signature of the interference in energy spectra will

disappear.

On the other hand, for the SIS model, (72) is rewritten as

(
hν

1keV

)
∼ 0.8

1 + zL

(
σv

0.1m/s

)−4
(

dLdLS/dS

H−1
0

)−1

. (77)

We also have

aS ' 0.5×
(

âS

105km

)(
σv

0.1m/s

)−2(H−1
0

dLS

)
. (78)

This suggests that the femtolensing might have occurred due to a very small mass halo,

if it existed. Such the very small mass halo might be unrealistic in our universe, (cf.

[37]). However, Moore et al. have pointed out the possibility of the survival of very

small mass halos which are produced in the high redshift universe, depending on the

dark matter model [38], though the possibility is still open to debate [40, 39, 41]. Our

investigation suggests that the source size is a crucial factor even if the femtolensing

occurred by such the very small halo. When the source size is larger than 105km, the

interference signature will be significantly affected by the finite source size effect.

5.3. Finite Source Size Effect near the Caustic

We now consider the finite source size effect in the wave optics near the caustic. We

have demonstrated that is becomes influential when aSw >∼ 1 for aS ¿ 1/
√

w ¿ 1. For

the gravitational wave from a compact binary, aSw ¿ 1 will be reasonable for general

situation. Hence, we here consider the femtolensing. We may write

aSw ' 0.7× (1 + zL)
(

hν

1keV

)(
M

1020g

)1/2( âS

105km

)(
H−1

0

dLSdS/dL

)1/2

, (79)

for the point mass lens mode,

aSw ' 0.7× (1 + zL)
(

hν

1keV

)(
σv

0.1m/s

)2( âS

105km

)(
dL

dS

)
, (80)

for the SIS lens model, respectively. These estimations suggest that the finite source

size effect is important in the femtolensing near the caustic too.
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6. Summary and Conclusions

In this paper we investigated the finite source size effect on the wave optics in the

gravitational lensing. First we presented the analytic expression of the magnification

for the SIS lens model as well as the point mass lens model. Based on the result, we

evaluated the magnification of the finite-size source, assuming a Gaussian profile for the

surface intensity. The analytic expression of the magnification is given in terms of the

expansion with respect to the source size. This expression is useful to understand how

the finite source size effect works on the spectral feature of the magnification in the wave

optics. The condition that the finite source size effect becomes significant is discussed.

As application of the result, we considered the finite source size effect on the wave optics

in lensing of the gravitational wave from a compact binary and the femtolensing. For

the lensing of the gravitational wave, it is demonstrated that the finite source size effect

can be negligible as long as we consider the gravitational wave of the frequency around

1Hz. For the femtolensing of the gamma ray burst, we confirmed the result by Stanek

et al. [32], for the point mass lens model. We also considered the femtolensing by the

hypothetically very small halo. The femtolensing might imprint the lensing signature on

energy spectra if occurred, however, the finite source size effect is crucial. If the source

size is larger than 105km, the finite source size effect becomes significant and will not

allow the detection of the interference signature in the energy spectra.

It is worthy noting the finite source size effect near the caustic. In the wave optics

of the lens configuration of the Einstein ring, the maximum magnification of the point

source is not divergent, but is in proportion to the frequency of the wave. But, for

an extended sources, the finite source size effect becomes substantial for aSw >∼ 1, in

which the maximum magnification is suppressed by the value
√

π/2/aS as long as

aS ¿ 1/
√

w ¿ 1. This finite source size effect would be influential in the femtolensing

near the caustic too, if the source size is larger than 105km.
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Appendix A. Analytic Expression for the Amplification Factor in the SIS

Model

In this appendix, we derive an analytic expression of the amplification factor of the SIS

lens model. Since the gravitational deflection potential is ψ(x) = x, Eq. (14) is written

F (w, y) = − iweiwy2/2
∫ ∞

0
dx x J0(wxy) exp

[
iw

(
1

2
x2 − x

)]
(A.1)
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= − iweiwy2/2
∞∑

n=0

(−iw)n

n!

∫ ∞

0
dx x1+n J0(wxy)eiwx2/2. (A.2)

Using a mathematical formula [34], Eq. (A.2) is integrated as

F (w, y) = eiwy2/2
∞∑

n=0

Γ(1 + n
2
)

n!

(
2wei3π/2

)n/2

1F1

(
1 +

n

2
, 1; − i

2
wy2

)
,(A.3)

where 1F1(a, c, z) is the confluent hypergeometric function [35]. Using the formula

e−z
1F1

(
−n

2
, 1; z

)
= 1F1

(
1 +

n

2
, 1; −z

)
, (A.4)

we have

F (w, y) =
∞∑

n=0

Γ(1 + n
2
)

n!

(
2wei3π/2

)n/2

1F1

(
−n

2
, 1;

i

2
wy2

)
. (A.5)

In the case y = 0, the Einstein ring configuration, the amplification factor is

F (w, y = 0) = − iw
∫ ∞

0
dx x exp

(
iw

x2

2
− iwx

)
(A.6)

= w
∫ ∞

0
dt t exp

(
−w

2
t2 − i3/2wt

)
. (A.7)

Using a mathematical formula [36], we have the analytic simple form

F (w, y = 0) = e−iw/4D−2

(
ei3π/4

√
w

)
, (A.8)

where D−2(z) is the parabolic cylinder function. With the use of the error function,

defined by

Erf(z) =
2√
π

∫ z

0
dt e−t2 , (A.9)

we may write

D−2(z) =

√
π

2
ez2/4z

(
1− Erf

(
z√
2

))
− e−z2/4, (A.10)

and we finally have

F (w, y = 0) = 1 +
1

2
(1− i)e−iw/2

√
πw

[
1 + Erf

(√
w

2
(1− i)

)]
. (A.11)

Appendix B. Path Difference and the Finite Source Size Effect

Here, we consider the path difference between the PATH A and PATH B in Figure

6, and show that waS = 1 is equivalent to the condition that the path difference is

comparable to the wavelength. Using the angle of the unlensed source position ~β and

the angle of the image position ~θ, the Fermat’s potential is given

φ̂(θ, β) =
dLdS

2dLS

(~θ − ~β)2 − ψ̂(θ). (B.1)

In the case ~β = (β, 0) and ~θ = (θ, 0), the path difference can be evaluated by

∆φ̂(θ, β) =
dLdS

dLS

(θ − β)(∆θ −∆β)− ψ̂′(θ)∆θ, (B.2)
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where we assume ∆θ ¿ θ and ∆β ¿ β, and ψ̂′(θ) = dψ̂(θ)/dθ, (see Figure 6 for the

definitions of ∆θ and ∆β).

The gravitational lens equation is given by

dLdS

dLS

(θ − β)− ψ̂′(θ) = 0, (B.3)

and the Einstein angle is defined by the solution of the equation

dLdS

dLS

θE − ψ̂′(θE) = 0. (B.4)

With the use of the above equations, we have

∆φ̂(θ, β) = −ψ̂′(θ)∆β. (B.5)

We adopt the approximation for the phase difference,

∆φ̂(θ, β) ' − ψ̂′(θE)∆β ' −dLdS

dLS

θE∆β. (B.6)

Because ∆β = âS/dL, the condition |(1 + zL)∆φ̂| = λ/2π yields

ω(1 + zL)
dL

dLS

âSθE(= aSw) = 1, (B.7)

where λ is the wavelength of the propagating wave.


